JP4303511B2 - Construction method of large section tunnel - Google Patents

Construction method of large section tunnel Download PDF

Info

Publication number
JP4303511B2
JP4303511B2 JP2003108369A JP2003108369A JP4303511B2 JP 4303511 B2 JP4303511 B2 JP 4303511B2 JP 2003108369 A JP2003108369 A JP 2003108369A JP 2003108369 A JP2003108369 A JP 2003108369A JP 4303511 B2 JP4303511 B2 JP 4303511B2
Authority
JP
Japan
Prior art keywords
box
group
excavation
ground
retaining wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003108369A
Other languages
Japanese (ja)
Other versions
JP2004316125A (en
Inventor
金子研一
太田光彦
湯口正樹
大畑裕
植田堅朗
門田克美
中島芳人
杉森真
尾崎雅也
橋本博英
若林正憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
IHI Corp
Original Assignee
Taisei Corp
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, IHI Corp filed Critical Taisei Corp
Priority to JP2003108369A priority Critical patent/JP4303511B2/en
Publication of JP2004316125A publication Critical patent/JP2004316125A/en
Application granted granted Critical
Publication of JP4303511B2 publication Critical patent/JP4303511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、大断面を分割した複数の小断面トンネルを構築しながら大断面トンネルを構築する方法、及び仮設の小断面分割体を利用しながら大断面トンネルを構築する方法に関するものである。
【0002】
【従来の技術】
地下にトンネルを構築する場合、トンネル軸に沿ってトンネルの両側に山留壁を構築し、その内部を掘削してトンネル函体を構築した後に埋戻しをおこない、山留壁を撤去する開削工法がおこなわれている。
一方、道路や鉄道などの下に地下立体交差トンネルを構築する場合は、上記する開削工法による地上交通への障害を回避するために、シールド工法や推進工法による施工が一般的である。
ところで、近年の交通量の増加や地下トンネルの適用の多様化などから、地下トンネルが大断面化してきている。かかる大断面トンネルを構築する場合、シールド工法にて複数の小断面トンネルを構築して連結させて大断面トンネルを構築している。また、開削工法では、地盤改良等の補助工法を併用し、広範な作業帯を占有しながら施工をおこなっている。
発明者等においては、図9に示すように、大断面トンネルの構築に際し、複数の小断面トンネルを相互に隣接させるように推進工法にて設置する方法を考案し、開示している(特許文献1参照)。ここで、推進管aの推進は、一方の側壁に刻設した溝bに他方の側壁に設けた突条cを嵌装させながら設置していく。
【0003】
また、開削工法とシールド工法の利点を兼ね備えた工法としてオープンシールド工法が現在使用されている。オープンシールド工法とは、前方および上方を開放したシールド掘進機を使用し、切羽掘削チャンバー内の地山をバックホウで掘削排土し、油圧ジャッキにより敷設函体を反力にシールド掘進機を推進しながら函体を敷設し、テールボイドの注入をおこない、函体上部を埋戻していく工法である。なお、かかるオープンシールド機およびかかるオープンシールド機を使用したオープンシールド工法については特許文献2に開示されている。
【0004】
【特許文献1】
特開2001−214699号公報
【特許文献2】
特開2002−70481号公報
【0005】
【発明が解決しようとする課題】
前記した従来の大断面トンネルの施工方法にあっては、次のような問題点がある。
<イ>開削工法では大型機械の必要性などから広範な作業帯を占有するため、地上の交通渋滞の要因となり得る。
<ロ>開削工法においては、施工場所に近接した周辺施設への影響が大きいため、地盤改良等の補助工法の併用が不可避となる。
<ハ>シールド工法では大断面に対応した掘削が困難となる。また、大断面を小断面に分割した分割体を結合して大断面トンネルを構築する場合であっても、土被りが少ない場合にはシールド工法の使用は困難となる。
【0006】
【発明の目的】
本発明は上記したような従来の問題を解決するためになされたもので、大断面トンネルの施工時に地上に広範な作業帯を占有する必要のない大断面トンネルの施工方法を提供することを目的とする。また、施工場所に近接した周辺施設への影響が少ない大断面トンネルの施工方法を提供することを目的とする。また、土被りが少ない条件下での大断面トンネルの施工方法を提供することを目的とする。
本発明は、これらの目的の少なくとも一つを達成するものである。
【0007】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の大断面トンネルの施工方法は、地盤に断面視矩形の掘削溝を造成しながら、掘削溝に複数の函体を鉛直方向に積み上げ設置して函体群を構成し、前記掘削溝に函体群を隣接設置していく函体設置工程と、前記函体群の上部を埋戻す埋戻し工程と、によって函体群列を構築し、前記函体群の最上段の前記函体の上床版上面の端部に予め設けた山留め壁を利用して、間隔を置いて略並行に構築した複数の前記函体群列の間を掘削し、前記函体群列を山留め支保部材として利用しながら本設大断面トンネルを構築することを特徴とする大断面トンネルの施工方法である。
【0009】
さらに、本発明の大断面トンネルの施工方法は、地盤に 断面視矩形の掘削溝を造成しながら、掘削溝に複数の函体を鉛直方向に積み上げ設置して函体群を構成し、前記掘削溝に函体群を隣接設置していく函体設置工程と、前記函体群の最上段の前記函体の上床版上面の端部付近に予め設けた山留め壁係止支柱に山留め壁を係止して山留め壁を設置して前記函体群の上部を埋戻す埋戻し工程と、によって函体群列を構築し、間隔を置いて略並行に構築した複数の前記函体群列の間を前記山留め壁を利用して掘削し、前記函体群列を山留め支保部材として利用しながら本設大断面ト ンネルを構築することを特徴とする大断面トンネルの施工方法である。
【0011】
また、本発明の大断面トンネルの施工方法は、地盤に断面視矩形の掘削溝を造成しながら、掘削溝に本設函体を分割した分割函体を設置していく分割函体設置工程と、前記分割函体の上部を埋戻す埋戻し工程と、によって分割函体列を構築し、前記分割函体の上床版上面の端部に予め設けた山留め壁を利用して、間隔を置いて略並行に構築した複数の前記分割函体列の間を掘削し、前記間隔を挟んで対向する前記分割函体の側面に設けた仮設置壁を撤去することによって、間隔を挟む前記分割函体列同士を接合することを特徴とする大断面トンネルの施工方法である。
【0012】
さらに、本発明の大断面トンネルの施工方法は、地盤に断面視矩形の掘削溝を造成しながら、掘削溝に本設函体を分割した分割函体を設置していく分割函体設置工程と、前記分割函体の上床版上面の端部付近に予め設けた山留め壁係止支柱に山留め壁を係止して山留め壁を設置して分割函体の上部を埋戻す埋戻し工程と、によって分割函体列を構築し間隔を置いて略並行に構築した複数の前記分割函体列の間を前記山留め壁を利用して掘削し、前記間隔を挟んで対向する前記分割函体の側面に設けた仮設置壁を撤去することによって、間隔を挟む前記分割函体列同士を接合することを特 徴とする大断面トンネルの施工方法である。
【0013】
また、本発明の大断面トンネルの施工方法は、シールド掘進機の天井を地上に開放してシールド掘進をおこなうオープンシールド掘進機を使用して前記掘削溝を造成することができる。
【0015】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0016】
<イ>オープンシールド掘進機(図7(a)、(b))
オープンシールド掘進機11は、左右の側壁板111にて土留めをしながら掘進機1の前方及び上方を開放させた公知の掘進機1である。地上からバックホウ91などで掘削排土しながら函体2を吊下げ設置し、かかる函体2に反力をとって油圧ジャッキ112にて掘進する。側壁板111にて土留めをしているため掘削の影響が周囲に及びにくく、また油圧ジャッキ112を使用するため、騒音や振動が少ないことから住宅街での施工にも好適である。また、側壁板111が2分割された中折れ構造のオープンシールド掘進機11を使用することによって曲線施工も可能である。
本発明においては、土被りの少ない条件にて大断面トンネルを施工する際にオープンシールド掘進機11を使用するのが好ましい。特に、縦長のオープンシールド掘進機11を使用して地盤に断面視矩形の掘削溝3(縦長の溝)を間隔6をおいて複数造成していくものである。
【0017】
<ロ>異形断面シールド掘進機(図8(a)、(b))
異形断面シールド掘進機12としては、例えば断面視矩形(または正方形)のシールド掘進機において、掘進機1前面に掘進軸方向の掘進軸121回りに揺動する揺動カッター122を複数備えた掘進機1を使用することができる。かかる複数の揺動カッター122は夫々の揺動カッター122の掘削範囲を重複させないように制御することができる。すなわち、例えば2基の揺動カッター122を同一平面内又は双方が前後するように配置して夫々の揺動カッター122を自己の持分範囲のみを掘削させることである。矩形断面を掘進する場合には、矩形断面を例えば均等に2分割して、2基の揺動カッター122が各分割範囲内を揺動しながら地盤を切削することができる。この場合に、揺動カッター122の揺動は揺動軸121を中心に双方が相反する方向に揺動するように制御することができる。かかる制御によって、2基の揺動カッター122は相互に干渉することなく、また掘進機1の進行方向を一定方向に確保しながら掘進させることが可能となる。
【0018】
異形断面シールド掘進機12を使用して掘削溝3を造成する際には、かかる掘進機1の天井に切削山留め体13を設けるのが好ましい。ここで、切削山留め体13とは、例えば2つの山留め板131を異形断面シールド掘進機12の幅程度の間隔を置いてほぼ並行に直立させて配置し、かかる間隔に複数の間隔保持部材132を夫々の山留め板131に垂直に連結させて製作したものである。山留め板131としては例えば鋼製板など山留め部材としての剛性を有する材料を使用するのが好ましい。また、間隔保持部材132としては、例えばH型鋼材を使用できる。
切削山留め体13を使用する目的は、異形断面シールド掘進機12の掘進に応じて山留め板131を地盤内に推進させ、かかる山留め板131で土留めをしながら、山留め板131内を地上からバックホウ91等で掘削して函体2を異形断面シールド掘進機12内に吊り下ろしていくためである。なお、切削山留め体13は掘進機1の天井に着脱可能な構造とするのが好ましい。
【0019】
【実施例1】
以下、図面を参照しながら本発明の大断面トンネルの施工方法の実施例1について説明する。
【0020】
<イ>函体設置工程(図1(a))
オープンシールド掘進機11または異形断面シールド掘進機12を使用して、地盤に断面視矩形の掘削溝3を造成する。上記の掘進機1は、構築する大断面トンネルの高さに適応するように縦長の掘進機1を使用するのがよい。次に、大断面トンネルの高さを例えば2又は3分割した高さを有する函体2を地上からクレーン92等で吊り下ろして掘削溝3内に鉛直方向に積み上げ設置し、函体群21を構成させる。かかる函体2は例えば工場にて運搬可能な大きさに製作するのがよい。また、かかる函体2は本設トンネルを構築するための仮設支保部材であるため、函体2構成部材は土圧に耐え得る程度の部材厚を備えていればよい。なお、函体2は例えばセメント系材料にて製作できる。
上記した函体群21を掘進機1の掘進に応じてトンネル延長方向に隣接設置していく。
【0021】
<ロ>埋戻し工程(図1(b))
函体群21を設置しながら、かかる函体群21の上部を埋戻していく。すなわち、埋戻し工程は、上記の函体設置工程と並行しながら進めていくのが好ましい。埋戻し工程を完了することによってトンネル延長方向に伸びた1列の函体群列22が構築される。
本発明においては、上記の函体群列22を間隔をおいてほぼ並行に複数構築するため、かかる複数の函体群列22の構築は、工期や工費を勘案して1列ごとにおこなうこともできるし、掘進機1を複数使用して各列を同時に構築することもできる。
埋戻し工程完了後は舗装を施工することで、地上道路として供用することができる。
【0022】
<ハ>函体郡列の間の掘削(図2(a))
函体郡列22の間の掘削は、函体群21上の土被り部分については、地上から所定の法面を形成しながら開削施工をおこない、函体郡列22の函体側壁間の掘削は函体を山留め支保部材として利用しながら函体郡22最下段レベル付近まで掘り下げていくことができる。
また、その他の方法としては、トンネル延長端部より並行する函体群列22の最上段レベルおよび最下段レベル付近に例えば鋼製の間隔掘削山留め板をトンネル延長方向に推進させ、上下の土圧は間隔掘削山留め板にて支保
させ、左右は函体2を山留め支保部材として利用しながらかかる函体郡列22の間の掘削をおこなうこともできる。この方法によれば、地上において開削に伴う工事占有帯を確保する必要がないため、工事占有帯による交通障害の問題を最小限に抑えることができる。
【0023】
<ニ>本設大断面トンネルの構築(図2(b))
函体郡列22の間の掘削完了後、または函体郡列22の間の掘削と並行して本設大断面トンネル4の構築をおこなう。函体郡列22を構成する函体2の構成部材を外型枠とし、函体2の構成部材を撤去しながら本設大断面トンネル4を構成する構成部材(上床版、側壁、柱脚、底版など)を構築する。
【0024】
【実施例2】
以下、図面を参照しながら本発明の大断面トンネルの施工方法の実施例2について説明する。なお、実施例1と重複する工程については省略する。
【0025】
函体群21の最上段に配置される函体2の上床版上面において、並行する函体群列22側の端部付近には予め山留め壁5を設置した状態でかかる函体2を設置し、埋戻し工程を完了させる。山留め壁5としてはコンクリート壁を設けておいたり、鋼矢板壁を設けておくなどできる(図3(a)参照)。
かかる山留め壁5を設けておくことで、地上から法面を形成しながら掘削する場合に比べて地上の工事占有帯幅を極力狭めることができる。
【0026】
【実施例3】
以下、図面を参照しながら本発明の大断面トンネルの施工方法の実施例3について説明する。なお、他の実施例と重複する工程については省略する。
【0027】
函体群21の最上段に配置される函体2の上床版上面において、並行する函体群列22側の端部付近には山留め壁5を設置するための山留め係止支柱51などを予め設置した状態でかかる函体2を設置する(図3(b)参照)。山留め係止支柱51は支柱の安定を図るために断面視L字状に成形するのもよい。次に、かかる山留め係止支柱51に例えば鋼矢板などの山留め壁5を係止させた後に函体2の上部を埋戻していく。
【0028】
【実施例4】
以下、図面を参照しながら本発明の大断面トンネルの施工方法の実施例4について説明する。なお、他の実施例と重複する工程については省略する。
【0029】
実施例1〜3のように仮設の函体群列22を先行構築していくのではなく、本設函体を分割した分割函体23を掘削溝3に設置する分割函体設置工程をおこなった後(図4(a)参照)、または分割函体設置工程と並行して分割函体23上部を埋め戻して分割函体列24の構築をおこなう。かかる分割函体列24の構築は1列ごとに、または各列並行して構築できる(図4(b)参照)。ここで、分割函体23は、例えば本設函体23を構成する側壁と上床版及び下床版の一部よりなる躯体に仮設置壁7を仮設置して分割函体23を製作しておく。かかる仮設置壁7は間隔6を挟んで設置されている分割函体列24に対向する側面に設けておくことにより、間隔6を掘削して分割函体列24同士を接合する前に撤去し易くするためである。仮設置壁7は鋼材やセメント系材料にて製作し、分割函体23とは例えばボルト接合などで仮設置しておくとよい。
本実施例における複数の分割函体列24間の間隔6の掘削は、実施例1と同様、地上から所定の法面を形成しながら開削施工をおこなったり、間隔掘削山留め板をトンネル延長方向に推進させて掘削していく方法にておこなう(図5(a)参照)。また、実施例2または3のように山留め壁5を利用した掘削方法にて掘削することもできる(図6(a)、(b)参照)。掘削完了後、または掘削と並行して分割函体列24同士を接合しながら本設大断面トンネル4の構築をおこなう(図5(b)参照)。
【0030】
【発明の効果】
本発明の大断面トンネルの施工方法は以上説明したようになるから次のような効果を得ることができる。
<イ>広範な作業帯を占有しないため、地上の交通障害を少なくして工事をおこなうことができる。
<ロ>オープンシールド掘進機または切削山留め体を備えた異形断面シールド掘進機を使用して地上に掘削溝を造成するため、掘削の影響が周辺におよび難い。
<ハ>函体の規模を小さくすることにより、函体を吊り下ろすクレーンを小型化できる。
<ニ>仮設用の函体や本設の分割函体が土留め壁および土留め支保部材としての役割を担うため、土留め壁の施工や切梁設置などの必要がなく、全体工程を短縮できる。
【図面の簡単な説明】
【図1】本発明の大断面トンネルの施工方法の実施例1を説明した施工フロー図であり、(a)函体設置工程の説明図。(b)埋戻し工程および2列目の函体郡列を構築した説明図。
【図2】本発明の大断面トンネルの施工方法の実施例1を説明した施工フロー図であり、(a)函体群列の間を掘削している説明図。(b)本設大断面トンネルの構築完了を説明した説明図。
【図3】(a)本発明の大断面トンネルの施工方法の実施例2の函体群列の間を掘削している説明図。(b)本発明の大断面トンネルの施工方法の実施例3の函体群列の間を掘削している説明図。
【図4】本発明の大断面トンネルの施工方法の実施例4を説明した施工フロー図であり、(a)分割函体設置工程の説明図。(b)埋戻し工程および2列目の分割函体列を構築した説明図。
【図5】本発明の大断面トンネルの施工方法の実施例4を説明した施工フロー図であり、(a)分割函体列の間を掘削している説明図。(b)本設大断面トンネルの構築完了を説明した説明図。
【図6】(a)本発明の大断面トンネルの施工方法の実施例4において分割函体列の間を山留め壁を利用して掘削している説明図。(b)本発明の大断面トンネルの施工方法の実施例4において分割函体列の間を山留め係止支柱及び山留め壁を利用して掘削している説明図。
【図7】(a)オープンシールド掘進機の斜視図。(b)オープンシールド掘進機によって掘削溝を造成しながら函体を設置している状況を説明した説明図。
【図8】(a)異形断面シールド掘進機の正面図。(b)異形断面シールド掘進機よって掘削溝を造成しながら函体を設置している状況を説明した説明図。
【図9】従来の大断面トンネルの施工方法を説明した説明図。
【符号の説明】
1・・・掘進機
11・・オープンシールド掘進機
12・・異形断面シールド掘進機
13・・切削山留め体
131・山留め板
132・間隔保持部材
2・・・函体
21・・函体群
22・・函体群列
23・・分割函体
24・・分割函体列
3・・・掘削溝
4・・・本設大断面トンネル
5・・・山留め壁
6・・・間隔
7・・・仮設置壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for constructing a large section tunnel while constructing a plurality of small section tunnels obtained by dividing a large section, and a method for constructing a large section tunnel using a temporary small section segment.
[0002]
[Prior art]
When constructing a tunnel underground, excavation method that constructs mountain retaining walls on both sides of the tunnel along the tunnel axis, excavates the inside and constructs the tunnel box, then backfills and removes the retaining wall Has been done.
On the other hand, when constructing underground three-dimensional intersection tunnels under roads, railways, etc., construction by the shield method or propulsion method is generally used in order to avoid the obstacle to the ground traffic due to the above-mentioned open-cut method.
By the way, underground tunnels have become larger in section due to the recent increase in traffic volume and diversification of applications of underground tunnels. When constructing such a large section tunnel, a large section tunnel is constructed by constructing and connecting a plurality of small section tunnels by a shield method. In the open-cut method, auxiliary works such as ground improvement are used together, and construction is carried out while occupying a wide work zone.
As shown in FIG. 9, the inventors have devised and disclosed a method of installing a plurality of small cross-sectional tunnels by a propulsion method so as to be adjacent to each other when constructing a large cross-sectional tunnel (Patent Literature). 1). Here, the propulsion of the propelling pipe a is installed while fitting the protrusion c provided on the other side wall into the groove b formed on one side wall.
[0003]
The open shield method is currently used as a method that combines the advantages of the open cut method and the shield method. The open shield method uses a shield machine that opens forward and upward, excavates and excavates the ground in the face excavation chamber with a backhoe, and uses a hydraulic jack to propel the shield machine with the installed box as a reaction force. While the box is laid, tail voids are injected and the upper part of the box is backfilled. Note that Patent Document 2 discloses such an open shield machine and an open shield method using such an open shield machine.
[0004]
[Patent Document 1]
JP 2001-214699 A [Patent Document 2]
JP-A-2002-70481
[Problems to be solved by the invention]
The conventional large-section tunnel construction method has the following problems.
<I> Since the open-cut method occupies a wide work zone due to the necessity of large machines, it can be a cause of traffic congestion on the ground.
<B> In the excavation method, since it has a great influence on surrounding facilities close to the construction site, it is inevitable to use an auxiliary method such as ground improvement.
<C> With the shield method, excavation corresponding to a large cross section becomes difficult. Further, even when a large-section tunnel is constructed by combining divided bodies obtained by dividing a large section into small sections, it is difficult to use the shield method when the earth covering is small.
[0006]
OBJECT OF THE INVENTION
The present invention was made to solve the conventional problems as described above, and an object of the present invention is to provide a method for constructing a large section tunnel that does not need to occupy a wide work zone on the ground when constructing a large section tunnel. And Another object of the present invention is to provide a method for constructing a large section tunnel that has little influence on surrounding facilities close to the construction site. It is another object of the present invention to provide a method for constructing a large section tunnel under conditions where there is little earth covering.
The present invention achieves at least one of these objects.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the method for constructing a large-section tunnel according to the present invention includes a plurality of boxes stacked in a vertical direction in the excavation groove while creating a rectangular excavation groove in cross section in the ground. constitute a box member group, to build a box body placing step to continue to installed adjacent to the box body group to the excavation, and a step backfill back filled to the top of the box making body group, a box body group column by the said Using a retaining wall provided in advance at the end of the upper floor plate upper surface of the box at the uppermost stage of the box group, excavating between the plurality of box group rows constructed in parallel at intervals, A construction method for a large-section tunnel, characterized in that a main-structure large-section tunnel is constructed using the box group row as a retaining support member.
[0009]
Further, according to the construction method of the large section tunnel of the present invention, a plurality of boxes are stacked and installed vertically in the excavation groove while forming a rectangular excavation groove on the ground, and the excavation group is formed. A box installation process in which a box group is installed adjacent to the groove, and a mountain retaining wall is engaged with a retaining wall locking post provided in advance near the upper surface of the upper floor of the box at the top of the box group. And a backfilling step for backfilling the upper part of the box group by installing a mountain retaining wall, and building a box group row between the plurality of box group rows built substantially in parallel at intervals. Is constructed using a retaining wall and constructs a large section tunnel while using the box group as a retaining support member.
[0011]
In addition, the construction method of the large cross-section tunnel of the present invention includes a split box installation process in which a split box obtained by splitting the main box into the excavation groove is installed while a rectangular excavation groove having a rectangular cross section is created in the ground. , A backfilling step for backfilling the upper part of the divided box, and constructing a divided box row, and using a retaining wall provided in advance at the end of the upper floor slab of the divided box, with an interval Excavating between a plurality of the divided box rows constructed substantially in parallel, and removing the temporary installation wall provided on the side surface of the divided box facing each other with the gap interposed therebetween, thereby separating the divided box holding the gap. It is a construction method of a large section tunnel characterized by joining rows.
[0012]
Furthermore, the construction method of the large cross-section tunnel of the present invention includes a split box installation process in which a split box obtained by splitting the main box into the excavation groove is installed while a rectangular excavation groove having a rectangular cross section is formed on the ground. , A backfilling step of locking the mountain retaining wall to the retaining wall retaining column provided in the vicinity of the end of the upper surface of the upper floor slab of the divided box and setting the mountain retaining wall to refill the upper portion of the divided box. Excavating between the plurality of divided box rows constructed in parallel and spaced apart by using the retaining wall, on the side surfaces of the divided box facing each other across the gap This is a construction method of a large-section tunnel characterized by joining the divided box rows with a gap between them by removing a temporary installation wall provided.
[0013]
Moreover, the construction method of the large section tunnel of this invention can create the said excavation groove using the open shield machine which open | releases the ceiling of a shield machine and performs shield tunneling.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
<I> Open shield machine (Fig. 7 (a), (b))
The open shield machine 11 is a known machine 1 in which the front and upper sides of the machine 1 are opened while retaining the earth with left and right side wall plates 111. The box 2 is suspended from the ground while excavating and excavating with a backhoe 91 and the like, and the reaction force is applied to the box 2 and the hydraulic jack 112 is used for excavation. Since the side wall plate 111 holds the earth, the influence of excavation hardly extends to the surroundings, and since the hydraulic jack 112 is used, it is suitable for construction in a residential area because there is little noise and vibration. In addition, curved construction is also possible by using an open shield machine 11 having a folded structure in which the side wall plate 111 is divided into two.
In the present invention, it is preferable to use the open shield excavator 11 when constructing a large-section tunnel under conditions with less soil covering. In particular, a vertically long open shield machine 11 is used to create a plurality of rectangular excavation grooves 3 (longitudinal grooves) having a rectangular cross-section in the ground at intervals 6.
[0017]
<B> Modified cross section shield machine (Fig. 8 (a), (b))
As the modified cross-section shield machine 12, for example, a shield machine having a rectangular (or square) cross-sectional view, the front surface of the machine 1 is provided with a plurality of swing cutters 122 that swing around the drill axis 121 in the direction of the drill axis. 1 can be used. The plurality of swing cutters 122 can be controlled so as not to overlap the excavation ranges of the respective swing cutters 122. That is, for example, two rocking cutters 122 are arranged in the same plane or both front and back, and each rocking cutter 122 is excavated only in its own range of ownership. When excavating a rectangular cross section, for example, the rectangular cross section is equally divided into two, and the ground can be cut while the two swing cutters 122 swing within the respective divided ranges. In this case, the swing of the swing cutter 122 can be controlled so as to swing in the opposite direction about the swing shaft 121. With this control, the two rocking cutters 122 can perform excavation without interfering with each other and while ensuring the traveling direction of the excavator 1 in a certain direction.
[0018]
When the excavation groove 3 is formed by using the modified cross-section shield machine 12, it is preferable to provide the cut mountain retaining body 13 on the ceiling of the excavator 1. Here, the cutting pile retaining body 13 includes, for example, two mountain retaining plates 131 arranged upright substantially in parallel with an interval of about the width of the modified cross section shield machine 12, and a plurality of interval holding members 132 are arranged at such intervals. It is manufactured by vertically connecting to each mountain retaining plate 131. As the mountain retaining plate 131, it is preferable to use a material having rigidity as a mountain retaining member such as a steel plate. Moreover, as the space | interval holding member 132, an H-type steel material can be used, for example.
The purpose of using the cut mountain retaining body 13 is to propel the mountain retaining plate 131 into the ground according to the excavation of the modified cross section shield machine 12, and while retaining the earth with the mountain retaining plate 131, the inside of the mountain retaining plate 131 is backhoeed from the ground. This is because the box 2 is suspended in the modified cross section shield machine 12 by excavating at 91 or the like. In addition, it is preferable that the cutting mountain retaining body 13 has a structure that can be attached to and detached from the ceiling of the excavator 1.
[0019]
[Example 1]
Hereinafter, Example 1 of the construction method of the large section tunnel of this invention is described, referring drawings.
[0020]
<I> Box installation process (Fig. 1 (a))
Using the open shield machine 11 or the modified cross-section shield machine 12, the excavation groove 3 having a rectangular cross-sectional view is formed on the ground. The above-described excavator 1 is preferably a vertically long excavator 1 so as to adapt to the height of the large-section tunnel to be constructed. Next, the box 2 having a height obtained by dividing the height of the large section tunnel into, for example, two or three, is suspended from the ground by a crane 92 or the like, stacked in the vertical direction in the excavation groove 3, and installed in the box group 21. Make up. The box 2 is preferably manufactured to a size that can be transported in a factory, for example. Moreover, since this box 2 is a temporary support member for constructing a permanent tunnel, the box 2 constituting member only needs to have a thickness sufficient to withstand earth pressure. The box 2 can be made of, for example, a cement-based material.
The box group 21 described above is installed adjacent to the tunnel extension direction according to the excavation of the excavator 1.
[0021]
<B> Backfilling process (Fig. 1 (b))
While installing the box group 21, the upper part of the box group 21 is backfilled. That is, it is preferable to proceed the backfilling process in parallel with the above box installation process. By completing the backfilling process, a single box group 22 extending in the tunnel extension direction is constructed.
In the present invention, since a plurality of the box group rows 22 are constructed substantially in parallel at intervals, the plurality of box group rows 22 are constructed for each row in consideration of the construction period and construction cost. It is also possible to construct each row at the same time by using a plurality of excavators 1.
After the backfilling process is completed, it can be used as a ground road by pavement.
[0022]
<C> Excavation between the box bodies (Fig. 2 (a))
In the excavation between the box body rows 22, the earth covering portion on the box body group 21 is excavated while forming a predetermined slope from the ground, and excavation between the box side walls of the box body row 22 is performed. Can dig up to near the bottom level of Hako-gun 22 while using the box as a supporting member for mountain retaining.
Further, as another method, for example, steel spacing excavation mountain retaining plates are propelled in the tunnel extension direction in the vicinity of the uppermost level and the lowermost level of the box group row 22 in parallel from the tunnel extension end, and the vertical earth pressure is increased. Can be supported by an interval excavation mountain retaining plate, and the left and right can be excavated between the box groups 22 while using the box 2 as a mountain retaining member. According to this method, since it is not necessary to secure a construction occupation zone associated with excavation on the ground, the problem of traffic obstacles due to the construction occupation zone can be minimized.
[0023]
<D> Construction of a large tunnel with a permanent construction (Fig. 2 (b))
After the excavation between the box bodies 22 is completed, or in parallel with the excavation between the boxes 20, the main large-sized tunnel 4 is constructed. The constituent members of the box 2 constituting the box group 22 are used as outer molds, and the constituent members (the upper floor slab, side walls, column bases, etc.) of the main large-sized tunnel 4 while removing the constituent members of the box 2 are removed. Bottom plate etc.).
[0024]
[Example 2]
Hereinafter, Example 2 of the construction method of the large section tunnel of this invention is described, referring drawings. In addition, about the process which overlaps with Example 1, it abbreviate | omits.
[0025]
On the upper surface of the upper floor slab of the box 2 arranged at the uppermost stage of the box group 21, the box 2 is installed in the vicinity of the end of the parallel box group 22 side with the retaining wall 5 installed in advance. Complete the backfill process. As the retaining wall 5, a concrete wall can be provided, or a steel sheet pile wall can be provided (see FIG. 3A).
By providing such a retaining wall 5, the construction occupation band width on the ground can be reduced as much as possible as compared with the case of excavating while forming a slope from the ground.
[0026]
[Example 3]
Hereinafter, Example 3 of the construction method of the large section tunnel of the present invention will be described with reference to the drawings. In addition, the process which overlaps with another Example is abbreviate | omitted.
[0027]
On the upper surface of the upper floor slab of the box 2 arranged at the uppermost stage of the box group 21, a mountain retaining column 51 for installing the mountain retaining wall 5 is provided in the vicinity of the end of the parallel box group 22 side. The box 2 is installed in the installed state (see FIG. 3B). The mountain retaining column 51 may be formed in an L shape in cross section in order to stabilize the column. Next, after the mountain retaining wall 5 such as a steel sheet pile is engaged with the mountain retaining column 51, the upper portion of the box 2 is backfilled.
[0028]
[Example 4]
Hereinafter, Example 4 of the construction method of the large section tunnel of this invention is described, referring drawings. In addition, the process which overlaps with another Example is abbreviate | omitted.
[0029]
Instead of constructing the temporary box group row 22 in advance as in the first to third embodiments, a divided box installation process is performed in which the divided box 23 obtained by dividing the main box is installed in the excavation groove 3. After that (see FIG. 4A), or in parallel with the split box installation step, the upper part of the split box 23 is backfilled to construct the split box series 24. Such a divided box sequence 24 can be constructed for each column or in parallel with each other (see FIG. 4B). Here, the division box 23 is produced by temporarily installing the temporary installation wall 7 on a casing made up of a side wall and a part of the upper floor slab and the lower floor slab, for example. deep. The temporary installation wall 7 is provided on the side surface facing the divided box rows 24 installed with the gap 6 therebetween, so that the gap 6 is removed before excavating the gap 6 and joining the divided box rows 24 together. This is to make it easier. The temporary installation wall 7 is preferably made of a steel material or a cement-based material, and temporarily installed with the divided box 23 by, for example, bolt joining.
Excavation of the interval 6 between the plurality of divided box rows 24 in the present embodiment is performed in the same manner as in the first embodiment by performing excavation while forming a predetermined slope from the ground, or by setting the interval excavation mountain retaining plate in the tunnel extending direction. This is done by a method of propulsion and excavation (see FIG. 5A). Moreover, it can also excavate by the excavation method using the retaining wall 5 like Example 2 or 3 (refer Fig.6 (a), (b)). After the excavation is completed or in parallel with excavation, the main large-sized tunnel 4 is constructed while joining the divided box rows 24 to each other (see FIG. 5B).
[0030]
【The invention's effect】
Since the construction method of the large section tunnel of the present invention is as described above, the following effects can be obtained.
<I> Since it does not occupy a wide work zone, construction work can be carried out with fewer ground traffic obstacles.
<B> Since the excavation groove is formed on the ground using an open shield excavator or a modified cross-section shield excavator equipped with a cutting pile, the influence of excavation is difficult to reach the periphery.
<C> By reducing the size of the box, the crane for hanging the box can be downsized.
<D> Temporary box or main division box plays the role of retaining wall and retaining support member, so there is no need for retaining wall construction or beam installation, shortening the overall process it can.
[Brief description of the drawings]
FIG. 1 is a construction flow diagram for explaining a first embodiment of a construction method for a large section tunnel according to the present invention, and (a) an explanatory diagram of a box installation process. (B) Explanatory drawing which constructed | assembled the backfilling process and the 2nd box box group row | line | column.
FIG. 2 is a construction flow diagram for explaining a first embodiment of the construction method for a large section tunnel according to the present invention, and (a) an explanatory diagram excavating between box groups. (B) Explanatory drawing explaining the completion of construction of the main large-sized tunnel.
FIG. 3A is an explanatory view of excavating between box groups of Example 2 of the method for constructing a large-section tunnel according to the present invention. (B) Explanatory drawing which is excavating between the box group rows of Example 3 of the construction method of the large section tunnel of this invention.
FIG. 4 is a construction flow diagram for explaining a fourth embodiment of the construction method for a large-section tunnel of the present invention, and (a) an explanatory diagram of a split box installation step. (B) Explanatory drawing which constructed | assembled the backfilling process and the division | segmentation box body of the 2nd row.
FIG. 5 is a construction flow diagram for explaining a fourth embodiment of the construction method for a large-section tunnel according to the present invention, and (a) an explanatory diagram excavating between divided box rows. (B) Explanatory drawing explaining the completion of construction of the main large-sized tunnel.
FIG. 6A is an explanatory diagram in which excavation is performed using a retaining wall between divided box rows in a fourth embodiment of the construction method of a large-section tunnel according to the present invention. (B) Explanatory drawing which is excavating between division | segmentation box columns using the mountain retaining locking column and the retaining wall in Example 4 of the construction method of the large section tunnel of this invention.
FIG. 7A is a perspective view of an open shield machine. (B) Explanatory drawing explaining the condition which has installed the box while creating a digging groove with an open shield machine.
FIG. 8A is a front view of a modified cross section shield machine. (B) Explanatory drawing explaining the condition which has installed the box while creating the excavation groove by the irregular cross-section shield machine.
FIG. 9 is an explanatory diagram for explaining a conventional method for constructing a large-section tunnel.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Digging machine 11 ... Open shield digging machine 12 ... Deformed cross-section shield digging machine 13 ... Cut-off mountain retaining body 131 / Mountain retaining plate 132 / Spacing member 2 ... Box 21 ... Box group 22 -Box group row 23-Divided box row 24-Divided box row 3-Excavation groove 4-Main large section tunnel 5-Mountain retaining wall 6-Interval 7-Temporary installation wall

Claims (5)

地盤に断面視矩形の掘削溝を造成しながら、掘削溝に複数の函体を鉛直方向に積み上げ設置して函体群を構成し、前記掘削溝に函体群を隣接設置していく函体設置工程と、
前記函体群の上部を埋戻す埋戻し工程と、によって函体群列を構築し、
前記函体群の最上段の前記函体の上床版上面の端部に予め設けた山留め壁を利用して、間隔を置いて略並行に構築した複数の前記函体群列の間を掘削し、
前記函体群列を山留め支保部材として利用しながら本設大断面トンネルを構築することを特徴とする、
大断面トンネルの施工方法。
A box that forms a group of boxes by vertically stacking multiple boxes in the excavation groove while forming a rectangular excavation groove in the ground, forming a group of boxes, and the box group is installed adjacent to the excavation groove Installation process;
Constructing a box group by backfilling the upper part of the box group,
Using a mountain retaining wall provided in advance on the upper end of the upper floor slab of the box at the uppermost stage of the box group, excavation is made between a plurality of box group rows constructed in parallel at intervals. ,
While constructing a large-sized tunnel with a main section while using the box group as a retaining ring support member,
Construction method of large section tunnel.
地盤に断面視矩形の掘削溝を造成しながら、掘削溝に複数の函体を鉛直方向に積み上げ設置して函体群を構成し、前記掘削溝に函体群を隣接設置していく函体設置工程と、
前記函体群の最上段の前記函体の上床版上面の端部付近に予め設けた山留め壁係止支柱に山留め壁を係止して山留め壁を設置して前記函体群の上部を埋戻す埋戻し工程と、によって函体群列を構築し、
間隔を置いて略並行に構築した複数の前記函体群列の間を前記山留め壁を利用して掘削し、
前記函体群列を山留め支保部材として利用しながら本設大断面トンネルを構築することを特徴とする、
大断面トンネルの施工方法。
A box that forms a group of boxes by vertically stacking multiple boxes in the excavation groove while forming a rectangular excavation groove in the ground, forming a group of boxes, and the box group is installed adjacent to the excavation groove Installation process;
The upper part of the box group is buried in the uppermost plate of the box group by locking the mountain retaining wall to a retaining wall locking post provided in advance near the end of the upper floor plate of the box. A box group is constructed by a backfilling process,
Excavation between the plurality of box group rows constructed in parallel at intervals using the retaining wall,
While constructing a large-sized tunnel with a main section while using the box group as a retaining ring support member,
Construction method of large section tunnel.
地盤に断面視矩形の掘削溝を造成しながら、掘削溝に本設函体を分割した分割函体を設置していく分割函体設置工程と、
前記分割函体の上部を埋戻す埋戻し工程と、によって分割函体列を構築し、
前記分割函体の上床版上面の端部に予め設けた山留め壁を利用して、間隔を置いて略並行に構築した複数の前記分割函体列の間を掘削し、
前記間隔を挟んで対向する前記分割函体の側面に設けた仮設置壁を撤去することによって、間隔を挟む前記分割函体列同士を接合することを特徴とする、
大断面トンネルの施工方法。
A split box installation process in which a split box obtained by splitting the main box into the excavation groove is installed while creating a rectangular excavation groove in the ground in the ground,
A backfilling step of backfilling the upper part of the divided box, and constructing a divided box row,
Using a mountain retaining wall provided in advance at the end of the upper floor slab upper surface of the divided box, excavating between the plurality of divided box rows constructed substantially in parallel at intervals,
By removing the temporary installation wall provided on the side surface of the split box facing each other with the gap between, the split box rows with the gap are joined together,
Construction method of large section tunnel.
地盤に断面視矩形の掘削溝を造成しながら、掘削溝に本設函体を分割した分割函体を設置していく分割函体設置工程と、
前記分割函体の上床版上面の端部付近に予め設けた山留め壁係止支柱に山留め壁を係止して山留め壁を設置して分割函体の上部を埋戻す埋戻し工程と、によって分割函体列を構築し、
間隔を置いて略並行に構築した複数の前記分割函体列の間を前記山留め壁を利用して掘削し、
前記間隔を挟んで対向する前記分割函体の側面に設けた仮設置壁を撤去することによって、間隔を挟む前記分割函体列同士を接合することを特徴とする、
大断面トンネルの施工方法。
A split box installation process in which a split box obtained by splitting the main box into the excavation groove is installed while creating a rectangular excavation groove in the ground in the ground,
Dividing by a backfilling step of locking the mountain retaining wall to a retaining wall retaining column provided in advance near the end of the upper surface of the upper floor slab of the divided box and setting the mountain retaining wall to refill the upper part of the divided box Construct a box sequence,
Excavating between the plurality of divided box rows constructed in parallel at intervals using the retaining wall,
By removing the temporary installation wall provided on the side surface of the split box facing each other with the gap between, the split box rows with the gap are joined together,
Construction method of large section tunnel.
シールド掘進機の天井を地上に開放してシールド掘進をおこなうオープンシールド掘進機を使用して前記掘削溝を造成することを特徴とする、
請求項1乃至4のいずれかに記載の大断面トンネルの施工方法。
Characterized in that the excavation groove is created using an open shield excavator that opens the ceiling of the shield excavator to the ground and performs shield excavation,
The construction method of the large section tunnel in any one of Claims 1 thru | or 4.
JP2003108369A 2003-04-11 2003-04-11 Construction method of large section tunnel Expired - Fee Related JP4303511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108369A JP4303511B2 (en) 2003-04-11 2003-04-11 Construction method of large section tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108369A JP4303511B2 (en) 2003-04-11 2003-04-11 Construction method of large section tunnel

Publications (2)

Publication Number Publication Date
JP2004316125A JP2004316125A (en) 2004-11-11
JP4303511B2 true JP4303511B2 (en) 2009-07-29

Family

ID=33469913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108369A Expired - Fee Related JP4303511B2 (en) 2003-04-11 2003-04-11 Construction method of large section tunnel

Country Status (1)

Country Link
JP (1) JP4303511B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106050243A (en) * 2016-07-28 2016-10-26 中冶建工集团有限公司 Super-shallow-buried small-spacing large-section multi-tunnel concurrent construction method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103835281B (en) * 2013-12-11 2015-08-05 江苏省水利工程科技咨询有限公司 A kind of method that Scheme of Strengthening of shield crossing soft foundation dyke is determined fast
CN104120677B (en) * 2014-07-04 2016-01-06 河海大学 Consider the side slope ot the embankment two-dimensional Security method for analyzing stability of shield crossing impact
CN109505611B (en) * 2019-01-28 2022-08-16 中铁第六勘察设计院集团有限公司 Construction method for realizing underground excavation and top-down construction by utilizing combined jacking pipes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106050243A (en) * 2016-07-28 2016-10-26 中冶建工集团有限公司 Super-shallow-buried small-spacing large-section multi-tunnel concurrent construction method
CN106050243B (en) * 2016-07-28 2019-01-22 中冶建工集团有限公司 An ultra shallow buries the Multiple tunnel concurrent construction method of small spacing big cross section

Also Published As

Publication number Publication date
JP2004316125A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4309219B2 (en) Tunnel construction method
JP4303512B2 (en) Construction method of large section tunnel
JP4303511B2 (en) Construction method of large section tunnel
JP4295272B2 (en) Friction cut plate used in open shield method and its fixing method
JP3893056B2 (en) Construction method of underground structure
JP4888725B2 (en) Tunnel construction method
JP4185401B2 (en) Construction method of large section tunnel using divided box
JP4349570B2 (en) Construction method of division box and underground level crossing
JP2000291398A (en) Underground structure and construction method therefor
JPH06306853A (en) Construction of underground structure
JP4402640B2 (en) Open shield method
JP5960786B2 (en) Shield machine collection method in open shield method
JP4322688B2 (en) Construction method of large section tunnel
JP2554507B2 (en) Underground space construction method
JPH07331998A (en) Constructing method of rock cavern
JP5167578B2 (en) Construction method for underground structures
JP2668648B2 (en) Construction method of underground structure and starting pit used for it
JP2005030061A (en) Open shield construction method
JP2017096064A (en) Skeleton construction method
JP4705467B2 (en) Construction method of underground structure
JPH0654016B2 (en) Underground space construction method
JP3926818B2 (en) Installation method of concrete box
JP4253806B2 (en) Method of branching and joining the shield tunnel
KR100833700B1 (en) Pipe roof structures
JP2673940B2 (en) How to build a horizontal plate-like structure in the ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150501

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees