JP4303649B2 - Powder mixture for raw materials of sintered aluminum parts - Google Patents
Powder mixture for raw materials of sintered aluminum parts Download PDFInfo
- Publication number
- JP4303649B2 JP4303649B2 JP2004186112A JP2004186112A JP4303649B2 JP 4303649 B2 JP4303649 B2 JP 4303649B2 JP 2004186112 A JP2004186112 A JP 2004186112A JP 2004186112 A JP2004186112 A JP 2004186112A JP 4303649 B2 JP4303649 B2 JP 4303649B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- alloy
- sintering aid
- eutectic
- sintered aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000843 powder Substances 0.000 title claims description 107
- 239000000203 mixture Substances 0.000 title claims description 35
- 239000002994 raw material Substances 0.000 title claims description 25
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 title 1
- 238000005245 sintering Methods 0.000 claims description 61
- 230000005496 eutectics Effects 0.000 claims description 35
- 239000007791 liquid phase Substances 0.000 claims description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 31
- 229910045601 alloy Inorganic materials 0.000 claims description 28
- 239000000956 alloy Substances 0.000 claims description 28
- 229910052782 aluminium Inorganic materials 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 239000006023 eutectic alloy Substances 0.000 claims description 12
- 229910000765 intermetallic Inorganic materials 0.000 claims description 11
- 239000011812 mixed powder Substances 0.000 claims description 11
- 229910000679 solder Inorganic materials 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 description 19
- 230000000694 effects Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 229910000676 Si alloy Inorganic materials 0.000 description 5
- 238000000280 densification Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000010587 phase diagram Methods 0.000 description 5
- 229910000861 Mg alloy Inorganic materials 0.000 description 4
- -1 aluminum-magnesium-silicon Chemical compound 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229940126062 Compound A Drugs 0.000 description 3
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 3
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 3
- 229910002056 binary alloy Inorganic materials 0.000 description 3
- 238000013001 point bending Methods 0.000 description 3
- 229910018725 Sn—Al Inorganic materials 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- GZCWPZJOEIAXRU-UHFFFAOYSA-N tin zinc Chemical compound [Zn].[Sn] GZCWPZJOEIAXRU-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910019043 CoSn Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017482 Cu 6 Sn 5 Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 229910012381 LiSn Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019021 Mg 2 Sn Inorganic materials 0.000 description 1
- 229910002847 PtSn Inorganic materials 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020830 Sn-Bi Inorganic materials 0.000 description 1
- 229910020994 Sn-Zn Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 229910018728 Sn—Bi Inorganic materials 0.000 description 1
- 229910009069 Sn—Zn Inorganic materials 0.000 description 1
- 229910009071 Sn—Zn—Bi Inorganic materials 0.000 description 1
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 1
- OWXLRKWPEIAGAT-UHFFFAOYSA-N [Mg].[Cu] Chemical compound [Mg].[Cu] OWXLRKWPEIAGAT-UHFFFAOYSA-N 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229910000597 tin-copper alloy Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Images
Landscapes
- Gears, Cams (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、歯車、プーリー、コンプレッサー用べーン、コンロッド、ピストンなどの軽量で強度や耐摩耗性等が要求される部品の材料として好適な焼結アルミニウム部材の原料用粉末混合物に関するものである。 The present invention relates to a powder mixture for a raw material of a sintered aluminum member, which is suitable as a material for parts such as gears, pulleys, vanes for compressors, connecting rods, pistons, etc. that are lightweight and require strength and wear resistance. .
機械効率の向上や省エネルギーの必要性の観点から、機械要素の軽量化材料への置換が進んでいる。特に焼結アルミニウム合金は、鋳造合金では得られないような金属組織が得られることから、近年その適用が進んでいる。 From the viewpoint of improving machine efficiency and the need for energy saving, replacement of machine elements with lighter materials has been progressing. In particular, a sintered aluminum alloy has been applied in recent years because a metal structure that cannot be obtained by a cast alloy can be obtained.
例えば、Siを多量に含む鋳造合金では初晶Siが粗大化した金属組織の合金しか得られないのに対し、焼結アルミニウム合金では微細な初晶Siが均一に分散した金属組織を呈し、強度、耐摩耗性および加工性に優れた合金(特許文献1、2)や、この合金をさらに改良して、微細な初晶Siが分散するAl−Si系合金相と初晶Siを含まないAl固溶体相とを斑状に分散させた金属組織を呈し、強度と耐摩耗性をより一層向上させた合金(特許文献3〜6)等が実用化されている。 For example, a cast alloy containing a large amount of Si can only obtain an alloy with a coarse primary crystal Si, whereas a sintered aluminum alloy exhibits a metal structure in which fine primary Si is uniformly dispersed and has a strength. , Alloys with excellent wear resistance and workability (Patent Documents 1 and 2), Al-Si alloy phase in which fine primary Si is dispersed, and Al containing no primary Si Alloys (Patent Documents 3 to 6) and the like that exhibit a metal structure in which a solid solution phase is dispersed in a patch shape and have further improved strength and wear resistance have been put to practical use.
このような状況の下に、焼結Al合金に、Cu、Mg、Si、SnおよびZnのうちの1種以上を0.2〜20%含有させ、これらの成分の液相を焼結時に低温で発生させることにより焼結性を改善し素地のAlと合金化して素地を強化させた焼結Al合金(特許文献7)等が提案されている。
上記のアルミニウム−珪素系焼結合金に限らず、焼結アルミニウム合金は、その適用範囲を拡大しているが、より一層の軽量化を図るために、より一層の高強度化および薄肉化への要請が高まっており、そのため各種焼結アルミニウム合金のより一層の強度の向上が望まれている。ここで、各種焼結アルミニウム合金の強度を高める汎用性のある技術が開発されれば、その適用範囲をさらに拡大することが可能となる。このような観点から、この発明の目的は、従来の各種焼結アルミニウム合金に適用可能な、焼結アルミニウム合金の強度を向上させる方策を提供することである。 Not only the above-mentioned aluminum-silicon based sintered alloy, but also the sintered aluminum alloy has expanded its application range, but in order to further reduce the weight, to further increase the strength and thinning There is an increasing demand, and therefore further improvement in strength of various sintered aluminum alloys is desired. Here, if a versatile technique for increasing the strength of various sintered aluminum alloys is developed, the applicable range can be further expanded. From such a viewpoint, an object of the present invention is to provide a measure for improving the strength of a sintered aluminum alloy that can be applied to various conventional sintered aluminum alloys.
上記課題を解決するため、本発明の第1の焼結アルミニウム部材の原料用粉末混合物は、Alを主成分とする合金粉末または混合粉末に、Snを主成分とし、Snと他の元素との間、あるいはSnと他の元素との金属間化合物との間で共晶型合金を形成する組成の共晶型合金粉末の少なくとも1種からなる焼結助剤粉末を0.01〜0.5質量%添加したことを特徴とする。 In order to solve the above problems, the powder mixture for raw material of the first sintered aluminum member of the present invention is composed of an alloy powder or mixed powder containing Al as a main component, Sn as a main component, and Sn and other elements. Or a sintering aid powder composed of at least one eutectic alloy powder having a composition that forms a eutectic alloy between Sn and an intermetallic compound of other elements. It is characterized by adding mass%.
本発明の第2の焼結アルミニウム部材の原料用粉末混合物は、Alを主成分とする合金粉末または混合粉末に、Snを主成分とし、Snと他の元素との間、あるいはSnと他の元素との金属間化合物との間で共晶反応を生じてSnの共晶液相を発生する組成の偏晶型合金粉末の少なくとも1種からなる焼結助剤粉末を0.01〜0.5質量%添加したことを特徴とする。 The powder mixture for raw material of the second sintered aluminum member of the present invention is composed of an alloy powder or mixed powder containing Al as a main component, Sn as a main component, and between Sn and other elements, or Sn and other powders. A sintering aid powder composed of at least one of a monotectic type alloy powder having a composition that generates a eutectic liquid phase of Sn by generating a eutectic reaction with an intermetallic compound with an element is 0.01 to 0.00. 5% by mass is added.
本発明の第3の焼結アルミニウム部材の原料用粉末混合物は、第1発明の焼結アルミニウム部材の原料粉末用の粉末混合物として、鉛フリーはんだを用いることを特徴とする。 The powder mixture for raw material of the third sintered aluminum member of the present invention is characterized by using lead-free solder as the powder mixture for raw material powder of the sintered aluminum member of the first invention.
本発明の第4の焼結アルミニウム部材の原料用粉末混合物は、Alを主成分とする合金粉末または混合粉末に、上記第1から3発明のいずれかの焼結助剤粉末を少なくとも2種以上用いるとともに、総量として焼結助剤粉末を0.01〜0.5質量%添加したことを特徴とする。 The powder mixture for raw materials of the fourth sintered aluminum member of the present invention is an alloy powder or mixed powder containing Al as a main component, and at least two or more sintering aid powders of any of the first to third inventions described above. In addition to being used, 0.01 to 0.5 mass% of the sintering aid powder is added as a total amount.
ここで、Alを主成分とする合金粉末または混合粉末は、従来の焼結アルミニウム部材を製造するための原料粉末であり、アルミニウム粉末や、アルミニウム−珪素系合金粉末、アルミニウム−マグネシウム系合金粉末、アルミニウム−マグネシウム−珪素系合金粉末、アルミニウム−銅合金粉末、アルミニウム−銅−珪素系合金粉末等のアルミニウム合金粉末の単味粉末や混合粉末、またはこれに強度等の特性向上のため、銅粉末、マグネシウム粉末、銅−マグネシウム合金粉末等の粉末を添加した混合粉末等の従来より用いられているものが使用可能である。 Here, the alloy powder or mixed powder containing Al as a main component is a raw material powder for producing a conventional sintered aluminum member, and includes aluminum powder, aluminum-silicon alloy powder, aluminum-magnesium alloy powder, A simple powder or mixed powder of aluminum alloy powder such as aluminum-magnesium-silicon alloy powder, aluminum-copper alloy powder, aluminum-copper-silicon alloy powder, or copper powder for improving properties such as strength, Conventionally used powders such as mixed powders to which powders such as magnesium powder and copper-magnesium alloy powder are added can be used.
本発明の焼結アルミニウム部材の原料用粉末混合物は、従来の焼結アルミニウム合金の原料粉末となるAlを主成分とする合金粉末または混合粉末に、Snよりも低い融点を有する、(1)Snを主成分とし、Snと他の元素との間、あるいはSnと他の元素との金属間化合物との間で共晶型合金を形成する組成の共晶型合金粉末の少なくとも1種からなる焼結助剤粉末、あるいは、(2)Snを主成分とし、Snと他の元素との間、あるいはSnと他の元素との金属間化合物との間で共晶反応を生じてSnの共晶液相を発生する組成の偏晶型合金粉末、の少なくとも1種からなる焼結助剤粉末を0.01〜0.5質量%添加したものである。そして、これを金型内で圧粉成形した圧粉体を焼結すると、昇温過程においてSnよりも低い温度から液相を発生し、焼結による緻密化が促進されて、強度の高い焼結アルミニウム部材が得られるという汎用性の高いものとなる。このため、従来からある各種焼結アルミニウム部材の強度の向上が果たされ、適用範囲の拡大が果たせる。 The powder mixture for raw material of the sintered aluminum member of the present invention has a melting point lower than Sn in an alloy powder or mixed powder containing Al as a main component and used as a raw material powder of a conventional sintered aluminum alloy. (1) Sn Is a sintering material comprising at least one eutectic alloy powder having a composition that forms a eutectic alloy between Sn and another element or between an intermetallic compound of Sn and another element. Binder powder, or (2) Sn eutectic by causing a eutectic reaction between Sn and other elements, or between Sn and other elements and intermetallic compounds. A sintering aid powder composed of at least one of a monotectic type alloy powder having a composition that generates a liquid phase is added in an amount of 0.01 to 0.5% by mass. Then, when the green compact obtained by compacting this in a mold is sintered, a liquid phase is generated from a temperature lower than Sn in the temperature raising process, and densification by sintering is promoted, so It becomes a highly versatile thing that a sintered aluminum member is obtained. For this reason, the improvement of the intensity | strength of various conventional sintered aluminum members is achieved, and the application range can be expanded.
上記特許文献7において、焼結時に液相を発生させることにより、焼結性を改善し基地の強化を図る技術が開示されているが、焼結性の改善のみを考慮する場合、より低い温度で液相を発生させ、より高い温度までその液相を保持させることが、液相の表面張力による緻密化の効果が長時間維持される点で好ましい。このため高温までAlと溶け合わない元素が好ましい。
また、このような低融点金属の液相はアルミニウム粉末またはアルミニウム合金粉末表面の酸化被膜を除去して焼結の進行を促進する作用を有する。特許文献7に記載のSnはこのような特性を有する元素で、特許文献7に記載されているようなAlと合金化して素地を強化するというもう一つの効果は実際には有しないものの焼結性改善の点で優れた効果を発揮する元素である。
Patent Document 7 discloses a technique for improving the sinterability and strengthening the base by generating a liquid phase during sintering. However, when considering only the improvement of the sinterability, a lower temperature is disclosed. It is preferable that the liquid phase is generated in order to maintain the liquid phase up to a higher temperature because the effect of densification due to the surface tension of the liquid phase is maintained for a long time. For this reason, an element which does not melt with Al up to a high temperature is preferable.
Further, such a liquid phase of a low melting point metal has an action of accelerating the progress of sintering by removing the oxide film on the surface of the aluminum powder or aluminum alloy powder. Sn described in Patent Document 7 is an element having such characteristics. Although it does not actually have another effect of strengthening the substrate by alloying with Al as described in Patent Document 7, it is sintered. It is an element that exhibits an excellent effect in terms of improving the property.
そこでSnの添加に替えて、Snより一層低い温度から液相を発生させる低融点化合物を用いると、その効果がより一層長く維持され、より一層の焼結性の改善が果たせ、その結果得られる焼結アルミニウム部材の強度の向上が果たせることとなる。
本願はこの観点より、Snより低い温度で液相が発生するとともに長い間液相が維持される物質として、Snの共晶型合金およびSnの共晶反応液相が発生する偏晶型合金を用いることを骨子とする。
Therefore, when a low melting point compound that generates a liquid phase from a temperature lower than Sn is used instead of Sn addition, the effect is maintained for a longer time, and the sinterability can be further improved, resulting in the result. The strength of the sintered aluminum member can be improved.
From this point of view, the present application uses Sn eutectic alloy and Sn eutectic reaction liquid phase as a substance that generates a liquid phase at a temperature lower than Sn and maintains the liquid phase for a long time. Use is essential.
図1(a)は二元系の共晶型合金の状態図を簡略化した模式図である。成分A、Bの共晶液相は、Aの融点TA、Bの融点TBよりも低い温度Tで発生する。よってAがSnとし、Bを他の元素とすると、Snの融点は232℃であるが、Snを主成分とし、Snと他の元素の間で共晶型合金を形成する組成の共晶型合金の共晶反応温度は232℃より低下することとなる。このような元素としてAg、Bi、Cd、In、Pb、Tl、Zn等があり、これらは全てSn−Alの共晶反応温度である229℃以下の共晶反応温度を有する。 FIG. 1A is a schematic diagram showing a simplified phase diagram of a binary eutectic alloy. The eutectic liquid phases of the components A and B are generated at a temperature T lower than the melting point T A of A and the melting point T B of B. Therefore, when A is Sn and B is another element, the melting point of Sn is 232 ° C., but the eutectic type has a composition in which Sn is the main component and a eutectic alloy is formed between Sn and the other elements. The eutectic reaction temperature of the alloy will drop below 232 ° C. Examples of such elements include Ag, Bi, Cd, In, Pb, Tl, Zn, and the like, all of which have a eutectic reaction temperature of 229 ° C. or lower which is a Sn—Al eutectic reaction temperature.
また図1(b)のように、A、B間に溶解温度まで分解しない金属間化合物AmBnを生じ、これが各成分と共晶反応をなす場合、AとAmBn、AmBnとBがそれぞれ共晶反応を行っており、金属間化合物AmBnを一つの成分とみなせばA−AmBn系およびAmBn−B系の2個の二元系が集まったものと見なせる。この場合も、AをSnとし、他の元素をBとすると、Snを主成分とし、Snと、Snと他の元素との金属間化合物(SnmBn)との間で共晶型合金を形成する組成の共晶型合金の共晶反応温度はSn単体の融点232℃より低下することとなる。このような元素(金属間化合物)としてAu(AuSn4)、Co(CoSn2)、Cu(Cu6Sn5)、La(LaSn2)、Li(LiSn2)、Mg(Mg2Sn)、Pt(PtSn3)等があり、これらも全てSn−Alの共晶反応温度である229℃以下の共晶反応温度を有する。 Further, as shown in FIG. 1B, when an intermetallic compound A m B n that does not decompose to the melting temperature is formed between A and B, and this forms a eutectic reaction with each component, A and A m B n , A m B n and B are each carrying out a eutectic reaction. If the intermetallic compound A m B n is regarded as one component, two binary systems of A-A m B n system and A m B n -B system are used. Can be regarded as a gathering. Also in this case, when A is Sn and another element is B, the eutectic alloy is composed of Sn as a main component and Sn and an intermetallic compound of Sn and other elements (Sn m B n ). The eutectic reaction temperature of the eutectic type alloy having the composition forming s is lower than the melting point of 232 ° C. of Sn alone. As such elements (intermetallic compounds), Au (AuSn 4 ), Co (CoSn 2 ), Cu (Cu 6 Sn 5 ), La (LaSn 2 ), Li (LiSn 2 ), Mg (Mg 2 Sn), Pt (PtSn 3 ) and the like, all of which have a eutectic reaction temperature of 229 ° C. or lower which is the eutectic reaction temperature of Sn—Al.
さらに、図1(c)のように、一部で共晶反応を生ずる偏晶型合金の場合においても、AをSnとすると、Snと共晶反応を生ずる組成範囲内でSnの共晶液相が発生するため、Snを主成分とし、Snと他の元素との間、あるいはSnと他の元素との金属間化合物との間で共晶反応を生じてSnの共晶液相を発生する組成の偏晶型合金であっても同様の効果が得られる。 Further, as shown in FIG. 1 (c), even in the case of a monotectic type alloy that partially causes a eutectic reaction, if A is Sn, a Sn eutectic solution within a composition range that causes a eutectic reaction with Sn. Since a phase is generated, Sn is a main component and a eutectic reaction occurs between Sn and another element or between an intermetallic compound of Sn and another element to generate an eutectic liquid phase of Sn. The same effect can be obtained even with an orthorhombic alloy having the composition described above.
以上は、単純な二元系の場合の例であるが、三元系または四元系以上の場合であっても同様にSnを主成分とし、Snの共晶液相を発生する組成であれば、同様の効果が得られる。ただし、これらの元素のうち、Pb、CdについてもSnと共晶液相を発生するが、毒性の点から使用しないことが好ましい。 The above is an example in the case of a simple binary system. However, even in the case of a ternary system or a quaternary system or more, any composition having Sn as a main component and generating a Sn eutectic liquid phase may be used. In this case, the same effect can be obtained. However, among these elements, Pb and Cd also generate an eutectic liquid phase with Sn, but are preferably not used from the viewpoint of toxicity.
上記の観点を含めて、多元系のSnを主成分とする共晶合金としては、近年開発が進んでいる鉛フリーはんだを用いることが好ましい。鉛フリーはんだには、Sn−Zn系、Sn−Ag系、Sn−Bi系、Sn−Zn−Bi系、Sn−Ag−Bi系等があり、これらに少量のIn、Cu、Ni、Sb、Ga、Ge等の金属元素を添加したものが提案されており、その一部は実際に実用化されている。このような市販の鉛フリーはんだは、はんだペーストに分散させるはんだ粉末等を転用できるため、入手が容易で好ましい。 Including the above viewpoint, it is preferable to use lead-free solder, which has been developed recently, as a eutectic alloy mainly composed of multi-element Sn. The lead-free solder includes Sn-Zn, Sn-Ag, Sn-Bi, Sn-Zn-Bi, Sn-Ag-Bi, etc., and a small amount of In, Cu, Ni, Sb, etc. Proposals have been made by adding metallic elements such as Ga and Ge, and some of them have been put to practical use. Such commercially available lead-free solder is preferable because it can be diverted from solder powder or the like dispersed in a solder paste.
上記のようなSnを主成分とし、Snの共晶液相を発生させる合金の粉末を焼結助剤粉末として用いると、焼結時の昇温過程で早期にSnの共晶液相が発生し、アルミニウム粉末またはアルミニウム合金粉末表面の酸化被膜を除去して焼結の進行を促進するとともに、共晶液相の効果が長時間維持され、液相の表面張力による液相収縮の作用により緻密化が進行して、焼結アルミニウム部材の強度の向上に寄与する。 When an alloy powder containing Sn as a main component and generating an eutectic liquid phase of Sn as described above is used as a sintering aid powder, an eutectic liquid phase of Sn is generated early in the temperature rising process during sintering. In addition, the oxide film on the surface of the aluminum powder or aluminum alloy powder is removed to promote the progress of sintering, and the effect of the eutectic liquid phase is maintained for a long time. Progresses and contributes to the improvement of the strength of the sintered aluminum member.
このような作用を有する焼結助剤粉末は、0.01質量%以上の添加でその効果が顕著となり、0.1〜0.2質量%でその効果が最大となる。一方、Snは通常のアルミニウム部材の焼結温度の範囲ではAlとほとんど溶け合わないため、多量に用いると粒界に析出し、強度低下の原因となる。このため上記のような焼結助剤粉末の添加量は多くとも0.5質量%に止めるべきである。0.5質量%を超える添加は、Snの粒界析出による強度低下が、上記の液相収縮による緻密化の効果を上回り、強度向上の目的が達成できなくなる。なお、より好ましい添加量は0.05〜0.2質量%である。 The effect of the sintering aid powder having such an action becomes remarkable when added in an amount of 0.01% by mass or more, and the effect becomes maximum when the content is 0.1 to 0.2% by mass. On the other hand, Sn hardly dissolves with Al in the range of the sintering temperature of a normal aluminum member, so when used in a large amount, it precipitates at grain boundaries and causes a decrease in strength. For this reason, the amount of the sintering aid powder added as described above should be limited to at most 0.5% by mass. When the amount exceeds 0.5% by mass, the strength reduction due to the grain boundary precipitation of Sn exceeds the effect of densification due to the liquid phase shrinkage, and the purpose of improving the strength cannot be achieved. A more preferable addition amount is 0.05 to 0.2% by mass.
上記の焼結助剤粉末は、上記の作用をもたらすものであるから、上記のような焼結助剤粉末が未添加の従来の焼結アルミニウム部材の原料粉末用の粉末混合物に対し、上記の焼結助剤粉末を添加することで、上記の作用が得られ、得られる焼結体が緻密化することで、従来の焼結体よりも強度が向上する。また、焼結助剤粉末の主成分となるSnは、焼結体の主成分であるAlと反応しないので、元々の焼結アルミニウム部材の特性に影響を与えない。上記の焼結助剤粉末は、2種類以上併用しても、その作用は上記の説明のとおりであるので、所望により2種類以上併用しても差し支えない。 Since the above-mentioned sintering aid powder brings about the above-mentioned action, the above-mentioned sintering aid powder is not added to the powder mixture for a raw material powder of a conventional sintered aluminum member. By adding the sintering aid powder, the above-mentioned action is obtained, and the resulting sintered body is densified, whereby the strength is improved as compared with the conventional sintered body. Further, Sn as the main component of the sintering aid powder does not react with Al, which is the main component of the sintered body, and therefore does not affect the characteristics of the original sintered aluminum member. Even if two or more kinds of the above-mentioned sintering aid powders are used in combination, the action thereof is as described above. Therefore, if desired, two or more kinds may be used in combination.
原料粉末として、純アルミニウム粉末、Al−20質量%Siの組成のアルミニウム−珪素合金粉末、Cu−4質量%Niの組成の銅−ニッケル合金粉末、Al−50質量%Mgの組成のアルミニウム−マグネシウム合金粉末、Al−12質量%Si−3質量%Cu−1質量%Mgの組成のアルミニウム−珪素−銅−マグネシウム合金粉末を用意した。また、焼結助剤粉末として、Sn−8質量%Zn−3質量%Biの組成の錫−亜鉛系合金粉末(共晶液相発生温度:190℃)、Sn−3.5質量%Agの組成の錫−銀合金粉末(共晶液相発生温度:221℃)、Sn−0.75質量%Cuの組成の錫−銅合金粉末(共晶液相発生温度:227℃)を用意した。これらの焼結助剤粉末は、鉛フリーはんだのペーストより濾過して準備した。これらの原料粉末および焼結助剤粉末を表1に示す割合で配合し、混合して焼結アルミニウム部材の原料用粉末混合物を作製した。 As a raw material powder, pure aluminum powder, aluminum-silicon alloy powder having a composition of Al-20 mass% Si, copper-nickel alloy powder having a composition of Cu-4 mass% Ni, aluminum-magnesium having a composition of Al-50 mass% Mg An alloy powder, an aluminum-silicon-copper-magnesium alloy powder having a composition of Al-12 mass% Si-3 mass% Cu-1 mass% Mg was prepared. Further, as a sintering aid powder, a tin-zinc alloy powder having a composition of Sn-8 mass% Zn-3 mass% Bi (eutectic liquid phase generation temperature: 190 ° C), Sn-3.5 mass% Ag A tin-silver alloy powder having a composition (eutectic liquid phase generation temperature: 221 ° C.) and a tin-copper alloy powder having a composition of Sn-0.75% by mass Cu (eutectic liquid phase generation temperature: 227 ° C.) were prepared. These sintering aid powders were prepared by filtering from a lead-free solder paste. These raw material powders and sintering aid powders were blended in the proportions shown in Table 1 and mixed to prepare a raw material powder mixture for sintered aluminum members.
得られた各粉末混合物を金型内に充填し成形圧力200MPaで成形し、5×10×30mmの板状の成形体を作製し、試料番号01〜08については焼結温度545℃、試料番号09〜16については焼結温度550℃、試料番号17、18については焼結温度630℃で、各々60分間保持して焼結を行い、試料番号01〜18の試料を作製した。得られた各試料について三点曲げ試験を行い、その結果をそれぞれの焼結助剤粉末を添加しない原料粉末の値を100とする指数で表したものを表1に併せて示す。なお、試料番号17、18の純アルミニウム粉末のみを原料粉末として用いた試料については、焼結助剤粉末が未添加の試料番号17は、焼結がほとんど進行せず、三点曲げ試験が行えなかったため、上記の指数で表現できず、焼結助剤粉末を添加した試料番号18についてのみ実測値で記載した。 Each obtained powder mixture is filled in a mold and molded at a molding pressure of 200 MPa to produce a plate-like molded body of 5 × 10 × 30 mm. For sample numbers 01 to 08, a sintering temperature of 545 ° C., a sample number Sintering temperature was 550 ° C. for 09 to 16, and sintering temperature was 630 ° C. for sample numbers 17 and 18, respectively. A three-point bending test was performed on each of the obtained samples, and the results are shown in Table 1 together with an index with the value of the raw material powder not added with each sintering aid powder as 100. For samples using only pure aluminum powders of sample numbers 17 and 18 as the raw material powder, sample number 17 to which no sintering aid powder was added did not undergo much sintering, and a three-point bending test could be performed. Therefore, only the sample number 18 to which the sintering aid powder was added was described as an actual measurement value.
表1の試料番号01〜08は、特開平7−224341号公報に記載のアルミニウム合金に焼結助剤粉末を適用した場合の実施例で、焼結助剤粉末が未添加の場合でも原料粉末の液相が多量に生じる合金の場合の例である。焼結助剤粉末を未添加の試料(試料番号01)に比して、錫−亜鉛系合金粉末を添加した試料番号02〜05の試料では、曲げ強さが向上し、焼結助剤粉末の強度向上の効果が確認された。
これは、未添加の場合でも生じる液相成分は、焼結過程でアルミニウム基地に拡散して焼結途上で消失するため、液相収縮の効果が焼結工程の一部にしか作用しないのに対し、焼結助剤粉末を添加した試料では、焼結助剤粉末による液相が焼結工程のほとんどの部分で存在することによって液相収縮の効果が焼結工程を通じてもたらされることによると考えられる。しかし、焼結助剤粉末の添加量が0.5質量%を超える試料番号06の試料では、焼結助剤粉末の添加量が多すぎてアルミニウム合金基地の粒界に焼結助剤成分が析出して強度の低下が生じることが確認された。また、試料番号04、07および08により、焼結助剤粉末の種類を替えても同様にその効果を有することが確認された。
Sample numbers 01 to 08 in Table 1 are examples when the sintering aid powder is applied to the aluminum alloy described in JP-A-7-224341, and the raw material powder even when the sintering aid powder is not added. This is an example of an alloy in which a large amount of the liquid phase is generated. Compared to the sample without addition of the sintering aid powder (sample No. 01), the samples No. 02 to 05 with the tin-zinc alloy powder added have improved bending strength, and the sintering aid powder is improved. The effect of improving the strength was confirmed.
This is because the liquid phase component generated even when not added diffuses to the aluminum base during the sintering process and disappears during the sintering process, so the effect of liquid phase shrinkage only acts on part of the sintering process. On the other hand, in the sample to which the sintering aid powder is added, it is considered that the liquid phase shrinkage effect is brought about through the sintering process because the liquid phase by the sintering aid powder exists in most part of the sintering process. It is done. However, in the sample No. 06 in which the addition amount of the sintering aid powder exceeds 0.5% by mass, the addition amount of the sintering aid powder is too large and the sintering aid component is present at the grain boundary of the aluminum alloy base. It was confirmed that precipitation reduced the strength. Moreover, it was confirmed from Sample Nos. 04, 07, and 08 that the same effect is obtained even if the type of the sintering aid powder is changed.
表1の試料番号09〜16は、従来合金であるAl−12質量%Si−3質量%Cu−1質量%Mgの組成のアルミニウム−珪素−銅−マグネシウム合金に焼結助剤粉末を適用した場合の実施例で、原料の合金粉末より生じる液相量が上記の特開平7−224341号公報に記載のアルミニウム合金よりも少なく、焼結しにくいアルミニウム合金の場合の例である。このようなアルミニウム合金への焼結助剤粉末の添加は、上記の場合と同様の効果を示すが、元々の原料粉末より生じる液相が乏しいことにより、上記の場合よりも液相収縮による強度向上の効果が顕著に現れていることがわかる。また、焼結助剤粉末の種類を替えても同様にその効果が得られることもわかる。 Sample numbers 09 to 16 in Table 1 were obtained by applying a sintering aid powder to an aluminum-silicon-copper-magnesium alloy having a composition of Al-12 mass% Si-3 mass% Cu-1 mass% Mg, which is a conventional alloy. In this example, the amount of liquid phase generated from the alloy powder of the raw material is smaller than that of the aluminum alloy described in JP-A-7-224341, and is an example of an aluminum alloy that is difficult to sinter. The addition of the sintering aid powder to such an aluminum alloy shows the same effect as in the above case, but due to the poor liquid phase generated from the original raw material powder, the strength due to liquid phase shrinkage is higher than in the above case. It can be seen that the effect of improvement appears remarkably. Moreover, it turns out that the effect is acquired similarly even if it changes the kind of sintering auxiliary agent powder.
表1の試料番号17、18は、焼結ができない純アルミニウムの場合の実施例である。焼結助剤粉末が未添加のものでは焼結がほとんど進行せず、三点曲げ試験が実施できなかったのに対し、焼結助剤粉末を添加すると、焼結助剤粉末の共晶液相が有するアルミニウム粉末表面の酸化被膜の除去作用、および液相収縮による緻密化の作用により、焼結が行えるようになることが確認された。 Sample numbers 17 and 18 in Table 1 are examples in the case of pure aluminum that cannot be sintered. When the sintering aid powder was not added, sintering hardly progressed and the three-point bending test could not be carried out, whereas when the sintering aid powder was added, the eutectic liquid of the sintering aid powder It was confirmed that sintering can be performed by the action of removing the oxide film on the surface of the aluminum powder in the phase and the action of densification by liquid phase shrinkage.
本発明の焼結アルミニウム部材の原料用粉末混合物は、従来の焼結アルミニウム合金の原料粉末となるAlを主成分とする合金粉末または混合粉末に、Snよりも低い融点を有するSnを主成分とする共晶液相を発生する焼結助剤粉末を添加するものである。これを金型内で圧粉成形した圧粉体を焼結すると、昇温過程においてSnよりも低い温度から液相を発生し、焼結による緻密化が促進されて、強度の高い焼結アルミニウム部材が得られるという汎用性の高いものであるから、従来よりある各種焼結アルミニウム部材に適用可能であるとともに、その強度の向上が果たされ、適用範囲の拡大が果たせる。 The powder mixture for raw material of the sintered aluminum member of the present invention is mainly composed of an alloy powder or mixed powder containing Al as a main component, which is a raw material powder of a conventional sintered aluminum alloy, and Sn having a melting point lower than Sn as a main component. A sintering aid powder that generates a eutectic liquid phase is added. When the green compact is compacted in a mold, a liquid phase is generated from a temperature lower than Sn in the temperature rising process, and densification by sintering is promoted, and high strength sintered aluminum. Since the member is highly versatile in that it can be obtained, it can be applied to various conventional sintered aluminum members, its strength is improved, and the application range can be expanded.
Claims (4)
At least two or more kinds of sintering aid powders according to any one of claims 1 to 3 are used for the alloy powder or mixed powder containing Al as a main component, and the sintering aid powder is used in a total amount of 0.01 to 0. A powder mixture for a raw material of a sintered aluminum member, characterized by adding .3% by mass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004186112A JP4303649B2 (en) | 2004-06-24 | 2004-06-24 | Powder mixture for raw materials of sintered aluminum parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004186112A JP4303649B2 (en) | 2004-06-24 | 2004-06-24 | Powder mixture for raw materials of sintered aluminum parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006009076A JP2006009076A (en) | 2006-01-12 |
JP4303649B2 true JP4303649B2 (en) | 2009-07-29 |
Family
ID=35776640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004186112A Expired - Fee Related JP4303649B2 (en) | 2004-06-24 | 2004-06-24 | Powder mixture for raw materials of sintered aluminum parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4303649B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106102966A (en) * | 2014-05-16 | 2016-11-09 | 三菱综合材料株式会社 | Porous aluminum sintered body and the manufacture method of porous aluminum sintered body |
US10543531B2 (en) | 2014-10-30 | 2020-01-28 | Mitsubishi Materials Corporation | Porous aluminum sintered material and method of producing porous aluminum sintered material |
US10981228B2 (en) | 2014-05-16 | 2021-04-20 | Mitsubishi Materials Corporation | Porous aluminum sintered compact and method of producing porous aluminum sintered compact |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010110790A (en) * | 2008-11-06 | 2010-05-20 | Miyachi Technos Corp | Fusing method |
US10000670B2 (en) | 2012-07-30 | 2018-06-19 | Henkel IP & Holding GmbH | Silver sintering compositions with fluxing or reducing agents for metal adhesion |
CN105473257B (en) * | 2013-09-05 | 2018-11-13 | 汉高知识产权控股有限责任公司 | Metal sintering film composition |
EP3294799B1 (en) | 2015-05-08 | 2024-09-04 | Henkel AG & Co. KGaA | Sinterable films and pastes and methods for the use thereof |
-
2004
- 2004-06-24 JP JP2004186112A patent/JP4303649B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106102966A (en) * | 2014-05-16 | 2016-11-09 | 三菱综合材料株式会社 | Porous aluminum sintered body and the manufacture method of porous aluminum sintered body |
US10478895B2 (en) | 2014-05-16 | 2019-11-19 | Mitsubishi Materials Corporation | Porous aluminum sintered compact and method of producing porous aluminum sintered compact |
US10981228B2 (en) | 2014-05-16 | 2021-04-20 | Mitsubishi Materials Corporation | Porous aluminum sintered compact and method of producing porous aluminum sintered compact |
US10543531B2 (en) | 2014-10-30 | 2020-01-28 | Mitsubishi Materials Corporation | Porous aluminum sintered material and method of producing porous aluminum sintered material |
Also Published As
Publication number | Publication date |
---|---|
JP2006009076A (en) | 2006-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101339025B1 (en) | Solder alloy | |
TWI814081B (en) | High temperature ultra-high reliability alloys, manufacturing method thereof, and applications thereof | |
Yu et al. | Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements | |
GB2421030A (en) | Solder alloy | |
Liu et al. | Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC–Bi–Ni/Cu solder joints | |
Law et al. | Microstructure, solderability, and growth of intermetallic compounds of Sn-Ag-Cu-RE lead-free solder alloys | |
EP0436952A1 (en) | Aluminium-alloy powder, sintered aluminium-alloy, and method for producing the sintered aluminum-alloy | |
Kanlayasiri et al. | Property alterations of Sn-0.6 Cu-0.05 Ni-Ge lead-free solder by Ag, Bi, in and Sb addition | |
JP4303649B2 (en) | Powder mixture for raw materials of sintered aluminum parts | |
JP4401326B2 (en) | Method for producing high-strength wear-resistant aluminum sintered alloy | |
Pandey et al. | Effects of Cu and in trace elements on microstructure and thermal and mechanical properties of Sn-Zn eutectic alloy | |
CA2502747A1 (en) | Pb-free solder alloy compositions comprising essentially tin, silver, copper and phosphorus | |
Huang et al. | Microstructural evolution of a lead-free solder alloy Sn-Bi-Ag-Cu prepared by mechanical alloying during thermal shock and aging | |
EP0135603B1 (en) | Ductile low temperature brazing alloy | |
CA2540486A1 (en) | Pb-free solder alloy compositions comprising essentially tin (sn), silver (ag), copper (cu), nickel (ni), phosphorus (p) and/or rare earth: cerium (ce) or lanthanum (la) | |
JPH06330215A (en) | Low density and porous aluminum alloy sintered body and its production | |
KR20070101866A (en) | Aluminium alloy brazing material | |
WO2007014530A1 (en) | Lead-free sn-ag-cu-ni-al system solder alloy | |
JP4303648B2 (en) | Powder mixture for raw powder of sintered aluminum parts | |
CN1586794A (en) | Al-Si base medium temperature welding flux containing rare-earth Er and its preparing method | |
Boesenberg | Development of aluminum, manganese, and zinc-doped tin-silver-copper-X solders for electronic assembly | |
Jain et al. | The inhibition of tin whiskers on the surface of Sn-8Zn-3Bi-0.5 Ce solders | |
Efzan et al. | Mechanical and physical properties of In-Zn-Ga lead-free solder alloy for low energy consumption | |
CN110936061A (en) | Low-silver SAC composite solder with high tensile strength | |
JP2889371B2 (en) | Method for producing A1 alloy mixed powder and sintered A1 alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090421 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090424 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4303649 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130501 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |