JP4307884B2 - Method for producing zirconium-containing cobalt hydroxide and method for producing positive electrode material - Google Patents

Method for producing zirconium-containing cobalt hydroxide and method for producing positive electrode material Download PDF

Info

Publication number
JP4307884B2
JP4307884B2 JP2003095688A JP2003095688A JP4307884B2 JP 4307884 B2 JP4307884 B2 JP 4307884B2 JP 2003095688 A JP2003095688 A JP 2003095688A JP 2003095688 A JP2003095688 A JP 2003095688A JP 4307884 B2 JP4307884 B2 JP 4307884B2
Authority
JP
Japan
Prior art keywords
zirconium
positive electrode
cobalt hydroxide
lithium
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003095688A
Other languages
Japanese (ja)
Other versions
JP2004299975A (en
Inventor
雅行 寺坂
良浩 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003095688A priority Critical patent/JP4307884B2/en
Publication of JP2004299975A publication Critical patent/JP2004299975A/en
Application granted granted Critical
Publication of JP4307884B2 publication Critical patent/JP4307884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明が属する技術分野】
この発明は、非水電解質二次電池の正極材料製造用原料として有用なジルコニウム含有水酸化コバルトの製造方法、及びこの製造方法で作製されたジルコニウム含有水酸化コバルトを用いたジルコニウム含有コバルト酸リチウム(LiCoO)からなる非水電解質二次電池用正極材料の製造方法に関する。
【0002】
【従来の技術】
携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水電解質二次電池が注目され、このリチウム非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。
【0003】
このリチウム非水電解質二次電池は、細長いシート状の銅箔等からなる負極芯体(集電体)の両面にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤を塗布した負極と、細長いシート状のアルミニウム箔等からなる正極芯体の両面にリチウムイオンを吸蔵・放出する正極活物質を含む正極合剤を塗布した正極との間に、微多孔性ポリプロピレンフィルム等からなるセパレータを配置し、負極及び正極をセパレータにより互いに絶縁した状態で円柱状又は楕円形状に巻回した後、負極及び正極の各所定部分にそれぞれ負極タブ及び正極タブを接続し、その外側を外装で被覆することにより製造されている。
【0004】
そして、正極材料として、従来から主としてコバルト酸リチウム(LiCoO)が、リチウムに対し4V以上の電位を示し、高エネルギー密度を有する二次電池が実現できることから使用されているが、現状の電池性能は市場の要求に答えるには不充分であり、さらなる高性能化及び高寿命化、特に負荷特性、サイクル特性の向上が望まれている.
【0005】
一方、コバルト酸リチウムを正極活物質として用いたリチウム非水電解質二次電池の特性向上方法として、コバルト酸リチウムへ異種元素を添加する方法が知られている。例えば、下記特許文献1には正極活物質であるコバルト酸リチウムにジルコニウムを添加することで、高電圧を発生し、かつ優れた充放電特性と保存特性を示す非水電解質二次電池が開示されている。
【0006】
このジルコニウムを添加したコバルト酸リチウムは、LiCoO粒子の表面が酸化ジルコニウムZrOもしくはリチウムとジルコニウムとの複合酸化物LiZrOにより覆われることによって安定化され、その結果、高い電位においても電解液の分解反応や結晶破壊を起こすことなく、優れたサイクル特性、保存特性を示す正極活物質が得られることによるものであって、この効果は、単に焼成後のLiCoOにジルコニウムもしくはジルコニウムの化合物を混合するだけでは得られず、リチウム塩とコバルト化合物とを混合したものにジルコニウムを添加して焼成することにより得られるものである。この特許文献1に開示されている異種元素含有コバルト酸リチウムは、LiCOとCoCOとをLiとCoの原子比が1:1になるように混合したものに、酸化ジルコニウム(ZrO)を添加し、空気中において900℃で5時間焼成して作製されている。
【0007】
【特許文献1】
特開平4−319260号公報(特許請求の範囲、段落[0006]、[0008]〜[0011])
【0008】
【発明が解決しようとする課題】
本発明者等は、ジルコニウム(Zr)以外に、チタン(Ti)及びフッ素(F)を使用しても同様に効果を奏することを見出しているが、異種元素としてZr、Ti及びFのいずれを使用した場合においても、これらの元素は電池反応に寄与しないので、添加量が増大すると電池容量が低下することになる。したがって、異種元素添加は極力少ない添加量で、より大きな効果を得ることが好ましい。しかし、特許文献1に開示されている方法では、電池容量を維持するためにジルコニウム添加量を減少させると、ジルコニウム添加により得られるはずの電池特性改善効果が得られなくなった。本発明者等は、この現象の原因を特許文献1に開示されているものは固体原料を混合して焼成するといった固相反応に基づくものであり、ジルコニウムがコバルト酸リチウム内に不均質に存在しているためであると考え、まず、コバルト酸リチウムの製造における出発物質であるコバルト化合物内に均一にジルコニウムを存在させることによって、リチウム源と該コバルト化合物を反応させて合成されたコバルト酸リチウム内のジルコニウムを均一に存在させることを検討した。
【0009】
通常、コバルト塩水溶液とジルコニウム塩水溶液を混合した酸性水溶液をアルカリ水溶液により中和して作製した水酸化コバルトはジルコニウムが均一に存在していると考えられているから、まず、このようにして作製したジルコニウム含有水酸化コバルトと炭酸リチウムを混合し、焼成してジルコニウム含有コバルト酸リチウムを得たが、これを用いても電池特性改善効果は不充分であった。
【0010】
本発明者等はこの原因について種々検討した結果、コバルト塩水溶液とジルコニウム塩水溶液を混合した酸性水溶液のアルカリ水溶液による中和反応は、非常に反応速度が速いため、一部のジルコニウムが水酸化コバルトと固溶せずに遊離した状態となっており、均一度は高いとは言い難いこと、及び、水酸化コバルトは製造中或は保存中に酸化を受けやすいことから、一部が三価の水酸化コバルトとなっていることを知見した。
【0011】
そこで、本発明者等は更に実験を重ねた結果、中和反応液のpHをコントロールして遊離したジルコニウムの存在を極力低減させると共に酸化防止剤としてのギ酸を共存させることによって中和反応と並行して生じると考えられる水酸化コバルトの酸化を抑制し、より反応条件を安定にコントロールすれば均質なジルコニウム含有水酸化コバルトが得られること、及び、このようにして得られた水酸化コバルトを出発物質として合成されたコバルト酸リチウムを正極に使用すると特性の優れたリチウムイオン電池を得ることができることを見出し、本発明を完成するに至ったのである。
【0012】
すなわち、本発明はジルコニウムが均質に分散された非水電解質二次電池の正極材料製造用原料として有用なジルコニウム含有水酸化コバルトの製造方法、及びこの製造方法で作製されたジルコニウム含有水酸化コバルトを用いたジルコニウム含有コバルト酸リチウム(LiCoO)からなる非水電解質二次電池用正極材料の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の上記目的は以下の構成により達成することができる。すなわち、本発明の第1の態様によれば、コバルト塩とジルコニウム塩との混合水溶液を、酸化防止剤としてのギ酸を含有し、アルカリ水溶液によりpHが9〜14の間の所定の一定値に保たれた反応液中に滴下し、ジルコニウムを含む水酸化コバルトを得ることを特徴とするジルコニウム含有水酸化コバルトの製造方法が提供される。
【0014】
係る製造方法によれば、反応時のpHが一定に保たれているため、反応条件が安定化しており、しかも、コバルト塩とジルコニウム塩との混合水溶液を反応液中に滴下して反応させているから、反応液中には未反応のジルコニウム塩は実質的に存在せず、前記混合水溶液の中和反応は徐々に一定の条件下で進行し、加えて反応液中には酸化防止剤としてのギ酸が添加されているため、二価の水酸化コバルトが酸化して三価の水酸化コバルトとなるのを防止することができるので、より均質なジルコニウム含有水酸化コバルトを製造することができるようになる。
【0015】
(削除)
【0016】
(削除)
【0017】
また、本発明の別の態様では、上述の製造方法により製造されたジルコニウム含有水酸化コバルトとリチウム塩とを混合した後、焼成することによるジルコニウム含有コバルト酸リチウムからなる非水電解質二次電池用正極材料の製造方法が提供される。係る態様によれば、均質にジルコニウムが添加された非水電解質二次電池用正極材料が得られるので、この正極材料を用いて製造された非水電解質二次電池の特性が向上する。
【0018】
(削除)
【0019】
【発明の実施の形態】
以下、本発明の具体例を実施例及び比較例を用いて詳細に説明する。
【0020】
(実施例)
ジルコニウムを添加した水酸化コバルトの作製)
硫酸コバルト水溶液(1mol%)と硫酸ジルコニウム水溶液(1mol%)を1000:1で混合した混合溶液と、水酸化ナトリウム水溶液(1mol%)とを用意し、酸化防止剤としてのギ酸を含む反応溶液中に前記混合溶液を徐々に滴下し、それと同時に前記水酸化ナトリウム水溶液も滴下することにより反応溶液のpHを10に制御して、ジルコニウム含有水酸化コバルト粒子を析出させた後、水洗、乾燥してジルコニウム含有水酸化コバルト粉末を作製した。
【0021】
(コバルト酸リチウムの作製)
上記ジルコニウム含有水酸化コバルト粉末と炭酸リチウムをモル比で1:1となるように混合して、空気中で900℃×6時間焼成してジルコニウム含有コバルト酸リチウムを作製した。
【0022】
(正極板の作製)
上記ジルコニウム含有コバルト酸リチウム粉末と、正極導電剤としての人造黒鉛粉末を、質量比9:1で混合して正極合剤を調製した。この正極合剤とポリフッ化ビニリデンをN−メチル2−ピロリドン(NMP)に5質量%溶解した結着剤溶液とを固形分質量比95:5で混棟して、正極板作製用スラリーを調製した。このスラリーを正極集電体であるアルミニウム箔(箔厚み:15μm)に塗布、乾燥し、その後極板を電池幅に合うようにスリットし、110℃で2時間で真空乾燥して電池用正極板を作製した。
【0023】
(負極板の作製)
リン片状天然黒鉛(d002値:3.356Å、Lc値:1000Å、平均粒径=20μm)と、スチレン−ブタジエンゴム(SBR)のディスパージョン(固形分:50%)を水に分散させて、増粘剤であるカルボキシメチルセルロース(CMC)を添加し、この負極の乾燥後の固形分質量組成比が、黒鉛:SBR:CMC=100:3:2となるようにスラリーを調製した。このスラリーを負極集電体である銅箔(箔厚み:8μm)の両面に乾燥後質量で200g/m(片面塗布100g/m、集電体除く)となるよう塗布した後、乾燥してその極板を圧縮し、活物質の充填密度1.5g/ccの負極板を作製した。その後極板を電池幅に合うようにスリットし、110℃で2時間で真空乾燥して電池用負極種板を得た。
【0024】
(電解質とセパレータ)
非水電解質として、エチレンガーボネート(EC)とジエチルカーボネート(DEC)との体積比50:50の混合溶媒に、LiPFを1mol/l溶解した溶液を使用した。また、セパレ一夕としては、ポリエチレン製の微多孔膜を使用した。
【0025】
(電池の作製)
以上のようにして得られた正極、負極およびセパレータを捲回し、同様に上記のように作製した電解質を用いて、円筒型(AAサイズ、放電容量:600mAh)のリチウムイオン電池を作製した。
【0026】
(電池特性試験)
各電池において、25℃中1It(1C)で4.2Vまで充電した後、4.2Vで定電圧充電(10mAカット)し、1Itあるいは2Itで2.75Vまで放電させ、このときの放電容量および放電容量比を比較した。なお、1Itは600mAに設定した。測定結果を表1に示した。
【0027】
(比較例1)
水酸化コバルト粉末を作製する際に反応液中にギ酸を添加しない以外は実施例同様の方法で作製したジルコニウム添加コバルト酸リチウムを使用して比較例1の電池を作製し、実施例1と同じ条件で電池特性試験を行った。結果をまとめて表1に示した。
【0028】
(比較例2)
水酸化コバルトを作製する際に反応液中にギ酸を添加せず、また、反応溶液のpHを制御しない以外は実施例と同様の方法で作製したジルコニウム添加コバルト酸リチウムを使用して比較例2の電池を作製し、実施例1と同じ条件で電池特性試験を行った。結果をまとめて表1に示した。
【0029】
【表1】

Figure 0004307884
【0030】
表1の結果から、本発明のリチウム非水電解質二次電池は、1It放電容量と2It放電容量との差が小さいが、比較例1及び比較例2のものは、1It放電容量は実施例のものと差異はないが、2It放電容量は大幅に小さくなっている。したがって、本発明のリチウム非水電解質二次電池は優れた放電性能を有することがわかる。
【0031】
なお、本実施例ではpH=10で実施したが、本発明においては中和反応時のpHが一定に保たれておれば均質なジルコニウム含有水酸化コバルトが得られるから、少なくとも水酸化コバルトの沈殿が生じる範囲である9以上に保てばよい。pHを14以上となしてもアルカリ濃度が濃すぎるので実用的ではない。
【0032】
また、本実施例では硫酸コバルト水溶液と硫酸ジルコニウム水溶液を使用したが、本発明で生起する反応は本質的にはコバルトイオンの中和反応であるから、硫酸塩だけでなく、硝酸塩やハロゲン化物塩等水溶性塩であれば等しく使用し得る。
【0033】
(削除)
【0034】
【発明の効果】
以上述べたように、本発明によればジルコニウムが均一に分散した二価の水酸化コバルトを得ることができ、放電効率に優れた非水電解質二次電池を製造することができる。[0001]
[Technical field to which the invention belongs]
This invention relates to a process for producing a useful zirconium-containing cobalt hydroxide as a cathode material for producing a raw material for non-aqueous electrolyte secondary battery, and zirconium-containing lithium cobalt oxide with zirconium-containing cobalt hydroxide prepared in this production method ( It relates to the manufacturing method of the nonaqueous electrolyte secondary battery positive electrode material comprised of LiCoO 2).
[0002]
[Prior art]
With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small and thin, high capacity, excellent cycle characteristics, and stable performance are required. Yes. In the field of secondary batteries, lithium non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention, and the proportion of lithium non-aqueous electrolyte secondary batteries shows a significant increase in the secondary battery market. ing.
[0003]
The lithium non-aqueous electrolyte secondary battery includes a negative electrode in which a negative electrode mixture containing a negative electrode active material that occludes and releases lithium ions is applied to both surfaces of a negative electrode core (current collector) made of an elongated sheet-like copper foil, and the like. A separator made of a microporous polypropylene film, etc., is placed between the positive electrode core, which contains a positive electrode active material that absorbs and releases lithium ions, on both sides of a positive electrode core made of an elongated sheet-like aluminum foil. Then, after the negative electrode and the positive electrode are wound in a columnar shape or an elliptical shape while being insulated from each other by the separator, the negative electrode tab and the positive electrode tab are respectively connected to the predetermined portions of the negative electrode and the positive electrode, and the outside is covered with the exterior It is manufactured by.
[0004]
And as a positive electrode material, lithium cobalt oxide (LiCoO 2 ) has been conventionally used because it exhibits a potential of 4 V or more with respect to lithium and a secondary battery having a high energy density can be realized. Is inadequate to meet market demands, and further improvements in performance and service life, especially improved load characteristics and cycle characteristics, are desired.
[0005]
On the other hand, as a method for improving the characteristics of a lithium non-aqueous electrolyte secondary battery using lithium cobaltate as a positive electrode active material, a method of adding a different element to lithium cobaltate is known. For example, Patent Document 1 below discloses a non-aqueous electrolyte secondary battery that generates high voltage by adding zirconium to lithium cobaltate, which is a positive electrode active material, and exhibits excellent charge / discharge characteristics and storage characteristics. ing.
[0006]
The lithium cobalt oxide to which zirconium is added is stabilized by covering the surface of LiCoO 2 particles with zirconium oxide ZrO 2 or a composite oxide of lithium and zirconium, Li 2 ZrO 3. This is because a positive electrode active material having excellent cycle characteristics and storage characteristics can be obtained without causing decomposition reaction or crystal destruction of the liquid, and this effect is simply obtained by adding zirconium or a zirconium compound to LiCoO 2 after firing. It cannot be obtained only by mixing the lithium, but can be obtained by adding zirconium to a mixture of a lithium salt and a cobalt compound and baking. The different element-containing lithium cobalt oxide disclosed in Patent Document 1 is obtained by mixing zirconium oxide (ZrO 2) with Li 2 CO 3 and CoCO 3 mixed so that the atomic ratio of Li and Co is 1: 1. ), And fired at 900 ° C. for 5 hours in air.
[0007]
[Patent Document 1]
JP-A-4-319260 (Claims, paragraphs [0006], [0008] to [0011])
[0008]
[Problems to be solved by the invention]
The present inventors have found that the use of titanium (Ti) and fluorine (F) in addition to zirconium (Zr) has the same effect, but any of the different elements, Zr, Ti and F, is found. Even when used, since these elements do not contribute to the battery reaction, the battery capacity decreases as the addition amount increases. Therefore, it is preferable that the addition of the different elements achieves a greater effect with the smallest possible addition amount. However, in the method disclosed in Patent Document 1, if the amount of zirconium added is decreased in order to maintain the battery capacity, the effect of improving battery characteristics that should have been obtained by adding zirconium cannot be obtained. The inventors of the present invention have disclosed the cause of this phenomenon in Patent Document 1 based on a solid-phase reaction in which solid raw materials are mixed and fired, and zirconium is present inhomogeneously in lithium cobalt oxide. First, lithium cobaltate synthesized by reacting a lithium source with the cobalt compound by uniformly presenting zirconium in the cobalt compound which is a starting material in the production of lithium cobaltate. It was investigated that the zirconium in the inside was present uniformly.
[0009]
Normally, cobalt hydroxide produced by neutralizing an acidic aqueous solution that is a mixture of an aqueous cobalt salt solution and an aqueous zirconium salt solution with an alkaline aqueous solution is considered to contain zirconium uniformly. The zirconium- containing cobalt hydroxide and lithium carbonate were mixed and baked to obtain zirconium- containing lithium cobalt oxide. However, even if this was used, the effect of improving battery characteristics was insufficient.
[0010]
The present inventors have result of various investigations on the cause, because the neutralization reaction with an aqueous alkali solution of the acidic aqueous solution mixed with an aqueous cobalt salt solution and a zirconium salt aqueous solution is very reactive and at a higher rate, a part of zirconium cobalt hydroxide Since it is in a state of being released without being dissolved in solid, it is difficult to say that the degree of uniformity is high, and cobalt hydroxide is susceptible to oxidation during production or storage. It was found that it was cobalt hydroxide.
[0011]
Therefore, as a result of further experiments, the inventors of the present invention controlled the pH of the neutralization reaction solution to reduce the presence of liberated zirconium as much as possible and to allow formic acid as an antioxidant to coexist with the neutralization reaction. Suppressing the oxidation of cobalt hydroxide, which is thought to occur as a result of the reaction, and controlling the reaction conditions more stably, a homogeneous zirconium- containing cobalt hydroxide can be obtained, and the cobalt hydroxide thus obtained is started. When lithium cobaltate synthesized as a material was used for the positive electrode, it was found that a lithium ion battery having excellent characteristics could be obtained, and the present invention was completed.
[0012]
That is, the present invention relates to a method for producing zirconium- containing cobalt hydroxide useful as a raw material for producing a positive electrode material for a non-aqueous electrolyte secondary battery in which zirconium is homogeneously dispersed, and zirconium- containing cobalt hydroxide produced by this production method. and to provide a method for producing a zirconium-containing lithium cobaltate positive electrode material for a nonaqueous electrolyte secondary battery comprising a (LiCoO 2) was used.
[0013]
[Means for Solving the Problems]
The above object of the present invention can be achieved by the following constitution. That is, according to the first aspect of the present invention, a mixed aqueous solution of a cobalt salt and a zirconium salt contains formic acid as an antioxidant, and the pH is set to a predetermined constant value between 9 and 14 with an alkaline aqueous solution. was added dropwise to the reaction solution kept method of the zirconium-containing cobalt hydroxide, characterized in that to obtain a cobalt hydroxide containing zirconium are provided.
[0014]
According to such a production method, since the pH during the reaction is kept constant, the reaction conditions are stabilized, and a mixed aqueous solution of cobalt salt and zirconium salt is dropped into the reaction solution for reaction. Therefore, there is substantially no unreacted zirconium salt in the reaction solution, and the neutralization reaction of the mixed aqueous solution gradually proceeds under certain conditions, and in addition, as an antioxidant in the reaction solution. Since formic acid is added, it is possible to prevent divalent cobalt hydroxide from being oxidized to trivalent cobalt hydroxide, so that more homogeneous zirconium- containing cobalt hydroxide can be produced. It becomes like this.
[0015]
(Delete)
[0016]
(Delete)
[0017]
In another aspect of the present invention, for a non-aqueous electrolyte secondary battery comprising zirconium- containing lithium cobalt oxide by mixing zirconium- containing cobalt hydroxide produced by the production method described above and a lithium salt, followed by firing. A method for producing a positive electrode material is provided. According to such an aspect, a positive electrode material for a non-aqueous electrolyte secondary battery to which zirconium is uniformly added can be obtained, so that the characteristics of a non-aqueous electrolyte secondary battery manufactured using this positive electrode material are improved.
[0018]
(Delete)
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific examples of the present invention will be described in detail using examples and comparative examples.
[0020]
(Example)
(Production of cobalt hydroxide with zirconium added)
A mixed solution in which a cobalt sulfate aqueous solution (1 mol%) and a zirconium sulfate aqueous solution (1 mol%) are mixed at a ratio of 1000: 1 and a sodium hydroxide aqueous solution (1 mol%) are prepared, and the reaction solution contains formic acid as an antioxidant. The mixed solution is gradually added dropwise, and at the same time, the sodium hydroxide aqueous solution is also added dropwise to control the pH of the reaction solution to 10, to precipitate zirconium-containing cobalt hydroxide particles, and then washed with water and dried. Zirconium-containing cobalt hydroxide powder was prepared.
[0021]
(Production of lithium cobaltate)
The zirconium-containing cobalt hydroxide powder and lithium carbonate were mixed at a molar ratio of 1: 1 and fired in air at 900 ° C. for 6 hours to prepare zirconium-containing lithium cobalt oxide.
[0022]
(Preparation of positive electrode plate)
The zirconium-containing lithium cobalt oxide powder and the artificial graphite powder as the positive electrode conductive agent were mixed at a mass ratio of 9: 1 to prepare a positive electrode mixture. This positive electrode mixture and a binder solution prepared by dissolving 5% by mass of polyvinylidene fluoride in N-methyl 2-pyrrolidone (NMP) are mixed at a solid mass ratio of 95: 5 to prepare a slurry for preparing a positive electrode plate. did. The slurry is applied to an aluminum foil (foil thickness: 15 μm) as a positive electrode current collector, dried, and then the electrode plate is slit to fit the battery width and vacuum dried at 110 ° C. for 2 hours to obtain a positive electrode plate for a battery. Was made.
[0023]
(Preparation of negative electrode plate)
Flake flake natural graphite (d 002 value: 3.356 Å, Lc value: 1000 平均, average particle size = 20 μm) and styrene-butadiene rubber (SBR) dispersion (solid content: 50%) were dispersed in water. Then, carboxymethyl cellulose (CMC) as a thickener was added, and a slurry was prepared so that the solid mass composition ratio after drying of the negative electrode was graphite: SBR: CMC = 100: 3: 2. This slurry was applied on both sides of a copper foil (foil thickness: 8 μm) as a negative electrode current collector so that the mass after drying was 200 g / m 2 (100 g / m 2 on one side, excluding the current collector) and then dried. The electrode plate was compressed to produce a negative electrode plate having an active material packing density of 1.5 g / cc. Thereafter, the electrode plate was slit to fit the battery width and vacuum dried at 110 ° C. for 2 hours to obtain a negative electrode seed plate for a battery.
[0024]
(Electrolyte and separator)
As a non-aqueous electrolyte, a solution in which 1 mol / l of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 50:50 was used. In addition, as a separator, a polyethylene microporous film was used.
[0025]
(Production of battery)
The positive electrode, the negative electrode, and the separator obtained as described above were wound, and a cylindrical type (AA size, discharge capacity: 600 mAh) lithium ion battery was manufactured using the electrolyte similarly manufactured as described above.
[0026]
(Battery characteristics test)
In each battery, after charging to 4.2V at 1 It (1C) at 25 ° C., constant voltage charging (10 mA cut) at 4.2 V, discharging to 2.75 V at 1 It or 2 It, the discharge capacity and The discharge capacity ratio was compared. Note that 1 It was set to 600 mA. The measurement results are shown in Table 1.
[0027]
(Comparative Example 1)
A battery of Comparative Example 1 was prepared using a zirconium-added lithium cobaltate prepared in the same manner as in Example except that formic acid was not added to the reaction solution when preparing cobalt hydroxide powder. The battery characteristic test was conducted under the conditions. The results are summarized in Table 1.
[0028]
(Comparative Example 2)
Comparative Example 2 using a zirconium-added lithium cobaltate prepared in the same manner as in the Examples except that formic acid was not added to the reaction solution when preparing cobalt hydroxide and the pH of the reaction solution was not controlled. A battery characteristic test was conducted under the same conditions as in Example 1. The results are summarized in Table 1.
[0029]
[Table 1]
Figure 0004307884
[0030]
From the results of Table 1, the lithium nonaqueous electrolyte secondary battery of the present invention has a small difference between the 1 It discharge capacity and the 2 It discharge capacity, but the comparative example 1 and the comparative example 2 have the 1 It discharge capacity of the example. Although there is no difference from the above, the 2It discharge capacity is greatly reduced. Therefore, it turns out that the lithium non-aqueous electrolyte secondary battery of this invention has the outstanding discharge performance.
[0031]
In this example, it was carried out at pH = 10. However, in the present invention, a homogeneous zirconium- containing cobalt hydroxide can be obtained if the pH during the neutralization reaction is kept constant. It is sufficient to keep 9 or more, which is a range where the above occurs. Even if the pH is 14 or more, the alkali concentration is too high, which is not practical.
[0032]
In this example, an aqueous cobalt sulfate solution and an aqueous zirconium sulfate solution were used. However, since the reaction that occurs in the present invention is essentially a neutralization reaction of cobalt ions, not only sulfates but also nitrates and halide salts. Any equivalent water-soluble salt can be used .
[0033]
(Delete)
[0034]
【The invention's effect】
As described above, according to the present invention, divalent cobalt hydroxide in which zirconium is uniformly dispersed can be obtained, and a nonaqueous electrolyte secondary battery excellent in discharge efficiency can be manufactured.

Claims (2)

コバルト塩とジルコニウム塩との混合水溶液を、酸化防止剤としてのギ酸を含有し、アルカリ水溶液によりpHが9〜14の間の所定の一定値に保たれた反応液中に滴下し、ジルコニウムを含む水酸化コバルトを得ることを特徴とするジルコニウム含有水酸化コバルトの製造方法。A mixed aqueous solution of a cobalt salt and a zirconium salt is dropped into a reaction solution containing formic acid as an antioxidant and maintained at a predetermined constant value between 9 and 14 with an aqueous alkaline solution, and contains zirconium . A process for producing zirconium- containing cobalt hydroxide, characterized in that cobalt hydroxide is obtained. 請求項1に記載の製造方法により製造されたジルコニウム含有水酸化コバルトとリチウム塩とを混合した後、焼成することを特徴とするジルコニウム含有コバルト酸リチウム(LiCoO)からなる非水電解質二次電池用正極材料の製造方法。After mixing the manufactured zirconium-containing cobalt hydroxide and a lithium salt by the method according to claim 1, a non-aqueous electrolyte secondary battery comprising a zirconium-containing lithium cobaltate and firing (LiCoO 2) For producing a positive electrode material.
JP2003095688A 2003-03-31 2003-03-31 Method for producing zirconium-containing cobalt hydroxide and method for producing positive electrode material Expired - Fee Related JP4307884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095688A JP4307884B2 (en) 2003-03-31 2003-03-31 Method for producing zirconium-containing cobalt hydroxide and method for producing positive electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095688A JP4307884B2 (en) 2003-03-31 2003-03-31 Method for producing zirconium-containing cobalt hydroxide and method for producing positive electrode material

Publications (2)

Publication Number Publication Date
JP2004299975A JP2004299975A (en) 2004-10-28
JP4307884B2 true JP4307884B2 (en) 2009-08-05

Family

ID=33407954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095688A Expired - Fee Related JP4307884B2 (en) 2003-03-31 2003-03-31 Method for producing zirconium-containing cobalt hydroxide and method for producing positive electrode material

Country Status (1)

Country Link
JP (1) JP4307884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424949B2 (en) * 2003-09-09 2010-03-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4794180B2 (en) 2005-02-24 2011-10-19 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2004299975A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4000041B2 (en) Positive electrode active material for lithium secondary battery
JP3181296B2 (en) Positive electrode active material and non-aqueous secondary battery containing the same
JP7215004B2 (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode mixture paste for lithium ion secondary battery, and lithium ion secondary battery
JP6773047B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste, non-aqueous electrolyte secondary battery.
JP6340791B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
JP2015529943A (en) Lithium-rich positive electrode material, lithium battery positive electrode, and lithium battery
KR100687672B1 (en) Nonaqueous electrolyte secondary battery
JP5447577B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP2009245917A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing same, and positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7262998B2 (en) Positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material
JP5556844B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
EP1204602A1 (en) A method for preparing lithium manganese spinel complex oxide having improved electrochemical performance
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2000235856A (en) Lithium secondary battery
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2017010842A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP4307884B2 (en) Method for producing zirconium-containing cobalt hydroxide and method for producing positive electrode material
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2002324543A (en) Lithium ion secondary battery and positive electrode active material for the same
JP2002208441A (en) Nonaqueous electrolyte secondary cell
WO2020226978A1 (en) Methods and systems for dry surface doping of cathode materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees