JP4305099B2 - Measuring method of optical sensor measurement range - Google Patents

Measuring method of optical sensor measurement range Download PDF

Info

Publication number
JP4305099B2
JP4305099B2 JP2003310896A JP2003310896A JP4305099B2 JP 4305099 B2 JP4305099 B2 JP 4305099B2 JP 2003310896 A JP2003310896 A JP 2003310896A JP 2003310896 A JP2003310896 A JP 2003310896A JP 4305099 B2 JP4305099 B2 JP 4305099B2
Authority
JP
Japan
Prior art keywords
optical sensor
polarization
measurement
change
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003310896A
Other languages
Japanese (ja)
Other versions
JP2005077342A (en
Inventor
潔 黒澤
和臣 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2003310896A priority Critical patent/JP4305099B2/en
Publication of JP2005077342A publication Critical patent/JP2005077342A/en
Application granted granted Critical
Publication of JP4305099B2 publication Critical patent/JP4305099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

この発明は光センサ、特にファラデー効果等の磁気光学効果を利用して、大電流を含む物理量を測定し得る光センサの測定範囲拡大方法に関する。   The present invention relates to an optical sensor, and more particularly to a method for extending a measurement range of an optical sensor that can measure a physical quantity including a large current by utilizing a magneto-optical effect such as a Faraday effect.

電流センサとしては通常巻線形変流器(CT)が多用されている一方で、最近は大電流に対する検出要求が高まってきているが、上記CTは磁気飽和現象のため限界がある。そこで、最大約200kA程度の大電流を検出するものとして、例えばファラデー効果を利用する光センサが出現している。
これは、ファラデー効果による偏波面の回転角(ファラデー回転角)が光量の変化に変換されるように検出部を構成し、光電変換素子に伝達される光量の変化から回転角を求める方式(強度変調方式とも言う)である。この強度変調方式の場合、検出電流に比例するファラデー回転角θFと出力の関係が、sin2θFに比例する非線形特性を持ち、また、θFが±45°を越えると入出力特性が単調増加の範囲を逸脱するだけでなく、1つの出力値に対して被検出電流の値が複数(多値関数)となり、θFが±45°を越える範囲では測定が困難になるという問題がある。
As a current sensor, a wound-type current transformer (CT) is commonly used. On the other hand, recently, a demand for detection of a large current is increasing, but the CT has a limit due to a magnetic saturation phenomenon. Therefore, for example, an optical sensor using the Faraday effect has appeared as a device that detects a large current of about 200 kA at maximum.
In this method, the detection unit is configured such that the rotation angle of the polarization plane (Faraday rotation angle) due to the Faraday effect is converted into a change in the amount of light, and the rotation angle is obtained from the change in the amount of light transmitted to the photoelectric conversion element (intensity). It is also called a modulation method. In the case of this intensity modulation method, the relationship between the Faraday rotation angle θ F proportional to the detected current and the output has a non-linear characteristic proportional to sin 2θ F, and when θ F exceeds ± 45 °, the input / output characteristics increase monotonously. In addition to deviating from the above range, there is a problem that the value of the current to be detected becomes plural (multi-valued function) for one output value, and measurement is difficult in the range where θ F exceeds ± 45 °.

このような問題を解決する大電流の検出方法として、感度の異なる2つの光学素子を用い、2つの光学素子の出力値の組み合わせからファラデー回転角θFを求める方法が、例えば非特許文献1に提案されている。
図9はその方法(以下、異感度2光学素子利用の強度変調方式とも言う)の原理説明図である。
これは、測定すべき電流をiとし、2つの光学素子のベルデ定数および出力値をそれぞれVA,VBおよびSA,SBとすると、これらの間には、
A=sin2VAi …(1a)
B=sin2VBi …(1b)
なる関係があることを利用するものである。図9に出力SA,SBと電流iとの関係を示す。
As a method for detecting a large current that solves such a problem, a method for obtaining the Faraday rotation angle θ F from a combination of output values of two optical elements using two optical elements having different sensitivities is disclosed in Non-Patent Document 1, for example. Proposed.
FIG. 9 is a diagram for explaining the principle of this method (hereinafter also referred to as intensity modulation method using different sensitivity two optical elements).
If the current to be measured is i and the Verde constants and output values of the two optical elements are V A , V B and S A , S B , respectively,
S A = sin2V A i (1a)
S B = sin2V B i (1b)
It is used that there is a relationship. FIG. 9 shows the relationship between the outputs S A and S B and the current i.

上記(1)式から電流iを消去し、出力SA,SBとの関係を求めると、図10のようなSA−SB特性(リサージュ図形)となる。同図より、測定可能範囲はP点からQ点に到るまでのiの範囲と言える。
いま、2VA=a,2VB=bと置き、
A=kVB(1<k) …(2)
とする(光学素子Aの方が光学素子Bより高感度)と、
(1)P点
においては、図9,図10に示す関係から、まず次の(3)〜(5)式が成立する。
When the current i is eliminated from the above equation (1) and the relationship between the outputs S A and S B is obtained, the S A -S B characteristic (Lissajous figure) as shown in FIG. 10 is obtained. From the figure, it can be said that the measurable range is the range of i from the P point to the Q point.
Now, 2V A = a, 2V B = b
V A = kV B (1 <k) (2)
(Optical element A is more sensitive than optical element B)
(1) At the point P, the following equations (3) to (5) are first established from the relationship shown in FIGS.

A(i=i2)=SA(i=i-1) …(3a)
B(i=i2)=SB(i=i-1) …(3b)
sinai2=sinai-1 …(4a)
sinbi2=sinbi-1 …(4b)
-2<i-1<0<i1<i2 …(5)
S A (i = i 2 ) = S A (i = i −1 ) (3a)
S B (i = i 2 ) = S B (i = i −1 ) (3b)
sinai 2 = sinai −1 (4a)
sinbi 2 = sinbi −1 (4b)
i −2 <i −1 <0 <i 1 <i 2 (5)

また、P点における出力SAとファラデー回転角θA(=ai)との関係,出力SBとファラデー回転角θB(=bi)との関係がそれぞれ図11(a),(b)のように表わされるとすると、この図11(a),(b)から次の(6)式が成立する。
sinai2=sin(2π+ai-1
∴ai2=2π+ai-1 …(6a)
sinbi2=sin(π−bi-1
∴bi2=π−bi-1 …(6b)
Further, the relationship between the output S A and the Faraday rotation angle θ A (= ai) at the point P, and the relationship between the output S B and the Faraday rotation angle θ B (= bi) are shown in FIGS. 11A and 11B, respectively. In this way, the following equation (6) is established from FIGS. 11 (a) and 11 (b).
sinai 2 = sin (2π + ai −1 )
∴ai 2 = 2π + ai −1 (6a)
sinbi 2 = sin (π−bi −1 )
∴bi 2 = π−bi −1 (6b)

上記(6)式よりi-1,i2を求めると、
2=(1/a+1/2b)π …(7a)
-1=(−1/a+1/2b)π …(7b)
となり、先の(2)式よりa=kbであるから、これを(7a)式に代入すると、
2=(1/k+1/2)(π/b) …(8)
となる。また、2VB=bなので、これを(8)式に代入すると、
2=(1/k+1/2)(π/2VB) …(9)
となる。(9)式を変形すると、次の(10)式が得られる。
2VB2=(1/k+1/2)π=(1+2/k)(π/2)…(10)
When i −1 and i 2 are obtained from the above equation (6),
i 2 = (1 / a + 1 / 2b) π (7a)
i −1 = (− 1 / a + 1 / 2b) π (7b)
Since a = kb from the previous equation (2), if this is substituted into the equation (7a),
i 2 = (1 / k + 1/2) (π / b) (8)
It becomes. Also, since 2V B = b, substituting this into equation (8) gives
i 2 = (1 / k + 1/2) (π / 2V B ) (9)
It becomes. When the formula (9) is transformed, the following formula (10) is obtained.
2V B i 2 = (1 / k + 1/2) π = (1 + 2 / k) (π / 2) (10)

以上のことから、ベルデ定数VBの光学素子にて検出可能な最大電流は、2VB2=π/2となるi2であるといえる。したがって、上記(10)式から、異感度2光学素子利用の強度変調方式により検出可能な電流値の拡大率Mは、次式で表わされることになる。
M=1+2/k …(11)
先に1<kと仮定したから、次式が成立する。
M=1+2/k<3 …(12)
k=1のときM=3となるが、この場合はVA=VB、すなわち2つの光学素子に感度差がないことを示す。
From the above, the maximum current that can be detected by the optics of the Verdet constant V B can be said to be i 2 as a 2V B i 2 = π / 2 . Therefore, from the above equation (10), the enlargement factor M of the current value that can be detected by the intensity modulation method using the two optical elements of different sensitivity is expressed by the following equation.
M = 1 + 2 / k (11)
Since it is assumed that 1 <k, the following equation is established.
M = 1 + 2 / k <3 (12)
When k = 1, M = 3. In this case, V A = V B , that is, there is no difference in sensitivity between the two optical elements.

(2)Q点
以上のP点についての考察をQ点についても当てはめると、電流の符号関係が上記とは異なるだけで、検出可能な電流値(絶対値)の拡大率Mは(11)式と同じになる。
(2) Q point When the above consideration about the P point is also applied to the Q point, the enlargement factor M of the current value (absolute value) that can be detected is expressed by the following equation (11). Will be the same.

以上の説明は、kが“1”に近いことを前提としている。
次に、以上のような関係が成立し、(11)式が成り立つkの範囲について考察する。
いま、kが大きくなり、“1”から離れると、図12(a)に示すように、図10に示すP点,Q点が原点に近づく。さらにkが大きくなりk=2になると、SAとSBの関係は図12(b)のように、「8」の字状になる。したがって、上記(11)式が成立するのは、1<k≦2の範囲にある場合と言える。なお、2<kとなると、P点,Q点がそれぞれSA−SB平面の反対側の象限へ移動することから、2<kの場合は拡大率M<2になると考えられる。
The above description assumes that k is close to “1”.
Next, the range of k in which the above relationship is established and Equation (11) is satisfied will be considered.
Now, when k increases and moves away from “1”, the points P and Q shown in FIG. 10 approach the origin as shown in FIG. When k is further increased and k = 2, the relationship between S A and S B becomes “8” as shown in FIG. Therefore, it can be said that the above formula (11) is established when the range is 1 <k ≦ 2. When 2 <k, the P point and the Q point move to the quadrants on the opposite side of the S A -S B plane, respectively. Therefore, it is considered that the enlargement ratio M <2 when 2 <k.

M.Willsch,et al“Extension of the Measuring Range of Magneto Optic Current Sensors using Two Wavelengths Evaluation”Proc.13th−OFS,April 1999,p366〜369M.M. Willsch, et al. “Extension of the Measuring Range of Magneto Optical Current Sensoring Two Wavelengths Evaluation” Proc. 13th-OFS, April 1999, p366-369

上述のように、異感度2光学素子利用の強度変調方式にも測定限界ファラデー回転角(45°に相当する電流の3倍程度)があり、核融合装置のプラズマ電流、または送電鉄塔に流れ込む雷電流などのように数メガアンペアの大電流を検出することができない。なお、上記非特許文献1では、500°(≒45°×11)程度のファラデー回転角の計測が可能との記載があるが、記載のみでその根拠は必ずしも明確ではない。
また、以上のようなセンサとは別に、ロゴウスキーコイル型センサと呼ばれるセンサがあるが、このセンサは原理上信号処理に時間積分を必要とし、精度の確保が難しいという問題だけでなく、電気絶縁,長距離信号伝送,電磁誘導雑音などの点でも問題がある。
したがって、この発明の課題は、このような問題の生じない光センサの測定可能範囲を拡大し得るようにすることにある。
As described above, the intensity modulation method using the two-sensitivity optical elements also has a measurement limit Faraday rotation angle (about three times the current corresponding to 45 °), and the lightning current flowing into the fusion tower plasma current or power transmission tower A large current of several megaamperes such as a current cannot be detected. In Non-Patent Document 1, there is a description that a Faraday rotation angle of about 500 ° (≈45 ° × 11) can be measured, but the basis for this is not clear.
In addition to the sensors described above, there is a sensor called a Rogowski coil type sensor. This sensor, in principle, requires time integration for signal processing, and it is difficult to ensure accuracy. There are also problems in terms of insulation, long-distance signal transmission, and electromagnetic induction noise.
Therefore, an object of the present invention is to be able to expand the measurable range of an optical sensor that does not cause such a problem.

請求項1の発明では、測定対象となる物理量の光センサ素子に対する作用により、光センサ素子を通過した光が受ける偏波の変化を電気信号に変換して測定を行なうに当たり、
前記偏波の変化によって位相が変調を受ける検出キャリア信号と、位相の基準となる参照キャリア信号との位相差から測定対象を検出すべく、前記偏波には互いの偏波が直交する2つの偏波成分を用い、かつ前記各キャリア信号には周波数の異なる2つの光の干渉によって得られるビート信号を用いるとともに、互いに感度の異なる2つの光センサ素子を用いて互いに直交する2つの偏波成分を通過させ、これら2つの光センサ素子出力の組み合わせから1つの測定対象の値を求めることにより、測定範囲の拡大化を図ることを特徴とする。
上記請求項1の発明においては、前記2つの光センサ素子の感度差を、各光センサ素子の光源として波長の異なる光源を使用することにより実現することができ(請求項2の発明)、請求項1または2の発明においては、前記測定対象が磁界であり、光センサ素子内部で起きる偏波の変化がファラデー効果によるものであることができる(請求項3の発明)。
In the invention of claim 1, when the measurement is performed by converting the change of the polarization received by the light that has passed through the optical sensor element into an electrical signal by the action of the physical quantity to be measured on the optical sensor element,
In order to detect the measurement object from the phase difference between the detected carrier signal whose phase is modulated by the change of the polarization and the reference carrier signal that is a reference for the phase, two polarizations orthogonal to each other are orthogonal to the polarization. a polarization component, and wherein with use of beat No. signal obtained by the interference of two different optical frequencies to each carrier signal, the two polarization orthogonal to each other using two optical sensor elements having different sensitivities from each other The measurement range is expanded by passing a component and obtaining a value of one measurement object from a combination of these two optical sensor element outputs.
In the first aspect of the invention, the difference in sensitivity between the two photosensor elements can be realized by using light sources having different wavelengths as the light sources of the respective photosensor elements (invention of claim 2). In the invention of item 1 or 2, the measurement object is a magnetic field, and the change in polarization occurring inside the optical sensor element can be caused by the Faraday effect (invention of claim 3).

請求項1または2の発明においては、前記測定対象が電流であり、光センサ素子内部で起きる偏波の変化が電流のつくる磁界の印加に基づくファラデー効果によるものであることができ(請求項4の発明)、前記測定対象が電圧であり、光センサ素子内部で起きる偏波の変化がポッケルス効果によるものであることができ(請求項5の発明)、または前記測定対象が力学的な力であり、光センサ素子内部で起きる偏波の変化が光弾性効果によるものであることができる(請求項6の発明)。 In the invention of claim 1 or 2, the object to be measured is an electric current , and a change in polarization occurring inside the optical sensor element can be caused by a Faraday effect based on application of a magnetic field generated by the current. The measurement object is a voltage , and the change in polarization occurring inside the optical sensor element can be due to the Pockels effect (the invention of claim 5), or the measurement object is a mechanical force . Yes, the change in polarization occurring inside the optical sensor element can be due to the photoelastic effect (invention of claim 6).

この発明によれば、比較的簡単な構成で測定範囲を飛躍的に拡大し得る光センサを提供することができ、例えば核融合装置のプラズマ電流のような、数メガアンペアの電流測定が可能となる利点が得られる。   According to the present invention, it is possible to provide an optical sensor capable of dramatically expanding the measurement range with a relatively simple configuration, and it is possible to measure a current of several megaamperes, such as a plasma current of a fusion device. The advantage is obtained.

図1および図2はともに、この発明の実施の形態を示す構成図である。これは、上記のような異感度2光学素子利用の強度変調方式に、光ヘテロダイン法(これ自体は、例えば、黒澤“光ヘテロダイン法を用した光電流変成器の基本特性の検討”電気学会論文誌B,Vol.117-B,1997.3,p354~363として公知の技術である)を適用したものとなっている。そこで、まず図7,図8を参照して公知の光ヘテロダイン法から説明する。なお、図8は図7のP1~P12で示す各位置における光の挙動と、出力信号波形例を説明するための説明図である。
1 and 2 are both block diagrams showing an embodiment of the present invention. This is different sensitivity second optical elements utilizing the intensity modulation system as described above, the optical heterodyne method (which itself, for example, "A study of the basic characteristics of the optical current transformer which optical heterodyne method and Applications:" Kurosawa Electrical Engineers Journal B , Vol.117-B, 1997.3, p354-363) is applied. First, a known optical heterodyne method will be described with reference to FIGS. FIG. 8 is an explanatory diagram for explaining the behavior of light at each position indicated by P1 to P12 in FIG. 7 and an example of an output signal waveform.

図7において、例えば光源としてのHe−Neレーザー(波長633nm)1から、光を2つの音響光学変調器と光学部品を組み合わせた光周波数シフター2に導く。この光周波数シフター2の内部において、光は互いの偏波が直交する2つの直線偏波ビームに分けられ、それぞれ別の音響光学変調器に入射する。音響光学変調器を通過する際、光は変調器の駆動周波数に等しい周波数シフトを受ける。2つの変調器の駆動周波数にはΔωの差を付け、2つの光の角周波数にΔωの差を生じさせる。その後2本のビームは偏光ビームスプリッタで合成され、P2では図8(a)のような直交直線偏波2周波光となる。これらの2つの偏波成分を干渉させたビート信号の角周波数はΔωに等しい。   In FIG. 7, for example, light is guided from a He—Ne laser (wavelength 633 nm) 1 as a light source to an optical frequency shifter 2 in which two acoustooptic modulators and optical components are combined. In the optical frequency shifter 2, the light is divided into two linearly polarized beams whose polarizations are orthogonal to each other, and are incident on different acousto-optic modulators. As it passes through the acousto-optic modulator, the light undergoes a frequency shift equal to the drive frequency of the modulator. A difference of Δω is added to the driving frequency of the two modulators, and a difference of Δω is generated between the angular frequencies of the two lights. Thereafter, the two beams are combined by a polarization beam splitter, and become an orthogonal linearly polarized dual frequency light as shown in FIG. The angular frequency of the beat signal obtained by interfering these two polarization components is equal to Δω.

光周波数シフター2を通過後、光は偏波面保持ファイバ4に入射する。その際、半波長板3により、2つの偏波成分の方位と、同ファイバ4の固有偏波軸が、それぞれ一致するように調節して光の直交直線偏波状態を保持させたまま、ファイバ4を伝搬させる。2つの偏波成分の強度を等しくなるように調整しておくと、位置P4における出射光の電界成分Ex4,Ey4は次式で表わされる。なお、半波長板3は方位を合わせるためのもので、原理的には省略可能である。
x4=(√2)a・exp[j(ωt)] …(13a)
y4=(√2)a・exp〔[j(ω+Δω)t+δ0]〕…(13b)
ここに、x,y:偏波面保持ファイバ4の固有偏波軸に一致した座標軸,添字4:図7のP4位置(添字と位置の関係は以下同様),j:虚数単位,t:時刻,ω:光の振動角周波数,Δω:ビート周波数,(√2)a:光の電界成分の振幅,δ0:偏波面保持ファイバ4のリタデーション(遅延)を示す。
After passing through the optical frequency shifter 2, the light enters the polarization-maintaining fiber 4. At this time, the half-wave plate 3 is adjusted so that the directions of the two polarization components and the intrinsic polarization axis of the fiber 4 coincide with each other while maintaining the orthogonal linear polarization state of the light. 4 is propagated. If the intensity of the two polarization components is adjusted to be equal, the electric field components E x4 and E y4 of the emitted light at the position P4 are expressed by the following equations. The half-wave plate 3 is for aligning the direction and can be omitted in principle.
E x4 = (√2) a · exp [j (ωt)] (13a)
E y4 = (√2) a · exp [[j (ω + Δω) t + δ 0 ]] (13b)
Here, x, y: coordinate axes that coincide with the intrinsic polarization axis of the polarization-maintaining fiber 4, subscript 4: P4 position in FIG. 7 (the relationship between the subscript and the position is the same below), j: imaginary unit, t: time, ω: optical vibration angular frequency, Δω: beat frequency, (√2) a: amplitude of electric field component of light, δ 0 : retardation (delay) of polarization plane holding fiber 4.

以下の説明では、図8(b)に示す角周波数ωの成分とω+Δωの成分が、共通の光路を共通の偏波状態で伝搬する際に両者に発生する位相は等しいものとして扱い、それらを式から省略する。
偏波面保持ファイバ4の出射光は、固有偏波軸がx,y軸に対して45°傾けられた1/4波長板(水晶)5に入射し、互いに逆回転する円偏波に変換される。その結果、1/4波長板5の通過光の偏波成分Ex5,Ey5は次式のように表わされる。
x5=[a/(√2)]exp[j(ωt)]〔(1+j)+(1−j)exp[j(Δωt+δ0)]〕 …(14a)
y5=[a/(√2)]exp[j(ωt)]〔(1−j)+(1+j)exp[j(Δωt+δ0)]〕 …(14b)
In the following description, the components of the angular frequency ω and the component of ω + Δω shown in FIG. 8B are treated as having the same phase when propagating through the common optical path in the common polarization state. Omitted from the formula.
The outgoing light from the polarization-maintaining fiber 4 is incident on a quarter-wave plate (crystal) 5 whose natural polarization axis is inclined by 45 ° with respect to the x and y axes, and is converted into circularly polarized waves that rotate in reverse directions. The As a result, the polarization components E x5 and E y5 of the light passing through the quarter-wave plate 5 are expressed as follows:
E x5 = [a / (√2)] exp [j (ωt)] [(1 + j) + (1-j) exp [j (Δωt + δ 0 )]] (14a)
E y5 = [a / (√2)] exp [j (ωt)] [(1−j) + (1 + j) exp [j (Δωt + δ 0 )]] (14b)

1/4波長板5を通過した光はビームスプリッタ(BS)6で2本のビームに分けられ、一方は参照信号用として検光子7に入射し、他方は検出信号用としてファラデー素子8に入射する。
いま、参照用検光子7の主軸の方位をx軸に一致させておくと、同検光子7の通過光強度L7は、(14)式から次のようになる。
7=(1/2)Ex6x6 *
=(1/2)r2x5・Ex5 *
=r22[1+sin(Δωt+δ0)] …(15)
ここに、Ex6:参照用検光子7に入射する光のx方向偏波成分,r:ビームスプリッタ6の振幅反射率,*:複素共役を表わす。
The light that has passed through the quarter-wave plate 5 is divided into two beams by a beam splitter (BS) 6, one of which is incident on the analyzer 7 for the reference signal, and the other is incident on the Faraday element 8 for the detection signal. To do.
Now, if the orientation of the main axis of the reference analyzer 7 is made coincident with the x-axis, the passing light intensity L 7 of the analyzer 7 is as follows from the equation (14).
L 7 = (1/2) E x6 E x6 *
= (1/2) r 2 E x5・ E x5 *
= R 2 a 2 [1 + sin (Δωt + δ 0 )] (15)
Here, E x6 : x-direction polarization component of the light incident on the reference analyzer 7, r: amplitude reflectance of the beam splitter 6, *: complex conjugate.

上記(15)式より、L7が直流とビート角周波数Δωの成分との和から成り立つことが分かる。参照用検光子7の通過光は、受光ファイバを介して光電変換素子(受光素子)10cに導かれ、L7に比例する参照信号(参照キャリア信号ともいう)VRに変換される。
一方、ファラデー素子8に入射した光はファラデー回転角θF(=VHl,V:ベルデ定数,H:磁界の強さ,l:素子長さ)を受け、出射する。そのときの光の挙動は図8(c)のようになる。
From the above equation (15), it can be seen that L 7 is composed of the sum of the direct current and the component of the beat angular frequency Δω. Passing light of the reference analyzer 7 is guided to the photoelectric conversion element (light receiving element) 10c through the light receiving fiber (also referred to as the reference carrier signal) reference signal proportional to L 7 are converted to V R.
On the other hand, the light incident on the Faraday element 8 receives and emits the Faraday rotation angle θ F (= VH1, V: Verde constant, H: magnetic field strength, l: element length). The behavior of light at that time is as shown in FIG.

磁気光学変調器であるファラデー素子8を通過し、検出用検光子9に入射する光の偏波成分Ex10,Ey10は、偏波面が回転したことから次式のように表わされる。
x10=τ(cosθFx5+sinθFy5) …(16a)
y10=τ(−sinθFx5+cosθFy5) …(16b)
ここに、τ:ビームスプリッタ6の振幅透過率を表わす。
検出用検光子9の主軸方位をx軸に一致させておくと、それを通過する光の強度L11は、(14),(16)式から、次式のようになる。
11=(1/2)Ex10x10 *
=τ22[1+sin(Δωt+δ0+2θF)] …(17)
The polarization components E x10 and E y10 of the light that passes through the Faraday element 8 that is a magneto-optic modulator and enters the detection analyzer 9 are expressed by the following equations because the plane of polarization has rotated.
E x10 = τ (cos θ F E x5 + sin θ F E y5 ) (16a)
E y10 = τ (-sinθ F E x5 + cosθ F E y5) ... (16b)
Here, τ represents the amplitude transmittance of the beam splitter 6.
If the principal axis direction of the analyzer 9 for detection is made to coincide with the x-axis, the intensity L 11 of the light passing therethrough is expressed by the following equation from the equations (14) and (16).
L 11 = (1/2) E x10 E x10 *
= Τ 2 a 2 [1 + sin (Δωt + δ 0 + 2θ F )] (17)

検出用検光子9の通過光は、参照光と同様に受光ファイバを介して受光素子10aに導かれ、L11に比例する検出信号(検出キャリア信号ともいう)VFに変換される。(17)式からL11も参照光強度L7と同様、直流とビート角周波数Δωの成分との和から成り立つことが分かる。これら参照光の検出信号VRと検出光の検出信号VFを、図8(d)に示す。 Passing light detecting analyzer 9, like the reference beam through the light receiving fiber is guided to the light receiving element 10a, (also referred to as a detection carrier signal) detection signal proportional to L 11 are converted to V F. From equation (17), it can be seen that L 11 is also composed of the sum of the direct current and the component of the beat angular frequency Δω, similarly to the reference light intensity L 7 . The reference light detection signal V R and the detection light detection signal V F are shown in FIG.

(17)式と(15)式とを用い、検出信号と参照信号とのビート周波数成分同士の位相差φを位相検出回路11で求めると、次式のようになる。
φ=(Δωt+δ0+2θF)−(Δωt+δ0
=2θF …(18)
(18)式より、信号VFとVRの交流成分同士の位相差φから、ファラデー回転角θFを検出できることが分かる。また、同式から位相差φは信号レベルに無関係であること、およびφとθFの関係は線形であることが分かる。位相検出回路11の出力波形例を図8(e)に示す。
When the phase difference φ between the beat frequency components of the detection signal and the reference signal is obtained by the phase detection circuit 11 using the equations (17) and (15), the following equation is obtained.
φ = (Δωt + δ 0 + 2θ F ) − (Δωt + δ 0 )
= 2θ F (18)
From the equation (18), it can be seen that the Faraday rotation angle θ F can be detected from the phase difference φ between the AC components of the signals V F and V R. Also, it can be seen from the above equation that the phase difference φ is independent of the signal level and that the relationship between φ and θ F is linear. An output waveform example of the phase detection circuit 11 is shown in FIG.

ここで、この発明の実施の形態について説明する。なお、図1,図2の参照符号1〜11は、図7に示すものとそれぞれ対応している。図1,図2の符号12は比較・演算部を示す。
すなわち、この発明は上述のような公知の光ヘテロダイン法において、感度の異なる2つの光学素子を利用するものであり、したがって図1に示すように光学素子としてファラデー素子8a,8bを用い、図7のような機構を単純に2系統設けるか、または図2のようにファラデー素子8a,8bをビームスプリッタ6bの後段に配置し、構成要素1〜7を共通化することで、構成の簡略化を図ることができる。いずれの構成でも位相検出回路11a,11b(または位相検出回路11)からの出力SA,SBについては、
A=2VAI …(19a)
B=2VBI …(19b)
のように、電流Iに対して線形となる出力を得ることができる。
Now, an embodiment of the present invention will be described. 1 and 2 correspond to those shown in FIG. 7, respectively. Reference numeral 12 in FIGS. 1 and 2 denotes a comparison / calculation unit.
That is, the present invention uses two optical elements having different sensitivities in the known optical heterodyne method as described above. Therefore, as shown in FIG. 1, Faraday elements 8a and 8b are used as optical elements. 2 is simply provided, or the Faraday elements 8a and 8b are arranged at the rear stage of the beam splitter 6b as shown in FIG. 2, and the components 1 to 7 are shared, thereby simplifying the configuration. Can be planned. In any configuration, the outputs S A and S B from the phase detection circuits 11a and 11b (or the phase detection circuit 11) are as follows.
S A = 2V A I (19a)
S B = 2V B I (19b)
Thus, an output that is linear with respect to the current I can be obtained.

図3に、SA,SBと電流Iとの関係を示す。ここで、VA<VB(VB/VA=1.3)としている。
また、(19)式から電流Iを消去し、SA,SBの関係を示すと図4のようになる。図示の矢印は電流増加方向を示す。同図のSA−SB特性(リサージュ図)にも示すようにθ≠π,θ≠−πで交点が無く、平行線で表わされることから、異感度2光学素子利用の強度変調方式の場合よりも、測定範囲を飛躍的に大きくとれることが分かる。
したがって、図1,図2の比較・演算部12に、SA,SBの比と電流との関係を示す、図4のようなテーブルまたは表を予め用意しておくことにより、ファラデー素子8a,8bに流れる電流を高速に求めることができる。
FIG. 3 shows the relationship between S A and S B and the current I. Here, V A <V B (V B / V A = 1.3).
Further, FIG. 4 shows the relationship between S A and S B by eliminating the current I from the equation (19). The illustrated arrow indicates the direction of current increase. Fig of S A -S B characteristic as shown in (Lissajous diagram) θ ≠ π, θ ≠ no intersection at - [pi], since it is represented by parallel lines, the intensity modulation method different sensitivity second optical element utilizing It can be seen that the measurement range can be drastically larger than the case.
Therefore, by preparing in advance the table or table as shown in FIG. 4 which shows the relationship between the ratio of S A and S B and the current in the comparison / calculation unit 12 of FIGS. 1 and 2, the Faraday element 8a is prepared. , 8b can be obtained at high speed.

以上では、主としてファラデー素子を用いて電流を測定する場合について説明したが、ファラデー素子に替えてポッケルス効果を呈する素子を用いることにより電圧を測定すること、同様に光弾性効果を呈する素子(ガラス,プラスチックなど)を用いて素子に加わる力学的な力を測定することなどが可能である。このとき、直線複屈折の検出であることから、図7で必要とされた1/4波長板5を不要にできる。また、図7で(レーザ1+光周波数シフター2)の構成の代わりに、1つのゼーマンレーザを用いることも可能である。   In the above, the case where the current is mainly measured using the Faraday element has been described, but the voltage is measured by using an element exhibiting the Pockels effect instead of the Faraday element, and the element exhibiting the photoelastic effect (glass, It is possible to measure the mechanical force applied to the element using plastic or the like. At this time, since the linear birefringence is detected, the quarter-wave plate 5 required in FIG. 7 can be eliminated. Further, instead of the configuration of (Laser 1 + Optical frequency shifter 2) in FIG. 7, it is also possible to use one Zeeman laser.

図1,図2では光ヘテロダイン法により回転する直線偏波を得るようにしたが、図5のようにすることもできる。これは、電源/制御回路13を介して回転,駆動されるモータ14にて回転偏光子15をΔωで回転させ、これにより回転する直線偏波(太字E参照)を得るもので、それから先の構成は図1,図2,図7と全く同様である。なお、参照信号は図示点線のように電源/制御回路13からVR1として、直接得ることもできる。
同じく図6のように、電源/制御回路13に対し光源を3個以上設け(図は1A,1B,1Cの3個の例)、これらに偏光子15A,15B,15Cや、ビームスプリッタBS1,BS2等を組み合わせることで、Δωで回転する直線偏波を得ることもできる。この場合は、受光素子10e,10fの後段にそれぞれ平滑用フィルタ(BPF)16a,16bが必要となるが、参照信号を図示点線のように、電源/制御回路13からVR1として直接得ることができるのは、図5の場合と同様である。
In FIG. 1 and FIG. 2, a linearly polarized wave rotating by the optical heterodyne method is obtained, but it can also be as shown in FIG. This is because a rotating polarizer 15 is rotated by Δω by a motor 14 that is rotated and driven via a power source / control circuit 13 to obtain a rotating linearly polarized wave (see bold letter E). The configuration is exactly the same as in FIGS. The reference signal can also be obtained directly as V R1 from the power supply / control circuit 13 as shown by the dotted line in the figure.
Similarly, as shown in FIG. 6, three or more light sources are provided for the power supply / control circuit 13 (the figure shows three examples of 1A, 1B, and 1C), and these include polarizers 15A, 15B, and 15C, and beam splitters BS1, By combining BS2 and the like, a linearly polarized wave rotating at Δω can be obtained. In this case, smoothing filters (BPF) 16a and 16b are required in the subsequent stages of the light receiving elements 10e and 10f, respectively, but the reference signal can be obtained directly from the power supply / control circuit 13 as V R1 as shown by the dotted line in the figure. What can be done is the same as in FIG.

この発明の第1の実施の形態を示す構成図The block diagram which shows 1st Embodiment of this invention この発明の第2の実施の形態を示す構成図The block diagram which shows 2nd Embodiment of this invention この発明による光学素子出力SA,SBと電流iとの関係説明図Explanatory diagram of relationship between optical element outputs S A and S B and current i according to the present invention 図3でiを消去した場合の出力SA,SBの関係説明図FIG. 3 is a diagram for explaining the relationship between outputs S A and S B when i is deleted. この発明の第3の実施の形態を示す構成図The block diagram which shows 3rd Embodiment of this invention この発明の第4の実施の形態を示す構成図The block diagram which shows 4th Embodiment of this invention 光ヘテロダイン方式を説明する構成図Configuration diagram explaining optical heterodyne system 図7の各部における光の挙動を説明する説明図Explanatory drawing explaining the behavior of the light in each part of FIG. 異感度2光学素子利用の強度変調方式における、光学素子出力と被測定電流との関係を示すグラフA graph showing the relationship between the optical element output and the current to be measured in the intensity modulation method using different sensitivity two optical elements. 図9で被測定電流をパラメータとする2光学素子の出力関係図FIG. 9 shows the output relationship of the two optical elements with the measured current as a parameter. 出力SA,SBとファラデー回転角θA,θBとの関係説明図Illustration of relationship between outputs S A and S B and Faraday rotation angles θ A and θ B 出力SA,SBと係数kとの関係説明図Explanation of relationship between outputs S A and S B and coefficient k

符号の説明Explanation of symbols

1,1A,1B,1C…レーザー(光源)、2…光周波数シフター、3…半波長(λ/2)板、4…偏波面保持ファイバ、5…1/4波長(λ/4)板、6,6a,6b…ビームスプリッタ(BS)、7,9…検光子、8,8a,8b…ファラデー素子、10a,10b,10c,10d,10e,10f…受光素子、11,11a,11b…位相検出回路、12…比較・演算部、13…電源/制御回路、14…モータ、15,15A,15B,15C…偏光子、16a,16b…平滑用フィルタ(BPF)。
1, 1A, 1B, 1C ... laser (light source), 2 ... optical frequency shifter, 3 ... half wavelength (λ / 2) plate, 4 ... polarization plane maintaining fiber, 5 ... 1/4 wavelength (λ / 4) plate, 6, 6a, 6b ... beam splitter (BS), 7, 9 ... analyzer, 8, 8a, 8b ... Faraday element, 10a, 10b, 10c, 10d, 10e, 10f ... light receiving element, 11, 11a, 11b ... phase Detection circuit, 12 ... Comparison / calculation unit, 13 ... Power source / control circuit, 14 ... Motor, 15, 15A, 15B, 15C ... Polarizer, 16a, 16b ... Smoothing filter (BPF).

Claims (6)

測定対象となる物理量の光センサ素子に対する作用により、光センサ素子を通過した光が受ける偏波の変化を電気信号に変換して測定を行なうに当たり、
前記偏波の変化によって位相が変調を受ける検出キャリア信号と、位相の基準となる参照キャリア信号との位相差から測定対象を検出すべく、前記偏波には互いの偏波が直交する2つの偏波成分を用い、かつ前記各キャリア信号には周波数の異なる2つの光の干渉によって得られるビート信号を用いるとともに、互いに感度の異なる2つの光センサ素子を用いて互いに直交する2つの偏波成分を通過させ、これら2つの光センサ素子出力の組み合わせから1つの測定対象の値を求めることにより、測定範囲の拡大化を図ることを特徴とする光センサの測定範囲拡大方法。
In performing measurement by converting the change in polarization received by the light that has passed through the optical sensor element into an electrical signal due to the action of the physical quantity to be measured on the optical sensor element,
In order to detect the measurement object from the phase difference between the detected carrier signal whose phase is modulated by the change of the polarization and the reference carrier signal serving as a reference for the phase, a polarization component, and wherein with use of beat No. signal obtained by the interference of two different optical frequencies to each carrier signal, the two polarization orthogonal to each other using two optical sensor elements having different sensitivities from each other A method for expanding a measurement range of an optical sensor, wherein a component is allowed to pass and a measurement target value is obtained from a combination of outputs of these two optical sensor elements, thereby expanding the measurement range.
前記2つの光センサ素子の感度差を、各光センサ素子の光源として波長の異なる光源を使用することにより実現することを特徴とする請求項1に記載の光センサの測定範囲拡大方法。   The method of extending a measurement range of an optical sensor according to claim 1, wherein the difference in sensitivity between the two optical sensor elements is realized by using light sources having different wavelengths as light sources of the respective optical sensor elements. 前記測定対象が磁界であり、光センサ素子内部で起きる偏波の変化がファラデー効果によるものであることを特徴とする請求項1または2に記載の光センサの測定範囲拡大方法。   3. The method according to claim 1, wherein the object to be measured is a magnetic field, and the change in polarization occurring inside the optical sensor element is due to the Faraday effect. 前記測定対象が電流であり、光センサ素子内部で起きる偏波の変化が電流の作る磁界の印加に基づくファラデー効果によるものであることを特徴とする請求項1または2に記載の光センサの測定範囲拡大方法。   3. The optical sensor measurement according to claim 1, wherein the object to be measured is an electric current, and a change in polarization occurring inside the optical sensor element is due to a Faraday effect based on application of a magnetic field generated by the electric current. Range expansion method. 前記測定対象が電圧であり、光センサ素子内部で起きる偏波の変化がポッケルス効果によるものであることを特徴とする請求項1または2に記載の光センサの測定範囲拡大方法。   3. The method according to claim 1, wherein the object to be measured is a voltage, and the change in polarization occurring inside the optical sensor element is due to the Pockels effect. 前記測定対象が力学的な力であり、光センサ素子内部で起きる偏波の変化が光弾性効果によるものであることを特徴とする請求項1または2に記載の光センサの測定範囲拡大方法。   3. The method of extending a measurement range of an optical sensor according to claim 1, wherein the measurement object is a mechanical force, and a change in polarization occurring inside the optical sensor element is due to a photoelastic effect.
JP2003310896A 2003-09-03 2003-09-03 Measuring method of optical sensor measurement range Expired - Fee Related JP4305099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310896A JP4305099B2 (en) 2003-09-03 2003-09-03 Measuring method of optical sensor measurement range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310896A JP4305099B2 (en) 2003-09-03 2003-09-03 Measuring method of optical sensor measurement range

Publications (2)

Publication Number Publication Date
JP2005077342A JP2005077342A (en) 2005-03-24
JP4305099B2 true JP4305099B2 (en) 2009-07-29

Family

ID=34412605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310896A Expired - Fee Related JP4305099B2 (en) 2003-09-03 2003-09-03 Measuring method of optical sensor measurement range

Country Status (1)

Country Link
JP (1) JP4305099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495294B2 (en) * 2009-07-10 2014-05-21 株式会社高岳製作所 Fiber optic current sensor

Also Published As

Publication number Publication date
JP2005077342A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US9581622B2 (en) Temperature compensated fiber-optic current sensor
Grattan et al. Optical current sensor technology
KR101094363B1 (en) Optical fiber current sensor and sensing method thereof
US5104222A (en) System and method for minimizing input polarization-induced phase noise in an interferometric fiber-optic sensor depolarized input light
JP5476554B2 (en) Electric field measuring device
US20120281201A1 (en) System and Method for Brillouin Analysis
CN109752581A (en) Polarize analyzing formula closed loop all-fiber current transformator
CN108036783A (en) Non-interfering formula optical gyroscope and sensing spinning solution based on polarization detection technology
CN209764932U (en) Polarization-detecting closed-loop all-fiber current transformer
Stevenson et al. Quantum-noise-limited interferometric phase measurements
Stowe et al. Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator
US8953169B2 (en) Apolarized interferometric system, and apolarized interferometric measurement method
JP3611975B2 (en) Optical CT with failure judgment function
JP4305099B2 (en) Measuring method of optical sensor measurement range
Galeti et al. Polarimetric optical high-voltage sensor using synthetic-heterodyne demodulation and Hilbert transform with gain control feedback
JP3308897B2 (en) Current measuring method and photocurrent sensor
Fang et al. Low coherence fiber differentiating interferometer and its passive demodulation schemes
Zhen et al. Triple detection fiber differentiating interferometer based on low-coherence interferometer and its passive demodulation scheme
Grattan et al. Optical current sensor technology
Li et al. All-fiber laser wavelength measurement system based on two quadrature Faraday rotation devices
Kozlov et al. OP9-an integrated optical scheme for interrogation of interferometric fiber optic sensors
Jorge et al. Electrical current metering with a dual interferometric configuration and serrodyne signal processing
Shui et al. Current measurement method based on magneto-optic rotation effect
Swart et al. Differentiating fiber optic reflective ring interferometer for alternating current measurements
CA2380696A1 (en) Reduced minimum configuration fiber opic current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees