JP4308459B2 - Processing method of granulated blast furnace slag - Google Patents

Processing method of granulated blast furnace slag Download PDF

Info

Publication number
JP4308459B2
JP4308459B2 JP2001296108A JP2001296108A JP4308459B2 JP 4308459 B2 JP4308459 B2 JP 4308459B2 JP 2001296108 A JP2001296108 A JP 2001296108A JP 2001296108 A JP2001296108 A JP 2001296108A JP 4308459 B2 JP4308459 B2 JP 4308459B2
Authority
JP
Japan
Prior art keywords
blast furnace
granulated
slag
carbon dioxide
carbonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001296108A
Other languages
Japanese (ja)
Other versions
JP2002179441A (en
Inventor
浩之 光藤
山口  篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2001296108A priority Critical patent/JP4308459B2/en
Publication of JP2002179441A publication Critical patent/JP2002179441A/en
Application granted granted Critical
Publication of JP4308459B2 publication Critical patent/JP4308459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉水砕スラグの処理方法に関する。
【0002】
【従来の技術】
高炉水砕スラグは、製銑工程において副産する高炉スラグに、加圧水を噴射して急冷、粒状化したもので、年間2000万t以上生産されている。
高炉水砕スラグは、水硬性を持つため、微粉砕し、セメント用原料に使われてきた。また、近年、天然砂が枯渇しつつあるなかで、資源保護の観点から、天然砂の代替として、土木工事用材料や、コンクリート用細骨材として、高炉水砕スラグそのもの、あるいは粉砕して粒度調整した粒度調製物として使用する機会が増えてきている。
【0003】
ところで、高炉水砕スラグは、そのまま用いられる場合も粒度調製物として用いられる場合も、出荷待ち、あるいは使用待ちのため野積み状態または貯槽内で長時間貯蔵されることが多く、さらに船舶等により長期間をかけて輸送される場合もある。高炉水砕スラグの水硬性は、セメント原料として使用する際には必要不可欠な性質であるが、使用前の長期間の貯蔵中あるいは輸送中に既に水和反応を起こすと、セメント用原料としての性能が劣化し、十分な強度を持つコンクリートにならない。さらに、スラグ粒子同士が水和生成物を媒体に強固に固結し塊状になると、もはや細骨材として使えなくなり、その結合強度も高いことから、もとの粒子状に破砕、整粒するのに極めて労力を要する。
【0004】
また、高炉水砕スラグを土木工事用材料として使用する場合、強固な地盤を形成させるという目的には水硬性が有利に働くが、軟弱地盤の表層処理工法のサンドマット材等に使用するには、経過日数によっては施工中に固結するため、次に、このサンドマット材にペーパードレインあるいはプラスチックドレイン等の垂直ドレイン材を打設、貫通させようとしても極めて困難になる。土木用途としては、盛土材、埋め戻し材、裏込め材などとして使用されることもあるが、この場合も、施工をした後に、数日から数年後に、その部分を掘り起こし新たに埋設物を埋める工事をしたり、植裁を施したり、さらに数十年が経過した後に再度掘り起こしたりするケースもある。これらの場合、水砕スラグの固結は、掘り起こし作業に大きな力を必要とし、さらに、配管工事などでは、既埋設物の破損を引き起こす危険性もある。したがって、従来は、この種の用途への高炉水砕スラグの使用が制約されてきた。
【0005】
かかる水和反応および固結現象は、気温の高い夏季に特に顕著であり、以下のような機構で進行すると考えられる。まず、高炉水砕スラグの水和反応は、ガラス質からのカルシウムの溶出とpH上昇から始まり、このアルカリ刺激によりシリコンやアルミニウム等の成分が溶出する。溶出した成分によって、高炉水砕スラグ粒子近傍の液相中のカルシウム、シリコン、アルミニウム等の成分濃度が、各種水和生成物の析出条件まで上昇すると水和物の生成が始まり、エトリンガイト(3CaO・Al・3CaSO・32HO)や、珪酸カルシウム水和物(C−S−H)等の水和物を生成し、次第に層厚を増し、粒子同士の固結へ至る。また、この水和物生成反応は、液相においてのみならず、高炉水砕スラグの表面近傍の粒子内部でも生じる。
【0006】
高炉水砕スラグまたはその粒度調製物の水和反応および固結を防止するために、従来からいくつかの方法が提案されている。例えば、特公昭58−35944号公報には脂肪族オキシカルボン酸、脂肪族オキシカルボン酸塩またはこれらの2種以上の混合物を重要成分とする固結防止剤が示されている。また、特開昭54−71793号公報には、高炉水砕スラグに酸水溶液を散布し、活性なカルシウムを一度中和する固結防止方法が示されている。
【0007】
さらに、高炉水砕スラグ中のCaOに炭酸ガスを接触させ、あるいは、高炉水砕スラグ中のCaOに炭酸ガスをバブリングした水に含まれる炭酸(HCO)等を接触させ、スラグ粒子表面に難溶性のCaCOの皮膜を形成し、この皮膜によって高炉水砕スラグからのカルシウム等の溶出反応を抑制し、水和反応ひいては固結を抑制する方法が示されている。
【0008】
具体的には、特開昭54−112304号公報、特開昭54−127895号公報、特開昭54−131504号公報、特開昭55−162454号公報には、高炉水砕スラグあるいは高炉水砕スラグを軽破砕したものに、気相状態の炭酸ガスを接触させる方法が示されている。
【0009】
また、炭酸ガスを溶解させた炭酸水溶液に高炉水砕スラグを浸漬させる以下の固結防止方法が示されている。すなわち、特開昭54−53138号公報は高炉水砕スラグの製造工程中において、炭酸ガスでバブリングした水で吹製するか、水砕攪拌槽中で炭酸ガスをバブリングする方法であり、特開平10−95644号公報は冷却された高炉水砕スラグを炭酸水溶液に浸漬する方法である。
【0010】
ところが、これら従来技術のうち、特公昭58−35944号公報の固結防止剤による方法では、野積み状態の間に雨が降れば、高炉水砕スラグの表面から固結防止剤が溶離するため十分な固結防止機能を発揮しない。また、水や海水に浸る条件での土木工事用材料として使用する場合も、また同様に、水中や海水中に固結防止剤が流出するため十分に固結防止することができない。
【0011】
また、特開昭54−71793号公報の酸水溶液を散布する方法では、セメント原料またはコンクリート骨材として用いる場合に、残留酸イオンがコンクリートの性状に悪影響を及ぼすため、添加量を十分に管理しなければならない。
【0012】
さらに、特開昭54−112304号公報等の高炉水砕スラグに気相状態の炭酸ガスを接触させる方法の場合、ホッパーまたは野積み状態に充填された粒状の高炉水砕スラグに炭酸ガスを均一に行き渡らせることが困難であり、ガスが行き渡らない箇所においては十分な水和反応抑制効果および固結抑制効果を得ることができない。
【0013】
さらにまた、特開平10−95644号公報の高炉水砕スラグを炭酸水溶液に浸漬させる固結防止方法では、高炉水砕スラグの浸漬に足りる大量の炭酸水を製造する必要があること、炭酸水溶液製造装置、炭酸水溶液の浸漬槽等、設備が大規模になるので、大量に副産する高炉水砕スラグの処理方法としての実用化は困難である。
【0014】
さらにまた、特開昭54−53138号公報の高炉水砕スラグの製造工程中において高炉水砕スラグに炭酸ガスを接触させる方法では、高炉水砕スラグの製造時には溶融スラグに大量の水を噴射して冷却凝固させるため、この冷却水は高炉水砕スラグの数倍必要であり、この多量の冷却水に炭酸ガスをバブリングして炭酸水とすることは前述の方法よりもさらに困難となる。
【0015】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑みてなされたものであって、十分な水和反応防止効果および固結防止効果を有し、かつ、大規模な設備を必要としない簡便な高炉水砕スラグの処理方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するため、本発明は、高炉水砕スラグに炭酸水溶液を散布することを特徴とする高炉水砕スラグの処理方法を提供する。
【0017】
このように高炉水砕スラグに炭酸水溶液を散布することにより、少量の炭酸水溶液で高炉水砕スラグ粒子の表面に炭酸カルシウム皮膜を適切に形成し、十分な水和反応抑制効果および固結防止効果を得ることができる。
【0018】
上記炭酸水溶液は、炭酸ガスまたは炭酸ガスを含有するガスを水中に吹き込むことにより製造することができ、また、炭酸ガスまたは炭酸ガスを含有するガス中に、水を噴霧させることによっても製造することができる。本発明においては炭酸水溶液の必要量が少ないため、上記いずれの場合でも、炭酸水溶液の製造設備は小規模なもので済み、大規模な設備は必要としない。また、このようにして炭酸水溶液を製造するに際し、炭酸ガスまたは炭酸ガスを含有するガスを加圧下で水に溶解させることが好ましい。これにより、炭酸ガスの溶解度が高くなって散布量を少なくすることができる。
【0019】
上記炭酸水溶液の散布量は、高炉水砕スラグの重量に対して30%以下の重量とすることが好ましい。また、上記炭酸水溶液の散布は、搬送中の高炉水砕スラグ、または、山状に積み付けられた状態もしくは貯槽内に貯蔵された状態の高炉水砕スラグに対して行うことができ、大規模な設備を必要としないため、実用化が容易である。さらに散布後の高炉水砕スラグを混合することで、炭酸水溶液の分布がより均一になり、一層の固結防止効果を挙げることができる。高炉水砕スラグは、製銑工程で発生する高炉水砕スラグをそのまま用いるか、さらに粒度を調製した粒度調製品として用いるか、またはこれらを混合して用いることができる。
【0020】
【発明の実施の形態】
以下本発明について詳細に説明する。
本発明に係る高炉水砕スラグの処理方法は、高炉水砕スラグに、炭酸水溶液を散布することにより、高炉水砕スラグの水和反応および固結反応を防止する。
【0021】
このように処理することにより、高炉水砕スラグに含まれるCaOと、炭酸水溶液中の炭酸(HCO)とを反応させ、高炉水砕スラグの粒子表面に難溶性の炭酸カルシウム皮膜を形成し、この皮膜により水和および固結を防止する。この処理では、炭酸カルシウムを生成せずに、スラグ粒子表面に吸着する炭酸イオンも存在するが、この表面に吸着した炭酸イオンもその効果は小さいが固結を防止する。
【0022】
高炉水砕スラグは加圧水を噴射して急冷・粒状化したもので、製造直後には約30%の含水比(乾スラグに対する重量割合)を有し、脱水槽と野外貯蔵の間に含水比が通常10%以下になるが、貯蔵中に雨が降ると10数%まで上昇することもある。このように、高炉水砕スラグはもともと数%から30%程度の水分を含有するから、散布する炭酸水溶液の量はもともと含有する水分に応じた量とすることが好ましい。つまり、最終的に高炉水砕スラグ周囲の必要な炭酸濃度を確保するためには、含水比が高くなるほど炭酸水溶液の量を増加させることが好ましい。そして、100%CO、大気圧溶解条件で製造した炭酸水溶液の場合には、もともと含まれる初期含水比と同程度の炭酸水溶液の添加が適当である。ただし、炭酸水溶液の散布量が30%を超えても効果が飽和するばかりか、むだに流出する量が多くなり散布のメリットが減じられるため、炭酸水溶液の散布量は高炉水砕スラグの30%以下が好ましい。なお、炭酸水溶液の濃度が低い場合には、炭酸水溶液の散布量を多くする必要があり、その場合には流出量が多くなって効果が減じられるため、飽和水溶液を用いることが好ましい。また、加圧下で炭酸ガスを溶解させると、溶解度が高くなって散布量を少なくすることができるので好ましい。
【0023】
このように、炭酸水溶液を散布する方法を採用することにより、従来の炭酸水溶液に浸漬する方法と比べて処理に要する炭酸水溶液の量が格段に少なく、炭酸水溶液の製造のために大規模な設備を必要とせず、非常に簡便かつ迅速に処理を行うことができる。
【0024】
また、このように炭酸水溶液を散布することにより、炭酸水溶液に浸漬した場合よりも高い水和反応抑制効果と固結防止効果を得ることができる。その理由は以下のように説明することができる。
【0025】
高炉水砕スラグ粒子表面に形成される炭酸カルシウム皮膜は非常に薄く、皮膜形成のために必要な炭酸量は極めて微量であるため、上記のように少量の炭酸水溶液で十分に皮膜を形成することができる。さらに、その皮膜生成の速度も極めて速いため高炉水砕スラグと炭酸水溶液との接触時間は極めて短くてよい。逆に、高炉水砕スラグと炭酸水溶液との接触時間が長くなった場合には、高炉水砕スラグの周囲に過剰な炭酸が残留していると下記式(1)に示すように反応が進み、一度生成した難溶性の炭酸カルシウムが可溶性の炭酸水素カルシウムに変化してしまい、十分な水和抑制効果および固結防止効果が得られなくなる。このため、高炉水砕スラグを炭酸水溶液に浸漬した場合には、短時間のうちに水和抑制効果および固結防止効果がピークに達し、それ以降はこれらの効果が低くなってしまう。
CaCO+HCO→Ca(HCO …… (1)
【0026】
以下、炭酸水溶液の製造方法について説明する。
炭酸ガスは水に溶けやすく、その溶解度はCO濃度とガス圧力に比例する。25℃大気圧でのCO100%ガスの飽和溶解度は0.037規定(0.16g/100g水)になる。炭酸ガスの溶解は下記式(2)のように示され、溶解後の形態は、炭酸(HCO)、炭酸水素イオン(HCO )、炭酸イオン(CO 2−)であり、酸性領域で炭酸、中性領域で炭酸水素イオン、アルカリ性領域では炭酸イオンが安定であり、pHによってそれぞれの存在比が変化する。
CO+HO→HCO→H+HCO →2H+CO 2−……(2)
【0027】
図1は、炭酸水溶液の製造設備の一例を示す概略断面図である。
この製造設備は、内部に水を貯留可能な塔1と、塔1の下部から水を供給する水供給機構2と、塔1内の水に炭酸ガスを吹き込むガス分散器4と、ガス分散器4に炭酸ガスを供給する炭酸ガス供給機構3と、塔1の上部から炭酸水溶液を取り出すための取水管6と、塔1の上部を覆うように設けられたダクト5と、ダクト5から排気するための排気部7と、排気部7からの排気をガス分散器4のガス入側に導く導入管8とを有している。
【0028】
この製造設備で炭酸水溶液を製造する際には、水供給機構2から塔1内に連続的に水を供給しながら、または、水供給機構2から塔1内に所定量の水を供給した後に水供給機構2を停止してから、炭酸ガス供給機構3から供給される炭酸ガスまたは炭酸ガスを含有するガスを、ガス分散器4から塔1内の水に連続的に吹き込み、気泡群として分散させ、塔1内の水に炭酸ガスを吸収させて炭酸水溶液とする。この場合に、炭酸ガス供給機構3から加圧ガスを供給するようにすれば、塔1内の水に加圧ガスを溶解することができる。得られた炭酸水溶液は、取水管6から取り込まれ、高炉水砕スラグへの散布に用いられる。また、ガス分散器4から吹き込まれた過剰分の炭酸ガス等は、ダクト5から排気部7を介して排気される。この際、排気されたガスはそのまま系外に排出することができるが、導入管8を介してガス分散器4で循環再使用することも可能である。また、ガス分散器4から吹き込む炭酸ガスを含有するガスには燃焼ガスを用いることも可能であり、これと塔1上部からの排気を再使用することとを組み合わせることにより、極めて安価に炭酸水溶液を製造することができる。
【0029】
このように水中に炭酸ガスまたは炭酸ガスを含有するガスを吹き込む代わりに、容器内に炭酸ガスまたは炭酸ガスを含有するガスを供給し、その容器内に水を噴霧するようにしても炭酸水を製造することができる。この場合にも炭酸ガスまたは炭酸ガスを含有するガスを加圧した状態で水に溶解させることができる。
【0030】
次に、高炉水砕スラグへ炭酸水溶液を散布する方法について説明する。
図2は、高炉水砕スラグへ炭酸水溶液を散布している状態の一例を示す概略図である。
この例では、高炉水砕スラグの貯槽11の高炉水砕スラグ出側から高炉水砕スラグを搬送する搬送部12の上方に、水溶液供給機構14が接続された水溶液散布機構15を設け、この水溶液散布機構15から搬送部12上を搬送される途中の高炉水砕スラグに炭酸水溶液を散布する。このようにすることで、高炉水砕スラグに炭酸水溶液を均一にむらなく散布することができる。また、山状に積み付けられた高炉水砕スラグや、貯槽に貯蔵された高炉水砕スラグ等の上方から炭酸水溶液を散布するようにしてもよい。さらに、散布後の高炉水砕スラグを混合すると、炭酸水溶液の分布がより均一になり、一層の固結防止効果を得ることができる。
【0031】
なお、ここでは高炉水砕スラグをそのまま処理する場合について説明したが、粉砕して粒度調整した高炉水砕スラグを処理するようにしてもよい。
【0032】
【実施例】
以下、本発明の実施例について説明する。
(第1の実施例)
図1に示す装置に連続的に、水を所定の速度で供給しながら、ガス分散器4から炭酸ガスまたは炭酸ガスを含有するガスを10Nm/hで吹き込み、得られた炭酸水溶液を種々の初期含水比を有する高炉水砕スラグに散布した。この際の炭酸水溶液の散布は、図2に示す装置を用い、その搬送部12(ベルトコンベア)上を50t/hの速度で搬送される高炉水砕スラグに対して行った。炭酸水溶液の散布量は2.5〜15t/hであり、高炉水砕スラグに対する添加率が5〜30%になるように散布した。またガス溶解圧力については1.0〜5.0kg/cmとした。さらに、供給ガスの炭酸ガス濃度については100%および20%とした。このように種々条件を変えて、表1の実施例1〜7に示す炭酸水溶液散布処理を施した高炉水砕スラグを得た。
【0033】
以上のように処理した実施例1〜7の高炉水砕スラグを、内径100mm、高さ127mm(内容積1リットル)の容器に充填し、容器ごと80℃の恒温水槽中に浸漬し、所定期間養生後の固結状態を観察した(室内規模評価)。また、深さ1.5m、幅4m、1区画の長さ10mの溝に、各処理スラグを約100t装入し、水を張り固結状態を観察した(実施規模評価)。
【0034】
また、比較例1として、未処理の高炉水砕スラグの固結状態を室内規模評価および実施規模評価した。さらに、比較例2として室内規模で高炉水砕スラグを炭酸水溶液に浸漬する処理を行なった。ここでは、水砕スラグ15kgを容器に装入し、この容器に図1の装置で製造した炭酸水溶液15kgを注ぎ入れ、10分間高炉水砕スラグを炭酸水溶液に浸漬した後、高炉水砕スラグを容器から取り出し、前述の室内規模評価により固結状況を観察した。さらにまた、比較例3として、搬送部から高炉水砕スラグが落下する位置に槽体を設け、槽体に図1の装置で製造した炭酸水溶液を2.5t/hの速度で供給し、炭酸水溶液が50t貯まった時から、槽体に高炉水砕スラグを50t/hの速度で総量100tまで供給し、炭酸水溶液の供給を停止し、槽体内の炭酸水溶液を排出した後に、高炉水砕スラグを排出した。得られた高炉水砕スラグの固結状態を室内規模評価および実施規模評価した。これらの結果を表1に示す。
【0035】
【表1】

Figure 0004308459
【0036】
表1に示すように、比較例1の未処理のスラグでは80℃の室内規模評価で1ヶ月以内に、常温の実施規模評価でも3ヶ月以内に固結が始まるが、炭酸水溶液を散布した実施例1〜7では、室内規模評価で6ヶ月間、実施規模評価でも2年間、固結が生じず、優れた固結防止効果を得ることができた。また、高炉水砕スラグを炭酸水溶液に浸漬した比較例2および比較例3では、未処理のものに対してある程度の固結防止効果が得られたが、いずれも実施例1〜7よりも固結防止効果が劣っていた。すなわち、炭酸水溶液に浸漬する処理を室内規模で行った比較例2では、室内規模評価で2ヶ月間は固結が生じなかったものの、3ヶ月目には固結が始まっていた。また、炭酸水溶液に浸漬する処理を実施規模で行った比較例3では、室内規模評価で2ヶ月間、実施規模評価で6ヶ月間は固結を生じなかったものの、室内規模評価で3ヶ月目および実施規模評価で1年目にはいずれも固結が始まっていた。
【0037】
(第2の実施例)
サンドマット、埋め戻し土、盛土材、裏込め材としての固結防止効果を検証するため、縦3m横3m深さ2mのピットを形成し、その中に、炭酸水溶液を5%散布して処理した高炉水砕スラグと、炭酸水溶液に浸漬した高炉水砕スラグと、未処理の高炉水砕スラグとを入れ、5年間放置した。5年経過後、それぞれのスラグをコアサンプリングし、それらの圧縮強度の測定を試みたところ、炭酸水を散布した高炉水砕スラグは0.5kgf/cm未満であり強度測定が不可であり固結が生じていないことが確認されたのに対し、炭酸水に浸漬した高炉水砕スラグは11kgf/cm、未処理の高炉水砕スラグは25kgf/cmであり、強固に固結していることが確認された。このように炭酸水溶液散布の効果が明確に示された。
【0038】
【発明の効果】
以上説明したように、本発明によれば、十分な水和反応防止効果および固結防止効果を有し、かつ、大規模な設備を必要としない高炉水砕スラグの処理方法を提供することができる。
【図面の簡単な説明】
【図1】炭酸水溶液の製造設備の一例を示す概略断面図。
【図2】高炉水砕スラグへ炭酸水溶液を散布している状態の一例を示す概略図。
【符号の説明】
1;塔
2;水供給機構
3;炭酸ガス供給機構
4;ガス分散器
5;ダクト
6;取水管
7;排気部
8;導入管
11;貯槽
12;搬送部
14;水溶液供給機構
15;水溶液散布機構[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating granulated blast furnace slag.
[0002]
[Prior art]
Blast furnace granulated slag is a blast furnace slag produced as a by-product in the ironmaking process, which is rapidly cooled and granulated by injecting pressurized water, and is produced over 20 million tons per year.
Since granulated blast furnace slag has hydraulic properties, it has been finely pulverized and used as a raw material for cement. In recent years, natural sand has been depleted, and from the viewpoint of resource protection, as a substitute for natural sand, as a material for civil engineering work, as a fine aggregate for concrete, granulated blast furnace slag itself, or by pulverizing the particle size Opportunities for use as adjusted particle size preparations are increasing.
[0003]
By the way, blast furnace granulated slag, whether used as it is or as a particle size preparation, is often stored for a long time in a piled state or in a storage tank waiting for shipment or waiting for use. Sometimes transported over a long period of time. The hydraulic property of granulated blast furnace slag is an indispensable property when used as a cement raw material, but if a hydration reaction has already occurred during long-term storage or transportation before use, The performance will deteriorate and the concrete will not be strong enough. Furthermore, when the slag particles are firmly consolidated into a medium and agglomerated, the slag particles can no longer be used as fine aggregates and their bonding strength is high, so they are crushed and sized into the original particles. Is extremely labor intensive.
[0004]
Also, when blast furnace granulated slag is used as a material for civil engineering work, hydraulics work advantageously for the purpose of forming a strong ground, but to use it as a sand mat material for surface treatment method of soft ground Depending on the number of days that have elapsed, the material is consolidated during construction, and it becomes extremely difficult to place a vertical drain material such as a paper drain or a plastic drain through the sand mat material and penetrate it. For civil engineering purposes, it may be used as embankment material, backfill material, backfill material, etc. In this case as well, after construction, a few days to several years later, that part will be dug up and newly buried In some cases, they are buried, planted, or dug up again after several decades. In these cases, consolidation of the granulated slag requires a large force for digging work, and there is also a risk of causing damage to existing objects in piping work or the like. Thus, conventionally, the use of granulated blast furnace slag for this type of application has been limited.
[0005]
Such a hydration reaction and a caking phenomenon are particularly noticeable in summer when the temperature is high, and are considered to proceed by the following mechanism. First, the hydration reaction of granulated blast furnace slag begins with the elution of calcium from the glass and the pH increase, and components such as silicon and aluminum are eluted by this alkali stimulation. When the concentration of components such as calcium, silicon, and aluminum in the liquid phase near the blast furnace granulated slag particles rises to the precipitation conditions for various hydrated products due to the eluted components, hydrate formation begins, and ettringite (3CaO · Hydrates such as Al 2 O 3 .3CaSO 4 .32H 2 O) and calcium silicate hydrate (C—S—H) are generated, and the layer thickness is gradually increased, leading to consolidation of particles. In addition, this hydrate formation reaction occurs not only in the liquid phase but also inside the particles near the surface of the granulated blast furnace slag.
[0006]
Several methods have been proposed in the past to prevent hydration and consolidation of granulated blast furnace slag or its particle size preparation. For example, Japanese Examined Patent Publication No. 58-35944 discloses an anti-caking agent containing an aliphatic oxycarboxylic acid, an aliphatic oxycarboxylate or a mixture of two or more thereof as an important component. Japanese Patent Application Laid-Open No. 54-71793 discloses an anti-caking method in which an aqueous acid solution is sprayed on granulated blast furnace slag to neutralize active calcium once.
[0007]
Further, carbon dioxide is brought into contact with CaO in the granulated blast furnace slag, or carbon dioxide (H 2 CO 3 ) contained in water obtained by bubbling carbon dioxide with CaO in the blast furnace granulated slag is brought into contact with the surface of the slag particles. A method of forming a slightly soluble CaCO 3 film and suppressing the elution reaction of calcium and the like from the granulated blast furnace slag with this film to suppress the hydration reaction and thus the caking is shown.
[0008]
Specifically, Japanese Patent Laid-Open Nos. 54-112304, 54-127895, 54-131504, and 55-162454 disclose blast furnace granulated slag or blast furnace water. A method in which carbon dioxide gas in a gas phase is brought into contact with lightly crushed slag is shown.
[0009]
In addition, the following anti-caking method in which blast furnace granulated slag is immersed in an aqueous carbonate solution in which carbon dioxide gas is dissolved is shown. That is, Japanese Patent Application Laid-Open No. Sho 54-53138 is a method in which water is bubbled with water bubbled with carbon dioxide gas or bubbling carbon dioxide in a water granulated stirring tank during the process of producing granulated blast furnace slag. No. 10-95644 is a method of immersing cooled granulated blast furnace slag in an aqueous carbonate solution.
[0010]
However, among these prior arts, in the method using the anti-caking agent disclosed in Japanese Patent Publication No. 58-35944, the anti-caking agent elutes from the surface of the granulated blast furnace slag if it rains during the piled state. Does not exhibit sufficient anti-caking function. In addition, when used as a civil engineering material under the condition of being immersed in water or seawater, the anti-caking agent flows out into the water or seawater as well, so that the caking cannot be sufficiently prevented.
[0011]
In addition, in the method of spraying an acid aqueous solution disclosed in JP-A-54-71793, when used as a cement raw material or a concrete aggregate, residual acid ions adversely affect the properties of the concrete. There must be.
[0012]
Furthermore, in the case of a method in which gas phase carbon dioxide gas is brought into contact with blast furnace granulated slag as disclosed in Japanese Patent Application Laid-Open No. 54-112304, carbon dioxide gas is uniformly applied to granular blast furnace granulated slag filled in a hopper or a fielded state. It is difficult to spread the hydration reaction, and a sufficient hydration reaction suppressing effect and caking suppressing effect cannot be obtained at locations where gas does not spread.
[0013]
Furthermore, in the anti-caking method of immersing blast furnace granulated slag in an aqueous carbonate solution in JP-A-10-95644, it is necessary to produce a large amount of carbonated water sufficient to immerse the blast furnace granulated slag, Since equipment such as an apparatus and a carbonic acid aqueous solution immersing tank becomes large-scale, it is difficult to put it to practical use as a method for treating granulated blast furnace slag produced as a by-product in large quantities.
[0014]
Furthermore, in the method of bringing a blast furnace granulated slag into contact with carbon dioxide during the process of producing a granulated blast furnace slag disclosed in JP-A-54-53138, a large amount of water is injected into the molten slag during the production of the granulated blast furnace slag. In order to cool and solidify, this cooling water is required several times as much as the granulated blast furnace slag, and it is more difficult to bubble carbon dioxide into this large amount of cooling water to make carbonated water.
[0015]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and has a sufficient hydration reaction prevention effect and anti-caking effect, and simple blast furnace granulated slag treatment that does not require large-scale equipment. It aims to provide a method.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a method for treating granulated blast furnace slag, characterized in that an aqueous carbonate solution is sprayed on granulated blast furnace slag.
[0017]
By spreading the carbonated water solution on the granulated blast furnace slag in this way, a calcium carbonate film is appropriately formed on the surface of the granulated blast furnace slag particles with a small amount of carbonated water, and sufficient hydration reaction suppressing effect and anti-caking effect Can be obtained.
[0018]
The carbonic acid aqueous solution can be produced by blowing carbon dioxide or a gas containing carbon dioxide into water, and can also be produced by spraying water into carbon dioxide or a gas containing carbon dioxide. Can do. In the present invention, since the required amount of the aqueous carbonate solution is small, in any of the above cases, the production facility for the aqueous carbonate solution is small, and no large-scale facility is required. Further, in producing the aqueous carbonate solution in this way, it is preferable to dissolve carbon dioxide gas or a gas containing carbon dioxide gas in water under pressure. Thereby, the solubility of carbon dioxide gas becomes high and the amount of spraying can be reduced.
[0019]
The amount of the carbonic acid aqueous solution applied is preferably 30% or less of the weight of the granulated blast furnace slag . The carbonic acid aqueous solution can be sprayed on blast furnace granulated slag being transported, or on blast furnace granulated slag in a state of being piled up or stored in a storage tank. It is easy to put to practical use because it does not require any equipment. Furthermore, by mixing the blast furnace granulated slag after spraying, the distribution of the carbonic acid aqueous solution becomes more uniform, and a further caking prevention effect can be obtained. As the blast furnace granulated slag, the blast furnace granulated slag generated in the iron making process can be used as it is, or it can be used as a particle size preparation with a further adjusted particle size, or a mixture thereof.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
The method for treating granulated blast furnace slag according to the present invention prevents the hydration and consolidation reaction of granulated blast furnace slag by spraying an aqueous solution of carbonic acid on the granulated blast furnace slag.
[0021]
By treating in this way, CaO contained in granulated blast furnace slag reacts with carbonic acid (H 2 CO 3 ) in an aqueous carbonate solution to form a hardly soluble calcium carbonate film on the particle surface of granulated blast furnace slag. However, this film prevents hydration and consolidation. In this treatment, there is also carbonate ions adsorbed on the surface of the slag particles without generating calcium carbonate, but the carbonate ions adsorbed on the surface also prevent caking, although the effect is small.
[0022]
Blast furnace granulated slag is rapidly cooled and granulated by injecting pressurized water, and has a water content ratio of about 30% (weight ratio with respect to dry slag) immediately after production. The water content ratio is between the dehydration tank and the outdoor storage. Usually 10% or less, but when it rains during storage, it may increase to a few ten percent. Thus, since the granulated blast furnace slag originally contains about several to 30% of water, the amount of the carbonic acid aqueous solution to be sprayed is preferably an amount corresponding to the water originally contained. That is, in order to finally secure the necessary carbonic acid concentration around the blast furnace granulated slag, it is preferable to increase the amount of the carbonic acid aqueous solution as the water content ratio increases. In the case of a carbonic acid aqueous solution produced under 100% CO 2 and atmospheric pressure dissolution conditions, it is appropriate to add a carbonic acid aqueous solution having the same initial water content as that originally contained. However, even if the amount of sprayed carbonic acid solution exceeds 30%, the effect is not only saturated, but the amount of wasteful flow increases and the benefits of spraying are reduced, so the amount of sprayed carbonic acid solution is 30% of granulated blast furnace slag. The following is preferred. In addition, when the density | concentration of carbonic acid aqueous solution is low, it is necessary to increase the application quantity of carbonic acid aqueous solution, and in that case, since the outflow amount increases and an effect is reduced, it is preferable to use saturated aqueous solution. Further, it is preferable to dissolve carbon dioxide under pressure because the solubility is increased and the amount of spraying can be reduced.
[0023]
In this way, by adopting the method of spraying the carbonic acid aqueous solution, the amount of the carbonic acid aqueous solution required for the treatment is remarkably smaller than the method of immersing in the conventional carbonic acid aqueous solution, and large-scale equipment for the production of the carbonic acid aqueous solution Can be performed very simply and quickly.
[0024]
In addition, by spraying the aqueous carbonate solution in this way, a higher hydration reaction suppressing effect and anti-caking effect can be obtained than when immersed in the aqueous carbonate solution. The reason can be explained as follows.
[0025]
Since the calcium carbonate film formed on the surface of granulated blast furnace slag particles is very thin and the amount of carbonic acid required for film formation is extremely small, form a film sufficiently with a small amount of aqueous carbonate as described above. Can do. Furthermore, since the rate of film formation is extremely fast, the contact time between the granulated blast furnace slag and the aqueous carbonate solution may be extremely short. Conversely, when the contact time between the blast furnace granulated slag and the aqueous carbonate solution becomes long, the reaction proceeds as shown in the following formula (1) when excess carbon dioxide remains around the blast furnace granulated slag. The poorly soluble calcium carbonate once produced is changed to soluble calcium hydrogen carbonate, and a sufficient hydration inhibiting effect and anti-caking effect cannot be obtained. For this reason, when blast furnace granulated slag is immersed in a carbonic acid aqueous solution, the hydration suppression effect and the anti-caking effect reach a peak within a short time, and thereafter these effects become low.
CaCO 3 + H 2 CO 3 → Ca (HCO 3 ) 2 (1)
[0026]
Hereinafter, the manufacturing method of carbonic acid aqueous solution is demonstrated.
Carbon dioxide gas is easily soluble in water, and its solubility is proportional to the CO 2 concentration and gas pressure. The saturated solubility of 100% CO 2 gas at 25 ° C. and atmospheric pressure is 0.037 N (0.16 g / 100 g water). The dissolution of carbon dioxide gas is represented by the following formula (2), and the forms after dissolution are carbonic acid (H 2 CO 3 ), hydrogen carbonate ion (HCO 3 ), carbonate ion (CO 3 2− ), Carbonic acid ions are stable in the acidic region, hydrogen carbonate ions in the neutral region, and carbonate ions in the alkaline region, and their abundance changes depending on the pH.
CO 2 + H 2 O → H 2 CO 3 → H + + HCO 3 → 2H + + CO 3 2− (2)
[0027]
FIG. 1 is a schematic cross-sectional view showing an example of a production facility for an aqueous carbonate solution.
This production facility includes a tower 1 capable of storing water therein, a water supply mechanism 2 for supplying water from the lower part of the tower 1, a gas distributor 4 for blowing carbon dioxide into the water in the tower 1, and a gas distributor 4, a carbon dioxide supply mechanism 3 for supplying carbon dioxide, a water intake pipe 6 for taking out a carbonic acid aqueous solution from the top of the tower 1, a duct 5 provided so as to cover the top of the tower 1, and exhausting from the duct 5 And an introduction pipe 8 that guides the exhaust from the exhaust 7 to the gas inlet side of the gas distributor 4.
[0028]
When producing an aqueous carbonate solution with this production facility, water is supplied continuously from the water supply mechanism 2 into the tower 1 or after a predetermined amount of water is supplied from the water supply mechanism 2 into the tower 1. After the water supply mechanism 2 is stopped, the carbon dioxide gas or the gas containing carbon dioxide supplied from the carbon dioxide supply mechanism 3 is continuously blown from the gas disperser 4 into the water in the tower 1 and dispersed as a group of bubbles. Then, carbon dioxide gas is absorbed in the water in the tower 1 to obtain a carbonic acid aqueous solution. In this case, if the pressurized gas is supplied from the carbon dioxide supply mechanism 3, the pressurized gas can be dissolved in the water in the tower 1. The obtained carbonic acid aqueous solution is taken in from the intake pipe 6 and used for spraying onto the granulated blast furnace slag. Further, excess carbon dioxide gas or the like blown from the gas distributor 4 is exhausted from the duct 5 through the exhaust unit 7. At this time, the exhausted gas can be discharged out of the system as it is, but it can also be circulated and reused in the gas distributor 4 through the introduction pipe 8. Further, it is possible to use a combustion gas as the gas containing carbon dioxide blown from the gas disperser 4, and by combining this with the reuse of the exhaust from the upper part of the tower 1, an aqueous carbonate solution can be obtained at a very low cost. Can be manufactured.
[0029]
Instead of blowing carbon dioxide gas or a gas containing carbon dioxide gas into the water in this way, carbon dioxide water or a gas containing carbon dioxide gas is supplied into the container and water is sprayed into the container. Can be manufactured. Also in this case, carbon dioxide or a gas containing carbon dioxide can be dissolved in water in a pressurized state.
[0030]
Next, a method for spraying an aqueous carbonate solution onto blast furnace granulated slag will be described.
FIG. 2 is a schematic view showing an example of a state in which a carbonic acid aqueous solution is sprayed on granulated blast furnace slag.
In this example, an aqueous solution spraying mechanism 15 to which an aqueous solution supply mechanism 14 is connected is provided above the conveying unit 12 for conveying the blast furnace granulated slag from the blast furnace granulated slag outlet side of the blast furnace granulated slag storage tank 11. Carbonic acid aqueous solution is sprayed on the blast furnace granulated slag in the middle of being transported on the transport unit 12 from the spraying mechanism 15. By doing in this way, carbonic acid aqueous solution can be uniformly sprayed on blast-furnace granulated slag. Moreover, you may make it spray carbonic acid aqueous solution from the upper direction of the blast furnace granulated slag piled up in mountain shape, the blast furnace granulated slag stored in the storage tank, etc. Furthermore, when the blast furnace granulated slag after spraying is mixed, the distribution of the carbonic acid aqueous solution becomes more uniform, and a further anti-caking effect can be obtained.
[0031]
In addition, although the case where the blast furnace granulated slag was processed as it was was demonstrated here, you may make it process the blast furnace granulated slag which was grind | pulverized and adjusted the particle size.
[0032]
【Example】
Examples of the present invention will be described below.
(First embodiment)
While continuously supplying water at a predetermined rate to the apparatus shown in FIG. 1, carbon dioxide gas or a gas containing carbon dioxide gas was blown from the gas disperser 4 at 10 Nm 3 / h, and the resulting aqueous carbonate solution was used in various ways. It was sprayed on granulated blast furnace slag having an initial moisture content. In this case, the carbonic acid aqueous solution was sprayed on the granulated blast furnace slag transported on the transport unit 12 (belt conveyor) at a speed of 50 t / h using the apparatus shown in FIG. The amount of carbonic acid solution sprayed was 2.5 to 15 t / h, and sprayed so that the rate of addition to granulated blast furnace slag was 5 to 30%. The gas dissolution pressure was 1.0 to 5.0 kg / cm 2 . Further, the carbon dioxide concentration of the supply gas was set to 100% and 20%. Thus, various conditions were changed and the blast furnace granulated slag which performed the carbonic acid aqueous solution spraying process shown in Examples 1-7 of Table 1 was obtained.
[0033]
The blast furnace granulated slag of Examples 1 to 7 treated as described above was filled in a container having an inner diameter of 100 mm and a height of 127 mm (internal volume of 1 liter), and immersed in a constant temperature water bath of 80 ° C. together with the container, for a predetermined period. The state of consolidation after curing was observed (indoor scale evaluation). Moreover, about 100 t of each processing slag was inserted into a groove having a depth of 1.5 m, a width of 4 m, and a length of 10 m, and water was applied to observe the consolidated state (implementation scale evaluation).
[0034]
Moreover, as Comparative Example 1, the indoor scale evaluation and the implementation scale evaluation of the consolidated state of the untreated blast furnace granulated slag were performed. Further, as Comparative Example 2, a treatment for immersing ground granulated blast furnace slag in an aqueous carbonate solution was performed on an indoor scale. Here, 15 kg of granulated slag is charged into a container, 15 kg of the carbonated aqueous solution produced by the apparatus of FIG. 1 is poured into this container, and after immersing the blast furnace granulated slag in the carbonated solution for 10 minutes, The container was taken out from the container, and the state of consolidation was observed by the indoor scale evaluation described above. Furthermore, as Comparative Example 3, a tank body is provided at a position where the blast furnace granulated slag falls from the transport unit, and the carbonated aqueous solution produced by the apparatus of FIG. 1 is supplied to the tank body at a rate of 2.5 t / h. After 50 tons of aqueous solution has been stored, blast furnace granulated slag is supplied to the tank body at a rate of 50 t / h up to a total amount of 100 t, the carbonated aqueous solution supply is stopped, and the carbonated aqueous solution in the tank is discharged. Was discharged. The consolidated state of the obtained blast furnace granulated slag was evaluated indoor scale and practical scale. These results are shown in Table 1.
[0035]
[Table 1]
Figure 0004308459
[0036]
As shown in Table 1, in the untreated slag of Comparative Example 1, solidification starts within one month in an indoor scale evaluation at 80 ° C. and within three months in a practical scale evaluation at room temperature, but the carbon dioxide aqueous solution was sprayed. In Examples 1 to 7, caking did not occur for 6 months in the indoor scale evaluation and for 2 years in the implementation scale evaluation, and an excellent anti-caking effect could be obtained. Moreover, in Comparative Example 2 and Comparative Example 3 in which blast furnace granulated slag was immersed in an aqueous carbonate solution, a certain degree of anti-caking effect was obtained with respect to the untreated one, but both were more solid than Examples 1-7. The anti-caking effect was inferior. That is, in Comparative Example 2 in which the treatment immersed in the aqueous carbonate solution was performed on an indoor scale, consolidation did not occur for 2 months in the indoor scale evaluation, but consolidation started on the 3rd month. Further, in Comparative Example 3 in which the treatment immersed in the carbonic acid aqueous solution was performed on the practical scale, although no caking occurred for 2 months in the indoor scale evaluation and 6 months in the practical scale evaluation, the third month in the indoor scale evaluation. In the first year of the implementation scale evaluation, consolidation started.
[0037]
(Second embodiment)
In order to verify the anti-caking effect as sand mat, backfill soil, embankment material and backfill material, pits 3m long 3m wide 2m deep are formed, and 5% carbonic acid solution is sprayed in it. The blast furnace granulated slag, the blast furnace granulated slag soaked in an aqueous carbonate solution, and the untreated blast furnace granulated slag were added and left for 5 years. After 5 years, each slag was core-sampled and the compression strength was measured. As a result, the granulated blast furnace slag sprayed with carbonated water was less than 0.5 kgf / cm 2 , and the strength measurement was impossible. While it was confirmed that no crystallization occurred, the granulated blast furnace slag soaked in carbonated water was 11 kgf / cm 2 , and the untreated blast furnace granulated slag was 25 kgf / cm 2. It was confirmed that Thus, the effect of carbonic acid aqueous solution spray was clearly shown.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for treating granulated blast furnace slag that has a sufficient hydration prevention effect and anti-caking effect, and does not require large-scale equipment. it can.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a production facility for an aqueous carbonate solution.
FIG. 2 is a schematic diagram showing an example of a state in which a carbonic acid aqueous solution is sprayed on granulated blast furnace slag.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Tower 2; Water supply mechanism 3; Carbon dioxide supply mechanism 4; Gas disperser 5; Duct 6; Intake pipe 7; Exhaust part 8; Intake pipe 11; mechanism

Claims (10)

高炉水砕スラグに、炭酸水溶液を散布することを特徴とする高炉水砕スラグの処理方法。  A method for treating granulated blast furnace slag, comprising spraying an aqueous carbonate solution onto granulated blast furnace slag. 前記炭酸水溶液は、炭酸ガスまたは炭酸ガスを含有するガスを水中に吹き込むことにより製造されることを特徴とする請求項1に記載の高炉水砕スラグの処理方法。  The method for treating granulated blast furnace slag according to claim 1, wherein the aqueous carbonate solution is produced by blowing carbon dioxide gas or a gas containing carbon dioxide gas into water. 前記炭酸水溶液は、炭酸ガスまたは炭酸ガスを含有するガス中に、水を噴霧させることによって製造されることを特徴とする請求項1に記載の高炉水砕スラグの処理方法。  The method for treating ground granulated blast furnace slag according to claim 1, wherein the aqueous carbonate solution is produced by spraying water into carbon dioxide gas or a gas containing carbon dioxide gas. 炭酸ガスまたは炭酸ガスを含有するガスを加圧下で水に溶解させることを特徴とする請求項2または請求項3に記載の高炉水砕スラグの処理方法。  The method for treating granulated blast furnace slag according to claim 2 or 3, wherein carbon dioxide gas or a gas containing carbon dioxide gas is dissolved in water under pressure. 高炉水砕スラグの重量に対して30%以下の重量の炭酸水溶液を散布することを特徴とする請求項1から請求項4のいずれか1項に記載の高炉水砕スラグの処理方法。The method for treating granulated blast furnace slag according to any one of claims 1 to 4, wherein a carbonic acid aqueous solution having a weight of 30% or less is sprayed with respect to the weight of the granulated blast furnace slag. 前記炭酸水溶液の散布は、搬送中の高炉水砕スラグに対して行われることを特徴とする請求項1から請求項5のいずれか1項に記載の高炉水砕スラグの処理方法。  The blast furnace granulated slag treatment method according to any one of claims 1 to 5, wherein the carbonic acid aqueous solution is sprayed on the blast furnace granulated slag being conveyed. 前記炭酸水溶液の散布は、山状に積み付けられた高炉水砕スラグに対して行われることを特徴とする請求項1から請求項5のいずれか1項に記載の高炉水砕スラグの処理方法。  The blast furnace granulated slag treatment method according to any one of claims 1 to 5, wherein the carbonic acid aqueous solution is sprayed on blast furnace granulated slag stacked in a mountain shape. . 前記炭酸水溶液の散布は、貯槽内に貯蔵された高炉水砕スラグに対して行われることを特徴とする請求項1から請求項5のいずれか1項に記載の高炉水砕スラグの処理方法。  The blast furnace granulated slag treatment method according to any one of claims 1 to 5, wherein the carbonic acid aqueous solution is sprayed on blast furnace granulated slag stored in a storage tank. 前記炭酸水溶液の散布後、高炉水砕スラグを混合することを特徴とする請求項1から請求項8のいずれか1項に記載の高炉水砕スラグの処理方法。  The method for treating granulated blast furnace slag according to any one of claims 1 to 8, wherein blast furnace granulated slag is mixed after spraying the aqueous carbonate solution. 前記高炉水砕スラグは、製銑工程で発生した高炉水砕スラグをそのままおよび/またはさらに粒度を調製した粒度調製品として用いられることを特徴とする請求項1から請求項9のいずれか1項に記載の高炉水砕スラグの処理方法。  The blast furnace granulated slag is used as a granulated product having a granulated particle size adjusted as it is and / or as a granulated blast furnace slag generated in the ironmaking process. The processing method of granulated blast furnace slag as described in 2.
JP2001296108A 2000-10-02 2001-09-27 Processing method of granulated blast furnace slag Expired - Fee Related JP4308459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296108A JP4308459B2 (en) 2000-10-02 2001-09-27 Processing method of granulated blast furnace slag

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-302364 2000-10-02
JP2000302364 2000-10-02
JP2001296108A JP4308459B2 (en) 2000-10-02 2001-09-27 Processing method of granulated blast furnace slag

Publications (2)

Publication Number Publication Date
JP2002179441A JP2002179441A (en) 2002-06-26
JP4308459B2 true JP4308459B2 (en) 2009-08-05

Family

ID=26601367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296108A Expired - Fee Related JP4308459B2 (en) 2000-10-02 2001-09-27 Processing method of granulated blast furnace slag

Country Status (1)

Country Link
JP (1) JP4308459B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567608B2 (en) * 2006-01-11 2010-10-20 Jfeミネラル株式会社 Method for producing hard-to-set blast furnace granulated slag
KR101392270B1 (en) 2012-03-22 2014-05-12 영진글로벌(주) Furnace slag powder, Method for manufacturing furnace slag powder and Furnace slag cement composition using the same

Also Published As

Publication number Publication date
JP2002179441A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
RU2118943C1 (en) Clay-containing mixture and charge, agents and their utilization and a method of gel forming
CN107162549A (en) The curing agent and application method of heavy metal pollution site remediation based on entringite
US20230406768A1 (en) Carbonation of concrete products
EP0273445B1 (en) Chemical grout for ground injection and method for accretion
JP2008063794A (en) Method of treating soil or building skeleton
JP4517050B2 (en) Ground improvement method and apparatus
JP4308459B2 (en) Processing method of granulated blast furnace slag
JP2008063495A (en) Method for treating soil or building skeleton
JP4149190B2 (en) Processing method of granulated blast furnace slag
JP4262438B2 (en) Processing method of granulated blast furnace slag
JP4434555B2 (en) Processing method of granulated blast furnace slag
JP7244971B1 (en) Ground consolidation material and ground grouting method using it
JP3559204B2 (en) Anti-caking agent and anti-caking method for granulated blast furnace slag or its particle size adjusted product
JP2002179442A (en) Method of treating granulated blast furnace slag
JP2003183717A (en) Steel slag product and manufacturing method therefor
JP4567608B2 (en) Method for producing hard-to-set blast furnace granulated slag
JP4212315B2 (en) Soil consolidation method and concrete frame processing method
KR102357274B1 (en) High quality aggregate production method
JP4387659B2 (en) Processing method of granulated blast furnace slag
JP4874000B2 (en) Blast furnace slag treatment method
CN109970314A (en) A kind of compound drying agent and its preparation and application
JP2021020979A (en) Grouting material and grouting method
JP2004161581A (en) Processing method for granulated blast-furnace slag
JP2003095709A (en) Civil engineering structure
JPH01174706A (en) Method of supplying asphalt mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Ref document number: 4308459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees