JP4299505B2 - Vacuum equipment - Google Patents

Vacuum equipment Download PDF

Info

Publication number
JP4299505B2
JP4299505B2 JP2002188671A JP2002188671A JP4299505B2 JP 4299505 B2 JP4299505 B2 JP 4299505B2 JP 2002188671 A JP2002188671 A JP 2002188671A JP 2002188671 A JP2002188671 A JP 2002188671A JP 4299505 B2 JP4299505 B2 JP 4299505B2
Authority
JP
Japan
Prior art keywords
vacuum
ultrasonic motor
stage
organic gas
recovery means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002188671A
Other languages
Japanese (ja)
Other versions
JP2004031831A (en
Inventor
裕作 石峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002188671A priority Critical patent/JP4299505B2/en
Publication of JP2004031831A publication Critical patent/JP2004031831A/en
Application granted granted Critical
Publication of JP4299505B2 publication Critical patent/JP4299505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空装置内に摩擦、発熱または静電場を生じさせる部品を設置した真空装置に関するものであり、特に、精密検査装置、半導体製造工程における描画露光装置等に用いられる真空装置として好適なものである。
【0002】
【従来の技術】
近年、真空槽内を真空引きし、その真空雰囲気下で使用される部品、装置が広く普及してきている。真空下で使用する場合、各種部品、装置に用いられる素材には、有機ガス分子の発生(以下アウトガス)の少ない素材を用いることは勿論、洗浄を行い真空雰囲気に影響を及ぼさないよう細心の注意が必要である。
【0003】
ところで真空雰囲気下で使用する装置として、例えば半導体製造装置であるならば電子線や紫外線を用いた露光装置が挙げられる。これらの露光装置は、真空槽内に試料を移動させるためのステージと、電子線や紫外線の光源や露光パターンを転写させる為のマスク等からなる。
【0004】
試料を移動させるステージの駆動源としては、従来から電磁モータを使用していたが、磁界を発生させるため電子線に影響を及ぼしてしまう。この理由から、最近では、電磁モータにかわる駆動源として完全非磁性の超音波モータが使用されてきている。
【0005】
超音波モータとは圧電素子を用いた振動体を楕円運動させ、その楕円振動部分を可動体に押しつけて摩擦駆動で動力を伝達するモータである。この超音波モータを用いれば完全非磁性で構成されており、電子線に影響を与えることがないため、従来の電磁モータを用いた露光装置のように駆動源を遠ざける必要がなくなり可動体の直下に配置でき装置の小型化が実現できる。
【0006】
【発明が解決しようとする課題】
ところが真空雰囲気下においては、アウトガスの少ない材料で且つ洗浄されたものであっても素材に含まれる蒸気圧の低い成分が微量に揮発したり洗浄後に付着した微量成分から僅かな有機ガスの発生がある。
また、装置のメンテナンス等のために真空槽内を大気解放した際に大気が入り込み真空容器内壁に汚れや有機物が付着する場合があり、真空引きする際に様々な付着成分がアウトガスとなる。そして真空ポンプ等の回収手段で回収されなかったこれらの有機成分の残留ガス分子は真空槽内を汚染させる原因となる。
【0007】
特に真空槽内に摩擦、発熱、静電場、電子線の反射・吸収部等のガス分子の吸着要因となる部分が存在するとその部分に集中的に付着、堆積し、装置の正常な駆動を妨げたり、測定精度を狂わせる等の様々な不具合を生じたりする場合がある。
【0008】
例えば、電子線を用いた露光装置等では光源に付着すると電子線の解像度を下げてしまったり、マスクを有する露光装置であればマスクにも付着しマスクの精度を悪化させてしまったりして、高精度な描画精度を維持できなくなり装置の寿命を低下させる原因となる。
【0009】
また、超音波モータを駆動源とした場合には、超音波モータの駆動部は楕円運動を伝達させた摩擦部材を駆動力伝達部材に押しつけて摩擦駆動するため、部分的に付着分子の無い活性な表面となると同時に摩擦熱が生じ更には摩擦により静電気も発生する。これらの活性な表面や摩擦熱や静電気を生じる部分は真空槽内を浮遊する有機ガス分子を吸着し易く、時間と共に吸着量は増加し堆積していく。この有機ガス分子の吸着による堆積物が駆動面にかみ込み駆動特性を悪化させ、ひいては装置寿命を低下させてしまう。
【0010】
このように、有機物等のガス分子が発熱や静電場、電子線の反射・吸収部等のガス分子の吸着要因となりやすいエネルギー場に存在すると、真空ポンプで回収しきれなかった槽内を浮遊する有機ガス分子がその部分に吸着し次第に堆積してしまう。これらは一般に発熱や静電場、電子線反射・吸収部等がない状態であれば微量に存在しても問題ない。しかしながら、このような有機ガス分子の吸着が起こる要因となるエネルギー場が存在することにより集中的に吸着するために時間経過とともに堆積し、場合によっては数μm、数10μmの堆積物として存在することもあり、装置寿命に多大な影響を及ぼし問題であった。
【0011】
本発明は上述の問題点に鑑みて案出されたものであり、その目的は、摩擦、発熱、静電場を生じる部品を備える真空装置において真空装置内の部品の寿命を向上させ信頼性を向上することにある。
【0012】
【課題を解決するための手段】
本発明は前記課題に鑑み、真空槽内に、ステージと、該ステージを移動させるための超音波モータとを備え、前記ステージ上に載置された試料に検査、処理等を施す真空装置であって、真空槽内に浮遊している有機ガス分子を回収して、前記有機ガス分子の前記超音波モータへの凝集を防止する回収手段を、前記超音波モータを覆うように配置したことを特徴とする。
【0013】
前記回収手段は、内部が空洞である2重の壁面から構成され、各壁面の間に冷却用媒体を循環させた配管から成ることを特徴とする
前記回収手段は、前記超音波モータを覆うカバー型であることを特徴とする。
前記回収手段は、前記真空槽の排気ダクトから引き出したダクトと連結されるとともに、前記排気ダクトの吸引力を利用して前記有機ガス分子を回収することを特徴とする。
前記回収手段は、その表面温度を−100℃以下としたことを特徴とする。
【0014】
前記真空槽内に設けた部品は、電子線や紫外線を照射しマスクを介して描画を行う描画用機構部品であることを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について駆動源に超音波モータを用いた電子線描画装置を例に説明する。
【0016】
図1に超音波モータを駆動源とした電子描画装置の一例を示す。電子描画装置1は、主に真空に保たれた真空槽10と鏡筒部11からなり、真空槽10の内部にステージ18及びステージ18を移動させる超音波モータ17とから構成されている。
【0017】
真空槽10内には、ウエハ16を設置するためのステージ18、ステージ18の駆動方向を定めるための一対の案内ガイド23、ステージ18を駆動させるための超音波モータ17、超音波モータ17の駆動力をステージ18に伝えるための駆動力伝達部材24があり、更には真空槽10内を清浄に保つための排気ダクト21が設置されている。また、真空槽10は、その上部から突出した鏡筒部11を有しており、内部には、電子銃(不図示)からの電子線15を透過させ、出力や向きを制御するたのアパーチャ12、レンズ13、マスク14を備えており、マスク14のパターンを電子線15を照射することによりウエハ16上に露光させ、ウエハ16に微細なパターニングを行うようになっている。
上記ステージ18の材質としては、各種金属やアルミナ、コージェライト、窒化珪素、炭化珪素等のセラミックスが用いられている。
【0018】
また、ステージ18の下面中央には、案内ガイド23に対して平行に駆動力伝達部材24を、ステージ18の側面には案内ガイド23に対して平行にリニアスケール(不図示)をそれぞれ設置し、リニアスケールと対向する位置には測定ヘッド(不図示)を設けて位置検出手段を構成している。
【0019】
超音波モータ17は、ステージ18の駆動源として用いられ、駆動力伝達部材24と対向する位置に設置している。即ち、図2に示すように超音波モータ17に設けた摩擦部材25を駆動力伝達部材24の当接面に対して垂直に当接させてある。なお、超音波モータ17は真空槽10内で発生する有機ガス分子を効果的に回収する回収手段19に覆われているが、詳細は後述する。
【0020】
そして、超音波モータ17の摩擦部材25は、楕円運動を駆動力伝達部材24に伝達することにより、ステージ18を移動させる。ステージ18の移動に伴う位置検出手段からの変位、速度、加速度等の位置情報は駆動制御部(不図示)に送られ、設定された駆動パターンで制御され駆動するようになっている。
【0021】
以上の構成により、電子描画装置1は、電子銃から発せられた電子線15の軌道を制御しながらマスク14を介してステージ18上の試料に向かってマスク14のパターンを試料に描画するようになっている。そして、一連の描画が終了したら次の描画場所に移動するためにステージ18はベースに固定された案内ガイド23に沿って直線的に駆動するようになっている。
【0022】
次に本発明の特徴である有機ガス分子の回収手段19について説明する。
真空槽10内の有機ガス分子は、真空雰囲気中を微量に浮遊しているが、この有機ガス分子は、真空槽10の内壁やステージ18等のあらゆる箇所から蒸気圧の低い成分からアウトガスとして発生する。そして、微量に発生した有機ガス分子は、通常、高真空中であれば酸素、窒素等の分子に抵抗を受けずに自由に飛び交っており、真空槽10内壁やステージ18外面で衝突反射を常に繰り返している。そして、発熱体、光源又は静電場を生じさせる部材があると、温度が下がる過程で有機ガス分子がその部材に吸着しやすくなる。
【0023】
これに対して、本発明では、超音波モータ17の外周にカバー型の回収手段19を設置する。即ち、摩擦部材25の近傍に配置する。この回収手段19を有することにより、例えば、摩擦部材25を有する超音波モータ17の周囲に浮遊する有機ガス分子が、狭空間である回収手段19近傍を飛び交うわけだが、狭空間であるから有機ガス分子は空間に入り込む確率が極めて低くなり、侵入する有機ガス分子が極端に減少し、更に発熱源の冷却による凝縮エネルギーよりも大きい冷却源を設置することにより、摩擦部分に付着する有機ガス分子を低減でき良好な摩擦駆動を行うことができる。
【0024】
また、回収手段19は図2に一例を示すように、壁の内部が空洞となった2重の壁面から構成されており、その内壁と外壁の間に液体窒素等の液体の冷却用媒体を循環させる配管20(冷却手段)が蛇行させて超音波モータ17の全体を覆うように形成する。この配管20に冷却媒体を循環させることで回収手段19付近、具体的には回収手段19の表面温度が−100℃以下の温度で維持できるようになっている。これによって、冷却する回収手段19に有機ガス成分が付着するので熱を持つ摩擦部材25に付着する有機ガス分子の付着量が低減される。
【0025】
また、図1に示すように、回収手段19に真空槽10の排気ダクト21から引き出したダクト22を連結するとその吸引力を利用して有機ガス分子を排出させることもでき、有機ガス分子を局所的に回収することができる。
【0026】
なお、回収手段19に使用するカバーの材質としては、一般的な金属類を使用すれば良いが、より高熱伝導な金属、例えば銅等を用いれば、冷却溶媒の温度を効率的にカバー表面に伝えることができるためにより好適である。
【0027】
配管20を通過させる冷却用媒体としては、各種冷却ガス等や液体窒素、液体ヘリウムがもちいられ、−100℃以下の低温を維持するためには、液体窒素、液体ヘリウムを使用するのがより好適である。なお、ここで回収手段19の表面温度を−100℃以下としたのは、−100℃以下であれば、より有機ガス分子の付着防止に効果があることを本発明者らが実験により確認したためであり、それ以上の温度でも回収手段19を設置するのが有機ガス分子の付着を低減するのに有効な手段である。更には上述のようにカバー型の回収手段と排気ダクトと冷却を併用することでより効果を発揮できる。
【0028】
なお、本発明の有機ガス分子とは、エチレン、プロピレン、ベンゼン、メチルヘキサン、フタル酸エステル等様々な種類のもので構成されている。これらの検出方法としては、真空中において常温から真空槽内を温度上昇させながら真空度の変化及び質量スペクトル分析計で槽内で放出される放出ガスの種類を測定する昇温脱ガス分析により検出する。
【0029】
また、カバー型の回収手段19は固定の超音波モータ17の外周部を取り巻く形状で設置したが、ステージ18の側面近傍で超音波モータ17を取り巻くような形のものや、カバーの形状としては一部を開放した形のもの等、液体の冷却用媒体を循環させるための配管が取り付け可能であればどのような形状としても良い。
【0030】
更に本発明では、有機ガス分子の回収手段19はカバー型としたが、配管20に高熱伝導体から構成される付着板を接続し、付着板が−100℃以下に冷却されるようにして、それを超音波モータ17本体の直上や、駆動力伝達部材24と超音波モータ17の間に設置する等、その他様々な形で設置することが可能である。
【0031】
また、回収手段19は超音波モータ17が設置されているステージ18の下側を中心として設置しているが、他の場所に設置しても良い。ステージ18上側に設置した露光装置の光源やマスク14の近傍へ設置することで、そのような位置に有機ガス分子が付着することは回収手段19を設置しなかった場合と比較して大幅に低減できる。
【0032】
なお、付着する可能性がある箇所の近辺に回収手段19を設置するのが有機ガス分子の付着防止にはより効果的である。本発明であれば、超音波モータ17の外周部に設置した回収手段19を、ステージ18上側の露光装置の光源及びマスク14近傍に設けた場合でも、より効果的に有機ガス分子の付着を防止することができるようになり、露光装置全体のよりいっそうの長寿命化へとつながるといえる。
【0033】
また、ここでは本発明の露光装置の例を示したが、電子線を用いたマスク描画やCD−SEMや極紫外線を用いた真空中で使用される装置などにも適用でき、マスクの有無や光源の種類に固定されるものではない。
更に、本発明では真空槽10内の熱及び静電場を発生する部材に付着が起こるものとして説明してきたが、本発明例以外の熱及び静電場を有するものとしては、加熱用のヒーターやランプ、静電チャック、プラズマ雰囲気が考えられる。
【0034】
【実施例】
ここで、図1に示す超音波モータを駆動源とした露光装置を製作した。超音波モータ17の摩擦部材25と駆動力伝達部材24にはアルミナセラミックスを用いている。
そして超音波モータの外周に図2に示すようなカバー型の回収手段19を設置し、冷却溶媒(冷却ガス、液体窒素)の流量を調整しながら循環させ、カバー表面を−50℃、−80℃、−100℃、−150℃に保持させ、駆動距離50kmを可動させた後、駆動力伝達部材24と超音波モータ17の摩擦部材25が摩擦・摩耗することにより生じる摩耗粉をそれぞれ回収し、その摩耗粉中に存在する有機成分の量をX線マイクロアナリシス装置等により測定した。そして摩耗粉中の有機成分量の比をとり、比較を行った。なお、平行して有機ガス分子の回収手段19を設置しなかった場合についてもその測定を実施した。結果は表1の通りである。
【0035】
【表1】

Figure 0004299505
【0036】
表から、回収手段19を設置したものとそうでないものは、明らかに駆動力伝達部材24と超音波モータ17の摩擦部材25が摩擦・摩耗することにより生じる摩耗粉中の有機成分の量が異なり、回収手段19を設置した方がより有機成分の量が少ないことが確認できる結果となった。また回収手段19を設けていないものは駆動距離20kmで駆動特性に以上が見られたものの回収手段19を設けたものは500km駆動後でも何ら問題は発生しなかった。このことから、超音波モータ17の摩擦部材25と駆動力伝達部材24への有機ガス分子の付着により堆積する堆積物が、超音波モータ17の駆動時にその摩擦部材25と駆動力伝達部材24の間へかみ込むことを防止でき、ひいては装置寿命を大幅に向上させることができる。
【0037】
尚、ここでは露光装置を示したが、電子線を用いたマスク描画やCD−SEMや極紫外線を用いた真空中で使用される装置などにも適用でき、マスクの有無や光源の種類に固定されるものではない。
【0038】
【発明の効果】
本発明の構成によれば、摩擦、発熱、静電場を生じる部品を備える真空装置において、有機ガス分子を回収する回収手段を設けることにより真空装置内に配置する部品の寿命を向上させ信頼性を向上することにある。
【図面の簡単な説明】
【図1】本発明の真空装置の一例である露光装置を示す概略図である。
【図2】本発明の回収手段の一例を示す概略図である。
【符号の説明】
1:露光装置
10:真空槽
11:鏡筒部
12:アパーチャ
13:レンズ
14:マスク
15:電子線
16:ウエハ
17:超音波モータ
18:ステージ
19:回収手段
20:冷却管
21、22:排気ダクト
23:ガイド
24:駆動力伝達部材
25:摩擦部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum apparatus in which components that generate friction, heat generation, or electrostatic fields are installed in a vacuum apparatus, and is particularly suitable as a vacuum apparatus used for a precision inspection apparatus, a drawing exposure apparatus in a semiconductor manufacturing process, and the like. Is.
[0002]
[Prior art]
In recent years, parts and apparatuses that are evacuated and used in a vacuum atmosphere have been widely used. When using under vacuum, the materials used for various parts and equipment should be made of materials that generate less organic gas molecules (hereinafter referred to as outgassing), as well as being washed carefully so as not to affect the vacuum atmosphere. is required.
[0003]
By the way, as an apparatus used in a vacuum atmosphere, for example, if it is a semiconductor manufacturing apparatus, an exposure apparatus using an electron beam or ultraviolet rays can be cited. These exposure apparatuses include a stage for moving a sample into a vacuum chamber, a light source for electron beams and ultraviolet rays, a mask for transferring an exposure pattern, and the like.
[0004]
Conventionally, an electromagnetic motor has been used as a drive source for the stage for moving the sample. However, since the magnetic field is generated, the electron beam is affected. For this reason, a completely non-magnetic ultrasonic motor has recently been used as a drive source in place of an electromagnetic motor.
[0005]
An ultrasonic motor is a motor that transmits a power by friction driving by causing an oscillating body using a piezoelectric element to move elliptically and pressing the elliptical vibration portion against a movable body. If this ultrasonic motor is used, it is completely non-magnetic and does not affect the electron beam. Therefore, it is not necessary to keep the drive source away like an exposure apparatus using a conventional electromagnetic motor. The device can be reduced in size.
[0006]
[Problems to be solved by the invention]
However, in a vacuum atmosphere, even if the material is low outgas and washed, the component with low vapor pressure contained in the material is volatilized in a trace amount, or a slight amount of organic gas is generated from the trace component adhering after cleaning. is there.
In addition, when the inside of the vacuum chamber is released to the atmosphere for maintenance of the apparatus or the like, the atmosphere may enter and dirt and organic matter may adhere to the inner wall of the vacuum vessel, and various attached components become outgas when evacuating. The residual gas molecules of these organic components that have not been recovered by the recovery means such as a vacuum pump cause the inside of the vacuum chamber to be contaminated.
[0007]
In particular, if there is a part that causes adsorption of gas molecules such as friction, heat generation, electrostatic field, electron beam reflection / absorption part in the vacuum chamber, it adheres and accumulates on the part and prevents normal operation of the device. Or may cause various problems such as degrading measurement accuracy.
[0008]
For example, in an exposure apparatus using an electron beam, if it adheres to the light source, the resolution of the electron beam is lowered, or if it is an exposure apparatus having a mask, it adheres to the mask and deteriorates the accuracy of the mask. It becomes impossible to maintain high-precision drawing accuracy, leading to a reduction in the life of the apparatus.
[0009]
In addition, when an ultrasonic motor is used as a drive source, the drive unit of the ultrasonic motor presses the friction member that has transmitted the elliptical motion against the drive force transmission member to drive the friction, so that there is a partial adhesion-free activity. At the same time, frictional heat is generated and static electricity is generated by friction. These active surfaces and portions that generate frictional heat and static electricity easily adsorb organic gas molecules floating in the vacuum chamber, and the adsorption amount increases and accumulates with time. The deposit due to the adsorption of the organic gas molecules bites into the driving surface, thereby deteriorating the driving characteristics, and consequently the life of the apparatus.
[0010]
In this way, if gas molecules such as organic substances are present in an energy field that tends to cause adsorption of gas molecules such as heat generation, electrostatic field, and electron beam reflection / absorption part, it floats in the tank that could not be recovered by the vacuum pump. Organic gas molecules adsorb on the part and gradually accumulate. In general, there is no problem even if they are present in a very small amount as long as there is no heat generation, electrostatic field, electron beam reflection / absorption part, or the like. However, since there is an energy field that causes such adsorption of organic gas molecules, it accumulates over time because it is intensively adsorbed, and in some cases, it exists as a deposit of several μm or several tens of μm. There was also a problem that had a great influence on the life of the apparatus.
[0011]
The present invention has been devised in view of the above-mentioned problems, and its purpose is to improve the life and improve the reliability of the components in the vacuum apparatus in the vacuum apparatus having components that generate friction, heat generation, and electrostatic fields. There is to do.
[0012]
[Means for Solving the Problems]
In view of the above problems, the present invention is a vacuum apparatus that includes a stage and an ultrasonic motor for moving the stage in a vacuum chamber, and performs inspection, processing, and the like on a sample placed on the stage. And a recovery means for recovering the organic gas molecules floating in the vacuum chamber and preventing the organic gas molecules from aggregating on the ultrasonic motor is disposed so as to cover the ultrasonic motor. And
[0013]
The recovery means is composed of a double wall surface having a hollow inside, and is constituted by a pipe in which a cooling medium is circulated between the wall surfaces .
The collection means is a cover type that covers the ultrasonic motor.
The recovery means is connected to a duct drawn out from an exhaust duct of the vacuum chamber and recovers the organic gas molecules using a suction force of the exhaust duct.
The recovery means has a surface temperature of −100 ° C. or lower.
[0014]
The component provided in the vacuum chamber is a drawing mechanism component that performs drawing through a mask by irradiating an electron beam or ultraviolet rays.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described by taking an electron beam drawing apparatus using an ultrasonic motor as a drive source as an example.
[0016]
FIG. 1 shows an example of an electronic drawing apparatus using an ultrasonic motor as a drive source. The electronic drawing apparatus 1 is mainly composed of a vacuum chamber 10 kept in a vacuum and a lens barrel portion 11, and includes a stage 18 and an ultrasonic motor 17 that moves the stage 18 inside the vacuum chamber 10.
[0017]
In the vacuum chamber 10, a stage 18 for installing the wafer 16, a pair of guide guides 23 for determining the driving direction of the stage 18, an ultrasonic motor 17 for driving the stage 18, and driving of the ultrasonic motor 17. There is a driving force transmitting member 24 for transmitting the force to the stage 18, and an exhaust duct 21 for keeping the inside of the vacuum chamber 10 clean. Further, the vacuum chamber 10 has a lens barrel portion 11 protruding from the upper portion thereof, and an aperture for transmitting an electron beam 15 from an electron gun (not shown) and controlling the output and direction therein. 12, a lens 13, and a mask 14. The pattern of the mask 14 is exposed on the wafer 16 by irradiating the electron beam 15, and fine patterning is performed on the wafer 16.
As the material of the stage 18, ceramics such as various metals, alumina, cordierite, silicon nitride, silicon carbide and the like are used.
[0018]
A driving force transmission member 24 is installed in the center of the lower surface of the stage 18 in parallel to the guide guide 23, and a linear scale (not shown) is installed in parallel to the guide guide 23 on the side surface of the stage 18. A measurement head (not shown) is provided at a position facing the linear scale to constitute a position detection means.
[0019]
The ultrasonic motor 17 is used as a driving source for the stage 18 and is installed at a position facing the driving force transmission member 24. That is, as shown in FIG. 2, the friction member 25 provided in the ultrasonic motor 17 is brought into contact with the contact surface of the driving force transmission member 24 perpendicularly. The ultrasonic motor 17 is covered with a recovery means 19 that effectively recovers organic gas molecules generated in the vacuum chamber 10, and details will be described later.
[0020]
The friction member 25 of the ultrasonic motor 17 moves the stage 18 by transmitting the elliptical motion to the driving force transmission member 24. Position information such as displacement, speed, acceleration and the like from the position detection means accompanying the movement of the stage 18 is sent to a drive control unit (not shown), and is controlled and driven by a set drive pattern.
[0021]
With the above configuration, the electronic drawing apparatus 1 draws the pattern of the mask 14 on the sample toward the sample on the stage 18 through the mask 14 while controlling the trajectory of the electron beam 15 emitted from the electron gun. It has become. When a series of drawing is completed, the stage 18 is linearly driven along the guide guide 23 fixed to the base in order to move to the next drawing place.
[0022]
Next, the organic gas molecule recovery means 19 that is a feature of the present invention will be described.
The organic gas molecules in the vacuum chamber 10 are suspended in a minute amount in the vacuum atmosphere, but these organic gas molecules are generated as outgas from components having a low vapor pressure from any location such as the inner wall of the vacuum chamber 10 or the stage 18. To do. The organic gas molecules generated in a small amount usually fly freely without being resisted by molecules such as oxygen and nitrogen in a high vacuum, and are always subject to collision reflection on the inner wall of the vacuum chamber 10 and the outer surface of the stage 18. It is repeating. When there is a heating element, a light source, or a member that generates an electrostatic field, organic gas molecules are easily adsorbed to the member in the process of lowering the temperature.
[0023]
On the other hand, in the present invention, a cover-type recovery means 19 is installed on the outer periphery of the ultrasonic motor 17. That is, it is arranged in the vicinity of the friction member 25. By having this collection means 19, for example, organic gas molecules floating around the ultrasonic motor 17 having the friction member 25 fly around the collection means 19 that is a narrow space. The probability of molecules entering the space is extremely low, the invading organic gas molecules are extremely reduced, and by installing a cooling source that is larger than the condensation energy due to cooling of the heat source, the organic gas molecules adhering to the friction part are removed. It can be reduced and good friction drive can be performed.
[0024]
Further, as shown in FIG. 2, the recovery means 19 is composed of a double wall surface having a hollow inside, and a liquid cooling medium such as liquid nitrogen is provided between the inner wall and the outer wall. A circulating pipe 20 (cooling means) is formed to meander and cover the entire ultrasonic motor 17. By circulating the cooling medium through the pipe 20, the vicinity of the recovery means 19, specifically, the surface temperature of the recovery means 19 can be maintained at a temperature of −100 ° C. or lower. As a result, the organic gas component adheres to the recovery means 19 to be cooled, so that the amount of organic gas molecules attached to the friction member 25 having heat is reduced.
[0025]
Further, as shown in FIG. 1, when a duct 22 drawn out from an exhaust duct 21 of the vacuum chamber 10 is connected to the recovery means 19, organic gas molecules can be discharged using the suction force, and the organic gas molecules are locally removed. Can be recovered automatically.
[0026]
The cover material used for the recovery means 19 may be a general metal. However, if a metal having a higher thermal conductivity, such as copper, is used, the temperature of the cooling solvent can be efficiently applied to the cover surface. It is more suitable because it can communicate.
[0027]
Various cooling gases, liquid nitrogen, and liquid helium are used as the cooling medium that passes through the pipe 20, and in order to maintain a low temperature of −100 ° C. or lower, it is more preferable to use liquid nitrogen or liquid helium. It is. The reason why the surface temperature of the recovery means 19 is set to −100 ° C. or lower is that the present inventors have confirmed through experiments that the organic gas molecules are more effectively prevented from sticking if the temperature is −100 ° C. or lower. It is effective to reduce the adhesion of organic gas molecules to install the recovery means 19 even at a temperature higher than that. Further, as described above, the use of the cover-type recovery means, the exhaust duct, and the cooling together can provide a more effective effect.
[0028]
The organic gas molecules of the present invention are composed of various types such as ethylene, propylene, benzene, methyl hexane, and phthalate. These detection methods include temperature rising degassing analysis that measures the change in the degree of vacuum and the type of released gas released in the tank with a mass spectrum analyzer while raising the temperature in the vacuum tank from room temperature in vacuum. To do.
[0029]
The cover-type recovery means 19 is installed in a shape that surrounds the outer peripheral portion of the fixed ultrasonic motor 17, but the shape that surrounds the ultrasonic motor 17 near the side surface of the stage 18 and the shape of the cover are as follows. Any shape may be used as long as a pipe for circulating the liquid cooling medium can be attached, such as a partially opened shape.
[0030]
Further, in the present invention, the organic gas molecule recovery means 19 is a cover type, but an adhesive plate made of a high heat conductor is connected to the pipe 20 so that the adhesive plate is cooled to -100 ° C. or lower. It can be installed in various other forms such as directly above the ultrasonic motor 17 main body or between the driving force transmission member 24 and the ultrasonic motor 17.
[0031]
Further, the recovery means 19 is installed around the lower side of the stage 18 where the ultrasonic motor 17 is installed, but it may be installed in other places. By installing it near the light source or mask 14 of the exposure apparatus installed on the upper side of the stage 18, the adhesion of organic gas molecules to such a position is greatly reduced as compared with the case where the recovery means 19 is not installed. it can.
[0032]
In addition, it is more effective to prevent the adhesion of organic gas molecules to install the recovery means 19 in the vicinity of the place where there is a possibility of adhesion. According to the present invention, even when the recovery means 19 installed on the outer periphery of the ultrasonic motor 17 is provided in the vicinity of the light source and mask 14 of the exposure apparatus above the stage 18, the organic gas molecules are more effectively prevented from adhering. Thus, it can be said that the lifetime of the entire exposure apparatus is further extended.
[0033]
Further, although an example of the exposure apparatus of the present invention is shown here, it can be applied to a mask drawing using an electron beam, an apparatus used in a vacuum using a CD-SEM or extreme ultraviolet rays, etc. It is not fixed to the type of light source.
Furthermore, in the present invention, it has been described that adhesion occurs to a member that generates heat and an electrostatic field in the vacuum chamber 10, but heaters and lamps for heating may be used as those having heat and electrostatic fields other than the examples of the present invention. An electrostatic chuck or a plasma atmosphere can be considered.
[0034]
【Example】
Here, an exposure apparatus using the ultrasonic motor shown in FIG. 1 as a drive source was manufactured. Alumina ceramics are used for the friction member 25 and the driving force transmission member 24 of the ultrasonic motor 17.
A cover-type recovery means 19 as shown in FIG. 2 is installed on the outer periphery of the ultrasonic motor and circulated while adjusting the flow rate of the cooling solvent ( cooling gas, liquid nitrogen), and the cover surface is -50 ° C., −80 After maintaining the temperature at -100 ° C, -100 ° C, and -150 ° C and moving the driving distance of 50 km, the wear powder generated by friction and wear of the driving force transmission member 24 and the friction member 25 of the ultrasonic motor 17 is collected respectively. The amount of organic components present in the wear powder was measured with an X-ray microanalysis apparatus or the like. And the ratio of the organic component amount in wear powder was taken and compared. In addition, the measurement was implemented also when the organic gas molecule collection | recovery means 19 was not installed in parallel. The results are shown in Table 1.
[0035]
[Table 1]
Figure 0004299505
[0036]
From the table, it is apparent that the amount of organic components in the wear powder produced by friction and wear of the driving force transmission member 24 and the friction member 25 of the ultrasonic motor 17 is different between the case where the recovery means 19 is installed and the case where the recovery means 19 is not. As a result, it was confirmed that the amount of the organic component was smaller when the recovery means 19 was installed. In the case where the collecting means 19 was not provided, the driving characteristic was observed at a driving distance of 20 km. However, in the case where the collecting means 19 was provided, no problem occurred even after driving 500 km. From this, deposits deposited by the adhesion of organic gas molecules to the friction member 25 and the driving force transmission member 24 of the ultrasonic motor 17 are reduced between the friction member 25 and the driving force transmission member 24 when the ultrasonic motor 17 is driven. Therefore, it is possible to prevent the device from being caught in between, and thus the life of the device can be greatly improved.
[0037]
Although an exposure apparatus is shown here, it can also be applied to mask drawing using an electron beam, CD-SEM, or an apparatus used in a vacuum using extreme ultraviolet light, and is fixed to the presence or absence of a mask and the type of light source. Is not to be done.
[0038]
【The invention's effect】
According to the configuration of the present invention, in a vacuum apparatus having components that generate friction, heat generation, and electrostatic fields, by providing a recovery means for recovering organic gas molecules, the life of the components arranged in the vacuum apparatus is improved and reliability is improved. It is to improve.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an exposure apparatus which is an example of a vacuum apparatus of the present invention.
FIG. 2 is a schematic view showing an example of the recovery means of the present invention.
[Explanation of symbols]
1: exposure apparatus 10: vacuum chamber 11: lens barrel 12: aperture 13: lens 14: mask 15: electron beam 16: wafer 17: ultrasonic motor 18: stage 19: recovery means 20: cooling pipes 21, 22: exhaust Duct 23: Guide 24: Driving force transmission member 25: Friction member

Claims (6)

真空槽内に、ステージと、該ステージを移動させるための超音波モータとを備え、
前記ステージ上に載置された試料に検査、処理等を施す真空装置であって、
真空槽内に浮遊している有機ガス分子を回収して、前記有機ガス分子の前記超音波モータへの凝集を防止する回収手段を、前記超音波モータを覆うように配置したことを特徴とする真空装置。
In the vacuum chamber, provided with a stage and an ultrasonic motor for moving the stage,
A vacuum device that performs inspection, processing, etc. on a sample placed on the stage,
A recovery means for recovering organic gas molecules floating in the vacuum chamber and preventing aggregation of the organic gas molecules on the ultrasonic motor is disposed so as to cover the ultrasonic motor. Vacuum device.
前記回収手段は、内部が空洞である2重の壁面から構成され、各壁面の間に冷却用媒体を循環させた配管から成ることを特徴とする請求項1に記載の真空装置。  2. The vacuum apparatus according to claim 1, wherein the recovery unit includes a double wall surface having a hollow inside and a pipe in which a cooling medium is circulated between the wall surfaces. 前記回収手段は、前記超音波モータを覆うカバー型であることを特徴とする請求項1または2に記載の真空装置。  The vacuum apparatus according to claim 1, wherein the recovery unit is a cover type that covers the ultrasonic motor. 前記回収手段は、前記真空槽の排気ダクトから引き出したダクトと連結されるとともに、前記排気ダクトの吸引力を利用して前記有機ガス分子を回収することを特徴とする請求項1〜3の何れかに記載の真空装置。  The said collection | recovery means is connected with the duct pulled out from the exhaust duct of the said vacuum chamber, and collect | recovers the said organic gas molecule | numerators using the attraction | suction force of the said exhaust duct. A vacuum apparatus according to the above. 前記回収手段は、その表面温度を−100℃以下としたことを特徴とする請求項1〜4の何れかに記載の真空装置。  The vacuum apparatus according to claim 1, wherein the recovery means has a surface temperature of −100 ° C. or lower. 前記真空槽内に設けた部品は、電子線や紫外線を照射しマスクを介して描画を行う描画用機構部品であることを特徴とする請求項1〜5の何れかに記載の真空装置。  The vacuum apparatus according to claim 1, wherein the component provided in the vacuum chamber is a drawing mechanism component that performs drawing through a mask by irradiating an electron beam or ultraviolet rays.
JP2002188671A 2002-06-27 2002-06-27 Vacuum equipment Expired - Fee Related JP4299505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188671A JP4299505B2 (en) 2002-06-27 2002-06-27 Vacuum equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188671A JP4299505B2 (en) 2002-06-27 2002-06-27 Vacuum equipment

Publications (2)

Publication Number Publication Date
JP2004031831A JP2004031831A (en) 2004-01-29
JP4299505B2 true JP4299505B2 (en) 2009-07-22

Family

ID=31183349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188671A Expired - Fee Related JP4299505B2 (en) 2002-06-27 2002-06-27 Vacuum equipment

Country Status (1)

Country Link
JP (1) JP4299505B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191023B2 (en) * 2008-04-18 2013-04-24 株式会社ホロン Sample moving mechanism
NL2020353A (en) * 2017-04-11 2018-10-17 Asml Netherlands Bv Lithographic apparatus

Also Published As

Publication number Publication date
JP2004031831A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
RU2706713C1 (en) High-brightness short-wave radiation source
US6492067B1 (en) Removable pellicle for lithographic mask protection and handling
US20020053353A1 (en) Methods and apparatus for cleaning an object using an electron beam, and device-fabrication apparatus comprising same
JP2011522397A5 (en)
JP2005241524A (en) Scanning probe microscope and measuring method using it
JPH0142132B2 (en)
CN101971098B (en) Lithography apparatus using extreme uv radiation and having a volatile organic compounds absorbing member comprising a getter material
JP4299505B2 (en) Vacuum equipment
JP2004265992A (en) Manufacturing apparatus for composite structure object
JP4875886B2 (en) Charged particle beam equipment
JP5033374B2 (en) Charged particle beam equipment
KR101017445B1 (en) Processing apparatus and atmosphere exchange method
JP2006222198A (en) Aligner
JPH1187098A (en) Plasma processor
JP2009004647A (en) Vacuum container, evaluation method and euv lithography
JP2006114650A (en) Photolithography apparatus, scanning photolithography apparatus, device manufacturing method, original plate cleaning method, and the original plate
US7473301B2 (en) Adhesive particle shielding
JP2007329288A (en) Exposure apparatus, and device manufacturing method
JP5216389B2 (en) Charged particle beam equipment
JP2001257150A (en) Method for cleaning mask and method of manufacturing device using it, and electron beam exposure system
JP5521307B2 (en) Particle collection device and particle collection method
US20240121878A1 (en) High brightness lpp euv light source with fast rotating target and method of cooling thereof
CN115553070A (en) Contamination shield for mechanical insulation equipment
JP2004349118A (en) Method and device for detecting end point of electron beam processor
US8216386B2 (en) Atmosphere exchange method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees