JP4309194B2 - Manufacturing method of filtration membrane for water treatment - Google Patents

Manufacturing method of filtration membrane for water treatment Download PDF

Info

Publication number
JP4309194B2
JP4309194B2 JP2003209219A JP2003209219A JP4309194B2 JP 4309194 B2 JP4309194 B2 JP 4309194B2 JP 2003209219 A JP2003209219 A JP 2003209219A JP 2003209219 A JP2003209219 A JP 2003209219A JP 4309194 B2 JP4309194 B2 JP 4309194B2
Authority
JP
Japan
Prior art keywords
filtration membrane
water
resin
water treatment
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003209219A
Other languages
Japanese (ja)
Other versions
JP2005066403A (en
Inventor
力 山本
将展 吉田
Original Assignee
輝化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 輝化学工業株式会社 filed Critical 輝化学工業株式会社
Priority to JP2003209219A priority Critical patent/JP4309194B2/en
Publication of JP2005066403A publication Critical patent/JP2005066403A/en
Application granted granted Critical
Publication of JP4309194B2 publication Critical patent/JP4309194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、精密ろ過膜(MF)や限外ろ過膜(UF)に相当する、径が約0.01〜10μm以上の粒子状物質を分離する水処理ろ過膜の製造方法及び水処理用ろ過膜に関する。生活用浄水、産業用水、医療用水などのための処理ほか、し尿処理排水、下水、産業排水などの排水処理にも好適である。
【0002】
【従来の技術】
最近の水処理分野における膜ろ過の進歩は著しく、ろ過膜の分離対象粒子の径は数オングストロームからミクロン単位の範囲におよぶ。また、装置をコンパクトに製作できる、生物的処理への応用が容易である、処理水質が安定するなど、数多くの利点があることから、多方面にわたる実用化が進んでいる。
【0003】
【発明が解決しようとする課題】
一方で、従来の水処理用ろ過膜には、強度が低い、寿命が短く基本的に消耗品である、使用する装置が複雑であって、コスト面で不利であるという欠点があった。本発明は、コスト面で他の手段に遜色がなく丈夫で使いやすい実用性に富んだ水処理用ろ過膜を課題に研究の結果、完成したものである。
【0004】
【課題を解決するための手段】
前記の課題を解決する手段として、本発明を開示し説明する。本発明は、前記の課題を解決するために、不織布に所定量の非水溶性樹脂の溶液(樹脂エマルジョン水溶液を含む)を含浸させて乾燥した後、得られた樹脂含浸不織布を加熱・圧縮することにより樹脂含浸不織布層内の細孔を所望の大きさに調整して得られるろ過膜を、ベースのろ過膜(又はベースろ過膜という)として使用する。
【0005】
本発明は、前記の樹脂含浸不織布からなる、ベースのろ過膜の表面に、非水溶性樹脂の溶液(水溶液を除く)中に水溶性化合物の微粉末を混合・分散させて調合した樹脂ろ過膜の原材を塗布し、乾燥した後、水または熱水で処理して樹脂ろ過膜原材中の水溶性化合物を溶出させ、残る樹脂ろ過膜層中に微細孔を形成させて水処理用ろ過膜とする、ことを特徴とする水処理用ろ過膜の製造方法を開示する。
【0006】
本発明はさらに、前記の水処理用ろ過膜の製造方法の別法として、離型紙に非水溶性樹脂の溶液(水溶液を除く)中に水溶性化合物の微粉末を混合・分散させて調合した樹脂ろ過膜の原材を塗布して、ベースのろ過膜の表面に転写又は接着させ、離型紙を除いて乾燥した後、水または熱水で処理して樹脂ろ過膜原材中の水溶性化合物を溶出させ、残る樹脂ろ過膜層中に微細孔を形成させて水処理用ろ過膜とする、ことを特徴とする水処理用ろ過膜の製造方法を開示する。前記したいずれの発明においても、使用する水溶性化合物としては、グルコン酸塩類又はブドウ糖の使用が好ましい。
【0007】
2層からなるベースのろ過膜の層間に前記の樹脂ろ過膜原材の層を挟んで乾燥し、水または熱水で処理して樹脂ろ過膜原材層中の水溶性化合物を溶出し微細孔を形成させて一体に積層して3層からなる水処理用ろ過膜を製造することもできる。
【0008】
そして本発明は、不織布に樹脂を含浸・付着させて層内に無数の細孔が形成されている樹脂含浸不織布層からなるろ過膜であって、加熱・圧縮により、好ましくは最小の分離対象粒子径、即ちろ液側とろ滓とに分離される最小の粒子径を10〜0.1μmの範囲に調整されている水処理用のろ過膜を、ベースのろ過膜として使用するそして、前記の水処理ろ過膜製造方法によって製造される、樹脂ろ過膜材層を重ねた水処理用ろ過膜であって、樹脂ろ過膜材層中に形成される微細孔の径の大きさにより、最小の分離対象粒子径が1〜0.01μmの範囲に調整されている、ことを特徴とする水処理用ろ過膜を開示する。また、2層からなるベースのろ過膜の間に前記の樹脂ろ過膜原材の層を挟んで製造された水処理用ろ過膜であって、最小の分離対象粒子径を1〜0.01μmの範囲に調整した微細孔を有する樹脂ろ過膜層が挟まれて一体に積層されている、ことを特徴とする水処理用ろ過膜を開示する。
【0009】
【発明の実施の形態】
本発明について実施の形態例をあげながら、適宜、図面を参照して具体的に説明する。まず、本発明は、不織布に非水溶性樹脂の溶液を含浸させて乾燥し熱プレスして、好ましくは最小の分離対象粒子径が10〜0.1μmの範囲に調整されているろ過膜を、ベースのろ過膜として使用する。
【0010】
そして本発明は、前記ベースのろ過膜の表面に、水を溶媒としない非水溶性樹脂の溶液に水溶性化合物の微粉末を分散させた樹脂ろ過膜の原材を塗布し、乾燥して溶媒を揮散させた後、水又は熱水を用いて処理を行い水溶性物質を溶出させ乾燥することによって微細孔を有する樹脂ろ過膜層を形成、積層した、最小の分離対象粒子径が1〜0.01μmの範囲に調整されている水処理用ろ過膜製造方法及び水処理用ろ過膜を提供する。本発明に係る水処理用ろ過膜の分離対象粒径は、限外ろ過膜のそれに相当する。ただし、本発明の水処理用ろ過膜製造方法及び水処理用ろ過膜が分離対象とする粒子径は、上記に限定されるものではなく、熱プレスや水溶性化合物の粒度調整、あるいはろ過膜の積層によってさらに広範囲で利用することができる。
【0011】
本発明水処理ろ過膜の基材として使用する不織布には、ポリエステル、ナイロン、ビニロン、ポリプロピレン、フッ素系ポリマー等の有機合成繊維、ガラス繊維、セラミックファイバー等の無機繊維、天然繊維、これらの繊維の混合繊維からなる不織布を使用できる。通常の不織布のほか溶融紡糸、延伸後、直ちに分散成形する長繊維不織布も使用できる。使用する不織布の種類、厚さ、繊維密度などについては使用条件により適宜に決めればよく、市販の不織布を利用できる。不織布の厚さは繊維密度にもよるが、一般的には2〜10mm程度がよい。繊維密度は0.005〜0.03g/cm程度が好ましい。
【0012】
前記樹脂溶液に含まれる非水溶性樹脂としては、アクリル樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂等の合成樹脂や天然樹脂、またはこれらの樹脂を適宜に混合して使用できる。これらの樹脂の中ではポリエステル樹脂、ポリウレタン樹脂が使いやすい。
【0013】
樹脂溶液の溶媒としては、トルエン、キシレン、酢酸エチル、酢酸ブチル、アセトン、メチルシクロヘキサン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサン、エチルアルコール、メチルシクロヘキサン、イソプロピルアルコール等を使用できる。樹脂ろ過膜の原材に使用する樹脂溶液を除く樹脂溶液は、前記の樹脂をエマルジョンにして分散・混合した水溶液を利用することができる。
【0014】
樹脂ろ過膜の原材に使用する樹脂溶液は、通常、不織布に含浸させた樹脂溶液に用いたのと同じ樹脂、溶媒(水を除く)を使用するが、条件が許せばそれにこだわる必要はない。樹脂ろ過膜原材に分散させる水溶性化合物粉末は、水に易溶性であって樹脂溶液には溶解しない物質から選ばれ、具体的にはグルコン酸ナトリウム、グルコン酸カルシウム、クエン酸、クエン酸ナトリウム、クエン酸カリウム、砂糖、果糖、蔗糖、ブドウ糖などの微粉末があげられる。これらの中ではグルコン酸塩やブドウ糖を好ましく利用することができる。また、前記水溶性化合物粉末は、分離対象粒子の径によるが一般には1〜0.01μmの微細孔を形成するためには300〜1000メッシュ程度のものを使用する。このほか、前記の樹脂溶液には、いずれも必要が有れば、分散剤や沈降防止剤、増粘剤、抗菌剤や防藻剤を添加してもよい。
【0015】
つぎに、本発明に用いるベースろ過膜は、不織布に所定量の樹脂溶液を含浸させて乾燥し溶媒を分離して細孔を形成し、さらに、不織布表面に圧力を加えて加熱・圧縮し細孔を所要の大きさに調整して製造することができる。含浸させる樹脂量は、乾燥後において元の不織布重量の30〜150%程度、一般には約50〜100%の範囲であるが、条件によってはこれらの範囲に限られるものではない。加熱・圧縮には、加熱プレス、加熱ロールなどを用いるとよい。加熱温度は含浸樹脂の軟化温度にもとづいて決める。圧縮比は、元の不織布厚さに対し通常1/2〜1/8程度であり、ろ過分離される対象粒子の大きさを調整するのに重要な操作である。ただし、上記した数字は、最終的には操作条件や原料などの相互の関連、ろ過する懸濁物質の大きさなどによって決まるので、最終的には経験と実験とにより適宜に設定することが多い。
【0016】
この様にして製造されたベースろ過膜の表裏両面を顕微鏡及び走査型電子顕微鏡(SEM)により拡大して観察したところ、繊維が重なって構成される内部は均一な大きさの空隙が形成されていた。これは逆洗およびエヤースクランビングを行うときファウリングを防ぎ、有機物吸着の圧密化を防ぐとともに、加圧、吸引に対し、緩衝材として働く。
【0017】
本発明の水処理用ろ過膜は、ベースろ過膜の表面に、非水溶性樹脂溶液中に水溶性化合物の粉末を混合し分散させた樹脂ろ過膜の原材を塗布して乾燥し樹脂を固定した後、水又は熱水で処理して水溶性化合物を水側に抽出し微細孔を形成して樹脂ろ過膜にすることによって製造できる。混合する水溶性化合物粉末量は、樹脂ろ過膜原材中の樹脂に対して、200〜500重量%の範囲が好ましい。塗布方法にとくに制限はなく、ロールコータ、スプレーコータやナイフコータを用いることができる。また、離型紙上に樹脂ろ過膜原剤を塗布し、そのままベースのろ過膜表面に転写あるいは接着させてもよい。接着には水溶性化合物粉末を分散、混合した樹脂ろ過膜原材を利用する。一般に、樹脂ろ過膜2の厚さは0.2〜1.5mm程度、ベースろ過膜の厚さに対して10〜100%程度にするとよい。
【0018】
樹脂ろ過膜は、一般にベースろ過膜1の片面に形成一体化し、使用時には通常上流側に配置される。逆洗し易いのと強度上有利なことによる。しかし、ろ過圧力や被ろ過液のSS濃度が大きい場合には、樹脂ろ過膜の両面にベースろ過膜を積層して用い、樹脂ろ過膜の保護を図るとよい。また、ベースろ過膜と樹脂ろ過膜2と負荷の差が大きい場合には、両膜間のろ過対象粒子径を調整して製造し負荷バランスをはかるとことができる。勿論のこと、前記した本発明の水処理用ろ過膜は、複数枚を積層し相互に固着させて一体に構成し使用することができるし、適宜に組み合わせて独立配置することもできる。
【0019】
ろ過膜の使用形態について説明する。ろ過膜モジュウルの形式としては、平面膜、円管膜、スパイラル膜、中空糸膜が一般的である。大きな膜面積を得られモジュール交換が容易である点ではスパイラル膜、中空糸膜が有利であるが懸濁物質の多い液を流すと内部閉塞を起こすおそれがある。本発明に係るろ過膜は高強度であり、高濃度MLSS( Mixed Liquor Suspended Solid:排水等に含まれる浮遊固形物)などに有用であるところから、四角平板モジュールを望ましく利用することができる。簡易なろ過槽に簡便、安全、低コストで所望のろ過膜を設置できる。逆洗やエヤースクランビング、ろ過膜の交換は容易である。
【0020】
本発明水処理ろ過膜の具体的な使用形態として、バッチ式ろ過装置の一例を図2にフローシートで示して説明する。ろ過原水槽11に貯留された原水は、自然流下によって原水供給配管12からバッチ式ろ過水器13の底部に供給される。バッチ式ろ過器13の下部には支持部材が設けられて本発明水処理ろ過膜14のモジュールが水平に取り付けられ、供給されたろ過原水はろ過膜14の下面側から上面側に通過しろ過される。ろ過されたろ過水はろ過膜14の上面側に貯留され、適時ろ過水抜出配管15を通りろ過水貯留槽16に抜き出され再利用水のために貯留される。
【0021】
ろ過原水槽11及びバッチ式ろ過器12にはそれぞれ液面検出制御計17a、17bを取り付けておく。ろ過膜14に目詰まりが生じ、ろ過原水槽11の水位が高くなると液面検出制御計17aから注意信号が発せられる。逆洗ポンプ18が作動して上面側に逆洗水が投入される。逆洗水は逆洗出口19(ドレーン弁開閉口)から排出される。
【0022】
【実施例】
本発明の効果を確認するために小規模試験を実施したので、その結果を具体的に説明する。
【0023】
実施例1
まず、ベースろ過膜を試作したのでその手順及びその特性について説明する。厚さ5mmのポリエステル繊維からなる不織布に水性ポリウレタン樹脂を含浸させ、乾燥した。不織布重量に対しポリウレタン樹脂は約80重量%であった。これを140℃で加熱プレスして1mmの厚さにし、ベースろ過膜にした。このろ過膜の引裂強度は、縦方向が35kg/cm、横方向が50kg/cmであった。従来からよく利用されているろ過膜よりも強く靭性があった。
【0024】
また、このろ過膜を直径約10cm、内容量1.8リットルのステンレス鋼製円筒の底にフランジで固定し、かつ原水側にろ過圧力を加えてろ過速度を変更できるよう加圧装置を接続して、ろ過の試験装置に用いた。まず、透明度が殆ど0に近い水田の水をろ過したところ透明度を50cm以上にすることができた。つぎにA市下水処理場の曝気前の都市下水を無加圧のまま、ろ過し、濁度及び浮遊粒子の除去率を測定した(レーザー回折散乱法による)。その結果を表1に示す。なお、ろ過前の原水中の粒度分布を測定したので結果を図3に示す。
【0025】
実施例2
ポリエステル樹脂(パイロン200:東洋紡績(株)製)が30重量%になるように、トルエン/メチルエチルケトン/酢酸エチル(容量比:60/20/20)の混合溶液に溶解した。さらにポリエステル樹脂の270重量%のグルコン酸ナトリウム微粉末(1000メッシュ)を加えて分散させた。この分散溶液を離型紙に約0.8mmの厚さに塗布して乾燥し、同じ分散溶液を用い、実施例1において製造したベースろ過膜に接着させた。よく乾燥させた後、70℃の水に浸漬してグルコン酸ナトリウムを溶出させた後、乾燥して2層からなる本発明ろ過膜を製造した。得られたろ過膜を乾燥後顕微鏡および走査型電子顕微鏡(SEM)により拡大して観察したところ、0.01〜0.1μmの微細孔が形成されているのを確認できた。さらに実施例1と同様にして都市下水をろ過しろ過水の上澄中の大腸菌を調べたが観察されなかった。
【0026】
実施例3
ポリウレタンエラストマーが35重量%になるようにトルエン/酢酸エチル(容量比:50/50)に溶解した。さらにポリウレタンに対して300重量%のブドウ糖の微粉末(1000メッシュ)を分散させた。得られた分散溶液を離型紙に厚さ1mmに塗布して乾燥し、同じ分散液を用い、実施例1において製造したベースろ過膜に接着させた。よく乾燥させた後、70℃の水に浸漬してブドウ糖を溶出させた後、乾燥して2層からなる本発明ろ過膜を製造した。得られたろ過膜を乾燥後顕微鏡および走査型電子顕微鏡(SEM)により拡大して観察したところ、0.01〜0.1μmの微細孔が形成されているのを確認できた。さらに実施例1のろ過水を被処理水として、ろ過圧力を調整しろ加速度を変えた以外は実施例1と同様にして、ろ過試験を実施した。その結果を表1に示す。ろ過水の上澄水中の大腸菌を調べたが観察されなかった。
【0027】
【表1】

Figure 0004309194
【0028】
【発明の効果】
本発明に係る水処理用ろ過膜は、分離対象となる粒子径の調整が容易であって、強度及び靭性が極めて大きく逆洗も容易であって、長期使用が可能である。取り付け、取り外し、および使用後の処理が簡単で保守費用は安価である。
【図面の簡単な説明】
【図1】 本発明第2形態ろ過膜の断面図
【図2】 本発明水処理用ろ過膜を用いたバッチ式ろ過装置の一例を示すフローシート
【図3】 実施例1〜3に用いた原水中の固形物粒度分布
【符号の説明】
1:ベースのろ過膜(ベースろ過膜)
2:樹脂ろ過膜(層) 3:本願発明に係る水処理用ろ過膜
4:ろ過工程の流れ
11:ろ過原水槽 12:原水供給配管
13:バッチ式ろ過器 14:本発明水処理用ろ過膜
15:ろ過水抜出配管 16:ろ過水貯留槽
17a,17b:液面検出制御計 18:逆洗ポンプ
19:逆洗水出口[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for producing a water treatment filtration membrane for separating particulate matter having a diameter of about 0.01 to 10 μm or more, which corresponds to a microfiltration membrane (MF) or an ultrafiltration membrane (UF), and a filtration for water treatment. Relates to the membrane. In addition to treatment for domestic water, industrial water, medical water, etc., it is also suitable for wastewater treatment such as human waste treatment wastewater, sewage, and industrial wastewater.
[0002]
[Prior art]
Recent progress in membrane filtration in the water treatment field is remarkable, and the size of particles to be separated in the filtration membrane ranges from several angstroms to microns. In addition, since there are a number of advantages such as the ability to manufacture the apparatus in a compact manner, easy application to biological treatment, and stable treatment water quality, it has been put to practical use in various fields.
[0003]
[Problems to be solved by the invention]
On the other hand, conventional filtration membranes for water treatment have the disadvantages of low strength, short life and basically consumables, complicated equipment used, and disadvantageous in terms of cost. The present invention has been completed as a result of research on a water treatment filter membrane that is durable and easy to use, inferior to other means in terms of cost.
[0004]
[Means for Solving the Problems]
The present invention will be disclosed and described as means for solving the above-mentioned problems. In order to solve the above problems, the present invention impregnates a nonwoven fabric with a predetermined amount of a water-insoluble resin solution (including a resin emulsion aqueous solution) and dries it, and then heats and compresses the resulting resin-impregnated nonwoven fabric. Thus, a filtration membrane obtained by adjusting the pores in the resin-impregnated nonwoven fabric layer to a desired size is used as a base filtration membrane (or a base filtration membrane).
[0005]
The present invention provides a resin filtration membrane prepared by mixing and dispersing a fine powder of a water-soluble compound in a water-insoluble resin solution (excluding an aqueous solution) on the surface of a base filtration membrane made of the resin-impregnated nonwoven fabric. Apply and dry the raw material, and then treat with water or hot water to elute the water-soluble compounds in the resin filtration membrane raw material and form fine pores in the remaining resin filtration membrane layer to filter for water treatment Disclosed is a method for producing a filtration membrane for water treatment , characterized in that it is a membrane .
[0006]
The present invention is further prepared by mixing and dispersing a fine powder of a water-soluble compound in a solution of a water-insoluble resin (excluding an aqueous solution) on a release paper as an alternative method for producing the water treatment filter membrane. Apply the resin filtration membrane raw material, transfer or adhere to the surface of the base filtration membrane, remove the release paper and dry, then treat with water or hot water to dissolve the water-soluble compound in the resin filtration membrane raw material A method for producing a filtration membrane for water treatment is disclosed, in which fine pores are formed in the remaining resin filtration membrane layer to form a filtration membrane for water treatment. In any of the above-described inventions, it is preferable to use gluconates or glucose as the water-soluble compound to be used.
[0007]
The resin filtration membrane raw material layer is sandwiched between two layers of a base filtration membrane, dried, and treated with water or hot water to elute the water-soluble compounds in the resin filtration membrane raw material layer and to form fine pores. It is also possible to produce a three-layer water treatment filter membrane by forming the layers integrally.
[0008]
The present invention is a filtration membrane comprising a resin-impregnated nonwoven fabric layer in which a resin is impregnated / attached to a nonwoven fabric and innumerable pores are formed in the layer, and preferably the smallest particles to be separated by heating / compression A filtration membrane for water treatment in which the diameter, that is, the minimum particle size separated into the filtrate side and the filter cake is adjusted to a range of 10 to 0.1 μm, is used as the base filtration membrane. And it is the filtration membrane for water treatment which piled up the resin filtration membrane material layer manufactured by the above-mentioned water treatment filtration membrane manufacturing method, and according to the size of the diameter of the fine hole formed in the resin filtration membrane material layer Disclosed is a filtration membrane for water treatment, wherein the minimum separation target particle diameter is adjusted to a range of 1 to 0.01 μm. Moreover, it is a filtration membrane for water treatment produced by sandwiching the resin filtration membrane raw material layer between two layers of a base filtration membrane, and has a minimum separation target particle diameter of 1 to 0.01 μm. Disclosed is a filtration membrane for water treatment, characterized in that a resin filtration membrane layer having fine pores adjusted to a range is sandwiched and laminated integrally.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described with reference to the drawings as appropriate while referring to the embodiments. First, the present invention impregnates a non-water-soluble resin solution into a non-woven fabric, and after drying and hot pressing, preferably a filtration membrane whose minimum separation target particle diameter is adjusted to a range of 10 to 0.1 μm, Used as base filtration membrane .
[0010]
In the present invention, a base material of a resin filtration membrane in which a fine powder of a water-soluble compound is dispersed in a solution of a water-insoluble resin that does not use water as a solvent is applied to the surface of the base filtration membrane, dried, and solvent After volatilizing, the resin filtration membrane layer having micropores is formed by laminating and drying the water-soluble material by drying with water or hot water, and the minimum separation target particle size is 1 to 0 Provided is a method for producing a water treatment filter membrane and a water treatment filter membrane adjusted to a range of 0.01 μm . The separation target particle size of the water treatment filter membrane according to the present invention corresponds to that of the ultrafiltration membrane. However, the particle size to be separated by the method for producing a water treatment filter membrane and the water treatment filter membrane of the present invention is not limited to the above. It can be used in a wider range by laminating.
[0011]
Non-woven fabric used as the base material for the water treatment filtration membrane of the present invention includes organic synthetic fibers such as polyester, nylon, vinylon, polypropylene, and fluoropolymer, inorganic fibers such as glass fibers and ceramic fibers, natural fibers, and the like of these fibers. Nonwoven fabric made of mixed fibers can be used. In addition to ordinary nonwoven fabrics, long-fiber nonwoven fabrics that are dispersed and formed immediately after melt spinning and stretching can also be used. What is necessary is just to determine suitably according to use conditions about the kind of nonwoven fabric to be used, thickness, fiber density, etc., and a commercially available nonwoven fabric can be utilized. The thickness of the nonwoven fabric is generally about 2 to 10 mm, although it depends on the fiber density. The fiber density is preferably about 0.005 to 0.03 g / cm 3 .
[0012]
As the water-insoluble resin contained in the resin solution, a synthetic resin such as an acrylic resin, a polyester resin, a phenol resin, an epoxy resin, or a polyurethane resin, or a natural resin, or an appropriate mixture of these resins can be used. Among these resins, polyester resins and polyurethane resins are easy to use.
[0013]
As a solvent for the resin solution, toluene, xylene, ethyl acetate, butyl acetate, acetone, methylcyclohexane, methylethylketone, methylisobutylketone, cyclohexane, ethyl alcohol, methylcyclohexane, isopropyl alcohol and the like can be used. As the resin solution excluding the resin solution used as the raw material of the resin filtration membrane, an aqueous solution obtained by dispersing and mixing the above resin into an emulsion can be used.
[0014]
The resin solution used for the raw material of the resin filtration membrane is usually the same resin and solvent (excluding water) used for the resin solution impregnated in the nonwoven fabric, but it is not necessary to stick to it if conditions permit . The water-soluble compound powder to be dispersed in the resin filtration membrane raw material is selected from substances that are readily soluble in water and not soluble in the resin solution. Specifically, sodium gluconate, calcium gluconate, citric acid, sodium citrate And fine powders of potassium citrate, sugar, fructose, sucrose, glucose and the like. Among these, gluconate and glucose can be preferably used. The water-soluble compound powder is generally about 300 to 1000 mesh in order to form fine pores of 1 to 0.01 μm depending on the diameter of the particles to be separated. In addition, a dispersant, an anti-settling agent, a thickening agent, an antibacterial agent, and an anti-algae agent may be added to the above resin solution if necessary.
[0015]
Next, the base filtration membrane used in the present invention is impregnated with a predetermined amount of a resin solution in a non-woven fabric and dried to separate the solvent to form pores. It is possible to manufacture by adjusting the hole to a required size. The amount of resin to be impregnated is about 30 to 150%, generally about 50 to 100% of the weight of the original nonwoven fabric after drying, but is not limited to these ranges depending on conditions. For the heating / compression, a heating press, a heating roll or the like may be used. The heating temperature is determined based on the softening temperature of the impregnating resin. The compression ratio is usually about 1/2 to 1/8 of the original nonwoven fabric thickness, and is an important operation for adjusting the size of target particles to be filtered and separated. However, since the above numbers are ultimately determined by the relationship between operating conditions, raw materials, etc., the size of suspended solids to be filtered, etc., they are often set appropriately based on experience and experiment. .
[0016]
When the front and back surfaces of the thus manufactured base filtration membrane were magnified and observed with a microscope and a scanning electron microscope (SEM), a uniform-sized void was formed in the interior composed of overlapping fibers. It was. This prevents fouling when backwashing and air scrambling, prevents compaction of organic adsorption, and acts as a buffer against pressurization and suction.
[0017]
The filtration membrane for water treatment of the present invention is applied to the surface of the base filtration membrane by applying a resin filtration membrane raw material in which a water-soluble compound powder is mixed and dispersed in a water-insoluble resin solution and then dried to fix the resin. Then, it can be produced by treating with water or hot water to extract a water-soluble compound on the water side to form fine pores to form a resin filtration membrane. The amount of the water-soluble compound powder to be mixed is preferably in the range of 200 to 500% by weight with respect to the resin in the resin filtration membrane raw material. There is no restriction | limiting in particular in a coating method, A roll coater, a spray coater, and a knife coater can be used. Alternatively, the base material of the resin filtration membrane may be applied onto the release paper and transferred or adhered to the surface of the base filtration membrane as it is. For bonding, a resin filtration membrane raw material in which water-soluble compound powder is dispersed and mixed is used. Generally, the thickness of the resin filtration membrane 2 is preferably about 0.2 to 1.5 mm and about 10 to 100% with respect to the thickness of the base filtration membrane.
[0018]
The resin filtration membrane is generally formed and integrated on one side of the base filtration membrane 1, and is usually arranged on the upstream side when used. This is because it is easy to backwash and advantageous in strength. However, when the filtration pressure or the SS concentration of the liquid to be filtered is large, it is preferable to protect the resin filtration membrane by laminating and using a base filtration membrane on both sides of the resin filtration membrane. Moreover, when the difference of a load with a base filtration membrane and the resin filtration membrane 2 is large, it can be manufactured by adjusting the particle diameter of the filtration object between both membranes, and a load balance can be achieved. Of course, the above-mentioned filtration membrane for water treatment of the present invention can be constructed and used integrally by laminating a plurality of sheets and fixing them together, or can be independently arranged in an appropriate combination.
[0019]
The usage pattern of the filtration membrane will be described. As a form of filtration membrane module, a flat membrane, a circular tube membrane, a spiral membrane, and a hollow fiber membrane are generally used. Spiral membranes and hollow fiber membranes are advantageous in that a large membrane area can be obtained and modules can be easily replaced. However, if a liquid containing a large amount of suspended matter is flowed, internal clogging may occur. Since the filtration membrane according to the present invention has high strength and is useful for high-concentration MLSS (Mixed Liquor Suspended Solid), a square plate module can be desirably used. A desired filtration membrane can be installed in a simple filtration tank with ease, safety and low cost. Backwashing, air scrambling and filtration membrane replacement are easy.
[0020]
As a specific usage pattern of the water treatment filtration membrane of the present invention, an example of a batch type filtration apparatus will be described with reference to a flow sheet in FIG. The raw water stored in the filtered raw water tank 11 is supplied from the raw water supply pipe 12 to the bottom of the batch-type filter 13 by natural flow. A support member is provided at the lower part of the batch filter 13 and a module of the water treatment filtration membrane 14 of the present invention is horizontally mounted. The supplied raw filtrate is filtered from the lower surface side to the upper surface side of the filtration membrane 14. The The filtered filtrate is stored on the upper surface side of the filtration membrane 14, and is extracted to the filtrate storage tank 16 through the filtered water extraction pipe 15 in a timely manner and stored for reuse water.
[0021]
Liquid level detection control meters 17a and 17b are attached to the filtration raw water tank 11 and the batch type filter 12, respectively. When clogging occurs in the filtration membrane 14 and the water level in the raw filtration water tank 11 increases, a caution signal is issued from the liquid level detection controller 17a. The backwash pump 18 is activated and backwash water is supplied to the upper surface side. The backwash water is discharged from the backwash outlet 19 (drain valve opening / closing opening).
[0022]
【Example】
A small-scale test was conducted to confirm the effect of the present invention, and the results will be specifically described.
[0023]
Example 1
First, since a base filtration membrane was prototyped, its procedure and its characteristics will be described. A nonwoven fabric made of polyester fiber having a thickness of 5 mm was impregnated with an aqueous polyurethane resin and dried. The polyurethane resin was about 80% by weight based on the weight of the nonwoven fabric. This was heated and pressed at 140 ° C. to a thickness of 1 mm to form a base filtration membrane . Tear strength of this filtration membrane, the vertical direction is 35 kg / cm 2, the horizontal direction was 50 kg / cm 2. It was stronger and tougher than conventional filtration membranes.
[0024]
The filtration membrane is fixed to the bottom of a stainless steel cylinder with a diameter of about 10 cm and an internal volume of 1.8 liters with a flange, and a pressure device is connected so that the filtration pressure can be changed by applying filtration pressure to the raw water side. And used in a filtration test apparatus. First, when the water of the paddy field whose transparency was almost 0 was filtered, the transparency could be 50 cm or more. Next, the city sewage before aeration in the city A sewage treatment plant was filtered without pressure, and the turbidity and the removal rate of suspended particles were measured (by laser diffraction scattering method). The results are shown in Table 1. In addition, since the particle size distribution in raw | natural water before filtration was measured, a result is shown in FIG.
[0025]
Example 2
The polyester resin (pylon 200: manufactured by Toyobo Co., Ltd.) was dissolved in a mixed solution of toluene / methyl ethyl ketone / ethyl acetate (volume ratio: 60/20/20) so as to be 30% by weight. Further, 270% by weight of a polyester resin, sodium gluconate fine powder (1000 mesh) was added and dispersed. This dispersion solution was applied to a release paper to a thickness of about 0.8 mm and dried, and the same dispersion solution was used and adhered to the base filtration membrane produced in Example 1. After thoroughly drying, it was immersed in water at 70 ° C. to elute sodium gluconate, and then dried to produce a two-layer filtration membrane of the present invention. When the obtained filtration membrane was expanded and observed with a microscope and a scanning electron microscope (SEM) after drying, it was confirmed that fine pores of 0.01 to 0.1 μm were formed. Further, the municipal sewage was filtered in the same manner as in Example 1 to examine E. coli in the supernatant of the filtered water, but it was not observed.
[0026]
Example 3
The polyurethane elastomer was dissolved in toluene / ethyl acetate (volume ratio: 50/50) to 35% by weight. Furthermore, 300% by weight of glucose fine powder (1000 mesh) was dispersed in polyurethane. The obtained dispersion solution was applied to a release paper to a thickness of 1 mm, dried, and then adhered to the base filtration membrane produced in Example 1 using the same dispersion solution. After thoroughly drying, it was immersed in water at 70 ° C. to elute glucose, and then dried to produce a two-layer membrane of the present invention. When the obtained filtration membrane was expanded and observed with a microscope and a scanning electron microscope (SEM) after drying, it was confirmed that fine pores of 0.01 to 0.1 μm were formed. Furthermore, the filtration test was carried out in the same manner as in Example 1 except that the filtered water of Example 1 was treated water and the filtration pressure was adjusted to change the filtration acceleration. The results are shown in Table 1. E. coli in the supernatant of filtered water was examined but not observed.
[0027]
[Table 1]
Figure 0004309194
[0028]
【The invention's effect】
The filtration membrane for water treatment according to the present invention can easily adjust the particle size to be separated, has extremely high strength and toughness, and can be easily backwashed, and can be used for a long time. Easy to install, remove, and use after use, and maintenance costs are low.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a second embodiment of the filtration membrane of the present invention. FIG. 2 is a flow sheet showing an example of a batch-type filtration device using the filtration membrane for water treatment of the present invention. Solid particle size distribution in raw water [Explanation of symbols]
1: Base filtration membrane (base filtration membrane)
2: Resin filtration membrane (layer) 3: Filtration membrane for water treatment according to the present invention 4: Flow of filtration process 11: Raw filtration water tank 12: Raw water supply pipe 13: Batch type filter 14: Filtration membrane for water treatment of the present invention 15: Filtration water extraction pipe 16: Filtration water storage tank 17a, 17b: Liquid level detection controller 18: Backwash pump 19: Backwash water outlet

Claims (6)

不織布に所定量の非水溶性樹脂の溶液を含浸させて乾燥した後、得られた樹脂含浸不織布を加熱・圧縮することにより、樹脂含浸不織布層内の細孔を所望の大きさに調整して得たろ過膜(以下、ベースのろ過膜という)の表面に、非水溶性樹脂の溶液中に水溶性化合物の微粉末を混合・分散させて調合した樹脂ろ過膜の原材を塗布し、乾燥した後、水または熱水で処理して前記樹脂ろ過膜原材中の水溶性化合物を溶出させ、残る樹脂ろ過膜層中に微細孔を形成させて水処理用ろ過膜とする、ことを特徴とする水処理用ろ過膜の製造方法。 After impregnating the nonwoven fabric with a predetermined amount of water-insoluble resin solution and drying, the resulting resin-impregnated nonwoven fabric is heated and compressed to adjust the pores in the resin-impregnated nonwoven fabric layer to a desired size. Apply the raw material of the resin filtration membrane prepared by mixing and dispersing fine powder of water-soluble compound in the water-insoluble resin solution to the surface of the obtained filtration membrane (hereinafter referred to as base filtration membrane) and drying. after, characterized by treatment with water or hot water to elute the water-soluble compound of the resin filtered MakuHara material in, to form micropores in the remaining resin filtration membrane layer with a water treatment filtration membrane, the A method for producing a filtration membrane for water treatment. 離型紙に非水溶性樹脂の溶液中に水溶性化合物の微粉末を混合・分散させて調合した樹脂ろ過膜の原材を塗布して、ベースのろ過膜の表面に転写又は接着させ、離型紙を除いて乾燥した後、水または熱水で処理して前記樹脂ろ過膜原材中の水溶性化合物を溶出させ、残る樹脂ろ過膜層中に微細孔を形成させて水処理用ろ過膜とする、ことを特徴とする水処理用ろ過膜の製造方法。Apply the resin filter membrane raw material prepared by mixing and dispersing fine powder of water-soluble compound in the water-insoluble resin solution to the release paper, and transfer or adhere to the surface of the base filtration membrane , then release paper after drying, except, treated with water or hot water to elute the water-soluble compound of the resin filtered MakuHara material in, to form micropores in the remaining resin filtration membrane layer and in water treatment for filtration membrane The manufacturing method of the filtration membrane for water treatment characterized by the above-mentioned. 水溶性化合物としてグルコン酸塩類又はブドウ糖を使用することを特徴とする請求項1又は2に記載の水処理用ろ過膜の製造方法。The method for producing a filtration membrane for water treatment according to claim 1 or 2 , wherein gluconates or glucose is used as the water-soluble compound. 2層からなるベースのろ過膜の層間に前記の樹脂ろ過膜原材の層を挟んで乾燥し、水または熱水で処理して樹脂ろ過膜原材中の水溶性化合物を溶出させ、残る樹脂ろ過膜層中に微細孔を形成させて水処理用ろ過膜とする、ことを特徴とする水処理用ろ過膜の製造方法。The resin filtration membrane raw material layer is sandwiched between two layers of the base filtration membrane , dried, treated with water or hot water to elute the water-soluble compounds in the resin filtration membrane raw material, and the remaining resin A method for producing a filtration membrane for water treatment, characterized in that fine membranes are formed in the filtration membrane layer to form a filtration membrane for water treatment. 請求項1、2又は3のいずれかに記載の製造方法によって製造された水処理用ろ過膜であって、樹脂ろ過膜層中に形成されている微細孔の大きさにより、最小の分離対象粒子径、即ち、ろ液側とろ滓とに分離される最小の粒子径が1〜0.01μmの範囲に調整されている、ことを特徴とする水処理用ろ過膜。 A filtration membrane for water treatment produced by the production method according to any one of claims 1, 2, and 3 , wherein the smallest separation target particle is obtained depending on the size of micropores formed in the resin filtration membrane layer. A filtration membrane for water treatment, characterized in that the diameter , that is, the minimum particle size separated into the filtrate side and the filter cake is adjusted to a range of 1 to 0.01 μm . 請求項4に記載の製造方法によって製造された水処理用ろ過膜であって、2層からなベースのろ過膜の層間に、最小の分離対象粒子径を1〜0.01μmの範囲に調整した微細孔を有する樹脂ろ過膜層が挟まれて一体に積層されている、ことを特徴とする水処理用ろ過膜。 A water treatment filtration membrane produced by the production method according to claim 4, between layers of 2 ing from layers based filtration membrane, adjusting the minimum separation target particle size in the range of 1~0.01μm A filtration membrane for water treatment, wherein a resin filtration membrane layer having fine pores is sandwiched and laminated integrally.
JP2003209219A 2003-08-28 2003-08-28 Manufacturing method of filtration membrane for water treatment Expired - Fee Related JP4309194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209219A JP4309194B2 (en) 2003-08-28 2003-08-28 Manufacturing method of filtration membrane for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209219A JP4309194B2 (en) 2003-08-28 2003-08-28 Manufacturing method of filtration membrane for water treatment

Publications (2)

Publication Number Publication Date
JP2005066403A JP2005066403A (en) 2005-03-17
JP4309194B2 true JP4309194B2 (en) 2009-08-05

Family

ID=34402230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209219A Expired - Fee Related JP4309194B2 (en) 2003-08-28 2003-08-28 Manufacturing method of filtration membrane for water treatment

Country Status (1)

Country Link
JP (1) JP4309194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978987A (en) * 2021-02-19 2021-06-18 北京九泉科技有限公司 Novel water purification unit made of environment-friendly materials

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349310A (en) * 2004-06-10 2005-12-22 Aroma Kagaku Kikai Kogyo:Kk Filter medium for precise filtration
JP4825013B2 (en) * 2006-01-23 2011-11-30 中村建設株式会社 Method for producing flat membrane filter medium for suspended water filter
KR101732368B1 (en) * 2016-10-11 2017-05-24 오원이 Pleatable nonwoven fabric for filter media
JP2019011892A (en) * 2017-06-29 2019-01-24 三菱製紙株式会社 Humidification filter medium and humidification filter
CN114853202A (en) * 2022-03-30 2022-08-05 陕西尚远水务有限公司 Reclaimed water softening process for steel mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978987A (en) * 2021-02-19 2021-06-18 北京九泉科技有限公司 Novel water purification unit made of environment-friendly materials
CN112978987B (en) * 2021-02-19 2021-11-12 北京九泉科技有限公司 Novel water purification unit made of environment-friendly materials

Also Published As

Publication number Publication date
JP2005066403A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
EP1483034B1 (en) Nanofiber filter media
CN102500158B (en) Preparation method for high-efficiency filter medium with adion exchanging function and membrane filtering function
Zhang et al. Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption
CN102489075B (en) Method for preparing deep filtering medium having selective filtering capability
Sang et al. Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane
CN102500159B (en) Preparation method for deep filter medium with adsorption and ion exchange filter characteristics
CN107583472B (en) Preparation method of nano-cellulose/filter paper composite filter membrane material
Farahbakhsh et al. Removal of coliphages in secondary effluent by microfiltration—mechanisms of removal and impact of operating parameters
AU2003210565A1 (en) Nanofiber filter media
DE4445539C2 (en) Process for the production of a semi-permeable composite membrane
JP4309194B2 (en) Manufacturing method of filtration membrane for water treatment
EP3235559A1 (en) Binder-coupled carbon nanostructure nano-porous membrane and manufacturing method therefor
Padaki et al. Electrospun nanofibers: role of nanofibers in water remediation and effect of experimental variables on their nano topography and application processes
CN111379074A (en) Preparation method of cellulose nanofiber composite membrane for treating printing and dyeing wastewater
CN109603575B (en) Dynamic membrane based on nuclear track membrane and preparation method and application thereof
TWI321487B (en)
CN113544203B (en) Hydrophilic composite porous film
DE3807748A1 (en) MULTILAYER POROESE FUEL CONSTRUCTION, ESPECIALLY FOR THE SEPARATION OF LIQUID AND SOLID PHASES
JP2001252538A (en) Reverse osmosis composite membrane
JP2017042691A (en) Manufacturing method of semi-permeable membrane support medium for membrane separation active sludge treatment
Chang et al. Application of non-woven fabric material in membrane bioreactor processes for industrial wastewater treatment
CN108745005A (en) A kind of adsorbed film and preparation method thereof for sewage disposal
CN114950156B (en) Nanofiber composite film imitating fish gill structure, preparation method and application thereof
CN113301978B (en) Water treatment filter and method for manufacturing same
JP3225994B2 (en) Filtration equipment using an asymmetric filtration membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150515

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees