JP4304999B2 - Three-phase armature winding and motor using the same - Google Patents

Three-phase armature winding and motor using the same Download PDF

Info

Publication number
JP4304999B2
JP4304999B2 JP2003037142A JP2003037142A JP4304999B2 JP 4304999 B2 JP4304999 B2 JP 4304999B2 JP 2003037142 A JP2003037142 A JP 2003037142A JP 2003037142 A JP2003037142 A JP 2003037142A JP 4304999 B2 JP4304999 B2 JP 4304999B2
Authority
JP
Japan
Prior art keywords
coil
winding
phase armature
turns
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003037142A
Other languages
Japanese (ja)
Other versions
JP2004248448A (en
Inventor
恭祐 宮本
政彦 田邊
敦志 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003037142A priority Critical patent/JP4304999B2/en
Publication of JP2004248448A publication Critical patent/JP2004248448A/en
Application granted granted Critical
Publication of JP4304999B2 publication Critical patent/JP4304999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、同相3コイルが連続する3相電機子巻線に関し、特に2種の線径の導体で巻くことで、巻線占積率を低下させることなく巻線ターン数に自由度を持たせた3相電機子巻線およびそれを用いたモータに関する。
【0002】
【従来の技術】
従来の同相3コイルが連続する3相電機子の巻線を図6に示す。図6(a)の電機子巻線の側断面図に示すように、連続する3つのU相巻線のターン数Nu1、Nu2、Nu3は、
Nu1=Nu2=Nu3
の関係になっている。
相順は、3コイルのグループで、U相、V相、W相の順番の巻線配置となっていて、図6(b)の結線図に示すようになっている。図7は、図7(a)が各導体に電流を流した場合のアンペアターンベクトル(ATu、ATw、等)を示している。
この場合の、巻線係数Kwは、次の(1)式で求められる。

Figure 0004304999
Kw(1)=(cos30°+2cos10°+2cos10°+cos30°)/6 =0.945 ……(2)
(2)式は(1)式を用いた高調波γ=1(基本波)の場合のKw(1)値の計算式である。
図7(b)は、その各高調波(γ:1〜21)における、巻線係数Kwのリストを示すものであり、第2項「従来Kw」がこの場合の計算値である。
また、こうした3相電機子巻線の使用例としては、特許文献1に開示の「リニアモータ」がある。図8はリニアモータの側面断面図であり、可動子83の分割された各ブロックコア31、32、33が相互に界磁磁石81のピッチPmの2/3(電機角で120°)の間隔片86によって隔離され、これに応じて各ブロックコアの電機子コイル85を相互に電機角で120°の位相差で巻回すことにより、各ブロックコアの端効果によって発生するコギング推力TC1、TC2、TC3は、図9に示すように120°の位相差が生じ、その和をゼロに相殺することができ、鎖交磁束を最大にできる。
【0003】
【特許文献1】
WO99/41825号公報(第11頁、図1、図3)
【0004】
【発明が解決しようとする課題】
しかしながら、上記特許文献1記載の発明にあっては、以下のような問題があった。
コイル寸法をH(高さ)×W(幅)、導体の線径φIとする、aI段×bI列の整列巻線の関係を、
W=φI×bI列、aI段=H/φI(小数点切り捨て)
とした場合、 巻線の巻き回数を変化させようとしたとき、
bJ列=W/φJ (小数点切り捨て)
aJ段=H/φJ (小数点切り捨て)
の関係として、占積率同一という条件の場合、
仮に、φI=φ1.5mm、aI段×bI列=20段×2列(40ターン)で、1相グループのトータル巻き回数W=40ターン×3コイル=120ターンのものを、これ以上に巻線を巻き込む(Ktを大きく設計)とき、例えば、
φJ=φ1.0mm、aI段×bI列=30段×3列(90ターン)としたら、1相グループのトータル巻き回数W=90ターン×3コイル=270ターンとなり、巻線巻回数の飛びが、2.25倍になる場合があって、巻線設計の自由度が小さく、ユーザの要求する出力特性に整合させることが困難であるという問題があった。
【0005】
そこで、本発明は、同相3コイルの#1(=#3)コイルと#2等の線径と巻回数を変えることによって、巻回数の飛びの中間的な巻回数が得られるようにして設計自由度が大きくとれるようにすると共に、界磁磁石の磁石幅をそれぞれ最適化することで出力特性の自由度を高くし、トルクリップルを軽減できる3相電機子巻線およびそれを用いたモータを提供することを目的としている。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、請求項1記載の3相電機子巻線の発明は、3相電機子巻線が界磁磁石に対して相対移動する方向にそれぞれ第1コイル・第2コイル・第3コイルの順に配置されて成るコイルグループが全て同相コイルで直列接続されている3相平衡巻線による3相電機子巻線であって、前記第1コイル・第2コイル・第3コイルのそれぞれの巻き回数n1・n2・n3がn1=n3、n1≠n2の関係にある3相電機子巻線であって、
前記第1コイル・第3コイルの線径と前記第2コイルの線径とが異なるものであり、かつ、ターン数と線径を変えることによりこれら2種類のコイルから成る3相電機子巻線の巻線係数の各高調波のうち、推力の中心となる基本波成分が巻線係数0.945に対して約±10%の範囲内に入るものとしたことを特徴とする。
請求項2記載の発明は、請求項1記載の3相電機子巻線において、3相電機子巻線が界磁磁石に対して相対移動する方向に前記第2コイルの線径φaの導体がb2列で並ぶ場合のφa×b2をコイル幅Wとし、相対移動する方向に対して垂直方向に前記第2コイルの導体がa2段で整列重なる場合のφa×a2をコイル高さHとしたとき、
線径φb(φb<φa)の前記第1コイルの導体によるb1列およびa1段が
b1列=W/φb (小数点切り捨て)
a1段=H/φb (小数点切り捨て)
となるように前記線径φbを選定したことを特徴とする。
請求項3記載の発明は、請求項1記載の3相電機子巻線において、3相電機子巻線が界磁磁石に対して相対移動する方向に前記第2コイルの線径φaの導体がb2列で並ぶ場合のφa×b2をコイル幅Wとし、相対移動する方向に対して垂直方向に前記第2コイルの導体がa2段で整列重なる場合のφa×a2をコイル高さHとしたとき、
線径φb(φb>φa)の前記第1コイルの導体によるb1列およびa1段が
b1列=W/φb (小数点切り捨て)
a1段=H/φb (小数点切り捨て)
となるように前記線径φbを選定したことを特徴とする。
このような構成の3相電機子巻線によれば、同相3コイルの#1(=#3)コイルと#2コイルの線径と巻回数を変えることによって、従来方式の巻回数の飛びの中間的な巻き回数が得られることとなり、出力特性の自由度が改善される。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について図に基づいて説明する。
図1は本発明の実施の形態に係る3相電機子巻線の側断面図である。
図2は図1に示す各スロット内導体の特性図で、(a)は図1の場合の各相導体に電流を流した時に推力を発生する出力特性を、コイル電流(アンペアA)とコイルの巻数(ターンT)の積で表すアンペアターンATのベクトル表示としたアンペアターンベクトル図であり、(b)は図1の場合の各高調波γに対する巻線係数Kw値が記載されたリストである。
図3は図1に示すNu2のターン数が大きい場合の3相電機子巻線の側面図である。
図4は図3に示す各スロット内導体の特性図で、(a)は図3の場合の各相導体に電流を流した時に推力を発生する出力特性を、コイル電流(アンペアA)とコイルの巻数(ターンT)の積で表すアンペアターンATのベクトル表示としたアンペアターンベクトル図であり、(b)は図3の場合の各高調波γに対する巻線係数Kw値が記載されたリストである。
図5は図1、図3に示す3相電機子巻線の速度−推力特性を示す図である。
図1において、1はコアティース間のスロットスペース、2は電機子コア、3はコイルボビン、4は界磁ヨーク、5は磁石カバー、6は界磁磁石、7はコイルを示している。
【0008】
つぎに動作について説明する。
図1(a)は3相電機子巻線の側断面図で、図1(b)にその結線図を示す。相順は、3コイルのグループでU相、V相、W相の順番の巻線配置となる。そのU相の3コイルの巻線ターン数Nu1、Nu2、Nu3は、
(Nu1=Nu3)>Nu2
として、Nu2の導体線径φaを
φa=φ1.5mm a2段×b2列=20段×2列(40ターン)として、Nu1=Nu3の導体線径φbを、
φb=φ1.0mmとすると、b1列=W/φb、a1段=H/φbより、
a1段×b1列=30段×3列(90ターン)
となり、U相グループのトータル巻き回数Wは、
W=Nu1+Nu2+Nu3=90+40+90=220ターンとなる。
【0009】
次に、図3は、図3(a)が側断面図で、図3(b)が結線図であり。この場合の巻線ターンNu1〜Nu3が、
(Nu1=Nu3)<Nu2
の場合であり、Nu2の導体線径φaを
φa=φ1.0mm a2段×b2列=30段×3列(90ターン)
Nu1=Nu3の導体線径φbを、
φb=φ1.5mmとすると、a1段×b1列=20段×2列(40ターン)となり、U相グループのトータル巻き回数Wは、
W=Nu1+Nu2+Nu3=40+90+40=170ターンとなる。
このようにして中間的な巻線ターンが可能になる。
【0010】
次に、このようなコイルの出力特性については、図2に図1の場合の特性を示す。
先ず、図2(a)は図1の場合の各相導体に電流を流した時に推力を発生する出力特性を表すものとして、コイル電流(アンペアA)とコイルの巻数(ターンT)の積で表すアンペアターンATのベクトル表示であるアンペアターンベクトル図であり、図2(b)はその場合の各高調波γに対する巻線係数Kw値のリストである。
この場合の巻線係数Kwは次の(3)、(4)式より算出される。
Figure 0004304999
Kw(1)={2.25cos30°+3.25cos10°+3.25cos10°+2.25cos30°]/11=0.936…(4)
【0011】
一方、図3に示した、(Nu1=Nu3)<Nu2、の場合の出力特性については、図4(a)にアンペアターンベクトル図を示し、図4(b)は各高調波γに対する巻線係数Kwのリストを示す。この場合の巻線係数Kwは次の(5)式、(6)式により算出される。
Figure 0004304999
Kw(1)={cos30°+3.25cos10°+3.25cos10°+cos30°}/8.5=0.957・・・(6)
【0012】
以上、従来の3相平衡巻線による8P/9slot、10p/9slot等の巻線方式の場合は、巻線係数Kwも大きくとれ、コギング・トルクも小さくなる利点があるが、反面グループ数も少なく、整列高密度巻線設計を行う場合に自由度が小さいという問題点があったが、本発明では(Nu1=Nu3)>Nu2、若しくは、(Nu1=Nu3)<Nu2、のターン数と、導体線径φa、φbを変えてターン数の飛びを埋める方式によって、図5に示すように、従来は巻線のターン数が120ターン→270ターン(2.25倍)の飛び差があったものが、図1の場合は120ターン→220ターン(1.83倍)、図3の場合は120ターン→170ターン(1.4倍)と言うように中間を埋める巻線ターン数の設計が可能になるので、出力特性の自由度が改善される。
【0013】
次に、このように改善された巻線ターン数の出力特性の変化についての評価・検証と、更なる、改善策について、各図を参照して検討する。
図2(b)又は図4(b)の巻線係数Kwのリストを参照すると、高調波γの項目中、推力の中心となる基本波Kw(1)成分については従来の0.945に対して、図1の例では0.936、図3の例では、0.957と約±10%の範囲内に入っており、鎖交磁束係数に大きな変化はなく、巻線占積率も低下しない。
3次高調波については、相結線をY結線にすれば、推力波形(端子間誘起電圧波形)に現れないため、5次、7次の係数と、磁石幅との組み合わせを最適化することで推力波形(端子間誘起電圧波形)の高調波成分を低減させることができる。
また、図2(b)の場合は、5次係数が、小さく、7次係数が大きいので、界磁磁束に含まれる7次成分が小さくなるように、磁石幅Wmを図1(a)に示すように磁極ピッチλpから、
Wm=(6/7)λp
のピッチに変えた磁石界磁と組み合わせる。
さらに、図4(b)の場合は、5次係数が、大きく、7次係数が小さいので、界磁磁束に含まれる5次成分が小さくなるように、図3(a)に示すように、
Wm=(4/5)λp
の磁石界磁と組み合わせ改善している。
【0014】
【発明の効果】
以上述べたように、本発明によれば、3つの直列接続される同相コイルを、配置順としてc1、c2、c3としたとき、それぞれの巻き回数をn1、n2、n3とした場合、(n1=n3)≠n2の関係に決め、巻線も2種類の線径の巻線を使用するようにしたので、従来技術の場合の中間的巻線ターン数にて設計することが可能になり、駆動ドライバ容量を規定した場合、出力特性の自由度を高くすることができるという効果がある。
また、界磁磁石の磁石幅を、それぞれ最適化することで、推力またはトルクリップル成分を軽減・改善することができるという効果もある。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る3相電機子巻線の側断面図である。
【図2】図1に示す各スロット内導体の特性図で、(a)は図1の場合の各相導体に電流を流した時に推力を発生する出力特性を、コイル電流(アンペアA)とコイルの巻数(ターンT)の積で表すアンペアターンATのベクトル表示としたアンペアターンベクトル図であり、(b)は図1の場合の各高調波γに対する巻線係数Kw値が記載されたリストである。
【図3】図1に示すNu2のターン数が大きい場合の3相電機子巻線の側断面図である。
【図4】図3に示す各スロット内導体の特性図で、(a)は図3の場合の各相導体に電流を流した時に推力を発生する出力特性を、コイル電流(アンペアA)とコイルの巻数(ターンT)の積で表すアンペアターンATのベクトル表示としたアンペアターンベクトル図であり、(b)は図3の場合の各高調波γに対する巻線係数Kw値が記載されたリストである。
【図5】図1、図3に示す3相電機子巻線の速度−推力特性を示す図である。
【図6】従来の3相電機子巻線の側断面図である。
【図7】図6に示す各スロット内導体の特性図で、(a)は従来の図6の場合の各相導体に電流を流した時に推力を発生する出力特性を、コイル電流(アンペアA)とコイルの巻数(ターンT)の積で表すアンペアターンATのベクトル表示としたアンペアターンベクトル図であり、(b)は従来の場合の各高調波γに対する巻線係数Kw値が記載されたリストである。
【図8】従来のリニアモータの側断面図である。
【図9】図8に示すリニアモータのコギング推力の特性図である。
【符号の説明】
1 コアティース間のスロットスペース
2 電機子コア
3 コイルボビン
4 界磁ヨーク
5 磁石カバー
6 界磁磁石
7 コイル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-phase armature winding in which three coils of the same phase are continuous, and in particular, by winding with a conductor of two kinds of wire diameters, the number of turns of the winding is flexible without reducing the winding space factor. The present invention relates to a three-phase armature winding and a motor using the same.
[0002]
[Prior art]
FIG. 6 shows a winding of a three-phase armature in which a conventional three-phase in-phase coil is continuous. As shown in the side sectional view of the armature winding in FIG. 6A, the number of turns Nu1, Nu2, Nu3 of the three consecutive U-phase windings is:
Nu1 = Nu2 = Nu3
It has become a relationship.
The phase order is a group of 3 coils, and the winding arrangement is the order of U phase, V phase, and W phase, as shown in the connection diagram of FIG. 6B. FIG. 7 shows ampere-turn vectors (ATu, ATw, etc.) when FIG.
In this case, the winding coefficient Kw is obtained by the following equation (1).
Figure 0004304999
Kw (1) = (cos 30 ° + 2 cos 10 ° + 2 cos 10 ° + cos 30 °) /6=0.945 (2)
Equation (2) is a formula for calculating the Kw (1) value when harmonic γ = 1 (fundamental wave) using equation (1).
FIG. 7B shows a list of winding coefficients Kw for each harmonic (γ: 1 to 21), and the second term “conventional Kw” is a calculated value in this case.
In addition, as a usage example of such a three-phase armature winding, there is a “linear motor” disclosed in Patent Document 1. FIG. 8 is a side sectional view of the linear motor, in which the divided block cores 31, 32, 33 of the mover 83 are spaced apart from each other by 2/3 of the pitch Pm of the field magnet 81 (120 ° in electrical angle). Cogging thrusts TC1, TC2, which are generated by the end effect of each block core, are isolated by the piece 86, and the armature coils 85 of each block core are wound with a phase difference of 120 ° relative to each other in accordance with this. TC3 has a phase difference of 120 ° as shown in FIG. 9, the sum can be canceled out to zero, and the flux linkage can be maximized.
[0003]
[Patent Document 1]
WO99 / 41825 (page 11, FIG. 1 and FIG. 3)
[0004]
[Problems to be solved by the invention]
However, the invention described in Patent Document 1 has the following problems.
The relationship of the aI stage × bI array of aligned windings, where the coil dimensions are H (height) × W (width) and the conductor wire diameter φI,
W = φI × bI column, aI stage = H / φI (decimal point truncation)
When trying to change the number of winding turns,
bJ row = W / φJ (decimal point truncation)
aJ stage = H / φJ (decimal point truncation)
In the case of the condition that the space factor is the same,
Temporarily, φI = φ1.5mm, aI stage x bI row = 20 stages x 2 rows (40 turns), and the total number of windings of one phase group W = 40 turns x 3 coils = 120 turns When winding a wire (designing Kt large), for example,
If φJ = φ1.0mm, aI stage × bI row = 30 steps × 3 rows (90 turns), the total number of windings for one phase group is W = 90 turns × 3 coils = 270 turns, and the number of winding turns jumps. 2.25 times, there is a problem that the degree of freedom in designing the winding is small and it is difficult to match the output characteristics required by the user.
[0005]
Therefore, the present invention is designed so that an intermediate number of turns can be obtained by changing the wire diameter and the number of turns of # 1 (= # 3) coil of # 3 (in-phase) coil and # 2 etc. A three-phase armature winding that can increase the degree of freedom and increase the degree of freedom of output characteristics by optimizing the magnet width of each field magnet to reduce torque ripple, and a motor using the same. It is intended to provide.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention of a three-phase armature winding according to claim 1 is characterized in that the first coil, the second coil, A coil group formed in the order of the third coil is a three-phase armature winding by a three-phase balanced winding that is all connected in series with an in-phase coil, and includes the first coil, the second coil, and the third coil. Each of the winding times n1, n2, and n3 is a three-phase armature winding in which n1 = n3 and n1 ≠ n2,
A three-phase armature winding in which the wire diameters of the first coil and the third coil are different from the wire diameter of the second coil, and these two types of coils are formed by changing the number of turns and the wire diameter . Among the harmonics of the winding coefficient, the fundamental wave component that is the center of thrust falls within a range of about ± 10% with respect to the winding coefficient 0.945.
According to a second aspect of the present invention, in the three-phase armature winding according to the first aspect, the conductor having the wire diameter φa of the second coil is in a direction in which the three-phase armature winding moves relative to the field magnet. When φa × b2 arranged in the b2 row is a coil width W, and φa × a2 when the conductor of the second coil is aligned and overlapped in a2 steps in a direction perpendicular to the direction of relative movement is a coil height H ,
B1 row and a1 stage by the conductor of the first coil of wire diameter φb (φb <φa) are b1 row = W / φb (decimal point truncation)
a1 stage = H / φb (decimal point truncation)
The wire diameter φb is selected so that
According to a third aspect of the present invention, in the three-phase armature winding according to the first aspect, the conductor having the wire diameter φa of the second coil in a direction in which the three-phase armature winding moves relative to the field magnet. When φa × b2 arranged in the b2 row is a coil width W, and φa × a2 when the conductor of the second coil is aligned and overlapped in a2 steps in a direction perpendicular to the direction of relative movement is a coil height H ,
B1 row and a1 stage by the conductor of the first coil of wire diameter φb (φb> φa) are b1 row = W / φb (decimal point truncation)
a1 stage = H / φb (decimal point truncation)
The wire diameter φb is selected so that
According to the three-phase armature winding having such a configuration, the number of turns of the conventional method can be reduced by changing the wire diameter and the number of turns of the # 1 (= # 3) coil and the # 2 coil of the in-phase three coils. An intermediate number of windings can be obtained, and the degree of freedom in output characteristics is improved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a side sectional view of a three-phase armature winding according to an embodiment of the present invention.
2 is a characteristic diagram of the conductor in each slot shown in FIG. 1. FIG. 2A shows the output characteristics that generate thrust when a current is passed through each phase conductor in FIG. 1, and the coil current (ampere A) and the coil. FIG. 2 is an ampere turn vector diagram showing a vector representation of an ampere turn AT expressed by the product of the number of turns (turn T) of FIG. 1, and (b) is a list in which the winding coefficient Kw value for each harmonic γ in the case of FIG. is there.
FIG. 3 is a side view of the three-phase armature winding when the number of turns of Nu2 shown in FIG. 1 is large.
FIG. 4 is a characteristic diagram of the conductor in each slot shown in FIG. 3, and FIG. 4A shows the output characteristics that generate thrust when a current is passed through each phase conductor in FIG. 3, the coil current (ampere A) and the coil. FIG. 4 is an ampere turn vector diagram showing a vector representation of an ampere turn AT expressed by the product of the number of turns (turn T), and FIG. 3B is a list in which the winding coefficient Kw value for each harmonic γ in the case of FIG. is there.
FIG. 5 is a diagram showing the speed-thrust characteristics of the three-phase armature winding shown in FIGS.
In FIG. 1, 1 is a slot space between core teeth, 2 is an armature core, 3 is a coil bobbin, 4 is a field yoke, 5 is a magnet cover, 6 is a field magnet, and 7 is a coil.
[0008]
Next, the operation will be described.
FIG. 1A is a side sectional view of a three-phase armature winding, and FIG. 1B shows a connection diagram thereof. The phase sequence is a winding arrangement in the order of U phase, V phase, and W phase in a group of 3 coils. The number of winding turns Nu1, Nu2, Nu3 of the three coils of the U phase is
(Nu1 = Nu3)> Nu2
Assuming that the conductor wire diameter φa of Nu2 is φa = φ1.5 mm a2 stages × b2 rows = 20 stages × 2 rows (40 turns), the conductor wire diameter φb of Nu1 = Nu3 is
If φb = φ1.0 mm, b1 row = W / φb, a1 stage = H / φb,
a1 row x b1 row = 30 rows x 3 rows (90 turns)
The total number of windings W of the U phase group is
W = Nu1 + Nu2 + Nu3 = 90 + 40 + 90 = 220 turns.
[0009]
Next, FIG. 3A is a sectional side view and FIG. 3B is a connection diagram. In this case, the winding turns Nu1 to Nu3 are
(Nu1 = Nu3) <Nu2
In this case, the conductor wire diameter φa of Nu2 is φa = φ1.0 mm a2 steps × b2 rows = 30 steps × 3 rows (90 turns)
The conductor wire diameter φb of Nu1 = Nu3 is
If φb = φ1.5 mm, a1 stage × b1 row = 20 stages × 2 rows (40 turns), and the total number of windings W of the U-phase group is
W = Nu1 + Nu2 + Nu3 = 40 + 90 + 40 = 170 turns.
In this way an intermediate winding turn is possible.
[0010]
Next, the output characteristics of such a coil are shown in FIG. 2 in the case of FIG.
First, FIG. 2 (a) is a product of the coil current (ampere A) and the number of turns of the coil (turn T), showing the output characteristics that generate thrust when a current is passed through each phase conductor in FIG. FIG. 2B is a list of winding coefficient Kw values for each harmonic γ in that case.
The winding coefficient Kw in this case is calculated from the following equations (3) and (4).
Figure 0004304999
Kw (1) = {2.25 cos 30 ° + 3.25 cos 10 ° + 3.25 cos 10 ° + 2.25 cos 30 °] /11=0.936 (4)
[0011]
On the other hand, regarding the output characteristics in the case of (Nu1 = Nu3) <Nu2 shown in FIG. 3, an ampere-turn vector diagram is shown in FIG. 4 (a), and FIG. 4 (b) is a winding for each harmonic γ. A list of coefficients Kw is shown. The winding coefficient Kw in this case is calculated by the following equations (5) and (6).
Figure 0004304999
Kw (1) = {cos 30 ° + 3.25 cos 10 ° + 3.25 cos 10 ° + cos 30 °} /8.5=0.957 (6)
[0012]
As described above, in the case of a winding method such as 8P / 9 slot and 10p / 9 slot using the conventional three-phase balanced winding, there is an advantage that the winding coefficient Kw can be increased and the cogging torque is reduced, but the number of groups is also small. However, there is a problem that the degree of freedom is small when designing the aligned high-density winding. In the present invention, the number of turns of (Nu1 = Nu3)> Nu2 or (Nu1 = Nu3) <Nu2 and the conductor By changing the wire diameters φa and φb and filling the jump of the number of turns, as shown in FIG. 5, conventionally, the number of turns of the winding was 120 turns → 270 turns (2.25 times). However, in the case of FIG. 1, 120 turns → 220 turns (1.83 times), and in the case of FIG. 3, 120 turns → 170 turns (1.4 times) so that the number of winding turns filling the middle can be designed. So The degree of freedom of output characteristics is improved.
[0013]
Next, the evaluation and verification of the change in the output characteristics of the number of winding turns thus improved, and further improvement measures will be discussed with reference to each figure.
Referring to the list of winding coefficient Kw in FIG. 2B or FIG. 4B, the fundamental wave Kw (1) component that is the center of thrust in the item of harmonic γ is compared with the conventional 0.945. 1 is 0.936, and in the example of FIG. 3 is 0.957, which is within a range of about ± 10%. There is no significant change in the flux linkage coefficient, and the winding space factor is also reduced. do not do.
For the 3rd harmonic, if the phase connection is changed to the Y connection, it does not appear in the thrust waveform (inter-terminal induced voltage waveform). Therefore, by optimizing the combination of the 5th and 7th order coefficients and the magnet width Harmonic components of the thrust waveform (inter-terminal induced voltage waveform) can be reduced.
In the case of FIG. 2B, since the fifth order coefficient is small and the seventh order coefficient is large, the magnet width Wm is shown in FIG. 1A so that the seventh order component included in the field magnetic flux is reduced. As shown, from the magnetic pole pitch λp
Wm = (6/7) λp
Combined with the magnet field changed to the pitch.
Further, in the case of FIG. 4B, since the fifth order coefficient is large and the seventh order coefficient is small, as shown in FIG. 3A, the fifth order component included in the field magnetic flux is reduced.
Wm = (4/5) λp
It has been improved in combination with the magnet field.
[0014]
【The invention's effect】
As described above, according to the present invention, when three in-phase coils connected in series are c1, c2, and c3 in the arrangement order, the number of turns is n1, n2, and n3, (n1 = N3) ≠ n2 and the windings are made of two types of wire diameters. Therefore, it is possible to design with the number of intermediate winding turns in the case of the prior art, When the drive driver capacity is defined, there is an effect that the degree of freedom of output characteristics can be increased.
Further, by optimizing the magnet width of each field magnet, there is an effect that the thrust or torque ripple component can be reduced or improved.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a three-phase armature winding according to an embodiment of the present invention.
2 is a characteristic diagram of the conductors in each slot shown in FIG. 1. FIG. 2 (a) is an output characteristic that generates a thrust when a current is passed through each phase conductor in FIG. 1, and a coil current (ampere A). FIG. 2 is an ampere turn vector diagram representing a vector of an ampere turn AT expressed by the product of the number of turns of the coil (turn T), and FIG. 3B is a list in which winding coefficient Kw values for each harmonic γ in FIG. It is.
FIG. 3 is a side sectional view of a three-phase armature winding when the number of turns of Nu2 shown in FIG. 1 is large.
4 is a characteristic diagram of the conductor in each slot shown in FIG. 3. FIG. 4 (a) shows the output characteristics that generate thrust when a current is passed through each phase conductor in the case of FIG. 3, coil current (ampere A). FIG. 4 is an ampere turn vector diagram representing a vector of an ampere turn AT expressed by a product of the number of turns of the coil (turn T), and FIG. 3B is a list in which a winding coefficient Kw value for each harmonic γ in the case of FIG. It is.
FIG. 5 is a diagram showing speed-thrust characteristics of the three-phase armature winding shown in FIGS. 1 and 3;
FIG. 6 is a side sectional view of a conventional three-phase armature winding.
7 is a characteristic diagram of the conductor in each slot shown in FIG. 6. FIG. 7 (a) is a graph showing the output characteristics that generate thrust when a current is passed through each phase conductor in the case of FIG. ) And the number of turns of the coil (turn T), an ampere turn vector diagram represented as a vector display of an ampere turn AT, and (b) describes the winding coefficient Kw value for each harmonic γ in the conventional case. It is a list.
FIG. 8 is a side sectional view of a conventional linear motor.
9 is a characteristic diagram of cogging thrust of the linear motor shown in FIG. 8. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Slot space between core teeth 2 Armature core 3 Coil bobbin 4 Field yoke 5 Magnet cover 6 Field magnet 7 Coil

Claims (3)

3相電機子巻線が界磁磁石に対して相対移動する方向にそれぞれ第1コイル・第2コイル・第3コイルの順に配置されて成るコイルグループが全て同相コイルで直列接続されている3相平衡巻線による3相電機子巻線であって、前記第1コイル・第2コイル・第3コイルのそれぞれの巻き回数n1・n2・n3がn1=n3、n1≠n2の関係にある3相電機子巻線であって、
前記第1コイル・第3コイルの線径と前記第2コイルの線径とが異なるものであり、かつ、ターン数と線径を変えることによりこれら2種類のコイルから成る3相電機子巻線の巻線係数の各高調波のうち、推力の中心となる基本波成分が巻線係数0.945に対して約±10%の範囲内に入るものとしたことを特徴とする3相電機子巻線。
Three-phase armature windings are arranged in series in the order of the first coil, the second coil, and the third coil in the direction in which the three-phase armature winding moves relative to the field magnet. A three-phase armature winding using a balanced winding, wherein the number of turns n1, n2, and n3 of the first coil, the second coil, and the third coil is such that n1 = n3 and n1 ≠ n2. An armature winding,
A three-phase armature winding in which the wire diameters of the first coil and the third coil are different from the wire diameter of the second coil, and these two types of coils are formed by changing the number of turns and the wire diameter . Among the higher harmonics of the winding coefficient, the three-phase armature is characterized in that the fundamental wave component that is the center of thrust falls within the range of about ± 10% with respect to the winding coefficient 0.945 Winding.
3相電機子巻線が界磁磁石に対して相対移動する方向に前記第2コイルの線径φaの導体がb2列で並ぶ場合のφa×b2をコイル幅Wとし、相対移動する方向に対して垂直方向に前記第2コイルの導体がa2段で整列重なる場合のφa×a2をコイル高さHとしたとき、
線径φb(φb<φa)の前記第1コイルの導体によるb1列およびa1段が
b1列=W/φb (小数点切り捨て)
a1段=H/φb (小数点切り捨て)
となるように前記線径φbを選定したことを特徴とする請求項1記載の3相電機子巻線。
When the conductors having the wire diameter φa of the second coil are arranged in b2 rows in the direction in which the three-phase armature winding moves relative to the field magnet, φa × b2 is defined as the coil width W, and the relative movement direction When the coil height H is φa × a2 when the conductors of the second coil are aligned and overlapped at a2 steps in the vertical direction,
B1 row and a1 stage by the conductor of the first coil of wire diameter φb (φb <φa) are b1 row = W / φb (decimal point truncation)
a1 stage = H / φb (decimal point truncation)
The three-phase armature winding according to claim 1, wherein the wire diameter φb is selected so that
3相電機子巻線が界磁磁石に対して相対移動する方向に前記第2コイルの線径φaの導体がb2列で並ぶ場合のφa×b2をコイル幅Wとし、相対移動する方向に対して垂直方向に前記第2コイルの導体がa2段で整列重なる場合のφa×a2をコイル高さHとしたとき、
線径φb(φb>φa)の前記第1コイルの導体によるb1列およびa1段が
b1列=W/φb (小数点切り捨て)
a1段=H/φb (小数点切り捨て)
となるように前記線径φbを選定したことを特徴とする請求項1記載の3相電機子巻線。
When the conductors having the wire diameter φa of the second coil are arranged in b2 rows in the direction in which the three-phase armature winding moves relative to the field magnet, φa × b2 is defined as the coil width W, and the relative movement direction When the coil height H is φa × a2 when the conductors of the second coil are aligned and overlapped at a2 steps in the vertical direction,
B1 row and a1 stage by the conductor of the first coil of wire diameter φb (φb> φa) are b1 row = W / φb (decimal point truncation)
a1 stage = H / φb (decimal point truncation)
The three-phase armature winding according to claim 1, wherein the wire diameter φb is selected so that
JP2003037142A 2003-02-14 2003-02-14 Three-phase armature winding and motor using the same Expired - Fee Related JP4304999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037142A JP4304999B2 (en) 2003-02-14 2003-02-14 Three-phase armature winding and motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037142A JP4304999B2 (en) 2003-02-14 2003-02-14 Three-phase armature winding and motor using the same

Publications (2)

Publication Number Publication Date
JP2004248448A JP2004248448A (en) 2004-09-02
JP4304999B2 true JP4304999B2 (en) 2009-07-29

Family

ID=33022045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037142A Expired - Fee Related JP4304999B2 (en) 2003-02-14 2003-02-14 Three-phase armature winding and motor using the same

Country Status (1)

Country Link
JP (1) JP4304999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098949A1 (en) 2011-12-27 2013-07-04 株式会社安川電機 Motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841885B2 (en) * 2012-04-06 2016-01-13 ヤマハ発動機株式会社 Linear motor
WO2014091609A1 (en) 2012-12-13 2014-06-19 三菱電機株式会社 Rotating electrical machine
JP2014158396A (en) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp Synchronous motor stator
CN108683319B (en) * 2018-06-01 2020-12-11 哈尔滨理工大学 Low-speed high-thrust-density cylindrical linear motor with double-layer fractional slot windings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098949A1 (en) 2011-12-27 2013-07-04 株式会社安川電機 Motor
US9172281B2 (en) 2011-12-27 2015-10-27 Kabushiki Kaisha Yaskawa Denki Motor

Also Published As

Publication number Publication date
JP2004248448A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US5910691A (en) Permanent-magnet linear synchronous motor
EP1366556B1 (en) A synchronous electric machine
JP7238318B2 (en) Rotating electric machine
EP2224578A1 (en) Stator winding scheme of a permanent magnet machine
US20060208601A1 (en) Three phase claw pole type motor
JPH10511837A (en) Synchronous motor using permanent magnet
WO1999041825A1 (en) Linear motor
CN107431405A (en) Stator
CN107078565A (en) Stator for electric rotating machine
CN101017990A (en) Motor with simplified structure and related control device
JP6604621B1 (en) Generator motor and manufacturing method thereof
KR101604936B1 (en) Motor
CN114450870A (en) Fractional slot electric motor including coil elements having rectangular cross-section
JP2010124636A (en) Coil unit and stator
CN110880720B (en) Wiring structure of electric wire and wire harness
JP4304999B2 (en) Three-phase armature winding and motor using the same
US8946965B2 (en) Armature of electric motor and electric motor
JP7365983B2 (en) Stators and rotating electric machines, electric wheels and vehicles
CN112470369B (en) Stator of rotating electric machine
Schramm et al. Analytical calculation of the end winding leakage inductance based on the solution of Neumann integrals
EP1540798B1 (en) A synchronous electrical machine
JP2010081670A (en) Alternating current generator
US20190288627A1 (en) System, apparatus and method for high torque density permanent magnet switched reluctance machine
JP4249077B2 (en) Claw pole type motor stator and claw pole type motor stator manufacturing method
JP2002369429A (en) Dynamo-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees