JP4309371B2 - High-strength silicon carbide sintered material used as a constituent material for sealing rings of mechanical seals - Google Patents

High-strength silicon carbide sintered material used as a constituent material for sealing rings of mechanical seals Download PDF

Info

Publication number
JP4309371B2
JP4309371B2 JP2005120809A JP2005120809A JP4309371B2 JP 4309371 B2 JP4309371 B2 JP 4309371B2 JP 2005120809 A JP2005120809 A JP 2005120809A JP 2005120809 A JP2005120809 A JP 2005120809A JP 4309371 B2 JP4309371 B2 JP 4309371B2
Authority
JP
Japan
Prior art keywords
silicon carbide
strength
sintered
sintered material
carbide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005120809A
Other languages
Japanese (ja)
Other versions
JP2006298686A (en
Inventor
安博 阿久根
清隆 纓田
健也 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2005120809A priority Critical patent/JP4309371B2/en
Publication of JP2006298686A publication Critical patent/JP2006298686A/en
Application granted granted Critical
Publication of JP4309371B2 publication Critical patent/JP4309371B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Products (AREA)

Description

本発明は、曲げ強度等の機械的強度に優れる炭化珪素焼結材であって、メカニカルシールの密封環の構成材として使用する高強度炭化珪素焼結材に関するものである。 The present invention relates to a silicon carbide sintered material having excellent mechanical strength such as bending strength, it relates to high-strength sintered silicon carbide material used as a constituent material of the seal ring of the mechanical seal.

炭化珪素は硬質で耐摩耗性に優れるものであり、耐熱性,耐食性,耐薬品性等にも優れたものであることから、その焼結材(炭化珪素焼結材)は、メカニカルシールの密封環,軸受け等の摺動部材やバーナーノズル,ルツボ等の耐熱,耐食部材の構成材として使用されている。   Since silicon carbide is hard and has excellent wear resistance, and has excellent heat resistance, corrosion resistance, chemical resistance, etc., its sintered material (silicon carbide sintered material) is sealed with a mechanical seal. It is used as a component for heat and corrosion resistant members such as rings, bearings and other sliding members, as well as burner nozzles and crucibles.

しかし、炭化珪素焼結材は、一般に、曲げ強度等の機械的強度に優れるものではないため、機械的負荷が大きい摺動部材である等、高強度が要求される部材の構成材としては満足し得るものではなかった。   However, since silicon carbide sintered materials are not generally superior in mechanical strength such as bending strength, they are satisfactory as constituent materials for members that require high strength, such as sliding members with a large mechanical load. It was not possible.

そこで、従来からも、炭化珪素焼結材の強度向上を図るために、炭素繊維等のセラミックス繊維により複合化させることが試みられている(例えば、特許文献1)。   Therefore, conventionally, in order to improve the strength of the silicon carbide sintered material, it has been attempted to make it composite with ceramic fibers such as carbon fibers (for example, Patent Document 1).

特開平4−305063号公報Japanese Patent Laid-Open No. 4-305063

しかし、このような繊維強化型の炭化珪素焼結材では、ある程度の機械的強度を向上させることができたとしても、繊維による複合化により炭化珪素本来の特性(耐熱性,耐食性等)が損なわれる虞れがあった。   However, in such a fiber-reinforced silicon carbide sintered material, even if the mechanical strength can be improved to some extent, the original characteristics (heat resistance, corrosion resistance, etc.) of silicon carbide are impaired by the composite with the fibers. There was a fear.

本発明は、かかる点に鑑みてなされたもので、メカニカルシールの密封環の構成材として使用する炭化珪素焼結材であって、炭化珪素本来の特性を損なうことなく曲げ強度等の機械的強度を大幅に向上させ得る高強度炭化珪素焼結材を提供することを目的とするものである。 The present invention has been made in view of the above points, and is a silicon carbide sintered material used as a constituent material of a sealing ring of a mechanical seal , and mechanical strength such as bending strength without impairing the original characteristics of silicon carbide. Hisage high strength sintered silicon carbide material that can significantly improve Kyosu it is an object of Rukoto.

本発明は、上記の目的を達成すべく、所定量のフラーレン製造過程で副生する炭素材料(以下「副生炭素材料」という)を加添した炭化珪素焼結原料を成形,焼成してなり、当該副生炭素材料が焼成時における焼結助剤として機能することによって機械的強度が向上するように構成したことを特徴とするメカニカルシールの密封環の構成材として使用する高強度炭化珪素焼結材を提案するものである。 In order to achieve the above object, the present invention comprises forming and firing a silicon carbide sintered raw material to which a predetermined amount of carbon material by-produced in the fullerene production process (hereinafter referred to as “by-product carbon material”) is added. The high strength silicon carbide used as a constituent material of the sealing ring of the mechanical seal , wherein the by-product carbon material functions as a sintering aid during firing to improve mechanical strength A sintered material is proposed.

生炭素材料としては、CuKα線を使用したX線回折測定結果における回折角3〜30°の範囲内で最も強いピークが回折角10〜18°の範囲に存在し且つ回折角23〜27°にピークが存在せず、励起波長5145Åでのラマンスペクトル結果において、バンドG1590±20cm−1 とバンドD1340±40cm−1 にピークを有し、夫々のバンドのピーク強度をI(G)及びI(D)とした際におけるピーク強度比I(D)/I(G)が0.4〜1.0である炭素材料が使用される。具体的には、フロンティアカーボン(株)製の「ナノムブラックFB」「ナノムブラックFB−X」等が好適する。なお、炭化珪素焼結原料として、上記した副生炭素材料から選択した2種以上の混合物を加添したものを使用することも可能である。 The by-product carbon material, C strongest peak in the range of diffraction angle 3 to 30 ° in uKα line X-ray diffraction measurement results using exists in the range of diffraction angle 10 to 18 ° and a diffraction angle 23-27 There is no peak at °, and in the Raman spectrum result at an excitation wavelength of 5145 有 し, there are peaks in band G1590 ± 20 cm −1 and band D1340 ± 40 cm −1 , and the peak intensities of the respective bands are represented by I (G) and I A carbon material having a peak intensity ratio I (D) / I (G) of 0.4 to 1.0 when (D) is used . In concrete terms, Frontier Carbon Co., Ltd. "Nano-time black FB", "Nano-time black FB-X" or the like is preferred. In addition, it is also possible to use what added two or more types of mixtures selected from the above-mentioned byproduct carbon material as a silicon carbide sintering raw material.

好ましい実施の形態にあっては、副生炭素材料を炭化珪素粉末100部に対して0.01〜5部の割合で添加した炭化珪素焼結原料が使用される。炭化珪素粉末としては、α型、β型若しくは非晶質の炭化珪素又はこれらの混合物等を使用することができるが、平均粒径1μm以下のものを使用することが好ましい。 In the preferred embodiment, the silicon carbide sintered material was added at a rate of 0.01 to 5 parts of by-product carbon material to the silicon carbide powder 100 parts is used. As the silicon carbide powder, α-type, β-type, or amorphous silicon carbide or a mixture thereof can be used, but those having an average particle size of 1 μm or less are preferably used.

而して、副生炭素材料を添加した炭化珪素焼結原料を使用することによって、焼成時における炭化珪素の柱状結晶の成長が抑制され、その結果、結晶粒が微細化することになり、焼結不良箇所の少ない緻密な炭化珪素焼結材が得られる。また、副生炭素材料の添加により、炭化珪素結晶粒界へのカーボン等の偏析が抑制され、結晶粒界の清浄化及びカーボン等の不均質凝集による焼結不良箇所の減少が図られ、粒界破壊による低強度化が抑制さ
れる。このような結晶粒の微細化、結晶粒界の清浄化及び焼結不良箇所の減少等により、曲げ強度等の強度が大幅に向上することになる。ところで、副生炭素材料は、上記した如く、結晶成長の抑制効果を発揮するということからして、焼成時(焼結時)における焼結助剤として機能するものと考えられる。
Thus, by using the silicon carbide sintered raw material to which the by- product carbon material is added, the growth of columnar crystals of silicon carbide during firing is suppressed, and as a result, crystal grains become finer, A dense silicon carbide sintered material with few defects is obtained. In addition , the addition of by-product carbon material suppresses segregation of carbon or the like to the silicon carbide crystal grain boundary, thereby reducing the number of defective sintering due to cleaning of the crystal grain boundary and heterogeneous aggregation of carbon or the like. Reduction in strength due to field destruction is suppressed. Such refinement of crystal grains, cleaning of crystal grain boundaries, and reduction in the number of defective sintering points greatly improve the strength such as bending strength. By the way , the by- product carbon material is considered to function as a sintering aid at the time of firing (during sintering) because it exhibits the effect of suppressing crystal growth as described above.

また、本発明の高強度炭化珪素焼結材は、上記した副生炭素材料を加添した炭化珪素焼結原料を造粒する造粒工程と、造粒工程で得た造粒材を成形して、所定形状の予備成形体を得る予備成形工程と、その予備成形体を不活性ガス雰囲気中で焼成して、高強度炭化珪素焼結材を得る焼成工程とを具備することを特徴とする高強度炭化珪素焼結材の製造方法によって得られる。造粒工程においては、各原料成分それぞれに予め副生炭素材料を添加した上で、これらを混合して造粒するようにしても、一度に全ての材料を混合して造粒するようにしても、何れでもよい。さらに、副生炭素材料を予め適当な溶媒に溶解・分散した上で添加するようにする等、副生炭素材料を他の材料と均一に混合でき且つその混合材料を造粒できる限りにおいて、造粒工程はいかなる公知の方法によっても行うことが可能であり、一例を示すと、炭化珪素粉末100部に対して0.01〜5部の割合で副生炭素材料を加添した炭化珪素焼結原料を、アルコール,水等の適当な溶剤と共に混合,攪拌し、その混合スラリをスプレードライヤーにより造粒することにより、球状(一般に、径20〜100μm)の造粒材を得るようにすることが好ましい。また、焼成(焼結)は、ホットプレス法(HP法)、常温焼結法(PLS法)、ガス加圧焼結法又は熱間等方加圧法等の公知焼結法を採用することができるが、一般には、焼成温度を1900〜2200℃(より好ましくは2100〜2200℃)としておくことが好ましい。 Moreover, the high-strength silicon carbide sintered material of the present invention is formed by granulating a silicon carbide sintered raw material to which the above-mentioned by-product carbon material is added, and a granulated material obtained by the granulating step. And a preforming step for obtaining a preform with a predetermined shape, and a firing step for firing the preform in an inert gas atmosphere to obtain a high-strength silicon carbide sintered material. to Ru obtained by the production method of the high strength silicon carbide sintered material. In the granulation step, adding a pre-Me-product carbon material each respective raw material components, it is granulated by mixing them, so as to granulate by mixing all the ingredients at once Or any. Furthermore , as long as the by- product carbon material can be uniformly mixed with other materials and the mixed material can be granulated , for example, the by-product carbon material is dissolved and dispersed in an appropriate solvent in advance. The grain process can be performed by any known method. For example, silicon carbide sintered with a by-product carbon material added at a ratio of 0.01 to 5 parts with respect to 100 parts of silicon carbide powder. The raw material is mixed and stirred with an appropriate solvent such as alcohol and water, and the mixed slurry is granulated with a spray dryer to obtain a spherical granulated material (generally 20 to 100 μm in diameter). preferable. For firing (sintering), a known sintering method such as a hot press method (HP method), a room temperature sintering method (PLS method), a gas pressure sintering method or a hot isostatic pressing method may be employed. In general, however, the firing temperature is preferably 1900 to 2200 ° C. (more preferably 2100 to 2200 ° C.).

本発明の高強度炭化珪素焼結材は、炭化珪素本来の特性(耐摩耗性,耐熱性,耐食性等)を損なうことなく曲げ強度等の機械的強度を大幅に向上させ得るものであり、メカニカルシールの密封環の構成材として好適するものである。 High strength silicon carbide sintered Yuizai the present invention has silicon carbide original characteristics (wear resistance, heat resistance, corrosion resistance, etc.) may significantly improve the mechanical strength of the flexural strength and the like without impairing the mechanical it is suitable to shall as a material of the seal ring of the seal.

上記した製造方法によれば、炭化珪素本来の特性を確保しつつ曲げ強度等の機械的強度が大幅に向上した本発明の高強度炭化珪素焼結材を容易に得ることができる。 According to the manufacturing method described above, the high-strength silicon carbide sintered material of the present invention in which mechanical strength such as bending strength is significantly improved while ensuring the original characteristics of silicon carbide can be easily obtained.

参考例として、次のような造粒工程、予備成形工程及び焼成工程により本発明に係る高
強度炭化珪素焼結材(以下「参考例焼結材」という)を得た。
As a reference example , a high-strength silicon carbide sintered material (hereinafter referred to as “ reference example sintered material”) according to the present invention was obtained by the following granulation process, preforming process and firing process.

造粒工程: 炭化珪素粉末(平均粒径0.6μm以下)200g(100部)に、焼結助剤として1g(0.5部)の炭化ホウ素(BC)粉末及び16g(8.0部)のフェノール樹脂(カーボン源)と、成形助剤として8g(4.0部)のワックス類等と、2g(1.0部)のフラーレン類A1とを添加してなる炭化珪素焼結原料を、320g(160部)のメタノール溶媒と共にボールミルにより3〜4日間混合攪拌し、その混合スラリをスプレードライヤーにより噴霧乾燥することによって造粒(顆粒化)して、径50〜100μmの球形状の造粒材(顆粒)を得た。フラーレン類A1としては、フロンティアカーボン(株)製の「ナノムミックス」を使用した。これは、フラーレンC60:約60%とフラーレンC70:約25%と他の高次フラーレン類:残部とからなるフラーレン混合物である。 Granulation step: 200 g (100 parts) of silicon carbide powder (average particle size 0.6 μm or less), 1 g (0.5 part) of boron carbide (B 4 C) powder and 16 g (8.0) as a sintering aid. Part) phenolic resin (carbon source), 8 g (4.0 parts) of wax as a molding aid, and 2 g (1.0 part) of fullerenes A1 are added. Was mixed and stirred for 3-4 days with a ball mill together with 320 g (160 parts) of a methanol solvent, and the mixed slurry was granulated by spray drying with a spray dryer to form a spherical shape having a diameter of 50 to 100 μm. A granulated material (granule) was obtained. As the fullerenes A1, “Nanomumix” manufactured by Frontier Carbon Co., Ltd. was used. This is a fullerene mixture composed of fullerene C 60 : about 60%, fullerene C 70 : about 25%, and other higher-order fullerenes: the balance.

予備成形工程: 造粒工程で得られた造粒材を金型に充填した上、1000〜2000kg/cmで冷間プレス成形して、所定形状の予備成形体を得た。 Preliminary molding step: The granulated material obtained in the granulation step was filled in a mold, and then cold press-molded at 1000 to 2000 kg / cm 2 to obtain a preform with a predetermined shape.

焼成工程: 予備成形工程で得られた予備成形体を、加圧することなく、不活性ガス(アルゴンガス)雰囲気中において2100℃で焼成(焼結)して、参考例焼結材を得た。 Firing step: The pre-formed body obtained in the pre-forming step was fired (sintered) at 2100 ° C in an inert gas (argon gas) atmosphere without applying pressure to obtain a reference example sintered material.

実施例として、次のような造粒工程、予備成形工程及び焼成工程により本発明に係る高強度炭化珪素焼結材(以下「第実施例焼結材」という)を得た。なお、実施例における予備成形工程及び焼成工程は参考例と同一であり、造粒工程はフラーレン類に代えて副生炭素材料を添加した点を除いて参考例と同一である。 As Example 1 , a high-strength silicon carbide sintered material (hereinafter referred to as “ first example sintered material”) according to the present invention was obtained by the following granulation process, preforming process and firing process. In addition, the preforming process and baking process in Example 1 are the same as a reference example , and the granulation process is the same as a reference example except having replaced with fullerenes and adding the byproduct carbon material.

造粒工程: 炭化珪素粉末(平均粒径0.6μm以下)200g(100部)に、1g(0.5部)のBC粉末と16g(8.0部)のフェノール樹脂と8g(4.0部)の成形助剤と2g(1.0部)の副生炭素材料A2とを添加してなる炭化珪素焼結原料を、320g(160部)のメタノール溶媒と共にボールミルにより3〜4日間混合攪拌し、その混合スラリをスプレードライヤーにより噴霧乾燥することによって造粒して、径50〜100μmの球形状の造粒材を得た。副生炭素材料A2としては、フロンティアカーボン(株)製の「ナノムブラックFB」を使用した。これは、フラーレン含有煤を分離,精製して得られるものであり、CuKα線を使用したX線回折測定結果における回折角3〜30°の範囲内で最も強いピークが回折角10〜18°の範囲に存在し且つ回折角23〜27°にピークが存在せず、励起波長5145Åでのラマンスペクトル結果において、バンドG1590±20cm−1 とバンドD1340±40cm−1 にピークを有し、夫々のバンドのピーク強度をI(G)及びI(D)とした際におけるピーク強度比I(D)/I(G)が0.4〜1.0である炭素材料(特願2004−91312公報参照)である。 Granulation step: 200 g (100 parts) of silicon carbide powder (average particle size 0.6 μm or less), 1 g (0.5 parts) of B 4 C powder, 16 g (8.0 parts) of phenol resin and 8 g (4 0.0 part) molding aid and 2 g (1.0 part) by-product carbon material A2 are added to a silicon carbide sintered raw material together with 320 g (160 parts) methanol solvent by a ball mill for 3 to 4 days. The mixed slurry was granulated by spray-drying the mixed slurry with a spray dryer to obtain a spherical granulated material having a diameter of 50 to 100 μm. As the by-product carbon material A2, “Nanome Black FB” manufactured by Frontier Carbon Co., Ltd. was used. This is obtained by separating and purifying the fullerene-containing soot, and the X-ray diffraction measurement result using CuKα rays shows the strongest peak within the diffraction angle range of 3 to 30 ° and the diffraction angle of 10 to 18 °. In the Raman spectrum result at an excitation wavelength of 5145 し having a peak in a band G1590 ± 20 cm −1 and a band D1340 ± 40 cm −1 in the range and having no diffraction peak at a diffraction angle of 23 to 27 °, each band Carbon material whose peak intensity ratio I (D) / I (G) is 0.4 to 1.0 when the peak intensity of I is G (I) and I (D) (see Japanese Patent Application No. 2004-91312) It is.

予備成形工程: 造粒工程で得られた造粒材を使用して、参考例と同一の予備成形工程により予備成形体を得た。 Preliminary molding step: Using the granulated material obtained in the granulation step, a preform was obtained by the same preliminary molding step as in the reference example .

焼成工程: 予備成形工程で得られた予備成形体を参考例と同一の焼成工程により焼成して、参考例と同一形状をなす第実施例焼結材を得た。 Baking step: a preliminary molding step is obtained preform was fired in Reference Example in the same firing step, to obtain a first embodiment sintered material that forms the reference example and the same shape.

実施例として、次のような造粒工程、予備成形工程及び焼成工程により本発明に係る高強度炭化珪素焼結材(以下「第実施例焼結材」という)を得た。なお、実施例における予備成形工程及び焼成工程は参考例及び実施例1と同一であり、造粒工程は添加する副生炭素材料を異にする点を除いて実施例と同一である。 As Example 2 , a high-strength silicon carbide sintered material (hereinafter referred to as “ second example sintered material”) according to the present invention was obtained by the following granulation process, preforming process and firing process. In addition, the preforming process and baking process in Example 2 are the same as those in Reference Example and Example 1 , and the granulation process is the same as Example 1 except that the by-product carbon material to be added is different.

造粒工程: 炭化珪素粉末(平均粒径0.6μm以下)200g(100部)に、1g(0.5部)のBC粉末と16g(8.0部)のフェノール樹脂と8g(4.0部)の成形助剤と2g(1.0部)の副生炭素材料A3とを添加してなる炭化珪素焼結原料を、320g(160部)のメタノール溶媒と共にボールミルにより3〜4日間混合攪拌し、その混合スラリをスプレードライヤーにより噴霧乾燥することによって造粒して、径50〜100μmの球形状の造粒材を得た。副生炭素材料A3としては、フロンティアカーボン(株)製の「ナノブラックFB−X」を使用した。これは、粉体PHを3程度とした副生炭素原料A2(ナノブラックFB)の表面処理品である。 Granulation step: 200 g (100 parts) of silicon carbide powder (average particle size 0.6 μm or less), 1 g (0.5 parts) of B 4 C powder, 16 g (8.0 parts) of phenol resin and 8 g (4 0.0 part) forming aid and 2 g (1.0 part) by-product carbon material A3 were added to a silicon carbide sintered raw material for 3 to 4 days by a ball mill together with 320 g (160 parts) of a methanol solvent. The mixed slurry was granulated by spray-drying the mixed slurry with a spray dryer to obtain a spherical granulated material having a diameter of 50 to 100 μm. As the by-product carbon material A3, “Nano Black FB-X” manufactured by Frontier Carbon Co., Ltd. was used. This is a surface-treated product of the by-product carbon raw material A2 (nano black FB) having a powder PH of about 3.

予備成形工程: 造粒工程で得られた造粒材を使用して、参考例及び実施例1と同一の予備成形工程により予備成形体を得た。 Preliminary forming step: Using the granulated material obtained in the granulating step, a preformed body was obtained by the same pre-forming step as in Reference Example and Example 1 .

焼成工程: 予備成形工程で得られた予備成形体を参考例及び実施例1と同一の焼成工程により焼成して、参考例及び実施例1と同一形状をなす第実施例焼結材を得た。 Baking step: a preliminary molding step is obtained preform was fired by reference examples and the same firing process as in Example 1, to obtain a second embodiment sintered material constituting the Reference Examples and Examples 1 and same shape It was.

また、比較例として、次のような造粒工程、予備成形工程及び焼成工程により炭化珪素焼結材(以下「比較例焼結材」という)を得た。なお、比較例における予備成形工程及び焼成工程は参考例及び実施例1,2と同一であり、造粒工程は炭化珪素焼結原料にフラーレン類及び副生炭素材料を添加しない点を除いて参考例及び実施例1,2と同一である。 Further, as a comparative example, a silicon carbide sintered material (hereinafter referred to as “comparative example sintered material”) was obtained by the following granulation step, pre-forming step, and firing step. In addition, the preforming process and the firing process in the comparative example are the same as the reference example and Examples 1 and 2 , and the granulation process is a reference except that the fullerenes and the by-product carbon material are not added to the silicon carbide sintered raw material. The same as Example and Examples 1 and 2 .

造粒工程: 炭化珪素粉末(平均粒径0.6μm以下)200g(100部)に、1g(0.5部)のBC粉末と16g(8.0部)のフェノール樹脂と8g(4.0部)の成形助剤とを添加してなる炭化珪素焼結原料を、320g(160部)のメタノール溶媒と共にボールミルにより3〜4日間混合攪拌し、その混合スラリをスプレードライヤーにより噴霧乾燥することによって造粒して、径50〜100μmの球形状の造粒材を得た。 Granulation step: 200 g (100 parts) of silicon carbide powder (average particle size 0.6 μm or less), 1 g (0.5 parts) of B 4 C powder, 16 g (8.0 parts) of phenol resin and 8 g (4 0.0 parts) and a molding aid are mixed and stirred with a ball mill for 3 to 4 days together with 320 g (160 parts) of methanol solvent, and the mixed slurry is spray-dried with a spray dryer. To obtain a spherical granulated material having a diameter of 50 to 100 μm.

予備成形工程: 造粒工程で得られた造粒材を使用して、参考例及び実施例1,2と同一の予備成形工程により予備成形体を得た。 Preliminary forming step: Using the granulated material obtained in the granulating step, a preformed body was obtained by the same pre-forming step as in the reference example and Examples 1 and 2 .

焼成工程: 予備成形工程で得られた予備成形体を参考例及び実施例1,2と同一の焼成工程により焼成して、参考例及び実施例1,2と同一形状をなす比較例焼結材を得た。 Baking step: a preliminary molding step is obtained preform was fired by Reference Examples and Examples 1, 2 and the same firing step, Reference Examples and Examples 1, 2 and Comparative Example sintered material forming the same shape Got.

而して、各焼結材の焼結密度を測定したところ、表1に示す如く、第1,第2実施例焼結材、参考例焼結材及び比較例焼結材の何れにおいても焼結密度は3.16g/cm(相対密度:約98.8%)程度でほぼ同一であり、フラーレン類や副生炭素材料の添加によっては焼結密度が低下しないことが確認された。 Thus, when the sintered density of each sintered material was measured, as shown in Table 1 , the sintered materials of the first and second examples, the reference example sintered material and the comparative example sintered material were sintered. The consolidation density was approximately the same at about 3.16 g / cm 3 (relative density: about 98.8%), and it was confirmed that the sintered density was not lowered by the addition of fullerenes or by-product carbon materials.

一方、各焼結材の曲げ強度及び硬度を測定したところ、フラーレン類又は副生炭素材料を添加した第1,第2実施例焼結材及び参考例焼結材はフラーレン類及び副生炭素材料を添加しない比較例焼結材に比して大幅な向上が認められた。すなわち、各焼結材からこれを研削,ラップすることにより試験片を採取して、各試験片について、室温(25℃)においてJIS−R1601による3点曲げ試験法により曲げ強度(3点曲げ強度)を測定した。その結果は表1に示す通りであり、炭化珪素焼結原料にフラーレン類又は副生炭素材料を添加した第1,第2実施例焼結材及び参考例焼結材は、フラーレン類及び副生炭素材料を添加しない比較例焼結材に比して、曲げ強度が大幅に向上していることが確認された。その向上程度は、添加材料の種類によって異なり、副生炭素材料A2(フロンティアカーボン(株)製の「ナノムブラックFB」)を添加した第実施例焼結材の曲げ強度値が最も高く、副生炭素材料A3(フロンティアカーボン(株)製の「ナノムブラックFB−X」)を添加した第実施例焼結材がこれに続き、フラーレン類A1(フロンティアカーボン(株)製の「ナノムミックス」)を添加した参考例焼結材は、比較例焼結材に比しては大幅な曲げ強度向上が認められるものの、副生炭素材料A2,A3を添加した第1,第2実施例焼結材に比しては曲げ強度値が低いものであった。 On the other hand, when the bending strength and hardness of each sintered material were measured, the sintered materials of the first and second examples and the reference example sintered material added with fullerenes or by-product carbon materials were fullerenes and by-product carbon materials. Significant improvement was observed compared to the comparative sintered material without addition of. That is, a specimen is collected from each sintered material by grinding and lapping, and each specimen is subjected to bending strength (three-point bending strength) by a three-point bending test method according to JIS-R1601 at room temperature (25 ° C.). ) Was measured. The results are shown in Table 1. The sintered materials of the first and second examples and the sintered material of the reference example in which fullerenes or by-product carbon materials are added to the silicon carbide sintering raw materials are the fullerenes and by-products. It was confirmed that the bending strength was significantly improved as compared with the comparative sintered material to which no carbon material was added. The degree of improvement differs depending on the type of additive material, and the bending strength value of the first example sintered material to which the by-product carbon material A2 (“Nanome Black FB” manufactured by Frontier Carbon Co., Ltd.) is added is the highest. This was followed by the second example sintered material to which the raw carbon material A3 (“Nanome Black FB-X” manufactured by Frontier Carbon Co., Ltd.) was added, followed by fullerenes A1 (“Nanomu Mix” manufactured by Frontier Carbon Co., Ltd.). reference example ware Yuizai with added), although is observed significant bending strength improvement compared with the comparative example sintered material, first, second embodiment sintered with the addition of by-product carbon material A2, A3 The bending strength value was lower than that of the material .

また、各焼結材から採取した試験片について、マイクロビッカース硬度試験(JIS−Z2244)により硬度(マイクロビッカース硬度)を測定したところ、その結果は表1に示す通りであり、炭化珪素焼結原料にフラーレン類又は副生炭素材料を添加した第1,第2実施例焼結材及び参考例焼結材は、フラーレン類及び副生炭素材料を添加しない比較例焼結材に比して、高硬度値を示すことが確認された。その硬度値は、添加材料の種類によって異なり、副生炭素材料A2,A3を添加した第及び第実施例焼結材はフラーレン類A1を添加した参考例焼結材よりも高い値を示した。 Moreover, when the hardness (micro Vickers hardness) was measured by the micro Vickers hardness test (JIS-Z2244) about the test piece extract | collected from each sintered material, the result is as showing in Table 1, and a silicon carbide sintered raw material The sintered materials of the first and second examples and the reference example sintered material to which fullerenes or by-product carbon materials are added are higher than the comparative example sintered materials to which fullerenes and by-product carbon materials are not added. It was confirmed to show a hardness value. The hardness value varies depending on the type of additive material, and the sintered materials of the first and second examples to which the by-product carbon materials A2 and A3 are added show higher values than the reference example sintered material to which the fullerenes A1 are added. It was.

このように、第1,第2実施例焼結材は曲げ強度及び硬度の何れにおいても参考例焼結材及び比較例焼結材より高い値を示しており、特に、副生炭素材料A2を添加した第実施例焼結材は曲げ強度及び硬度の何れにおいても最高値を示した。したがって、強度向上を図る上においては、添加材料として副生炭素材料が好適であり、特に副生材料A2(フロンティアカーボン(株)製の「ナノムブラックFB」)が最適であることが理解される。 As described above, the sintered materials of the first and second examples showed higher values than the reference example sintered material and the comparative example sintered material in both bending strength and hardness. The added sintered material of Example 1 showed the highest value in both bending strength and hardness. Therefore, in order to improve the strength, it is understood that the by-product carbon material is preferable as the additive material, and in particular, the by-product material A2 (“Nanomu Black FB” manufactured by Frontier Carbon Co., Ltd.) is optimal. .

ところで、図1〜図4は第1,第2実施例焼結材、参考例焼結材及び比較例焼結材のエ
ッチング表面を走査型電子顕微鏡(SEM)により500倍に拡大した結晶組織写真であるが、参考例焼結材(図1)、第実施例焼結材(図2)及び第実施例焼結材(図3)は、何れも、比較例焼結材(図4)に比して、結晶粒が微細化されており、結晶粒界への偏析も少ないことが確認された。したがって、フラーレン類又は副生炭素原料の添加が結晶粒成長抑制により微細化を図ると共に結晶粒界への偏析を減少させて、炭化珪素焼結材の強度向上を実現することが理解される。
1 to 4 are photographs of crystal structures in which the etching surfaces of the sintered materials of the first and second examples , the reference example sintered material, and the comparative example sintered material are magnified 500 times by a scanning electron microscope (SEM). However, the reference example sintered material (FIG. 1), the first example sintered material (FIG. 2), and the second example sintered material (FIG. 3) are all comparative example sintered materials (FIG. 4). It was confirmed that the crystal grains were made finer and the segregation to the crystal grain boundaries was small. Therefore, it is understood that the addition of fullerenes or by-product carbon raw material achieves improvement in strength of the silicon carbide sintered material by miniaturizing crystal grain growth and reducing segregation to grain boundaries.

本発明の高強度炭化珪素焼結材は、炭化珪素本来の特性を損なうことなく高強度化されたものであるから、高強度を必要とするメカニカルシールの密封環の構成材として好適に使用することができる。 Since the high-strength silicon carbide sintered material of the present invention is increased in strength without impairing the original characteristics of silicon carbide, it is preferably used as a constituent material for a seal ring of a mechanical seal that requires high strength. be able to.

参考例焼結材の表面を500倍に拡大して示す顕微鏡写真である。It is a microscope picture which expands the surface of a reference example sintered material by 500 times. 実施例焼結材の表面を500倍に拡大して示す顕微鏡写真である。It is a microscope picture which expands and enlarges the surface of 1st Example sintered material 500 times. 第2実施例焼結材の表面を500倍に拡大して示す顕微鏡写真である。It is a microscope picture which expands and enlarges the surface of 2nd Example sintered material 500 times. 比較例焼結材の表面を500倍に拡大して示す顕微鏡写真である。It is a microscope picture which expands the surface of a comparative example sintered material by 500 times.

Claims (3)

フラーレン製造過程で副生する炭素材料であって、CuKα線を使用したX線回折測定結果における回折角3〜30°の範囲内で最も強いピークが回折角10〜18°の範囲に存在し且つ回折角23〜27°にピークが存在せず、励起波長5145Åでのラマンスペクトル結果において、バンドG1590±20cm−1 とバンドD1340±40cm−1 にピークを有し、夫々のバンドのピーク強度をI(G)及びI(D)とした際におけるピーク強度比I(D)/I(G)が0.4〜1.0である炭素材料を炭化珪素粉末100部に対して0.01〜5部の割合で添加した炭化珪素焼結原料を成形,焼成してなり、当該炭素材料が焼成時における焼結助剤として機能することによって機械的強度が向上するように構成したことを特徴とするメカニカルシールの密封環の構成材として使用する高強度炭化珪素焼結材。 It is a carbon material by-produced in the fullerene production process, and the strongest peak is present in the diffraction angle range of 10 to 18 ° within the diffraction angle range of 3 to 30 ° in the X-ray diffraction measurement result using CuKα rays. There is no peak at a diffraction angle of 23 to 27 °, and in the Raman spectrum result at an excitation wavelength of 5145 ピ ー ク, there are peaks in band G1590 ± 20 cm −1 and band D1340 ± 40 cm −1 , and the peak intensity of each band is represented by I A carbon material having a peak intensity ratio I (D) / I (G) of 0.4 to 1.0 when (G) and I (D) are used is 0.01 to 5 with respect to 100 parts of silicon carbide powder. molded parts silicon carbide sintered material was added at a rate of, firing will be, the carbon material is characterized by being configured as mechanical strength is improved by acting as a sintering aid during firing High strength sintered silicon carbide material used as a constituent material of the sealing ring of Kanikarushiru. 焼結密度が3.161であり、3点曲げ強度が660MPaであり、マイクロビッカース高度が30500MPaであることを特徴とする、請求項1に記載するメカニカルシールの密封環の構成材として使用する高強度炭化珪素焼結材。 Sintering density of 3.161, 3-point bending strength is 660 MPa, the micro-Vickers altitude characterized 30500MPa der Rukoto, used as a constituent material of the seal ring of the mechanical seal according to claim 1 High-strength silicon carbide sintered material. 焼結密度が3.164であり、3点曲げ強度が630MPaであり、マイクロビッカース高度が30500MPaであることを特徴とする、請求項1に記載するメカニカルシールの密封環の構成材として使用する高強度炭化珪素焼結材。 Sintering density of 3.164, 3-point bending strength is 630 MPa, the micro-Vickers altitude characterized 30500MPa der Rukoto, used as a constituent material of the seal ring of the mechanical seal according to claim 1 High-strength silicon carbide sintered material.
JP2005120809A 2005-04-19 2005-04-19 High-strength silicon carbide sintered material used as a constituent material for sealing rings of mechanical seals Expired - Fee Related JP4309371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120809A JP4309371B2 (en) 2005-04-19 2005-04-19 High-strength silicon carbide sintered material used as a constituent material for sealing rings of mechanical seals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120809A JP4309371B2 (en) 2005-04-19 2005-04-19 High-strength silicon carbide sintered material used as a constituent material for sealing rings of mechanical seals

Publications (2)

Publication Number Publication Date
JP2006298686A JP2006298686A (en) 2006-11-02
JP4309371B2 true JP4309371B2 (en) 2009-08-05

Family

ID=37467197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120809A Expired - Fee Related JP4309371B2 (en) 2005-04-19 2005-04-19 High-strength silicon carbide sintered material used as a constituent material for sealing rings of mechanical seals

Country Status (1)

Country Link
JP (1) JP4309371B2 (en)

Also Published As

Publication number Publication date
JP2006298686A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP6342807B2 (en) Manufacturing method of dense ceramic products based on SiC
JP6871173B2 (en) Fragile ceramic bonded diamond composite particles and their manufacturing method
JP6358110B2 (en) Ceramic composite material and manufacturing method thereof
EP1452509B1 (en) Boron carbide based sintered compact and method for preparation thereof
KR102094198B1 (en) Silicon carbide high carbon composite material and manufacturing method thereof
JP2013500227A (en) Method for forming sintered boron carbide
JP2013500226A (en) High toughness ceramic composite material
KR20080091254A (en) Method for producing carbon-containing silicon carbide ceramic
JP4309371B2 (en) High-strength silicon carbide sintered material used as a constituent material for sealing rings of mechanical seals
JP5673946B2 (en) Method for producing silicon nitride ceramics
JP2004059346A (en) Silicon nitride-based ceramic sintered compact, and its production process
JP2003137656A (en) Boron carbide-titanium diboride sintered compact, and production method therefor
JP5673945B2 (en) Method for producing silicon nitride ceramics
JP2004292176A (en) Combined ceramic and and method of manufacturing the same
JP2012144389A (en) SiC/Si COMPOSITE MATERIAL
JP3339645B2 (en) Method for producing silicon carbide-carbon composite material
JP3926760B2 (en) Boron carbide-chromium diboride sintered body and method for producing the same
JP2004189524A (en) Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact
JP2023046932A (en) Manufacturing method of composite ceramic
JPH07277835A (en) Production of combined sintered compact
JP2006021934A (en) Composite ceramics production method
JP2006169015A (en) Boron nitride dispersed composite ceramic and method of manufacturing the same
JP5459850B2 (en) Silicon nitride sintered body and method for producing the same
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees