JP4309565B2 - Ozone aqueous solution generation method - Google Patents

Ozone aqueous solution generation method Download PDF

Info

Publication number
JP4309565B2
JP4309565B2 JP2000232125A JP2000232125A JP4309565B2 JP 4309565 B2 JP4309565 B2 JP 4309565B2 JP 2000232125 A JP2000232125 A JP 2000232125A JP 2000232125 A JP2000232125 A JP 2000232125A JP 4309565 B2 JP4309565 B2 JP 4309565B2
Authority
JP
Japan
Prior art keywords
ozone
aqueous solution
concentration
hydrogen ion
ion concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000232125A
Other languages
Japanese (ja)
Other versions
JP2002045665A (en
Inventor
珠枝 多々良
Original Assignee
有限会社たたら
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社たたら filed Critical 有限会社たたら
Priority to JP2000232125A priority Critical patent/JP4309565B2/en
Publication of JP2002045665A publication Critical patent/JP2002045665A/en
Application granted granted Critical
Publication of JP4309565B2 publication Critical patent/JP4309565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Washing And Drying Of Tableware (AREA)
  • Accessories For Mixers (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オゾンガスを水に溶解させてオゾン水溶液を生成するオゾン水溶液生成方法に関し、特にオゾン水溶液中でのオゾンガス溶存状態を維持できるオゾン水溶液生成方法に関する。
【0002】
【従来の技術】
従来、この種のオゾン水溶液生成方法を実施するオゾン水生成装置として図15に示すものがあり、この図15に従来のオゾン水生成装置の概略構成図を示す。
同図において従来のオゾン水生成装置は、オゾン発生器11により発生したオゾンガスを加圧器12で加圧し、この加圧されたオゾンガスを混合器13内で水と混合してオゾン水溶液を生成する構成である。この加圧器12と混合器13とで噴流装置が形成され、混合器13に導入される水に加圧器12で加圧されたオゾンガスの噴流を充填することにより、水にオゾンガスを溶解させることができる。
【0003】
前記生成されたオゾン水溶液は、食糧品、食器等の洗浄水として使用された場合には、前記混合器13から送給管14を介して供給され、これらの食糧品、食器等を洗浄しつつ殺菌処理することができる。
【0004】
【発明が解決しようとする課題】
従来のオゾン水生成装置は以上のように構成されていたことから、混合器13から供給される生成されたオゾン水溶液が送給管14を通過する際及び送給管14の蛇口から吐出された後にオゾンガスが水から分離してオゾン水溶液のオゾン溶存量を減衰させるという課題を有していた。また、このオゾン溶存量の減衰により、オゾン水溶液の殺菌能力及び浄化能力も劣化することとなり、排オゾンガスを考慮して予め高いオゾン溶存量とした高濃度オゾン水溶液を供給しなければ所望の殺菌能力オゾン水溶液及び浄化能力が得られず、また次亜塩素酸ナトリウム等の殺菌剤と併用しなければ所望の効果が得られなという課題を有していた。
【0005】
特に、前記生成されたオゾン水溶液を洗浄水として使用する場合には、洗浄処理の現場に前記分離した排オゾンガスが充満することとなり、洗浄処理に従事する洗浄作業者の健康障害の虞が懸念されると共に、作業環境が劣悪であるという問題点を有していた。このような問題点を改善するために洗浄処理を完全密閉型の処理システムとし、又は洗浄処理現場を無人化して完全自動洗浄処理システムとすることも考えられる。しかしながら、これらの各処理システムは、いづれもシステム構成が複雑化・大型化すると共に、設備コストが高くなるという課題を有する。
【0006】
本発明は、前記課題を解消するためになされたもので、オゾン水溶液のオゾン溶存量を生成当初の状態に維持できるオゾン水溶液生成方法の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明に係るオゾン水溶液生成方法は、 野菜等の対象物を洗浄する洗浄槽に供給するために、オゾンガスを水に溶解させてオゾン水溶液を生成するオゾン水溶液生成方法において、前記オゾン水溶液をオゾン濃度が0.6mg/lないし10mg/lのとき、水素イオン濃度をpH2.01ないしpH3.0となるように前記洗浄槽に供給する際に、前記オゾンガスを水に溶解させて生成したオゾン水溶液の一部を分流し、当該分流した分流オゾン水溶液に有機酸を添加して水素イオン濃度をpH1.4以下に調整した分流オゾン水溶液を生成し、 前記水素イオン濃度がpH1.4以下に調整された分流オゾン水溶液と前記分流した残りの本流側のオゾン水溶液を混合し、前記混合されたオゾン水溶液の水素イオン濃度をpH2.01ないしpH3.0に調整するものである。このように本発明においては、オゾン水溶液の一部を分流した分流オゾン水溶液に有機酸を添加し、この添加した分流オゾン水溶液と前記オゾン水溶液とを混合して水素イオン濃度をpH2.01ないしpH3.0に調整するようにし、生成するオゾン水溶液のオゾン濃度と水素イオン濃度とを所定値に調整することにより、オゾン水溶液生成後に最適な水素イオン濃度に調整して水に溶解させたオゾンガスの分離を極力抑制できることとなり、野菜等の対象物を洗浄する洗浄槽内でのオゾン水溶液のオゾン溶存量を生成当初の状態に維持できる。
【0009】
本発明に係るオゾン水溶液生成方法は必要に応じて、水素イオン濃度がpH1.4以下に調整された分流オゾン水溶液を洗浄槽に貯留し、前記貯留されたpH1.4以下の分流オゾン水溶液に前記オゾン水溶液を所定の混合比率で混合して水素イオン濃度をpH2.01ないしpH3.0に調整するものである。このように本発明においては、洗浄槽でpH1.4以下に調整された分流オゾン水溶液とオゾン水溶液とを所定比率で混合して水素イオン濃度がpH2.01ないしpH3.0のオゾン水溶液を生成するようにしているので、生成されたオゾン水溶液からオゾンガスの解離を極力抑制できることとなり、オゾン水溶液の濃度を維持できると共に使用に際して安全性を確保できる。
【0010】
本発明に係るオゾン水溶液生成方法は必要に応じて、オゾン水溶液を噴射圧力が約1kg/cm2〜30kg/cm2で混合するものである。このように本発明においては、噴射圧力が約110g/cm2〜30kg/cm2という高圧でオゾン水溶液を混合するようにしているので、生成されたオゾン水溶液からオゾンガスの解離を極力抑制できることとなり、オゾン水溶液の濃度を維持できると共に使用に際して安全性を確保できる。
【0012】
本発明に係るオゾン水溶液生成方法は必要に応じて、オゾン濃度と水素イオン濃度との各値を相反するように調整するものである。このように本発明においては、オゾン濃度と水素イオン濃度とを各々相反する値となるように調整することにより、各オゾン濃度のオゾン水溶液の用途に応じてイオンガスの解離を極力抑制できることとなり、使用用途に適合した高機能で且つ安全性の高いオゾン水溶液を生成できる。
【0013】
【発明の実施の形態】
(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係るオゾン水溶液生成方法をこのオゾン水溶液生成方法を実施する装置と共に図1ないし図4に基づいて説明する。この図1は本実施形態に係るオゾン水溶液生成方法を実施するオゾン水溶液生成装置の全体ブロック構成図、図2及び図3は図1に記載する装置により生成したオゾン水溶液のpH濃度及びオゾン濃度の推移に関する実験例図、図4は図1に記載する装置により生成したオゾン水溶液の特性図を示す。
【0014】
前記各図において本実施形態に係るオゾン水溶液生成方法は、オゾン発生器11により生成されたオゾンガスを加圧器12で加圧して混合器13に供給し、この混合器13で水にオゾンガスを混合してオゾン水溶液を生成し、このオゾン水溶液の一部を分流器21で分流した分流オゾン水溶液にクエン酸を添加してpH調整部31で水素イオン濃度を調整し、前記分離した残りの本流側のオゾン水溶液を調整混合部41で撹拌混合し、この調整された分流オゾン水溶液と前記オゾン水溶液とを貯留槽としての洗浄槽5で混合して水素イオン濃度をpH2.01ないしpH3.0に調整する構成である。
【0015】
前記混合器13で生成されるオゾン水溶液の水素イオン濃度が約pH5である場合には、pH調整部31は分流オゾン水溶液の水素イオン濃度をpH1ないしpH1.4となるようにクエン酸の添加量を調整する。
前記オゾン水溶液の水素イオン濃度が約pH5とし、分流オゾン水溶液の水素イオン濃度が約pH1ないしpH1.4とする場合には、本流バルブ14a及び分流バルブ15aを調整して分流比率250:1の割合で洗浄槽5へ供給する。
【0016】
次に、前記構成に基づく本実施形態に係るオゾン水溶液生成方法のオゾン溶存量を実験データに基づいて説明する。図2に示すようにオゾン水溶液の水素イオン濃度をpH2.01ないしpH6.77に調整し、この各オゾン水溶液における水素イオン濃度の時間変化は各々異なり、また図2に基づいて作成したオゾン濃度減少率は図3に示すようになる。この図3をオゾン濃度と経過時間との特性図は図4に示す通りである。
【0017】
この図4においてオゾン水溶液の水素イオン濃度の減少率が極めて小さいことが解る。これに対してオゾン水溶液の水素イオン濃度が約pH4.5以上の場合にはオゾン濃度の減少率が極めて大きいことが解る。
このようにオゾン水溶液の水素イオン濃度をpH2.01ないしpH3.0に調整することにより、オゾン水溶液中のオゾンガスの解離を極力抑制しオゾン溶残量を維持できることとなる。
【0018】
(本発明の第2の実施形態)
以下、本発明の第2の実施形態に係るオゾン水溶液生成方法を図5に基づいて説明する。この図5は第2の実施形態に係るオゾン水溶液生成方法を実施するオゾン水溶液生成装置の全体ブロック構成図を示す。
同図において第2の実施形態に係るオゾン水溶液生成方法は、水にpH調整部32が有機酸(例えば、クエン酸)を添加して水の水素濃度をpH2.01ないしpH3.0に調整し、オゾン発生器11により生成されたオゾンガスを加圧器12で加圧し、この加圧されたオゾンガスと前記水素イオン濃度が調整された水とを調整混合部42が混合して給送管14を介して貯留槽の洗浄槽5へ供給する構成である。
【0019】
前記調整混合部42は、前記水素イオン濃度が調整された約8l/分の水にオゾンガスを約1kg/cm2〜30kg/cm2の噴射圧力で混合する構成である。このように予め水素イオン濃度がpH2.01ないしpH3.0に調整した水にオゾンガスを混合するようにしているので、前記第1の実施形態と同様にオゾン水溶液中のオゾンガスの解離を極力抑制しオゾン溶残量を維持できることとなる。
【0020】
なお、本実施形態においてはオゾンガスを調整混合部42で混合し、この調整混合部42の後段で混合したオゾン水溶液に対して水素イオン濃度の調整をpH調整部32が行う構成とすることもできる。
(本発明の第3の実施形態)
以下、本発明の第3の実施形態に係るオゾン水溶液生成方法を図6に基づいて説明する。この図6は第3の実施形態に係るオゾン水溶液生成方法を実施するオゾン水溶液生成装置の全体ブロック構成図を示す。
【0021】
同図において第3の実施形態に係るオゾン水溶液生成方法は、前記図1に記載のオゾン水溶液生成方法と同様にオゾン発生器11、加圧器12、混合器13、分流器21、pH調整部31、調整混合部41及び洗浄槽5を共通して備え、この構成に加え、前記pH調整部31にクエン酸等の有機酸を供給する有機酸供給部32と、この有機酸供給部32の有機酸の供給量を制御すると共に、前記オゾン発生器11のオゾンガスの発生量を制御する制御演算部10と、この制御演算部10に対して各種指令を入力する入力部10aと、前記制御演算部10の制御結果等のデータを格納する記録部10bとを備える構成である。
【0022】
前記制御演算部10は、混合器13に流入する水の水量データが流量センサ(図示を省略)から入力され、この水量データに基づいてオゾン濃度が0.6mg/lないし10mg/lとなるようにオゾン発生器11を制御すると共に、混合器13に供給する有機酸供給部32の有機酸供給量を、分流器21で分流された分流オゾン水溶液がpH2.01ないしpH3.0の水素イオンの濃度となるように制御する構成である。また、この制御演算部10は、オゾン濃度と水素イオン濃度とを相反する値となるように制御し、生成されるオゾン水溶液の用途によりオゾン濃度を制御する。
【0023】
例えば、オゾン水溶液を野菜の洗浄に使用する場合には、図7に示すように制御される。この野菜のうち比較的細菌の数が少ない玉ねぎであるときには、オゾン濃度が約0.6mg/lで水素イオン濃度が約pH3.0となるように制御される。他方、野菜のうち細菌の数が多いごぼうであるときには、オゾン濃度が約10mg/lで水素イオン濃度が約pH2.01となるように制御される。
【0024】
このように制御演算部10によりオゾン濃度の異なるオゾン水溶液についてオゾン濃度及び水素イオン濃度を相補的に調整することにより、イオンガスの解離を極力抑制できることとなり、使用用途に適合した高機能で安全性の高いオゾン水溶液を生成できることとなる。
また、前記制御演算部10により制御された制御データは、過去の履歴データとして記録部10bに格納され、後の制御の際に履歴データに基づいて制御演算部10が制御できることとなる。
【0025】
【実施例】
前記各実施形態に係るオゾン水溶液生成方法により生成されたオゾン水溶液を野菜の洗浄に使用した実験を行い、この実験結果を図8ないし図14に示す。
本実験において使用するオゾン水溶液はオゾン濃度が約3.0ppmで、水素イオン濃度がpH2.01、pH3.5、pH4.5、pH6.7の4種類とした。この4種類のオゾン水溶液ににんじん、ピーマン、白菜、玉ねぎ、長ねぎ、キャベツ、いちごを各々30分ないし60分間浸漬して細菌の殺菌結果を求めた。
【0026】
図8ないし図14に示すように水素イオン濃度がpH2.01及びpH3.4の場合は、他の水素イオン濃度(pH4.5及びpH6.7)よりも確実に細菌数の減少が認められることから、オゾン水溶液におけるオゾンガスの解離が抑制され細菌効果が高いことが解る。
なお、前記各実施形態に係るオゾン水溶液生成方法においては水溶液の水素イオン濃度の調整を有機酸を添加して調整する構成としたが、水溶液を電気分解して酸性水、アルカリ性水を生成し、この酸性水とアルカリ性水の比率を変えることにより水素イオン濃度の調整を行う構成とすることもできる。
【0027】
以上のように本発明においては、オゾン水溶液の一部を分流した分流オゾン水溶液に有機酸を添加して水素イオン濃度をpH1.4以下に調整した分流オゾン水溶液を生成し、この水素イオン濃度がpH1.4以下に調整された分流オゾン水溶液に分流した残りの本流側のオゾン水溶液を混合して水素イオン濃度をpH2.01ないしpH3.0に調整するようにし、生成するオゾン水溶液のオゾン濃度と水素イオン濃度とを所定値に調整することにより、オゾン水溶液生成後に最適な水素イオン濃度に調整して水に溶解させたオゾンガスの分離を極力抑制できることとなり、野菜等の対象物を洗浄する洗浄槽内でのオゾン水溶液のオゾン溶存量を生成当初の状態に維持できる。
【0029】
特に、水素イオン濃度をpH1.4以下に調整した分流オゾン水溶液を洗浄槽に貯留し、この貯留された分流オゾン水溶液に本流側のオゾン水溶液を所定比率で混合して水素イオン濃度がpH2.01ないしpH3.0のオゾン水溶液を生成するようにしているので、生成されたオゾン水溶液からオゾンガスの解離を極力抑制できることとなり、オゾン水溶液の濃度を維持できると共に使用に際して安全性を確保できるという効果を有する。
【0030】
また、本発明においては、噴射圧力が約1kg/cm2〜30kg/cm2という噴射圧力でオゾン水溶液を混合するようにしているので、生成されたオゾン水溶液からオゾンガスの解離を極力抑制できることとなり、オゾン水溶液の濃度を維持できると共に使用に際して安全性を確保できるという効果を有する。
【0031】
さらに、本発明においては、オゾン濃度と水素イオン濃度とを各々相反する値となるように調整することにより、各オゾン濃度のオゾン水溶液の用途に応じてイオンガスの解離を極力抑制できることとなり、使用用途に適合した高機能で且つ安全性の高いオゾン水溶液を生成できるという効果を有する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るオゾン水溶液生成方法を実施するオゾン水溶液生成装置の全体ブロック構成図である。
【図2】図1に記載する装置により生成したオゾン水溶液のpH濃度及びオゾン濃度の推移に関する実験例図である。
【図3】図1に記載する装置により生成したオゾン水溶液のpH濃度及びオゾン濃度の推移に関する実験例図である。
【図4】図1に記載する装置により生成したオゾン水溶液のpH濃度及びオゾン濃度の推移に関する特性図である。
【図5】本発明の第2の実施形態に係るオゾン水溶液生成方法を実施するオゾン水溶液生成装置の全体ブロック構成図である。
【図6】本発明の第3の実施形態に係るオゾン水溶液生成方法を実施するオゾン水溶液生成装置の全体ブロック構成図である。
【図7】本発明の第3の実施形態に係るオゾン水溶液生成方法を実施するオゾン水溶液生成装置における制御演算部の制御特性図である。
【図8】本発明の各実施形態に係るオゾン水溶液生成方法により生成されたオゾン水溶液を野菜の洗浄に使用した場合の実験データ図である。
【図9】本発明の各実施形態に係るオゾン水溶液生成方法により生成されたオゾン水溶液を野菜の洗浄に使用した場合の実験データ図である。
【図10】本発明の各実施形態に係るオゾン水溶液生成方法により生成されたオゾン水溶液を野菜の洗浄に使用した場合の実験データ図である。
【図11】本発明の各実施形態に係るオゾン水溶液生成方法により生成されたオゾン水溶液を野菜の洗浄に使用した場合の実験データ図である。
【図12】本発明の各実施形態に係るオゾン水溶液生成方法により生成されたオゾン水溶液を野菜の洗浄に使用した場合の実験データ図である。
【図13】本発明の各実施形態に係るオゾン水溶液生成方法により生成されたオゾン水溶液を野菜の洗浄に使用した場合の実験データ図である。
【図14】本発明の各実施形態に係るオゾン水溶液生成方法により生成されたオゾン水溶液を野菜の洗浄に使用した場合の実験データ図である。
【図15】従来のオゾン水生成装置の概略構成図である。
【符号の説明】
5 洗浄槽
10 制御演算部
10a 入力部
10b 記録部
11 オゾン発生器
12 加圧器
13 混合器
14 送給管
14a 本流バルブ
15 入出力部
15a 分流バルブ
21 分流器
31 pH調整部
32 有機酸供給部
41 調整混合部
42 調整混合部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ozone aqueous solution generation method for generating an ozone aqueous solution by dissolving ozone gas in water, and more particularly to an ozone aqueous solution generation method capable of maintaining an ozone gas dissolved state in the ozone aqueous solution.
[0002]
[Prior art]
Conventionally, there is one shown in FIG. 15 as an ozone water generating apparatus for carrying out this type of ozone aqueous solution generating method, and FIG. 15 shows a schematic configuration diagram of the conventional ozone water generating apparatus.
In the figure, a conventional ozone water generator is configured to pressurize ozone gas generated by an ozone generator 11 with a pressurizer 12 and mix the pressurized ozone gas with water in a mixer 13 to generate an aqueous ozone solution. It is. A jet apparatus is formed by the pressurizer 12 and the mixer 13, and ozone gas can be dissolved in water by filling the water introduced into the mixer 13 with the jet of ozone gas pressurized by the pressurizer 12. it can.
[0003]
When the generated aqueous ozone solution is used as washing water for food items, tableware, etc., it is supplied from the mixer 13 through the feed pipe 14 while washing these food items, tableware, etc. It can be sterilized.
[0004]
[Problems to be solved by the invention]
Since the conventional ozone water generating apparatus was configured as described above, the generated ozone aqueous solution supplied from the mixer 13 was discharged from the faucet of the feeding pipe 14 when passing through the feeding pipe 14. Later, ozone gas was separated from water, and the ozone dissolved amount of the aqueous ozone solution was attenuated. In addition, the attenuation of the ozone dissolved amount also deteriorates the sterilizing ability and the purifying ability of the ozone aqueous solution, and the desired sterilizing ability is obtained unless a high-concentration ozone aqueous solution having a high ozone dissolved amount in consideration of exhaust ozone gas is supplied. The ozone aqueous solution and the purification ability were not obtained, and there was a problem that a desired effect could not be obtained unless used in combination with a bactericide such as sodium hypochlorite.
[0005]
In particular, when the generated aqueous ozone solution is used as cleaning water, the separated waste ozone gas fills the cleaning process site, and there is a concern that there may be a health hazard for the cleaning operator engaged in the cleaning process. In addition, there is a problem that the working environment is poor. In order to improve such a problem, it is also conceivable that the cleaning process is a completely sealed processing system, or the cleaning process site is unmanned to form a fully automatic cleaning system. However, each of these processing systems has a problem that the system configuration becomes complicated and large, and the facility cost increases.
[0006]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ozone aqueous solution generation method capable of maintaining the amount of ozone dissolved in the ozone aqueous solution in the initial state of generation.
[0007]
[Means for Solving the Problems]
Aqueous ozone solution producing method according to the present invention, ozone to feed the cleaning tank for cleaning an object such as vegetables, the aqueous ozone solution generation method of ozone gas dissolved in water to produce an aqueous ozone solution, the ozone water solution When the concentration is 0.6 mg / l to 10 mg / l, an ozone aqueous solution generated by dissolving the ozone gas in water when supplying the cleaning tank with a hydrogen ion concentration of pH 2.01 to pH 3.0. A part of the water is split, and an organic acid is added to the shunted ozone aqueous solution to generate a split ozone aqueous solution in which the hydrogen ion concentration is adjusted to pH 1.4 or lower, and the hydrogen ion concentration is adjusted to pH 1.4 or lower. The separated ozone aqueous solution and the remaining main stream ozone aqueous solution are mixed, and the hydrogen ion concentration of the mixed ozone aqueous solution is adjusted to pH 2.01 to 2.01. The pH is adjusted to 3.0 . As described above, in the present invention, an organic acid is added to a divided ozone aqueous solution obtained by dividing a part of the ozone aqueous solution, and the added divided ozone aqueous solution and the ozone aqueous solution are mixed to adjust the hydrogen ion concentration to pH 2.01 to pH 3. 0.0, and by adjusting the ozone concentration and hydrogen ion concentration of the generated ozone aqueous solution to predetermined values, separation of ozone gas adjusted to the optimum hydrogen ion concentration after generation of the ozone aqueous solution and dissolved in water Can be suppressed as much as possible, and the amount of ozone dissolved in the ozone aqueous solution in the washing tank for washing the object such as vegetables can be maintained in the original state.
[0009]
The ozone aqueous solution generation method according to the present invention stores, as necessary, a diverted ozone aqueous solution whose hydrogen ion concentration is adjusted to pH 1.4 or less in a cleaning tank, and the stored diverted ozone aqueous solution of pH 1.4 or less is An aqueous ozone solution is mixed at a predetermined mixing ratio to adjust the hydrogen ion concentration to pH 2.01 to pH 3.0. As described above, in the present invention, the ozone aqueous solution having a hydrogen ion concentration of pH 2.01 to pH 3.0 is generated by mixing the aqueous ozone solution and the aqueous ozone solution adjusted to pH 1.4 or less in the cleaning tank at a predetermined ratio. Thus, the dissociation of the ozone gas from the generated aqueous ozone solution can be suppressed as much as possible, so that the concentration of the aqueous ozone solution can be maintained and safety in use can be ensured.
[0010]
Aqueous ozone solution generating method according to the present invention, if necessary, the aqueous ozone solution injection pressure is to mix at approximately 1kg / cm 2 ~30kg / cm 2 . As described above, in the present invention, since the ozone aqueous solution is mixed at a high injection pressure of about 110 g / cm 2 to 30 kg / cm 2 , dissociation of ozone gas from the generated ozone aqueous solution can be suppressed as much as possible. The concentration of the aqueous solution can be maintained and safety can be ensured during use.
[0012]
The ozone aqueous solution production | generation method based on this invention adjusts each value of ozone concentration and hydrogen ion concentration so that it may conflict, as needed. Thus, in the present invention, by adjusting the ozone concentration and the hydrogen ion concentration so as to have opposite values, dissociation of the ion gas can be suppressed as much as possible according to the use of the ozone aqueous solution of each ozone concentration, A highly functional and safe ozone aqueous solution suitable for the intended use can be generated.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment of the present invention)
Hereinafter, an ozone aqueous solution generation method according to a first embodiment of the present invention will be described based on FIGS. 1 to 4 together with an apparatus for performing the ozone aqueous solution generation method. FIG. 1 is an overall block diagram of an ozone aqueous solution generation apparatus that implements an ozone aqueous solution generation method according to the present embodiment. FIGS. 2 and 3 show the pH concentration and ozone concentration of the ozone aqueous solution generated by the apparatus shown in FIG. FIG. 4 is a characteristic diagram of an aqueous ozone solution generated by the apparatus shown in FIG.
[0014]
In each of the drawings, the ozone aqueous solution generation method according to the present embodiment pressurizes the ozone gas generated by the ozone generator 11 with the pressurizer 12 and supplies it to the mixer 13. The mixer 13 mixes the ozone gas with water. Then, an aqueous ozone solution is generated, citric acid is added to the diverted ozone aqueous solution obtained by dividing a part of the ozone aqueous solution by the flow divider 21, and the hydrogen ion concentration is adjusted by the pH adjusting unit 31. The aqueous ozone solution is agitated and mixed in the adjusting and mixing unit 41, and the adjusted split-flow ozone aqueous solution and the ozone aqueous solution are mixed in the washing tank 5 as a storage tank to adjust the hydrogen ion concentration to pH 2.01 to pH 3.0. It is a configuration.
[0015]
When the hydrogen ion concentration of the ozone aqueous solution generated by the mixer 13 is about pH 5, the pH adjusting unit 31 adds citric acid so that the hydrogen ion concentration of the split ozone aqueous solution becomes pH 1 to pH 1.4. Adjust.
When the hydrogen ion concentration of the ozone aqueous solution is about pH 5, and the hydrogen ion concentration of the diverted ozone aqueous solution is about pH 1 to pH 1.4, the main flow valve 14a and the diversion valve 15a are adjusted to have a diversion ratio of 250: 1. To supply to the washing tank 5.
[0016]
Next, the amount of ozone dissolved in the ozone aqueous solution generation method according to this embodiment based on the above configuration will be described based on experimental data. As shown in FIG. 2, the hydrogen ion concentration of the ozone aqueous solution is adjusted to pH 2.01 to pH 6.77, the time change of the hydrogen ion concentration in each ozone aqueous solution is different, and the ozone concentration decrease created based on FIG. The rate is as shown in FIG. FIG. 4 is a characteristic diagram of ozone concentration and elapsed time in FIG.
[0017]
In FIG. 4, it can be seen that the decrease rate of the hydrogen ion concentration of the aqueous ozone solution is extremely small. On the other hand, when the hydrogen ion concentration of the ozone aqueous solution is about pH 4.5 or more, it can be seen that the rate of decrease of the ozone concentration is extremely large.
Thus, by adjusting the hydrogen ion concentration of the ozone aqueous solution to pH 2.01 to pH 3.0, dissociation of ozone gas in the ozone aqueous solution can be suppressed as much as possible, and the remaining amount of ozone can be maintained.
[0018]
(Second embodiment of the present invention)
Hereinafter, the ozone aqueous solution production | generation method which concerns on the 2nd Embodiment of this invention is demonstrated based on FIG. FIG. 5 shows an overall block configuration diagram of an ozone aqueous solution generation apparatus that implements the ozone aqueous solution generation method according to the second embodiment.
In the figure, in the ozone aqueous solution generation method according to the second embodiment, the pH adjusting unit 32 adds an organic acid (for example, citric acid) to water to adjust the hydrogen concentration of the water to pH 2.01 to pH 3.0. Then, the ozone gas generated by the ozone generator 11 is pressurized by the pressurizer 12, and the pressurized ozone gas and the water whose hydrogen ion concentration is adjusted are mixed by the adjustment mixing unit 42 via the feed pipe 14. And supply to the cleaning tank 5 of the storage tank.
[0019]
The adjusting mixing unit 42 is configured to mix the ozone gas at about 1 kg / cm 2 injection pressure 30 kg / cm 2 to about 8l / min of water the hydrogen ion concentration is adjusted. As described above, since ozone gas is mixed with water whose hydrogen ion concentration is adjusted to pH 2.01 to pH 3.0 in advance, dissociation of ozone gas in the aqueous ozone solution is suppressed as much as possible in the same manner as in the first embodiment. The remaining amount of ozone can be maintained.
[0020]
In this embodiment, ozone gas may be mixed in the adjustment mixing unit 42, and the pH adjustment unit 32 may adjust the hydrogen ion concentration with respect to the ozone aqueous solution mixed in the subsequent stage of the adjustment mixing unit 42. .
(Third embodiment of the present invention)
Hereinafter, the ozone aqueous solution production | generation method which concerns on the 3rd Embodiment of this invention is demonstrated based on FIG. FIG. 6 shows an overall block configuration diagram of an ozone aqueous solution generation apparatus that implements the ozone aqueous solution generation method according to the third embodiment.
[0021]
In the figure, the ozone aqueous solution generation method according to the third embodiment is similar to the ozone aqueous solution generation method shown in FIG. 1, in that the ozone generator 11, the pressurizer 12, the mixer 13, the flow divider 21, and the pH adjuster 31. The adjustment mixing unit 41 and the washing tank 5 are provided in common, and in addition to this configuration, an organic acid supply unit 32 that supplies an organic acid such as citric acid to the pH adjustment unit 31, and an organic acid of the organic acid supply unit 32 A control calculation unit 10 that controls the amount of ozone gas generated from the ozone generator 11, an input unit 10 a that inputs various commands to the control calculation unit 10, and the control calculation unit And a recording unit 10b for storing data such as 10 control results.
[0022]
The control calculation unit 10 receives water amount data flowing into the mixer 13 from a flow rate sensor (not shown), and the ozone concentration is 0.6 mg / l to 10 mg / l based on the water amount data. The ozone generator 11 is controlled at the same time, and the amount of organic acid supplied from the organic acid supply unit 32 supplied to the mixer 13 is changed to a pH value of about 2.01 to 3.0 by using a split ozone aqueous solution divided by the flow divider 21. It is the structure which controls so that it may become a density | concentration. Further, the control calculation unit 10 controls the ozone concentration and the hydrogen ion concentration so as to have opposite values, and controls the ozone concentration according to the use of the generated aqueous ozone solution.
[0023]
For example, when using an aqueous ozone solution for washing vegetables, the control is performed as shown in FIG. When the vegetable is an onion having a relatively small number of bacteria, the ozone concentration is about 0.6 mg / l and the hydrogen ion concentration is controlled to about pH 3.0. On the other hand, when the burdock has a large number of bacteria among vegetables, the ozone concentration is about 10 mg / l and the hydrogen ion concentration is controlled to be about pH 2.01.
[0024]
In this way, by controlling the ozone concentration and hydrogen ion concentration of ozone aqueous solutions having different ozone concentrations by the control calculation unit 10, the dissociation of the ion gas can be suppressed as much as possible, and it is highly functional and safe for use. A high ozone aqueous solution can be produced.
The control data controlled by the control calculation unit 10 is stored in the recording unit 10b as past history data, and can be controlled by the control calculation unit 10 based on the history data during subsequent control.
[0025]
【Example】
An experiment using the ozone aqueous solution generated by the ozone aqueous solution generation method according to each of the embodiments described above for washing vegetables was performed, and the experimental results are shown in FIGS.
The ozone aqueous solution used in this experiment had an ozone concentration of about 3.0 ppm and hydrogen ion concentrations of four types of pH 2.01, pH 3.5, pH 4.5, and pH 6.7. Carrots, peppers, Chinese cabbage, onions, long onions, cabbage, and strawberries were immersed in these four types of ozone aqueous solutions for 30 to 60 minutes, respectively, to determine the sterilization results of bacteria.
[0026]
As shown in FIGS. 8 to 14, when the hydrogen ion concentration is pH 2.01 and pH 3.4, the decrease in the number of bacteria is confirmed more reliably than other hydrogen ion concentrations (pH 4.5 and pH 6.7). From this, it is understood that dissociation of ozone gas in the aqueous ozone solution is suppressed and the bacterial effect is high.
In the ozone aqueous solution generation method according to each of the above embodiments, the adjustment of the hydrogen ion concentration of the aqueous solution is adjusted by adding an organic acid, but the aqueous solution is electrolyzed to generate acidic water and alkaline water, It can also be set as the structure which adjusts a hydrogen ion concentration by changing the ratio of this acidic water and alkaline water.
[0027]
As described above, in the present invention, an organic acid is added to a diverted ozone aqueous solution in which a part of the ozone aqueous solution is diverted to generate a diverted ozone aqueous solution in which the hydrogen ion concentration is adjusted to pH 1.4 or less. The remaining main-stream ozone aqueous solution divided into the divided ozone aqueous solution adjusted to pH 1.4 or less is mixed to adjust the hydrogen ion concentration to pH 2.01 to pH 3.0. By adjusting the hydrogen ion concentration to a predetermined value, it is possible to suppress the separation of ozone gas dissolved in water by adjusting to the optimal hydrogen ion concentration after generating the aqueous ozone solution, and wash the objects such as vegetables The amount of ozone dissolved in the ozone aqueous solution can be maintained in the original state.
[0029]
In particular, the shunt aqueous ozone solution to adjust the hydrogen ion concentration in pH1.4 or less were stored in the cleaning tank, the reservoir is the hydrogen ion concentration is mixed with a predetermined ratio of ozone aqueous solution of mainstream side to shunt aqueous ozone solution was the pH 2. Since an ozone aqueous solution having a pH of 01 to 3.0 is generated, dissociation of ozone gas from the generated ozone aqueous solution can be suppressed as much as possible, and the concentration of the aqueous ozone solution can be maintained and safety can be ensured during use. Have.
[0030]
In the present invention, since the injection pressure is to mix the aqueous ozone solution in the injection pressure of about 1kg / cm 2 ~30kg / cm 2 , will be from the generated ozone aqueous solution as much as possible suppress the dissociation of the ozone gas, The concentration of the aqueous ozone solution can be maintained and safety can be ensured during use.
[0031]
Furthermore, in the present invention, by adjusting the ozone concentration and the hydrogen ion concentration to be opposite values, the dissociation of the ion gas can be suppressed as much as possible according to the use of the ozone aqueous solution of each ozone concentration. It has the effect of producing a highly functional and safe ozone aqueous solution suitable for the application.
[Brief description of the drawings]
FIG. 1 is an overall block configuration diagram of an ozone aqueous solution generation apparatus for performing an ozone aqueous solution generation method according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an experimental example relating to changes in pH concentration and ozone concentration of an aqueous ozone solution generated by the apparatus shown in FIG. 1;
FIG. 3 is an experimental example regarding the transition of pH concentration and ozone concentration of an aqueous ozone solution generated by the apparatus shown in FIG. 1;
FIG. 4 is a characteristic diagram relating to the transition of the pH concentration and ozone concentration of an aqueous ozone solution generated by the apparatus described in FIG. 1;
FIG. 5 is an overall block configuration diagram of an ozone aqueous solution generation apparatus for performing an ozone aqueous solution generation method according to a second embodiment of the present invention.
FIG. 6 is an overall block configuration diagram of an ozone aqueous solution generation apparatus for performing an ozone aqueous solution generation method according to a third embodiment of the present invention.
FIG. 7 is a control characteristic diagram of a control calculation unit in an ozone aqueous solution generation apparatus that performs an ozone aqueous solution generation method according to a third embodiment of the present invention.
FIG. 8 is an experimental data diagram when an ozone aqueous solution generated by an ozone aqueous solution generation method according to each embodiment of the present invention is used for washing vegetables.
FIG. 9 is an experimental data diagram in a case where an ozone aqueous solution generated by the ozone aqueous solution generation method according to each embodiment of the present invention is used for washing vegetables.
FIG. 10 is an experimental data diagram when an ozone aqueous solution generated by the ozone aqueous solution generation method according to each embodiment of the present invention is used for vegetable washing.
FIG. 11 is an experimental data diagram when an ozone aqueous solution generated by the ozone aqueous solution generation method according to each embodiment of the present invention is used for washing vegetables.
FIG. 12 is an experimental data diagram in the case where an ozone aqueous solution generated by an ozone aqueous solution generation method according to each embodiment of the present invention is used for washing vegetables.
FIG. 13 is an experimental data diagram when an ozone aqueous solution generated by an ozone aqueous solution generation method according to each embodiment of the present invention is used for washing vegetables.
FIG. 14 is an experimental data diagram in a case where an ozone aqueous solution generated by an ozone aqueous solution generation method according to each embodiment of the present invention is used for washing vegetables.
FIG. 15 is a schematic configuration diagram of a conventional ozone water generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 5 Washing tank 10 Control calculating part 10a Input part 10b Recording part 11 Ozone generator 12 Pressurizer 13 Mixer 14 Feed pipe 14a Main flow valve 15 Input / output part 15a Splitting valve 21 Splitter 31 pH adjustment part 32 Organic acid supply part 41 Adjustment mixing section 42 Adjustment mixing section

Claims (3)

野菜等の対象物を洗浄する洗浄槽に供給するために、オゾンガスを水に溶解させてオゾン水溶液を生成するオゾン水溶液生成方法において、
前記オゾン水溶液をオゾン濃度が0.6mg/lないし10mg/lのとき、水素イオン濃度をpH2.01ないしpH3.0となるように前記洗浄槽に供給する際に、前記オゾンガスを水に溶解させて生成したオゾン水溶液の一部を分流し、当該分流した分流オゾン水溶液に有機酸を添加して水素イオン濃度をpH1.4以下に調整した分流オゾン水溶液を生成し、
前記水素イオン濃度がpH1.4以下に調整された分流オゾン水溶液を洗浄槽に貯留し、前記貯留されたpH1.4以下の分流オゾン水溶液に前記分流した残りの本流側のオゾン水溶液を混合し、
前記混合されたオゾン水溶液の水素イオン濃度をpH2.01ないしpH3.0に調整することを
特徴とするオゾン水溶液生成方法。
In an ozone aqueous solution generation method for generating an ozone aqueous solution by dissolving ozone gas in water in order to supply a washing tank for washing an object such as vegetables,
When the ozone aqueous solution has an ozone concentration of 0.6 mg / l to 10 mg / l, the ozone gas is dissolved in water when the hydrogen ion concentration is supplied to the cleaning tank so as to be pH 2.01 to pH 3.0. A part of the ozone aqueous solution generated in the step is divided, and an organic acid is added to the diverted aqueous ozone solution to be divided to generate a dilute ozone aqueous solution in which the hydrogen ion concentration is adjusted to pH 1.4 or less,
The hydrogen ozone concentration is adjusted to a pH of 1.4 or less to store a diverted ozone aqueous solution in a washing tank, and the remaining diverted ozone aqueous solution having a pH of 1.4 or less is mixed with the remaining mainstream ozone aqueous solution.
Adjusting the hydrogen ion concentration of the mixed aqueous ozone solution to pH 2.01 to pH 3.0.
前記請求項に記載のオゾン水溶液生成方法において、
前記オゾン水溶液を噴射圧力が約1kg/cm 2 〜30kg/cm 2 で混合することを
特徴とするオゾン水溶液生成方法。
In the ozone aqueous solution production | generation method of the said Claim 1 ,
Aqueous ozone solution generating method, characterized in that the aqueous ozone solution injection pressure mixing at about 1kg / cm 2 ~30kg / cm 2 .
前記請求項1又は2に記載のオゾン水溶液生成方法において、
前記オゾン濃度が0.6mg/lから10mg/lへ増加させた場合に水素イオン濃度をpH3.0からpH2.01へ減少させ、他方オゾン濃度が10mg/lから0.6mg/lへ減少させた場合に水素イオン濃度をpH2.01からpH3.0へ増加させるように前記オゾン濃度と水素イオン濃度との各値を相反するように調整することを
特徴とするオゾン水溶液生成方法。
In the ozone aqueous solution production | generation method of the said Claim 1 or 2 ,
When the ozone concentration is increased from 0.6 mg / l to 10 mg / l, the hydrogen ion concentration is decreased from pH 3.0 to pH 2.01, while the ozone concentration is decreased from 10 mg / l to 0.6 mg / l. And adjusting the ozone concentration and the hydrogen ion concentration so that the hydrogen ion concentration is increased from pH 2.01 to pH 3.0 so that the respective values of the ozone concentration and the hydrogen ion concentration are contradictory to each other.
JP2000232125A 2000-07-31 2000-07-31 Ozone aqueous solution generation method Expired - Fee Related JP4309565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000232125A JP4309565B2 (en) 2000-07-31 2000-07-31 Ozone aqueous solution generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000232125A JP4309565B2 (en) 2000-07-31 2000-07-31 Ozone aqueous solution generation method

Publications (2)

Publication Number Publication Date
JP2002045665A JP2002045665A (en) 2002-02-12
JP4309565B2 true JP4309565B2 (en) 2009-08-05

Family

ID=18724858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232125A Expired - Fee Related JP4309565B2 (en) 2000-07-31 2000-07-31 Ozone aqueous solution generation method

Country Status (1)

Country Link
JP (1) JP4309565B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019212046A1 (en) 2018-05-02 2019-11-07 国立大学法人東北大学 Production method for heated ozone water, heated ozone water, and semiconductor wafer-cleaning liquid

Also Published As

Publication number Publication date
JP2002045665A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
CN108367952A (en) Purified and remineralization water
KR20100137451A (en) Beverage manufacture, processing, packaging and dispensing using electrochemically activated water
US6379617B1 (en) Dialysis machine and process for its disinfection
CA2538092A1 (en) System and method for increasing concentration of sterilant in region
US6328044B1 (en) Process and plant for the controlled washing of food products with ozonized water
JP2002177969A (en) Automatic dissolved oxygen control method of pressurized tank system water having sterilizing means
JP4309565B2 (en) Ozone aqueous solution generation method
US7067017B2 (en) Method and system for cleaning semiconductor elements
JPH11290049A (en) Washing of vegetable and machine for washing vegetable
JP2005034433A (en) Dialysis system and method of cleaning the same
JP2011083683A (en) System for supplying cleaning water, and cleaning method
JPH07124593A (en) Highly advanced water purifying treatment method
JP2009165374A (en) Hydroponics facility and hydroponics method each using ozone water,
JP2021053546A (en) Manufacturing equipment and manufacturing method for carbonic acid-containing hypochlorous acid water
JP2020037059A (en) Membrane filtration system, and membrane filtration method
JP4249642B2 (en) Wastewater treatment method for water system of dialysis facility
US20050279688A1 (en) Super oxygenated electrolised ion water generation system
WO2016135901A1 (en) Cleaning method for water treatment membrane
JP6902828B2 (en) Vegetable sterilization method and cut vegetable manufacturing method
JP2016150884A (en) Method and apparatus for producing aqueous solution of hypochlorous acid
CN100418902C (en) Oxidation aueleration treating method
JPH02203992A (en) Device for washing and purifying article
JPH07274921A (en) Microbicidal process for food, etc., and apparatus for producing strongly acidic water for the process
JP2883462B2 (en) Purification system
JP7188942B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees