JP4149190B2 - Processing method of granulated blast furnace slag - Google Patents

Processing method of granulated blast furnace slag Download PDF

Info

Publication number
JP4149190B2
JP4149190B2 JP2002120730A JP2002120730A JP4149190B2 JP 4149190 B2 JP4149190 B2 JP 4149190B2 JP 2002120730 A JP2002120730 A JP 2002120730A JP 2002120730 A JP2002120730 A JP 2002120730A JP 4149190 B2 JP4149190 B2 JP 4149190B2
Authority
JP
Japan
Prior art keywords
blast furnace
slag
carbon dioxide
granulated
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002120730A
Other languages
Japanese (ja)
Other versions
JP2003313054A (en
Inventor
浩之 光藤
山口  篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2002120730A priority Critical patent/JP4149190B2/en
Publication of JP2003313054A publication Critical patent/JP2003313054A/en
Application granted granted Critical
Publication of JP4149190B2 publication Critical patent/JP4149190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高炉水砕スラグの処理方法に関する。
【0002】
【従来の技術】
高炉水砕スラグは、製銑工程において副産する高炉スラグに、加圧水を噴射して急冷、粒状化したもので、年間2000万t以上生産されている。
高炉水砕スラグは、水硬性を持つため、微粉砕し、セメント用原料に使われてきた。また、近年、天然砂が枯渇しつつあるなかで、資源保護の観点から、天然砂の代替として、土木工事用材料や、コンクリート用細骨材として、高炉水砕スラグそのもの、あるいは粉砕して粒度調整した粒度調製物として使用する機会が増えてきている。
【0003】
ところで、高炉水砕スラグは、そのまま用いられる場合も粒度調製物として用いられる場合も、出荷待ち、あるいは使用待ちのため野積み状態または貯槽内で長時間貯蔵されることが多く、さらに船舶等により長期間をかけて輸送される場合もある。高炉水砕スラグの水硬性は、セメント原料として使用する際には必要不可欠な性質であるが、使用前の長期間の貯蔵中あるいは輸送中に既に水和反応を起こすと、セメント用原料としての性能が劣化し、十分な強度を持つコンクリートにならない。さらに、スラグ粒子同士が水和生成物を媒体に強固に固結し塊状になると、もはや細骨材として使えなくなり、その結合強度も高いことから、もとの粒子状に破砕、整粒するのに極めて労力を要する。
【0004】
また、高炉水砕スラグを土木工事用材料として使用する場合、強固な地盤を形成させるという目的には水硬性が有利に働くが、軟弱地盤の表層処理工法のサンドマット材等に使用するには、経過日数によっては施工中に固結するため、次に、このサンドマット材にペーパードレインあるいはプラスチックドレイン等の垂直ドレイン材を打設、貫通させようとしても極めて困難になる。土木用途としては、盛土材、埋め戻し材、裏込め材などとして使用されることもあるが、この場合も、施工をした後に、数日から数年後に、その部分を掘り起こし新たに埋設物を埋める工事をしたり、植裁を施したり、さらに数十年が経過した後に再度掘り起こしたりするケースもある。これらの場合、水砕スラグの固結は、掘り起こし作業に大きな力を必要とし、さらに、配管工事などでは、既埋設物の破損を引き起こす危険性もある。したがって、従来は、この種の用途への高炉水砕スラグの使用が制約されてきた。
【0005】
かかる水和反応および固結現象は、気温の高い夏季に特に顕著であり、以下のような機構で進行すると考えられる。まず、高炉水砕スラグの水和反応は、ガラス質からのカルシウムの溶出とpH上昇から始まり、このアルカリ刺激によりシリコンやアルミニウム等の成分が溶出する。溶出した成分によって、高炉水砕スラグ粒子近傍の液相中のカルシウム、シリコン、アルミニウム等の成分濃度が、各種水和生成物の析出条件まで上昇すると水和物の生成が始まり、エトリンガイト(3CaO・Al・3CaSO・32HO)や、珪酸カルシウム水和物(C−S−H)等の水和物を生成し、次第に層厚を増し、粒子同士の固結へ至る。また、この水和物生成反応は、液相においてのみならず、高炉水砕スラグの表面近傍の粒子内部でも生じる。
【0006】
高炉水砕スラグまたはその粒度調製物の水和反応および固結を防止するために、従来からいくつかの方法が提案されている。例えば、特公昭58−35944号公報には脂肪族オキシカルボン酸、脂肪族オキシカルボン酸塩またはこれらの2種以上の混合物を重要成分とする固結防止剤が示されている。また、特開昭54−71793号公報には、高炉水砕スラグに酸水溶液を散布し、活性なカルシウムを一度中和する固結防止方法が示されている。
【0007】
さらに、高炉水砕スラグ中のCaOに炭酸ガスを接触させ、あるいは、高炉水砕スラグ中のCaOに炭酸ガスをバブリングした水に含まれる炭酸(HCO)等を接触させ、スラグ粒子表面に難溶性のCaCOの皮膜を形成し、この皮膜によって高炉水砕スラグからのカルシウム等の溶出反応を抑制し、水和反応ひいては固結を抑制する方法が示されている。
【0008】
具体的には、特開昭54−112304号公報、特開昭54−127895号公報、特開昭54−131504号公報、特開昭55−162454号公報には、高炉水砕スラグあるいは高炉水砕スラグを軽破砕したものに、気相状態の炭酸ガスを接触させる方法が示されている。
【0009】
また、特開平10−95644号公報には、炭酸ガスを溶解させた炭酸水溶液に高炉水砕スラグを浸漬させる固結防止方法が開示されている。
【0010】
ところが、これら従来技術のうち、特公昭58−35944号公報の固結防止剤による方法では、野積み状態の間に雨が降れば、高炉水砕スラグの表面から固結防止剤が溶離するため十分な固結防止機能を発揮しない。また、水や海水に浸る条件での土木工事用材料として使用する場合も、また同様に、水中や海水中に固結防止剤が流出するため十分に固結防止することができない。
【0011】
また、特開昭54−71793号公報の酸水溶液を散布する方法では、セメント原料またはコンクリート骨材として用いる場合に、残留酸イオンがコンクリートの性状に悪影響を及ぼすため、添加量を十分に管理しなければならない。
【0012】
さらに、特開昭54−112304号公報等の高炉水砕スラグに気相状態の炭酸ガスを接触させる方法の場合、ホッパーまたは野積み状態に充填された粒状の高炉水砕スラグに炭酸ガスを均一に行き渡らせることが困難であり、ガスが行き渡らない箇所においては十分な水和反応抑制効果および固結抑制効果を得ることができない。
【0013】
一方、特開平10−95644号公報の冷却された高炉水砕スラグを炭酸水溶液に浸漬させる方法の場合には、炭酸を高炉水砕スラグに均一に供給することができるのでその点からは望ましい方法であるが、高炉水砕スラグの炭酸化反応により炭酸水溶液中の炭酸イオン濃度が低下し、水和反応防止効果や固結防止効果が減少してしまうおそれがある。
【0014】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑みてなされたものであって、十分な水和反応防止効果および固結防止効果を発揮することができる高炉水砕スラグの処理方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記課題を解決するため、本発明の第1の観点では、高炉水砕スラグに炭酸水溶液を接触させて、炭酸水溶液と高炉水砕スラグとの混合物を得る工程と、前記炭酸水溶液と高炉水砕スラグとの混合物に炭酸ガスを補給する工程とを有することを特徴とする高炉水砕スラグの処理方法を提供する。
【0016】
このように炭酸水溶液を接触させて、炭酸水溶液と高炉水砕スラグとの混合物を得た後に、この混合物に炭酸ガスを補給することにより、炭酸水溶液中へ炭酸イオンが供給されるので、高炉水砕スラグの炭酸化反応が生じても炭酸水溶液の炭酸イオン濃度が低下するおそれが少なく、十分な水和反応抑制効果および固結防止効果を得ることができる。
【0017】
前記炭酸ガスを補給する工程は、山状に積み付けられた状態または貯槽内に貯蔵された状態の炭酸水溶液と高炉水砕スラグとの混合物に対して行うことができる。
【0018】
本発明の第2の観点では、高炉水砕スラグに炭酸水溶液を接触させて、炭酸水溶液と高炉水砕スラグとの混合物を得る工程と、前記炭酸水溶液と高炉水砕スラグとの混合物を炭酸ガス雰囲気におく工程とを有することを特徴とする高炉水砕スラグの処理方法を提供する。
【0019】
このように炭酸水溶液を接触させて、炭酸水溶液と高炉水砕スラグとの混合物を得た後に、この混合物を炭酸ガス雰囲気におくことにより、炭酸ガス雰囲気から炭酸水溶液中へ炭酸イオンが供給されるので、高炉水砕スラグの炭酸化反応が生じても炭酸水溶液の炭素イオン濃度が低下するおそれが少なく、十分な水和反応抑制効果および固結防止効果を得ることができる。
【0020】
前記炭酸水溶液と高炉水砕スラグとの混合物を炭酸ガス雰囲気におく工程は、密閉空間に前記混合物を装入し、その密閉空間内を炭酸ガス雰囲気にするものであることが好ましい。これにより、容易に炭酸ガス雰囲気を形成することができる。具体的には、吸気管および排気管が設けられた密閉容器に前記混合物を装入し、排気管を介して密閉容器内の密閉空間を排気するとともに、吸気管を介して所定の炭酸ガスを容器内に導入し、前記密閉容器内が所定の雰囲気になった際に前記排気管が閉じられるように構成することが好ましい。この場合に、前記密閉空間内を加圧雰囲気にすることが好ましい。これにより、炭酸水溶液中への炭酸ガスの供給が促進される。また、前記炭酸ガス雰囲気中の炭酸ガス濃度は、10%以上であることが好ましい。
【0021】
上記第1および第2の観点において、前記炭酸水溶液と高炉水砕スラグとの混合物の温度を20℃以上とすることが好ましい。炭酸化反応は高温ほど進行し、炭酸イオンの溶解度は高温ほど低下するため、炭酸水溶液と高炉水砕スラグとの混合物の温度が高いほど炭酸ガス供給効果が大きい。炭酸ガスとして、高温排ガスを用いることが好ましい。高温排ガスは炭酸ガスを10%以上含んでおり、反応性も高く、しかも低コストであるから炭酸ガス源として極めて有効である。
【0022】
高炉水砕スラグは、製銑工程で発生する高炉水砕スラグをそのまま用いるか、さらに粒度を調製した粒度調製品として用いるか、またはこれらを混合して用いることができる。
【0023】
【発明の実施の形態】
以下本発明について詳細に説明する。
本発明に係る高炉水砕スラグの処理方法は、高炉水砕スラグに炭酸水溶液を接触させて、炭酸水溶液と高炉水砕スラグとの混合物を得る工程(第1工程)と、前記炭酸水溶液と高炉水砕スラグとの混合物に炭酸ガスを補給する工程(第2A工程)、または前記炭酸水溶液と高炉水砕スラグとの混合物を炭酸ガス雰囲気におく工程(第2B工程)とを有する。
【0024】
まず、第1工程について説明する。
第1工程では、高炉水砕スラグに炭酸水溶液を接触させて、炭酸水溶液と高炉水砕スラグとの混合物を得るが、このような処理により、高炉水砕スラグに含まれるCaOと、炭酸水溶液中の炭酸(HCO)とを反応させ、高炉水砕スラグの粒子表面に難溶性の炭酸カルシウム皮膜を形成し、この皮膜により水和および固結を防止する。この処理では、炭酸カルシウムを生成せずに、スラグ粒子表面に吸着する炭酸イオンも存在するが、この表面に吸着した炭酸イオンもその効果は小さいが固結を防止する。
【0025】
炭酸水溶液と高炉水砕スラグとを接触させる手法は特に限定されるものではなく、炭酸水溶液を高炉水砕スラグに散布してもよいし、炭酸水溶液に高炉水砕スラグを浸漬させてもよい。ただし、浸漬させる場合には高炉水砕スラグを浸漬させるのに足りるだけの大量の炭酸水溶液を調整する必要があるが、散布する場合には浸漬の場合よりもより少ない水溶液で高い水和反応抑制効果および固結防止効果を得ることができるので、散布することがより好ましい。
【0026】
高炉水砕スラグへ炭酸水溶液を散布する具体的な方法としては、高炉水砕スラグの貯槽の出口に搬送用のコンベアーを設け、そのコンベアーの上方に炭酸水溶液散布用のシャワーを設け、搬送中している高炉水砕スラグにシャワーから炭酸水溶液を散布する方法を採用することができる。これにより高炉水砕スラグに炭酸水溶液を均一にむらなく散布することができる。また、山状に積み付けられた高炉水砕スラグや、貯槽に貯蔵された高炉水砕スラグ等の上方から炭酸水溶液を散布するようにしてもよい。さらに、散布後の高炉水砕スラグを混合すると、炭酸水溶液の分布がより均一になり、一層の固結防止効果を得ることができる。
【0027】
炭酸水溶液に高炉水砕スラグを浸漬する具体的な方法としては、高炉水砕スラグの貯槽に炭酸水溶液を溜めておき、そこで高炉水砕スラグを炭酸水溶液に浸漬する方法や、高炉水砕スラグの貯槽の出口からコンベアーにより炭酸水溶液が貯留された浸漬槽へ高炉水砕スラグを順次搬送し、スクリューコンベアー等で浸漬槽から外部に順次搬送する方法等を採用することができる。
【0028】
次に、炭酸ガスの製造方法について説明する。
炭酸ガスは水に溶けやすく、その溶解度はCO濃度とガス圧力に比例する。25℃大気圧でのCO100%ガスの飽和溶解度は0.037規定(0.16g/100g水)になる。炭酸ガスの溶解は下記式(1)のように示され、溶解後の形態は、炭酸(HCO)、炭酸水素イオン(HCO )、炭酸イオン(CO 2−)であり、酸性領域で炭酸、中性領域で炭酸水素イオン、アルカリ性領域では炭酸イオンが安定であり、pHによってそれぞれの存在比が変化する。
CO+HO→HCO→H+HCO →2H+CO 2−
……(1)
【0029】
図1は、炭酸水溶液の製造設備の一例を示す概略断面図である。
この製造設備は、内部に水を貯留可能な塔1と、塔1の下部から水を供給する水供給機構2と、塔1内の水に炭酸ガスを吹き込むガス分散器4と、ガス分散器4に炭酸ガスを供給する炭酸ガス供給機構3と、塔1の上部から炭酸水溶液を取り出すための取水管6と、塔1の上部を覆うように設けられたダクト5と、ダクト5から排気するための排気部7と、排気部7からの排気をガス分散器4のガス入側に導く導入管8とを有している。
【0030】
この製造設備で炭酸水溶液を製造する際には、水供給機構2から塔1内に連続的に水を供給しながら、または、水供給機構2から塔1内に所定量の水を供給した後に水供給機構2を停止してから、炭酸ガス供給機構3から供給される炭酸ガスまたは炭酸ガスを含有するガスを、ガス分散器4から塔1内の水に連続的に吹き込み、気泡群として分散させ、塔1内の水に炭酸ガスを吸収させて炭酸水溶液とする。この場合に、炭酸ガス供給機構3から加圧ガスを供給するようにすれば、塔1内の水に加圧ガスを溶解することができる。得られた炭酸水溶液は、取水管6から取り込まれ、高炉水砕スラグへの散布に用いられる。また、ガス分散器4から吹き込まれた過剰分の炭酸ガス等は、ダクト5から排気部7を介して排気される。この際、排気されたガスはそのまま系外に排出することができるが、導入管8を介してガス分散器4で循環再使用することも可能である。また、ガス分散器4から吹き込む炭酸ガスを含有するガスには排ガスを用いることも可能であり、これと塔1上部からの排気を再使用することとを組み合わせることにより、極めて安価に炭酸水溶液を製造することができる。
【0031】
このように水中に炭酸ガスまたは炭酸ガスを含有するガスを吹き込む代わりに、容器内に炭酸ガスまたは炭酸ガスを含有するガスを供給し、その容器内に水を噴霧するようにしても炭酸水を製造することができる。この場合にも炭酸ガスまたは炭酸ガスを含有するガスを加圧した状態で水に溶解させることができる。
【0032】
次に、第2A工程について説明する。
第2A工程では、第1工程で得られた炭酸水溶液と高炉水砕スラグとの混合物に炭酸ガスを補給する。
【0033】
上述したように、第1工程において高炉水砕スラグに炭酸水溶液を接触させることにより得られた混合物は、高炉水砕スラグの炭酸化反応により、炭酸水溶液中の炭酸イオン濃度が低下し、水和反応防止効果や固結防止効果が減少してしまうおそれがあるが、炭酸水溶液と高炉水砕スラグとの混合物に炭酸ガスを補給することにより、炭酸水溶液中へ炭酸イオンが供給されるので、炭酸水溶液の炭酸イオン濃度が低下するおそれが少なく、十分な水和反応抑制効果および固結防止効果を得ることができる。
【0034】
炭酸ガスを補給する方法としては、図2に示すように、山状に積み付けられた炭酸水溶液と高炉水砕スラグとの混合物11に補給してもよいし、図3に示すように、混合物11を貯槽17に装入した状態で補給しても良い。前者の場合には、具体的には図2の(a)に示すように山状に積み付けられた炭酸水溶液と高炉水砕スラグとの混合物11の上方から配管12およびノズル13を介して炭酸ガスを供給してもよいし、(b)に示すように混合物11を積み付ける床板14に多数のガス吐出孔15を設け、配管16aから床板14内を水平に延びるガス流路16を介して供給された炭酸ガスをこのガス吐出孔15を介して混合物11内部に供給するようにしてもよい。後者の場合には、具体的には図3の(a)に示すように混合物11を貯槽17に装入した状態で、その上方から配管12およびノズル13を介して炭酸ガスを供給してもよいし、(b)に示すように貯槽17の底板17aに多数のガス吐出孔18を設け、配管19aから底板17a内を水平に延びるガス流路19を介して供給された炭酸ガスをこのガス吐出孔18を介して混合物11内部に供給するようにしてもよい。高炉水砕スラグ全体に均一に補給するためには、上方からの補給に加えて、例えば図2の(b)、図3の(b)に示したような手法で、混合物11の内部へ小流量で供給することが望ましい。本実施形態では、炭酸ガスが不足している部分に炭酸ガスが供給されればよいのであって、バブリング等の攪拌をともなったような供給態様は不必要である。このような供給態様は、むしろ炭酸ガスが大量に必要であり、かつ不所望な反応が生じるおそれがあることから好ましくない。
【0035】
次に、第2B工程について説明する。
第2B工程では、炭酸水溶液と高炉水砕スラグとの混合物を炭酸ガス雰囲気におくことにより、炭酸ガス雰囲気から炭酸水溶液中へ炭酸イオンが供給されるので、炭酸水溶液の炭酸イオン濃度が低下するおそれが少なく、十分な水和反応抑制効果および固結防止効果を得ることができる。
【0036】
高炉水砕スラグを炭酸ガス雰囲気におく方法としては、図4に示すように、密閉容器21内に炭酸水溶液と高炉水砕スラグとの混合物11を装入し、密閉容器21の上方に吸気管22と排気管23とを接続し、排気管23から排気しつつ吸気管22から所定濃度の炭酸ガスを供給し、密閉容器21内の密閉空間を所定の炭酸ガス雰囲気に保つ方法を挙げることができる。炭酸ガス雰囲気の形成は、不足した炭酸イオンを供給することが目的であるから、所定の雰囲気が形成された後は、排気管23を閉にしておき、消費された炭酸ガスを雰囲気から補給するようにすることが好ましい。これにより、炭酸ガス供給量を少なくすることができ、高効率となる。この場合に、密閉容器21内の密閉空間を加圧雰囲気にすることが好ましい。これにより反応をより促進することができる。また、雰囲気中に炭酸ガスが含まれていれば炭酸水溶液に炭酸ガスを供給することができるが、炭酸ガス供給効率の観点から、炭酸ガス濃度は10%以上であることが好ましい。各種排ガスは炭酸ガスを10%以上含んでいるから、好適に用いることができる。
【0037】
上記第2A工程および第2B工程のいずれにおいても、反応性の観点から、炭酸水溶液と高炉水砕スラグとの混合物の温度を20℃以上とすることが好ましい。夏期は炭酸水溶液と高炉水砕スラグとの混合物を放置しておいても20℃以上を確保することができるが、冬季は20℃以上の確保が困難であるため、適宜の加熱手段により混合物を加熱することが好ましい。製造直後の高炉水砕スラグは60℃以上であり、反応性の観点から好ましい。炭酸化反応は高温ほど進行し、炭酸イオンの溶解度は高温ほど低下するため、炭酸水溶液と高炉水砕スラグとの混合物の温度が高いほど炭酸ガス供給効果が大きい。ただし、90℃になると炭酸イオンの溶解度が著しく低下してしまうため、事実上80℃程度が上限となる。
上記温度を満たす炭酸ガス源としては、高温排ガスを用いることが好ましい。高温排ガスは炭酸ガスを10%以上含んでおり、反応性も高く、しかも低コストであるから炭酸ガス源として極めて有効である。
【0038】
なお、上記実施形態では高炉水砕スラグをそのまま処理する場合について説明したが、粉砕して粒度調整した高炉水砕スラグを処理するようにしてもよい。
【0039】
【実施例】
以下、本発明の実施例について説明する。
(実施例1)
濃度20%の炭酸ガスをガス圧力4kg/cm(ゲージ圧)で水に吹き込んで製造された炭酸水溶液100mに高炉水砕スラグ100tを浸漬した状態の混合物を容器に装入した後、容器を密閉状態とし、次いで排気管から排気しつつ吸気管から同様の炭酸ガスを容器内に導入し、所定の炭酸ガス雰囲気となった時点で排気管を閉にし、炭酸水溶液に対する炭酸イオンの供給を行った。この際に炭酸水溶液の温度を50℃に制御した。この状態で3時間保持後、容器から高炉水砕スラグをスクリューコンベアで搬送した。
【0040】
(実施例2)
高炉水砕スラグの貯槽の出口に設けられた搬送用のコンベアーの上方に炭酸水溶液散布用のシャワーを設け、シャワーから実施例1と同様の条件で炭酸ガスを吹き込んで製造した炭酸水溶液を散布しながら高炉水砕スラグ100tを容器内に搬送した。炭酸水溶液の散布量は高炉水砕スラグの10%とした。その後、容器内を密閉状態とし、次いで排気管から排気しつつ吸気管から同様の炭酸ガスを容器内に導入し、所定の炭酸ガス雰囲気となった時点で排気管を閉にし、炭酸水溶液に対する炭酸イオンの供給を行った。この際に炭酸水溶液の温度を50℃に制御した。この状態で3時間保持後、容器から高炉水砕スラグをスクリューコンベアで搬送した。
【0041】
(比較例1,2,3)
全く未処理の高炉水砕スラグを比較例1とし、容器内に実施例1と同様の条件で炭酸ガスを水に吹き込んで製造された炭酸水溶液100mと高炉水砕スラグ100tとを装入して高炉水砕スラグを炭酸水溶液に浸漬させ、温度を18℃としたものを比較例2とし、容器内に同様にして製造された炭酸水溶液100mと高炉水砕スラグ100tとを装入して高炉水砕スラグを炭酸水溶液に浸漬させ、温度を50℃としたものを比較例3とした。
【0042】
以上のように処理した実施例1、2、比較例2,3と、未処理の比較例1とを、内径100mm、高さ127mm(内容積1リットル)の容器に充填し、容器ごと80℃の恒温水槽中に浸漬し、所定期間養生後の固結状態を観察した(室内規模評価)。また、深さ1.5m、幅4m、1区画の長さ10mの溝に、各処理スラグを約100t装入し、水を張り固結状態を観察した(実施規模評価)。これらの結果を表1に示す。
【0043】
【表1】

Figure 0004149190
【0044】
表1に示すように、比較例1の未処理のスラグでは80℃の室内規模評価で1ヶ月以内に、常温の実施規模評価でも3ヶ月以内に固結が始まった。18℃の条件で炭酸水溶液に浸漬した比較例2では、室内規模で2〜3ヶ月の間に固結が始まり、実施規模では6ヶ月から1年で固結が始まった。50℃の条件で炭酸水溶液に浸漬した比較例3では、室内規模で1〜2ヶ月の間に固結が始まり、実施規模では3ヶ月から6ヶ月で固結が始まった。これに対して、50℃の炭酸水溶液に浸漬した後、50℃で3時間密閉加熱雰囲気に維持して炭酸ガスの供給を行った実施例1は室内規模で3ヶ月、実施規模で1年間固結しなかった。また、50℃の炭酸水を散布した後、50℃で3時間密閉加熱雰囲気に維持して炭酸ガスの供給を行った実施例2では、室内規模で6ヶ月、実施規模では2年間固結しなかった。
【0045】
【発明の効果】
以上説明したように、本発明によれば、十分な水和反応防止効果および固結防止効果を発揮することができる高炉水砕スラグの処理方法を提供することができる。
【図面の簡単な説明】
【図1】炭酸水溶液の製造設備の一例を示す概略断面図。
【図2】炭酸ガス補給工程の一例を示す模式図。
【図3】炭酸ガス補給工程の他の例を示す模式図。
【図4】高炉水砕スラグを炭酸ガス雰囲気におく工程の一例を示す模式図。
【符号の説明】
1;塔
2;水供給機構
3;炭酸ガス供給機構
4;ガス分散器
5;ダクト
6;取水管
7;排気部
8;導入管
11;混合物
12,16,19;配管
13;ノズル
14;床板
15,18;ガス供給孔
17;貯槽
21;密閉容器
22;吸気管
23;排気管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating granulated blast furnace slag.
[0002]
[Prior art]
Blast furnace granulated slag is a blast furnace slag produced as a by-product in the ironmaking process, which is rapidly cooled and granulated by injecting pressurized water, and is produced over 20 million tons per year.
Since granulated blast furnace slag has hydraulic properties, it has been finely pulverized and used as a raw material for cement. In recent years, natural sand has been depleted, and from the viewpoint of resource conservation, as a substitute for natural sand, as a material for civil engineering work, as a fine aggregate for concrete, granulated blast furnace slag itself, or by pulverizing the particle size Opportunities for use as adjusted particle size preparations are increasing.
[0003]
By the way, blast furnace granulated slag, whether used as it is or as a granular preparation, is often stored in a piled state or storage tank for a long time because it is awaiting shipment or use. Sometimes transported over a long period of time. The hydraulic property of granulated blast furnace slag is an indispensable property when used as a cement raw material, but if a hydration reaction has already occurred during long-term storage or transportation before use, The performance will deteriorate and the concrete will not be strong enough. Furthermore, when the slag particles are firmly consolidated into a medium and agglomerated, the slag particles can no longer be used as fine aggregates and their bonding strength is high, so they are crushed and sized into the original particles. Is extremely labor intensive.
[0004]
In addition, when blast furnace granulated slag is used as a material for civil engineering work, hydraulic properties work for the purpose of forming a strong ground, but to use it as a sand mat material for surface treatment methods on soft ground Depending on the number of days that have elapsed, the material is consolidated during construction, and it becomes extremely difficult to place a vertical drain material such as a paper drain or a plastic drain through the sand mat material and penetrate it. For civil engineering purposes, it may be used as embankment material, backfill material, backfill material, etc. In this case as well, after construction, a few days to several years later, that part will be dug up and newly buried In some cases, they are buried, planted, or dug up again after several decades. In these cases, consolidation of the granulated slag requires a large force for digging work, and there is also a risk of causing damage to existing objects in piping work or the like. Thus, conventionally, the use of granulated blast furnace slag for this type of application has been limited.
[0005]
Such a hydration reaction and a caking phenomenon are particularly noticeable in summer when the temperature is high, and are considered to proceed by the following mechanism. First, the hydration reaction of granulated blast furnace slag begins with the elution of calcium from the glass and the pH increase, and components such as silicon and aluminum are eluted by this alkali stimulation. When the concentration of components such as calcium, silicon, and aluminum in the liquid phase near the blast furnace granulated slag particles rises to the precipitation conditions for various hydrated products due to the eluted components, hydrate formation begins, and ettringite (3CaO · Hydrates such as Al 2 O 3 .3CaSO 4 .32H 2 O) and calcium silicate hydrate (C—S—H) are generated, and the layer thickness is gradually increased, leading to consolidation of particles. In addition, this hydrate formation reaction occurs not only in the liquid phase but also inside the particles near the surface of the granulated blast furnace slag.
[0006]
Several methods have been proposed in the past to prevent hydration and consolidation of granulated blast furnace slag or its particle size preparation. For example, Japanese Examined Patent Publication No. 58-35944 discloses an anti-caking agent containing an aliphatic oxycarboxylic acid, an aliphatic oxycarboxylate or a mixture of two or more thereof as an important component. Japanese Patent Application Laid-Open No. 54-71793 discloses an anti-caking method in which an aqueous acid solution is sprayed on granulated blast furnace slag to neutralize active calcium once.
[0007]
Further, carbon dioxide is brought into contact with CaO in the granulated blast furnace slag, or carbon dioxide (H 2 CO 3 ) contained in water obtained by bubbling carbon dioxide with CaO in the blast furnace granulated slag is brought into contact with the surface of the slag particles. A method of forming a slightly soluble CaCO 3 film and suppressing the elution reaction of calcium and the like from the granulated blast furnace slag with this film to suppress the hydration reaction and thus the caking is shown.
[0008]
Specifically, Japanese Patent Laid-Open Nos. 54-112304, 54-127895, 54-131504, and 55-162454 disclose blast furnace granulated slag or blast furnace water. A method in which carbon dioxide gas in a gas phase is brought into contact with lightly crushed slag is shown.
[0009]
Japanese Patent Application Laid-Open No. 10-95644 discloses a caking prevention method in which blast furnace granulated slag is immersed in a carbonic acid aqueous solution in which carbon dioxide gas is dissolved.
[0010]
However, among these prior arts, in the method using the anti-caking agent disclosed in Japanese Patent Publication No. 58-35944, the anti-caking agent elutes from the surface of the granulated blast furnace slag if it rains during the piled state. Does not exhibit sufficient anti-caking function. In addition, when used as a civil engineering material under the condition of being immersed in water or seawater, the anti-caking agent flows out into the water or seawater as well, so that the caking cannot be sufficiently prevented.
[0011]
In addition, in the method of spraying an acid aqueous solution disclosed in JP-A-54-71793, when used as a cement raw material or a concrete aggregate, residual acid ions adversely affect the properties of the concrete. There must be.
[0012]
Furthermore, in the case of a method in which gas phase carbon dioxide gas is brought into contact with blast furnace granulated slag as disclosed in Japanese Patent Application Laid-Open No. 54-112304, carbon dioxide gas is uniformly applied to granular blast furnace granulated slag filled in a hopper or a fielded state. It is difficult to spread the hydration reaction, and a sufficient hydration reaction suppressing effect and caking suppressing effect cannot be obtained at locations where gas does not spread.
[0013]
On the other hand, in the case of the method of immersing the cooled blast furnace granulated slag in an aqueous carbonate solution as described in JP-A-10-95644, carbonic acid can be uniformly supplied to the blast furnace granulated slag, which is desirable from that point. However, there is a possibility that the carbonate ion concentration in the carbonic acid aqueous solution is lowered by the carbonation reaction of the granulated blast furnace slag, and the hydration reaction prevention effect and the caking prevention effect are reduced.
[0014]
[Problems to be solved by the invention]
This invention is made | formed in view of this situation, Comprising: It aims at providing the processing method of the granulated blast furnace slag which can exhibit sufficient hydration reaction prevention effect and caking prevention effect.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, in the first aspect of the present invention, a step of bringing a carbonated aqueous solution into contact with a blast furnace granulated slag to obtain a mixture of the carbonated aqueous solution and the blast furnace granulated slag, the carbonated aqueous solution and the blast furnace granulated And a step of supplying carbon dioxide to a mixture with the slag. A method for treating granulated blast furnace slag is provided.
[0016]
After contacting the aqueous carbonate solution in this way to obtain a mixture of the aqueous carbonate solution and blast furnace granulated slag, by supplying carbon dioxide to the mixture, carbonate ions are supplied into the aqueous carbonate solution. Even if the carbonation reaction of crushed slag occurs, there is little fear that the carbonate ion concentration of the aqueous carbonic acid solution decreases, and a sufficient hydration reaction suppressing effect and anti-caking effect can be obtained.
[0017]
The step of replenishing the carbon dioxide gas can be performed on a mixture of a carbonic acid aqueous solution and a blast furnace granulated slag that are stacked in a mountain shape or stored in a storage tank.
[0018]
In the second aspect of the present invention, the step of bringing a carbonated aqueous solution into contact with the blast furnace granulated slag to obtain a mixture of the carbonated aqueous solution and the granulated blast furnace slag, and the mixture of the carbonated aqueous solution and the granulated blast furnace slag with carbon dioxide gas. And a process for treating granulated blast furnace slag, characterized by comprising a step of placing in an atmosphere.
[0019]
After contacting the aqueous carbonate solution in this way to obtain a mixture of the aqueous carbonate solution and granulated blast furnace slag, carbonate ions are supplied from the carbon dioxide atmosphere into the aqueous carbonate solution by placing the mixture in a carbon dioxide atmosphere. Therefore, even if the carbonation reaction of blast furnace granulated slag occurs, the carbon ion concentration of the aqueous carbonate solution is less likely to be reduced, and a sufficient hydration reaction suppressing effect and anti-caking effect can be obtained.
[0020]
The step of placing the mixture of the carbonic acid aqueous solution and the granulated blast furnace slag in a carbon dioxide atmosphere is preferably performed by charging the mixture in a sealed space and setting the inside of the sealed space to a carbon dioxide gas atmosphere. Thereby, a carbon dioxide gas atmosphere can be formed easily. Specifically, the mixture is charged into a sealed container provided with an intake pipe and an exhaust pipe, the sealed space in the sealed container is exhausted through the exhaust pipe, and a predetermined carbon dioxide gas is supplied through the intake pipe. It is preferable that the exhaust pipe is closed when it is introduced into a container and the inside of the sealed container is in a predetermined atmosphere. In this case, the inside of the sealed space is preferably a pressurized atmosphere. Thereby, the supply of carbon dioxide gas into the carbonic acid aqueous solution is promoted. The carbon dioxide gas concentration in the carbon dioxide atmosphere is preferably 10% or more.
[0021]
In the first and second aspects, it is preferable that the temperature of the mixture of the aqueous carbonate solution and the granulated blast furnace slag is 20 ° C. or higher. Since the carbonation reaction proceeds at higher temperatures and the solubility of carbonate ions decreases at higher temperatures, the higher the temperature of the mixture of the aqueous carbonate solution and blast furnace granulated slag, the greater the carbon dioxide supply effect. It is preferable to use high-temperature exhaust gas as the carbon dioxide gas. The high-temperature exhaust gas contains 10% or more of carbon dioxide, has high reactivity, and is low in cost, so it is extremely effective as a carbon dioxide source.
[0022]
As the blast furnace granulated slag, the blast furnace granulated slag generated in the iron making process can be used as it is, or it can be used as a particle size preparation with a further adjusted particle size, or a mixture thereof.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
The processing method of granulated blast furnace slag according to the present invention includes a step of bringing a carbonated aqueous solution into contact with the granulated blast furnace slag to obtain a mixture of the carbonated aqueous solution and the granulated blast furnace slag (first step), and the carbonated aqueous solution and the blast furnace. A step of supplying carbon dioxide to the mixture with the granulated slag (step 2A), or a step of placing the mixture of the aqueous carbonate solution and the granulated blast furnace slag in a carbon dioxide atmosphere (step 2B).
[0024]
First, the first step will be described.
In the first step, a carbonated aqueous solution is brought into contact with the blast furnace granulated slag to obtain a mixture of the carbonated aqueous solution and the blast furnace granulated slag. By such treatment, the CaO contained in the blast furnace granulated slag and the carbonated aqueous solution Of carbon dioxide (H 2 CO 3 ) to form a hardly soluble calcium carbonate film on the surface of granulated blast furnace granulated slag, and this film prevents hydration and consolidation. In this treatment, there is also carbonate ions adsorbed on the surface of the slag particles without generating calcium carbonate, but the carbonate ions adsorbed on the surface also prevent caking, although the effect is small.
[0025]
The method for bringing the aqueous carbonate solution into contact with the blast furnace granulated slag is not particularly limited, and the aqueous carbonate solution may be sprayed on the granulated blast furnace slag, or the granulated blast furnace slag may be immersed in the aqueous carbonate solution. However, when soaking, it is necessary to adjust a large amount of carbonic acid aqueous solution sufficient to soak blast furnace granulated slag, but when spraying, it suppresses high hydration reaction with less aqueous solution than in the case of soaking. Since the effect and the anti-caking effect can be obtained, it is more preferable to spray.
[0026]
As a specific method of spraying the carbonated aqueous solution to the granulated blast furnace slag, a conveyor for transportation is provided at the outlet of the storage tank for the granulated blast furnace slag, and a shower for spraying the carbonated aqueous solution is provided above the conveyor. A method of spraying a carbonated aqueous solution from a shower onto the granulated blast furnace slag can be employed. As a result, the aqueous carbonate solution can be uniformly and evenly applied to the granulated blast furnace slag. Moreover, you may make it spray carbonic acid aqueous solution from the upper direction of the blast furnace granulated slag piled up in mountain shape, the blast furnace granulated slag stored in the storage tank, etc. Furthermore, when the blast furnace granulated slag after spraying is mixed, the distribution of the carbonic acid aqueous solution becomes more uniform, and a further anti-caking effect can be obtained.
[0027]
As a specific method of immersing the blast furnace granulated slag in the carbonated aqueous solution, a method of immersing the blast furnace granulated slag in the carbonated aqueous solution in a blast furnace granulated slag storage tank, A method of sequentially conveying blast furnace granulated slag from the outlet of the storage tank to the immersion tank in which the aqueous carbonate solution is stored by a conveyor, and sequentially transferring the blast furnace slag from the immersion tank to the outside by a screw conveyor or the like can be employed.
[0028]
Next, a method for producing carbon dioxide will be described.
Carbon dioxide gas is easily soluble in water, and its solubility is proportional to the CO 2 concentration and gas pressure. The saturated solubility of 100% CO 2 gas at 25 ° C. and atmospheric pressure is 0.037 N (0.16 g / 100 g water). The dissolution of carbon dioxide gas is represented by the following formula (1), and the forms after dissolution are carbonic acid (H 2 CO 3 ), hydrogen carbonate ion (HCO 3 ), and carbonate ion (CO 3 2− ). Carbonic acid ions are stable in the acidic region, hydrogen carbonate ions in the neutral region, and carbonate ions in the alkaline region, and their abundance changes depending on the pH.
CO 2 + H 2 O → H 2 CO 3 → H + + HCO 3 → 2H + + CO 3 2−
...... (1)
[0029]
FIG. 1 is a schematic cross-sectional view showing an example of a production facility for an aqueous carbonate solution.
This production facility includes a tower 1 capable of storing water therein, a water supply mechanism 2 for supplying water from the lower part of the tower 1, a gas distributor 4 for blowing carbon dioxide into the water in the tower 1, and a gas distributor 4, a carbon dioxide supply mechanism 3 for supplying carbon dioxide, a water intake pipe 6 for taking out a carbonic acid aqueous solution from the top of the tower 1, a duct 5 provided so as to cover the top of the tower 1, and exhausting from the duct 5 And an introduction pipe 8 that guides the exhaust from the exhaust 7 to the gas inlet side of the gas distributor 4.
[0030]
When producing an aqueous carbonate solution with this production facility, water is supplied continuously from the water supply mechanism 2 into the tower 1 or after a predetermined amount of water is supplied from the water supply mechanism 2 into the tower 1. After the water supply mechanism 2 is stopped, the carbon dioxide gas or the gas containing carbon dioxide supplied from the carbon dioxide supply mechanism 3 is continuously blown from the gas disperser 4 into the water in the tower 1 and dispersed as a group of bubbles. Then, carbon dioxide gas is absorbed in the water in the tower 1 to obtain a carbonic acid aqueous solution. In this case, if the pressurized gas is supplied from the carbon dioxide supply mechanism 3, the pressurized gas can be dissolved in the water in the tower 1. The obtained carbonic acid aqueous solution is taken in from the intake pipe 6 and used for spraying onto the granulated blast furnace slag. Further, excess carbon dioxide gas or the like blown from the gas distributor 4 is exhausted from the duct 5 through the exhaust unit 7. At this time, the exhausted gas can be discharged out of the system as it is, but it can also be circulated and reused in the gas distributor 4 through the introduction pipe 8. Further, exhaust gas can be used as the gas containing carbon dioxide blown from the gas disperser 4, and by combining this with the reuse of the exhaust from the upper part of the tower 1, an aqueous carbonate solution can be obtained at a very low cost. Can be manufactured.
[0031]
Instead of blowing carbon dioxide gas or a gas containing carbon dioxide gas into the water in this way, carbon dioxide water or a gas containing carbon dioxide gas is supplied into the container and water is sprayed into the container. Can be manufactured. Also in this case, carbon dioxide or a gas containing carbon dioxide can be dissolved in water in a pressurized state.
[0032]
Next, the 2A step will be described.
In the 2A step, carbon dioxide gas is replenished to the mixture of the carbonic acid aqueous solution obtained in the first step and the blast furnace granulated slag.
[0033]
As described above, the mixture obtained by bringing the carbonated aqueous solution into contact with the blast furnace granulated slag in the first step reduces the carbonate ion concentration in the carbonated aqueous solution due to the carbonation reaction of the granulated blast furnace slag, and hydrates. Although there is a possibility that the reaction preventing effect and the caking preventing effect may be reduced, carbonate ions are supplied into the carbonated aqueous solution by supplying carbon dioxide to the mixture of the carbonated aqueous solution and the granulated blast furnace slag. There is little possibility that the carbonate ion concentration of the aqueous solution is lowered, and a sufficient hydration reaction suppressing effect and anti-caking effect can be obtained.
[0034]
As a method of replenishing carbon dioxide, as shown in FIG. 2, a mixture 11 of carbonic acid aqueous solution and blast furnace granulated slag stacked in a mountain shape may be replenished, or as shown in FIG. 11 may be replenished with the storage tank 17 being charged. In the former case, specifically, as shown in FIG. 2A, carbonic acid is added from above the mixture 11 of the carbonic acid aqueous solution and blast furnace granulated slag stacked in a mountain shape via the pipe 12 and the nozzle 13. Gas may be supplied, or as shown in (b), a large number of gas discharge holes 15 are provided in the floor plate 14 on which the mixture 11 is stacked, and the gas passage 16 extends horizontally from the pipe 16a through the floor plate 14. The supplied carbon dioxide gas may be supplied into the mixture 11 through the gas discharge holes 15. In the latter case, specifically, as shown in FIG. 3A, the carbon dioxide gas may be supplied from above through the pipe 12 and the nozzle 13 with the mixture 11 charged in the storage tank 17. As shown in (b), many gas discharge holes 18 are provided in the bottom plate 17a of the storage tank 17, and the carbon dioxide gas supplied from the pipe 19a through the gas flow path 19 extending horizontally in the bottom plate 17a is supplied to this gas. The mixture 11 may be supplied into the mixture 11 through the discharge holes 18. In order to uniformly replenish the entire granulated blast furnace slag, in addition to replenishment from above, a small amount of water is introduced into the interior of the mixture 11 by a method such as shown in FIG. 2 (b) or FIG. 3 (b). It is desirable to supply at a flow rate. In the present embodiment, it is only necessary to supply the carbon dioxide gas to the portion where the carbon dioxide gas is insufficient, and a supply mode with stirring such as bubbling is unnecessary. Such a supply mode is not preferable because a large amount of carbon dioxide gas is required and an undesirable reaction may occur.
[0035]
Next, the 2B process will be described.
In Step 2B, by placing a mixture of the aqueous carbonate solution and granulated blast furnace slag in the carbon dioxide atmosphere, carbonate ions are supplied from the carbon dioxide atmosphere into the aqueous carbonate solution, which may reduce the carbonate ion concentration of the aqueous carbonate solution. Therefore, a sufficient hydration reaction suppressing effect and anti-caking effect can be obtained.
[0036]
As a method for placing the blast furnace granulated slag in a carbon dioxide gas atmosphere, as shown in FIG. 4, a mixture 11 of an aqueous carbonate solution and blast furnace granulated slag is charged in a sealed container 21, and an intake pipe is placed above the sealed container 21. 22 and the exhaust pipe 23 are connected, and a predetermined concentration of carbon dioxide gas is supplied from the intake pipe 22 while exhausting from the exhaust pipe 23 to keep the sealed space in the sealed container 21 in a predetermined carbon dioxide atmosphere. it can. Since the formation of the carbon dioxide gas atmosphere is aimed at supplying insufficient carbonate ions, after the predetermined atmosphere is formed, the exhaust pipe 23 is closed and the consumed carbon dioxide gas is replenished from the atmosphere. It is preferable to do so. As a result, the amount of carbon dioxide gas supplied can be reduced, resulting in high efficiency. In this case, the sealed space in the sealed container 21 is preferably a pressurized atmosphere. Thereby, the reaction can be further promoted. Moreover, if carbon dioxide is contained in the atmosphere, carbon dioxide can be supplied to the carbonic acid aqueous solution. From the viewpoint of carbon dioxide supply efficiency, the carbon dioxide concentration is preferably 10% or more. Since various exhaust gases contain 10% or more of carbon dioxide, they can be suitably used.
[0037]
In any of the second A step and the second B step, the temperature of the mixture of the aqueous carbonate solution and the granulated blast furnace slag is preferably 20 ° C. or more from the viewpoint of reactivity. Even in the summer season, the mixture of carbonated aqueous solution and granulated blast furnace slag can be kept at 20 ° C or higher, but in winter it is difficult to ensure the temperature above 20 ° C. It is preferable to heat. The granulated blast furnace slag immediately after production is 60 ° C. or higher, which is preferable from the viewpoint of reactivity. Since the carbonation reaction proceeds at higher temperatures and the solubility of carbonate ions decreases at higher temperatures, the higher the temperature of the mixture of the aqueous carbonate solution and blast furnace granulated slag, the greater the carbon dioxide supply effect. However, since the solubility of carbonate ions is significantly reduced at 90 ° C., the upper limit is practically about 80 ° C.
As the carbon dioxide gas source satisfying the above temperature, it is preferable to use high temperature exhaust gas. The high-temperature exhaust gas contains 10% or more of carbon dioxide, has high reactivity, and is low in cost, so it is extremely effective as a carbon dioxide source.
[0038]
In addition, although the said embodiment demonstrated the case where a blast furnace granulated slag was processed as it was, you may make it process the blast furnace granulated slag which was grind | pulverized and adjusted the particle size.
[0039]
【Example】
Examples of the present invention will be described below.
(Example 1)
After charging the mixture in a state in which a concentration of 20% carbon dioxide was immersed blast furnace slag 100t in gas pressure 4 kg / cm 2 carbonate solution 100 m 3 produced by blowing in water (gauge pressure) in the container, the container Then, the same carbon dioxide gas is introduced from the intake pipe into the container while exhausting from the exhaust pipe. When the predetermined carbon dioxide atmosphere is reached, the exhaust pipe is closed, and carbonate ions are supplied to the aqueous carbonate solution. went. At this time, the temperature of the aqueous carbonate solution was controlled at 50 ° C. After holding in this state for 3 hours, blast furnace granulated slag was conveyed from the container by a screw conveyor.
[0040]
(Example 2)
A shower for spraying carbonic acid aqueous solution is provided above the conveyor for transportation provided at the outlet of the storage tank of the granulated blast furnace slag, and the carbonic acid aqueous solution produced by blowing carbon dioxide gas under the same conditions as in Example 1 is sprayed from the shower. The blast furnace granulated slag 100t was conveyed into the container. The amount of carbonic acid aqueous solution applied was 10% of the granulated blast furnace slag. Thereafter, the inside of the container is hermetically sealed, and then similar carbon dioxide gas is introduced into the container from the intake pipe while exhausting from the exhaust pipe. When the predetermined carbon dioxide gas atmosphere is reached, the exhaust pipe is closed and Ions were supplied. At this time, the temperature of the aqueous carbonate solution was controlled at 50 ° C. After holding in this state for 3 hours, blast furnace granulated slag was conveyed from the container by a screw conveyor.
[0041]
(Comparative Examples 1, 2, 3)
A completely untreated blast furnace granulated slag was used as Comparative Example 1, and a carbon dioxide aqueous solution 100 m 3 produced by blowing carbon dioxide into water under the same conditions as in Example 1 and a blast furnace granulated slag 100 t were charged into the container. Then, blast furnace granulated slag was immersed in a carbonated aqueous solution and the temperature was set to 18 ° C. as Comparative Example 2, and 100 m 3 of the carbonated aqueous solution produced in the same manner and blast furnace granulated slag 100 t were charged in the container. A granulated blast furnace slag was immersed in an aqueous carbonate solution and the temperature was set to 50 ° C., which was referred to as Comparative Example 3.
[0042]
Examples 1, 2 and Comparative Examples 2 and 3 treated as described above and untreated Comparative Example 1 were filled in a container having an inner diameter of 100 mm and a height of 127 mm (internal volume of 1 liter). Were immersed in a constant temperature water bath, and the solidified state after curing for a predetermined period was observed (indoor scale evaluation). Moreover, about 100 t of each processing slag was inserted into a groove having a depth of 1.5 m, a width of 4 m, and a length of 10 m, and water was applied to observe the consolidated state (implementation scale evaluation). These results are shown in Table 1.
[0043]
[Table 1]
Figure 0004149190
[0044]
As shown in Table 1, in the untreated slag of Comparative Example 1, consolidation started within one month in the indoor scale evaluation at 80 ° C., and within three months in the practical scale evaluation at room temperature. In Comparative Example 2 immersed in a carbonic acid aqueous solution under the condition of 18 ° C., consolidation started in 2 to 3 months on the indoor scale, and consolidation started in 6 months to 1 year on the implementation scale. In Comparative Example 3 immersed in an aqueous carbonate solution under the condition of 50 ° C., consolidation started in 1 to 2 months on the indoor scale, and consolidation started in 3 to 6 months on the implementation scale. In contrast, Example 1 in which carbon dioxide gas was supplied after being immersed in a carbonic acid aqueous solution at 50 ° C. and maintained in a sealed heating atmosphere at 50 ° C. for 3 hours was fixed for 3 months on an indoor scale and 1 year on the practical scale. I did not conclude. In Example 2 in which carbonated water at 50 ° C. was sprayed and then kept in a closed heating atmosphere at 50 ° C. for 3 hours to supply carbon dioxide, the sample was consolidated for 6 months on the indoor scale and 2 years on the implementation scale. There wasn't.
[0045]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for treating granulated blast furnace slag capable of exhibiting sufficient hydration reaction prevention effect and caking prevention effect.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a production facility for an aqueous carbonate solution.
FIG. 2 is a schematic diagram showing an example of a carbon dioxide replenishment process.
FIG. 3 is a schematic diagram showing another example of a carbon dioxide replenishment step.
FIG. 4 is a schematic diagram showing an example of a process of placing granulated blast furnace slag in a carbon dioxide atmosphere.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Tower 2; Water supply mechanism 3; Carbon dioxide supply mechanism 4; Gas disperser 5; Duct 6; Intake pipe 7; Exhaust part 8; Inlet pipe 11; 15, 18; gas supply hole 17; storage tank 21; sealed container 22; intake pipe 23; exhaust pipe

Claims (11)

高炉水砕スラグに炭酸水溶液を接触させて、炭酸水溶液と高炉水砕スラグとの混合物を得る工程と、前記炭酸水溶液と高炉水砕スラグとの混合物に炭酸ガスを補給する工程とを有することを特徴とする高炉水砕スラグの処理方法。Contacting the blast furnace granulated slag with a carbonated aqueous solution to obtain a mixture of the carbonated aqueous solution and the blast furnace granulated slag, and replenishing the mixture of the carbonated aqueous solution and the blast furnace granulated slag with carbon dioxide. A method for treating ground granulated blast furnace slag. 前記炭酸ガスを補給する工程は、山状に積み付けられた炭酸水溶液と高炉水砕スラグとの混合物に対して行われることを特徴とする請求項1に記載の高炉水砕スラグの処理方法。The method for treating blast furnace granulated slag according to claim 1, wherein the step of supplying carbon dioxide is performed on a mixture of an aqueous carbonate solution and blast furnace granulated slag stacked in a mountain shape. 前記炭酸ガスを補給する工程は、貯槽内に貯蔵された炭酸水溶液と高炉水砕スラグとの混合物に対して行われることを特徴とする請求項1または請求項2に記載の高炉水砕スラグの処理方法。3. The blast furnace granulated slag according to claim 1, wherein the step of replenishing the carbon dioxide gas is performed on a mixture of a carbonic acid aqueous solution and a blast furnace granulated slag stored in a storage tank. Processing method. 高炉水砕スラグに炭酸水溶液を接触させて、炭酸水溶液と高炉水砕スラグとの混合物を得る工程と、前記炭酸水溶液と高炉水砕スラグとの混合物を炭酸ガス雰囲気におく工程とを有することを特徴とする高炉水砕スラグの処理方法。Contacting a blast furnace granulated slag with a carbonated aqueous solution to obtain a mixture of the carbonated aqueous solution and the blast furnace granulated slag, and placing the mixture of the carbonated aqueous solution and the blast furnace granulated slag in a carbon dioxide atmosphere. A method for treating ground granulated blast furnace slag. 前記炭酸水溶液と高炉水砕スラグとの混合物を炭酸ガス雰囲気におく工程は、密閉空間に前記混合物を装入し、その密閉空間内を炭酸ガス雰囲気にすることを特徴とする請求項4に記載の高炉水砕スラグの処理方法。The step of placing the mixture of the aqueous carbonate solution and granulated blast furnace slag in a carbon dioxide atmosphere is charged with the mixture in a sealed space, and the sealed space is filled with a carbon dioxide atmosphere. Blast furnace granulated slag treatment method. 吸気管および排気管が設けられた密閉容器に前記混合物を装入し、排気管を介して密閉容器内の密閉空間を排気するとともに、吸気管を介して所定の炭酸ガスを容器内に導入し、前記密閉容器内が所定の雰囲気になった際に前記排気管が閉じられることを特徴とする請求項5に記載の高炉水砕スラグの処理方法。The mixture is charged into a sealed container provided with an intake pipe and an exhaust pipe, and the sealed space in the sealed container is exhausted through the exhaust pipe, and a predetermined carbon dioxide gas is introduced into the container through the intake pipe. 6. The method for treating granulated blast furnace slag according to claim 5, wherein the exhaust pipe is closed when the inside of the sealed container becomes a predetermined atmosphere. 前記密閉空間内を加圧雰囲気にすることを特徴とする請求項5に記載の高炉水砕スラグの処理方法。The method for treating granulated blast furnace slag according to claim 5, wherein the sealed space is pressurized. 前記炭酸ガス雰囲気中の炭酸ガス濃度は、10%以上であることを特徴とする請求項4から請求項6のいずれか1項に記載の高炉水砕スラグの処理方法。The blast furnace granulated slag treatment method according to any one of claims 4 to 6, wherein the carbon dioxide gas concentration in the carbon dioxide atmosphere is 10% or more. 前記炭酸水溶液と高炉水砕スラグとの混合物の温度を20℃以上とすることを特徴とする請求項1から請求項7のいずれか1項に記載の高炉水砕スラグの処理方法。The temperature of the mixture of the said carbonic acid aqueous solution and blast furnace granulated slag shall be 20 degreeC or more, The processing method of the blast furnace granulated slag of any one of Claims 1-7 characterized by the above-mentioned. 前記炭酸ガスとして、高温排ガスを用いることを特徴とする請求項1から請求項8のいずれか1項に記載の高炉水砕スラグの処理方法。The method for treating granulated blast furnace slag according to any one of claims 1 to 8, wherein high-temperature exhaust gas is used as the carbon dioxide gas. 前記高炉水砕スラグは、製銑工程で発生した高炉水砕スラグをそのままおよび/またはその粒度を調製した粒度調製品として用いられることを特徴とする請求項1から請求項9のいずれか1項に記載の高炉水砕スラグの処理方法。The blast furnace granulated slag is used as a granulated product in which the granulated blast furnace slag generated in the ironmaking process is used as it is and / or its particle size is adjusted. The processing method of granulated blast furnace slag as described in 2.
JP2002120730A 2002-04-23 2002-04-23 Processing method of granulated blast furnace slag Expired - Fee Related JP4149190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120730A JP4149190B2 (en) 2002-04-23 2002-04-23 Processing method of granulated blast furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120730A JP4149190B2 (en) 2002-04-23 2002-04-23 Processing method of granulated blast furnace slag

Publications (2)

Publication Number Publication Date
JP2003313054A JP2003313054A (en) 2003-11-06
JP4149190B2 true JP4149190B2 (en) 2008-09-10

Family

ID=29536875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120730A Expired - Fee Related JP4149190B2 (en) 2002-04-23 2002-04-23 Processing method of granulated blast furnace slag

Country Status (1)

Country Link
JP (1) JP4149190B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567608B2 (en) * 2006-01-11 2010-10-20 Jfeミネラル株式会社 Method for producing hard-to-set blast furnace granulated slag
JP5018041B2 (en) * 2006-11-26 2012-09-05 Jfeスチール株式会社 Slag processing method
KR100778551B1 (en) 2006-12-20 2007-11-28 주식회사 포스코 Method for treating surface of slag
JP4856661B2 (en) * 2008-02-22 2012-01-18 新日本製鐵株式会社 Method for stabilizing steelmaking slag

Also Published As

Publication number Publication date
JP2003313054A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
US20230406768A1 (en) Carbonation of concrete products
JP4517050B2 (en) Ground improvement method and apparatus
JP2009028581A (en) Method of fixing carbon dioxide
JP4149190B2 (en) Processing method of granulated blast furnace slag
JPH0762346A (en) Production of slag-based base course material
JP2008138069A (en) Method for treating soil or construction skeleton
JP6044565B2 (en) Acid soil improvement material
JP4262438B2 (en) Processing method of granulated blast furnace slag
JP4308459B2 (en) Processing method of granulated blast furnace slag
JP7014746B2 (en) Slag aging method, civil engineering material manufacturing method, and carbonation accelerator for slag aging treatment
JP4434555B2 (en) Processing method of granulated blast furnace slag
JP3559204B2 (en) Anti-caking agent and anti-caking method for granulated blast furnace slag or its particle size adjusted product
JP4567608B2 (en) Method for producing hard-to-set blast furnace granulated slag
JP2002179442A (en) Method of treating granulated blast furnace slag
JP2014076932A (en) Concrete modifier, modified concrete, and concrete modification method
JP2007169119A (en) Method for producing foamed glass material, foamed glass material, water treating method using the same, bottom deposit modifying method, and bottom deposit modifying material
JP6626342B2 (en) Carbonation of slag
JP4212315B2 (en) Soil consolidation method and concrete frame processing method
JP6551907B2 (en) Method of treating iron and steel slag and treating apparatus for iron and steel slag
JP4387659B2 (en) Processing method of granulated blast furnace slag
JP2003095709A (en) Civil engineering structure
JP2009121940A (en) Method for immobilizing radioactive waste
CN109970314A (en) A kind of compound drying agent and its preparation and application
JP2002356352A (en) Method for preventing solidification of steel furnace slag
JP7244971B1 (en) Ground consolidation material and ground grouting method using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4149190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees