JP4299500B2 - Molding method of metal molded products with excellent shape accuracy - Google Patents

Molding method of metal molded products with excellent shape accuracy Download PDF

Info

Publication number
JP4299500B2
JP4299500B2 JP2002163973A JP2002163973A JP4299500B2 JP 4299500 B2 JP4299500 B2 JP 4299500B2 JP 2002163973 A JP2002163973 A JP 2002163973A JP 2002163973 A JP2002163973 A JP 2002163973A JP 4299500 B2 JP4299500 B2 JP 4299500B2
Authority
JP
Japan
Prior art keywords
punch
product
dimensional accuracy
plate
shape accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002163973A
Other languages
Japanese (ja)
Other versions
JP2004009080A (en
Inventor
聡 鈴木
直人 平松
泰司 西村
啓至 木島
三郎 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002163973A priority Critical patent/JP4299500B2/en
Publication of JP2004009080A publication Critical patent/JP2004009080A/en
Application granted granted Critical
Publication of JP4299500B2 publication Critical patent/JP4299500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、機械部品、電子機器部品等、寸法精度が厳しく、かつ肉厚が部位により大幅に異なる金属成形部材を精度良く成形加工する方法に関する。
【0002】
【従来の技術】
近年、地球環境問題がクローズアップされ、多用な工業製品の部材としてリサイクル性に優れる金属素材の需要が増加している。このような金属部材の中でも、高速回転させて使用される部材や、組込み精度が要求される部品では、バルク材からの削り出し加工(総削り出し加工)により、要求される寸法精度をクリアしてきた。しかし、切削加工は成形に要する時間が長く、多くの加工エネルギーが必要な上、投入素材に占める使用素材の割合が低く、製造のコストアップを招くだけでなく、部品製造に必要なトータルエネルギーが多くなり、結果的に、地球環境への負荷が大きくなると言う問題があった。
【0003】
このような寸法精度が要求される一例として、ハードディスク用ハブが挙げられる。コンピュータの発達に伴い、その外部記憶媒体としてハードディスクドライブには、より多くの記憶容量が求められている。また、ハードディスクは、大記憶容量媒体としての性能とコストパフォーマンスから、コンピュータのみならず、家庭用AV機器においても、情報家電としてさらなる需要拡大が予想されている。ハードディスクは、円板形状のガラスまたはアルミニウム基板上に形成した磁気媒体に記録や読み取り(アクセス)を行うが、大容量の情報を迅速にアクセスするためには、磁気媒体の高速回転化が必要不可欠である。このため、基板を支持し、スピンドルモーターからの動力を伝達するハブも、高速回転に耐えられる寸法精度が要求されてきた。要求される寸法精度をクリアするためにハードディスク用ハブは、従来、バルク材から削り出し加工(総削り出し加工)により製造されてきた。
【0004】
総削り出し加工は、部品毎に肉厚が異なる設計にも対応可能であると言うメリットを有しているが、前記したように切削加工は成形に要する時間が長く、多くの加工エネルギーが必要な上、投入素材に占める使用素材の割合が低く、製造コストが高いものになっている。
さらに、コンピュータのみならず家庭用AV機器にもハードディスクが多用されるようになり、より一層量産に対応できるハードディスク用ハブが求められている。
【0005】
このような用途に適用するために、フェライト系ステンレス鋼棒や線材の結晶粒度を制御するとともにシャルピー遷移温度を制御することにより、冷間加工性および加工後の表面特性を向上させることが特開2001−200345号公報で提案されている。また、ステンレス鋼でカップ状部品を熱間鍛造する時に発生するスカート部の直状部の焼付きを防止し、量産性を確保するとともに金型などの寿命を改善した熱間鍛造方法が特開2001−300684号公報で提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、前者は冷間加工方法に関する技術であり、後者は焼付きを防止して量産性を確保する熱間加工方法である。いずれの方法でも、成形品内部で肉厚を制御することは困難であり、また成形加工品の形状精度もあまり良くない。
本発明者等は、金属板を素材としてプレス加工や、目標に近い形状までプレス成形した後引き続き軽度の仕上げ切削加工を行うことで問題解決を試みた。しかし、通常のプレス加工では、ポンチ底やフランジ部の肉厚を任意に制御することは困難であり、さらに板素材の塑性異方性のために、塑性流動に異方性が出てしまい、目標とする形状精度が得られない。さらに、プレス品を仕上げ切削すると、プレス加工後の応力、ひずみバランスが崩れることによって形状精度が低下すると言う問題点もある。
【0007】
本発明は、このような問題を解消すべく案出されたものであり、ハードディスク用ハブ等の機械部品や電子機器部品等を、製品部位による厚み差の付与が可能で寸法精度良く、しかも生産性良く製造する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の形状精度に優れた成形品の成形方法は、その目的を達成するため、ダイス上にポンチとは別に板押えを配置するとともに、ダイス内のポンチ挿通箇所にカウンターパンチを配置し、板押えで板状金属素材をダイスに押圧しつつ、ポンチで板状金属素材をダイス内に押込んでプレス加工する際、板押え量の調整による製品フランジ部の肉厚制御と、ポンチ押込み量とカウンターパンチ押え量の調整による製品ポンチ底部の肉厚制御とを、それぞれ独立させて制御しながら熱間プレス加工することを特徴とする。
熱間プレス加工時の温度調整は、金型の両端に配置した電極からの板状金属素材への通電加熱により行うことが好ましい。
板状素材が高い温度域に変態点を有する金属の場合、変態点以下の温度で熱間プレス加工する。
プレス加工に引き続いて切削加工してもよい。
【0009】
【作用】
通常の温度域で加工した成形品を切削加工により表面を仕上げた場合、寸法精度が著しく低下する。すなわち、冷間でのプレス成形品では、板厚方向での内部応力バランスが崩れ、寸法精度が低下し、目的の形状精度を得ることができなくなる。
これに対して、素材を加熱した状態で加工すると、耐力が低下して形状凍結性が向上するとともに、変形抵抗が低減するので塑性流動が容易化し、残留応力が低減する。したがって、切削加工により板厚方向のバランスが崩れても、総削り出し品と同等以上の優れた寸法精度が得られる。さらに、素材の塑性流動性を利用して、薄肉部から厚肉部へ素材を塑性流動させて肉盛り状態への変形を行い易くして、部位によって肉厚の異なる製品の成形を精度良く行うことができるものである。
すなわち、本発明は、素材を加熱した状態で、部位によって肉厚を独立に制御しつつ熱間プレス加工することにより、全工程を切削加工した製品と同等の形状自由度と寸法精度を有し、素材歩留まりが高く、経済的な部品を提供することができたものである。
【0010】
ところで本発明は、寸法精度に優れた成形品を得ることを目的とするものであるが、成形品の寸法精度はサイズ,形状によって異なるため、これを絶対値で定義することは困難である。一方、回転部材に使用される成形品や、平坦度が必要な成形品では、点対称、もしくは数回対称形であり、これらをまとめて寸法精度評価指数として表現し、d値とした。このd値は、中心点からの距離rにおける対称測定位置での高さ、外径等の測定値をXとして次の(1)式で表される。
ΔX/r=(Xmax−Xmin)/r ・・・・(1)
全て切削加工により得られる部品と同等以上の精度として、5.0×10−4以下のd値が必要になる。なお、回転対称形でない場合であっても、たとえば平坦度として表現される場合の部品についても、同様の寸法精度の考え方が適用できる。
また、目標厚みに対して、0.5%以内の偏差にある場合、良好な製品形状が得られた判断する。
【0011】
【実施の態様】
例えばハードディスク用ハブのように底部とフランジ部を有する形状品をプレス成形する際、製品の底部の肉厚とフランジ部の肉厚をそれぞれ独立させて制御するために、ダイスの上に板押えを配置するとともに、ダイスのポンチ挿通孔にカウンターパンチを配置した。
板押えとカウンターパンチの配置状況およびその使用態様について図1に基づいて説明する。
通常、ポンチ1とダイス2の間に板状金属素材3が挟み込まれ、プレス時にポンチ1をダイス2内の押込んで加工している。本発明では、ダイス2の上に板押え4を配置するとともに、ダイス2のポンチ挿通穴内にカウンターパンチ5を配設している。
【0012】
プレス開始時、板押え4をダイス2の上で距離t1まで降下させる。引き続き、パンチ1を押込み、カウンターパンチ5までの距離t2を設定する。この距離t2を維持しながら、パンチ1とカウンターパンチ5を同時に下げ、深さhまで絞り込んで、所定形状の成形品を作製している。
本発明では、プレス工程においてt1とt2をそれぞれ独立させて制御することにより、製品ポンチ底部とフランジ部の厚みを変え任意に制御することが可能である。すなわち、板押え4によりダイス2との距離t1が所定値になるまで押して目的のフランジ肉厚とし、さらに素材がポンチ下の製品部分から塑性流出し難い状態とすると、ポンチ下を目的の厚みt2に肉盛り可能になる。
【0013】
製品部位によって肉厚を変えたものを精度良くプレス成形するためには、素材を加熱した状態で加工することが必須である。通常の温度域で成形加工すると、素材の異方性に起因して部品形状が対称な位置であっても、塑性流動に差異が生じ、寸法精度が低下する。そこで、素材を加熱して成形加工すると、耐力が低下して形状凍結性が向上するとともに、変形抵抗が低減して塑性流動が容易化し、異方性が低くなるため、切削加工と同等以上の寸法精度が得られる。さらに、上記のように、部位毎に厚みを変えた際に、必要な部位に肉盛りができるようになるためにも、円滑な塑性流動が必須である。
【0014】
加熱温度は高いほど効果的であるが、過度に加熱すると加工中に酸化スケールが生成して肉厚が減少することになる。加熱温度よりも高い温度域に変態点を有する素材の場合には、降温時に変態し、それに伴ってひずみを生じて寸法精度が低下するため、素材毎に適正な加熱温度域を選定すべきである。
均熱時間は0秒以上あれば目的は達成される。より長時間均熱保持しても構わない。ただし、加熱保持中に酸化スケールが生成して肉厚を減少させることになるので、その上限は10分程度にとどめることが好ましい。
【0015】
なお、加熱方法は、目的の温度に加熱可能で、加工部位で均一な温度分布が得られれば特に限定されるものではないが、通電加熱が最も好ましい。金型の両端に設置した電極により板状金属素材を通電加熱して温度調整できるので、プレス加工時の温度制御を精度良く、しかも効率的に行うことができる。
他の加熱方法としては、高周波誘導加熱により素材を加熱する方法、レーザー光線により金型直上の素材を加熱する方法、あるいは金型全体を加熱炉で加熱する方法等が使用できる。
【0016】
本発明に使用する金属素材は、工業的に入手できるものであれば、特に限定されるものではない。しかし、生産性まで考慮すると、仕上げ切削工程で連続的に大量の製品を切削できることが必要である。このような観点から、ステンレス鋼であれば、本発明者等が特願2001−205349号で提案したInやSnを含むCuを主体とした第2相を所定量以上析出させた切削用鋼や、SUS303,SUS430Fなど、従来から知られているS,Pbなどの快削元素を含有した鋼、あるいはCu合金の場合、快削元素としてPbを含有した快削合金を使用することが好ましい。
【0017】
【実施例】
素材として使用した金属板の種類を表1に示す。いずれも板厚1.3mm,幅52mmの金属帯として使用した。
プレス装置の概要を図1,2に示す。金属帯を連続的に供給し、プレス金型前後に配置した電極で挟み込みながら通電加熱し、所定温度到達後、速やかにプレス加工し、引き続き大気中で冷却した。冷却後の加工品は、表面をエメリー紙で研摩し、酸化スケールを除去した。
【0018】

Figure 0004299500
【0019】
加工品の形状と寸法精度測定位置を図3に示す。一辺が50mmの長さのつば付き角筒部品であり、つば部の一辺長さを50mmに切削加工し、所定寸法とした。なお、製品フランジ部における目標厚みt1を1.1mm、ポンチ底における目標厚みを1.7mmとした。加工品の寸法精度測定位置を図3に併せて示す。加工品中心と各辺の中心位置を結んだ直線上で、加工品中心から22mmの距離にあるつば上の4点における高さhiを測定し、(1)式から求めた寸法精度をd1値、さらに加工品中心と各辺の中心位置を結んだ直線上の端面と、加工品中心位置までの距離Liを測定し、(1)式から求めた寸法精度d2値として、それぞれ評価した。
【0020】
各加工品のプレス条件と目標板厚t1,t2に対する偏差,d1値,d2値および総合判定結果を表2に示す。
いずれの素材でも、高温でプレス成形した加工番号1−2,1−3,2−2,2−3,2−4,3−1,3−2,4−1,4−2,5−1,5−2,6−1,7−1では、熱間加工ままで引き続き研摩処理した部位であるd1値、切削加工した部位であるd2値は、いずれも5.0×10−4以下であり、優れた寸法精度を示した。さらに、t1およびt2の偏差は、いずれも0.5%以下であり、良好な寸法精度が得られた。
これに対して、室温で加工した加工番号1−1,2−1では、d1値,d2値ともに5.0×10−4を超えており、さらにt1,t2の偏差も0.5%を超えており、目標の寸法精度・形状が得られなかった。また、変態点以上の温度で加工した加工番号2−5は、変態によるひずみ入ったため、寸法精度が低下していた。
【0021】
Figure 0004299500
【0022】
【発明の効果】
以上に説明したように、本発明方法によると、バルク素材からの総削り出しで加工された部品と同様に、肉厚を部位毎に変えた加工が可能であり、さらに同等の寸法精度が得られる。また、総削り出し加工品に比べて、素材歩留まりが良く、短時間で加工できるため、よりコスト安な製品が得られる。
したがって、ハードディスク用ハブ等の製造に適した、寸法精度とコスト安を兼ね備えた金属部品製造方法を提供できた。
【図面の簡単な説明】
【図1】 板押えとカウンターパンチを備えた金型の概要を説明する図
【図2】 加熱した状態でプレス成形する装置の概要を説明する図
【図3】 加工成形品の形状と寸法精度測定位置を説明する図
【符号の説明】
1:ポンチ 2:ダイス 3:板状金属素材 4:板押え
5:カウンターパンチ 6:通電電極 7:切断機 8:成形品[0001]
[Industrial application fields]
The present invention relates to a method for accurately forming a metal forming member such as a machine part, an electronic device part, etc., which has strict dimensional accuracy and whose thickness varies greatly depending on the part.
[0002]
[Prior art]
In recent years, global environmental problems have been highlighted, and the demand for metal materials that are excellent in recyclability as materials for various industrial products is increasing. Among these metal members, parts that are rotated at high speeds and parts that require assembly accuracy have cleared the required dimensional accuracy by machining from the bulk material (total machining). It was. However, cutting requires a long time for molding, requires a lot of processing energy, and the ratio of materials used in the input materials is low, which not only increases the manufacturing cost but also increases the total energy required for component manufacturing. As a result, there is a problem that the load on the global environment increases.
[0003]
As an example in which such dimensional accuracy is required, there is a hard disk hub. With the development of computers, hard disk drives are required to have more storage capacity as external storage media. Further, due to the performance and cost performance as a large storage capacity medium, demand for hard disks is expected to increase further as information home appliances not only in computers but also in home AV equipment. Hard disks record and read (access) magnetic media formed on a disk-shaped glass or aluminum substrate, but high-speed rotation of the magnetic media is indispensable to quickly access large volumes of information. It is. For this reason, the hub that supports the substrate and transmits the power from the spindle motor has also been required to have dimensional accuracy that can withstand high-speed rotation. In order to satisfy the required dimensional accuracy, hard disk hubs have heretofore been manufactured by machining from bulk materials (total machining).
[0004]
Total machining has the advantage of being able to handle designs with different wall thicknesses for each part, but as mentioned above, cutting requires a long time for molding and requires a lot of machining energy. In addition, the proportion of materials used in the input materials is low, and the manufacturing cost is high.
Furthermore, hard disks are frequently used not only for computers but also for home AV equipment, and there is a need for a hard disk hub that can further support mass production.
[0005]
In order to apply to such applications, it is possible to improve the cold workability and surface characteristics after processing by controlling the crystal grain size of ferritic stainless steel bars and wires and controlling the Charpy transition temperature. This is proposed in Japanese Patent Laid-Open No. 2001-200345. Further, there is disclosed a hot forging method that prevents seizure of the straight portion of the skirt portion that occurs when hot forging cup-shaped parts with stainless steel, ensures mass productivity and improves the life of molds, etc. This is proposed in Japanese Patent Laid-Open No. 2001-300684.
[0006]
[Problems to be solved by the invention]
However, the former is a technique related to a cold working method, and the latter is a hot working method that prevents seizure and ensures mass productivity. In either method, it is difficult to control the thickness inside the molded product, and the shape accuracy of the molded product is not very good.
The inventors of the present invention tried to solve the problem by pressing a metal plate as a raw material, or by press-molding to a shape close to a target and subsequently performing a light finish cutting. However, in normal pressing, it is difficult to arbitrarily control the thickness of the punch bottom and flange, and because of the plastic anisotropy of the plate material, anisotropy appears in the plastic flow, The target shape accuracy cannot be obtained. Furthermore, when the press product is finished and cut, there is also a problem that the shape accuracy is lowered due to the collapse of the stress and strain balance after the press work.
[0007]
The present invention has been devised to solve such a problem, and it is possible to give a thickness difference depending on the product part, such as a hard disk hub and other mechanical parts and electronic equipment parts, and to produce the parts with high dimensional accuracy. It aims at providing the method of manufacturing with sufficient property.
[0008]
[Means for Solving the Problems]
In order to achieve the object, the molding method of the molded article having excellent shape accuracy according to the present invention arranges a plate presser separately from the punch on the die, arranges a counter punch at the punch insertion point in the die, When pressing the plate metal material into the die with the presser while pressing the plate metal material into the die with the punch, the thickness control of the product flange by adjusting the plate presser amount, the punch press amount and the counter Hot pressing is performed while controlling the thickness of the bottom of the product punch by adjusting the punch press amount independently.
The temperature adjustment during hot pressing is preferably performed by energizing and heating the plate-shaped metal material from the electrodes arranged at both ends of the mold.
In the case where the plate material is a metal having a transformation point in a high temperature range, hot pressing is performed at a temperature below the transformation point.
Cutting may be performed following the press working.
[0009]
[Action]
When the surface of a molded product processed in a normal temperature range is finished by cutting, the dimensional accuracy is significantly reduced. That is, in the cold press-formed product, the internal stress balance in the thickness direction is lost, the dimensional accuracy is lowered, and the desired shape accuracy cannot be obtained.
On the other hand, when the material is processed in a heated state, the yield strength is reduced, the shape freezing property is improved, and the deformation resistance is reduced, so that the plastic flow is facilitated and the residual stress is reduced. Therefore, even if the balance in the plate thickness direction is lost by cutting, excellent dimensional accuracy equal to or better than that of the total machined product can be obtained. Furthermore, using the plastic fluidity of the material, the material can be plastically flowed from the thin part to the thick part, facilitating the deformation to the build-up state, and the products with different thicknesses can be accurately molded depending on the part. It is something that can be done.
In other words, the present invention has the same degree of freedom in shape and dimensional accuracy as a product obtained by cutting the entire process by hot pressing while controlling the thickness independently by the part while the material is heated. High material yield and economical parts could be provided.
[0010]
By the way, the present invention aims to obtain a molded product having excellent dimensional accuracy. However, since the dimensional accuracy of the molded product varies depending on the size and shape, it is difficult to define this with an absolute value. On the other hand, the molded product used for the rotating member and the molded product that requires flatness are point-symmetrical or several-symmetrical, and these are collectively expressed as a dimensional accuracy evaluation index, which is d value. This d value is expressed by the following equation (1), where X is the measured value of the height, outer diameter, etc. at the symmetrical measurement position at the distance r from the center point.
ΔX / r = (X max −X min ) / r (1)
The d value of 5.0 × 10 −4 or less is required as the accuracy equal to or higher than that of all parts obtained by cutting. Even if the shape is not rotationally symmetric, the same concept of dimensional accuracy can be applied to parts when expressed as flatness, for example.
Further, the target thickness, when in the deviation of 0.5% or less, it is determined that the good product shape is obtained.
[0011]
Embodiment
For example, when press-molding a shaped product with a bottom and a flange, such as a hard disk hub, a plate presser is placed on the die to control the thickness of the bottom of the product and the thickness of the flange independently. In addition, the counter punch was placed in the punch insertion hole of the die.
The arrangement of the plate presser and the counter punch and how they are used will be described with reference to FIG.
Usually, the plate-shaped metal material 3 is sandwiched between the punch 1 and the die 2, and the punch 1 is pushed into the die 2 and processed during pressing. In the present invention, the plate presser 4 is disposed on the die 2, and the counter punch 5 is disposed in the punch insertion hole of the die 2.
[0012]
At the start of pressing, the plate presser 4 is lowered onto the die 2 to a distance t1. Subsequently, the punch 1 is pushed in and the distance t2 to the counter punch 5 is set. While maintaining this distance t2, the punch 1 and the counter punch 5 are simultaneously lowered and squeezed to the depth h to produce a molded product having a predetermined shape.
In the present invention, by controlling t1 and t2 independently in the pressing step, it is possible to arbitrarily control the thickness of the product punch bottom and the flange. That is, when the plate retainer 4 is pressed until the distance t1 with the die 2 reaches a predetermined value to obtain a target flange thickness, and the material is difficult to plastically flow out from the product portion under the punch, the target thickness t2 under the punch is set. It becomes possible to fill up.
[0013]
In order to accurately press-mold a material whose thickness varies depending on the product site, it is essential to process the material in a heated state. When molding is performed in a normal temperature range, even if the part shape is symmetric due to the anisotropy of the material, a difference occurs in the plastic flow, and the dimensional accuracy is lowered. Therefore, when the material is heated and molded, the yield strength is reduced and the shape freezing property is improved, the deformation resistance is reduced, the plastic flow is facilitated, and the anisotropy is reduced. Dimensional accuracy is obtained. In addition, as described above, smooth plastic flow is essential in order to allow a build-up to be performed at a required part when the thickness is changed for each part.
[0014]
The higher the heating temperature is, the more effective, but if it is heated excessively, an oxide scale is generated during processing and the thickness is reduced. In the case of a material that has a transformation point in a temperature range higher than the heating temperature, transformation should occur when the temperature is lowered, resulting in distortion and a decrease in dimensional accuracy.Therefore, an appropriate heating temperature range should be selected for each material. is there.
If the soaking time is 0 second or longer, the object is achieved. You may hold soaking for a longer time. However, it is preferable that the upper limit be limited to about 10 minutes because an oxide scale is generated during heating and the thickness is reduced.
[0015]
The heating method is not particularly limited as long as it can be heated to a target temperature and a uniform temperature distribution can be obtained at the processing site, but current heating is most preferable. Since the temperature can be adjusted by energizing and heating the plate-shaped metal material with the electrodes installed at both ends of the mold, the temperature control during the press working can be performed accurately and efficiently.
As other heating methods, a method of heating the material by high frequency induction heating, a method of heating the material immediately above the mold with a laser beam, a method of heating the entire mold in a heating furnace, or the like can be used.
[0016]
The metal material used in the present invention is not particularly limited as long as it is industrially available. However, considering productivity, it is necessary to be able to cut a large amount of products continuously in the finish cutting process. From this point of view, in the case of stainless steel, the present inventors have proposed cutting steel in which a predetermined amount or more of a second phase mainly composed of Cu containing In and Sn proposed in Japanese Patent Application No. 2001-205349 is deposited. In the case of conventionally known steels containing free cutting elements such as S and Pb, such as SUS303 and SUS430F, or Cu alloys, it is preferable to use free cutting alloys containing Pb as the free cutting elements.
[0017]
【Example】
Table 1 shows the types of metal plates used as materials. All were used as metal strips with a plate thickness of 1.3 mm and a width of 52 mm.
An outline of the press apparatus is shown in FIGS. A metal strip was continuously supplied, energized and heated while being sandwiched between electrodes placed before and after the press die, and after reaching a predetermined temperature, it was quickly pressed and subsequently cooled in the atmosphere. The surface of the processed product after cooling was polished with emery paper to remove the oxide scale.
[0018]
Figure 0004299500
[0019]
FIG. 3 shows the shape and dimensional accuracy measurement position of the processed product. A square tube part with a flange having a length of 50 mm on one side, and the length of one side of the collar portion was cut to 50 mm to obtain a predetermined dimension. The target thickness t1 in the product flange portion was 1.1 mm, and the target thickness in the punch bottom portion was 1.7 mm. The dimensional accuracy measurement position of the processed product is also shown in FIG. On the straight line connecting the center of the workpiece and the center position of each side, the height hi at four points on the collar at a distance of 22 mm from the center of the workpiece is measured, and the dimensional accuracy obtained from equation (1) is expressed as d1 value. Furthermore, the distance Li to the end face on the straight line connecting the center of the workpiece and the center position of each side and the center position of the workpiece was measured and evaluated as the dimensional accuracy d2 value obtained from the equation (1).
[0020]
Table 2 shows the press conditions of each processed product, the deviations with respect to the target plate thicknesses t1 and t2, the d1 value, the d2 value, and the overall judgment result.
Any material is press-molded at a high temperature and processed number 1-2, 1-3, 2-2, 2-3, 2-4, 3-1, 3-2, 4-1, 4-2, 5- in 1,5-2,6-1,7-1, d1 value is a part continued to polishing treatment while hot working, the d2 values are site by cutting, either 5.0 × 10 -4 The following are excellent dimensional accuracy. Furthermore, the deviations of t1 and t2 were both 0.5% or less, and good dimensional accuracy was obtained.
On the other hand, in the processing numbers 1-1 and 2-1 processed at room temperature, both the d1 value and the d2 value exceeded 5.0 × 10 −4 , and the deviation between t1 and t2 was 0.5%. The target dimensional accuracy and shape were not obtained. Further, the processing number 2-5 was processed at a temperature above the transformation point, for containing the distortion due to the transformation, the dimensional accuracy was reduced.
[0021]
Figure 0004299500
[0022]
【The invention's effect】
As described above, according to the method of the present invention, it is possible to perform processing by changing the wall thickness for each part, as in the case of parts processed by total machining from a bulk material, and further obtain equivalent dimensional accuracy. It is done. In addition, since the material yield is good and processing can be performed in a short time compared to the total machined product, a product with lower cost can be obtained.
Therefore, a metal part manufacturing method suitable for manufacturing a hard disk hub or the like and having both dimensional accuracy and low cost can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an outline of a mold having a plate presser and a counter punch. FIG. 2 is a diagram for explaining an outline of an apparatus for press forming in a heated state. FIG. 3 is a shape and dimensional accuracy of a processed molded product. Illustration explaining the measurement position [Explanation of symbols]
1: Punch 2: Die 3: Plate-shaped metal material 4: Plate retainer 5: Counter punch 6: Electrode electrode 7: Cutting machine 8: Molded product

Claims (3)

ダイス上にポンチとは別に板押えを配置するとともに、ダイス内のポンチ挿通箇所にカウンターパンチを配置し、板押えで板状金属素材をダイスに押圧しつつ、ポンチで板状金属素材をダイス内に押込んでプレス加工する際、板押え量の調整による製品フランジ部の肉厚制御と、ポンチ押込み量とカウンターパンチ押え量の調整による製品ポンチ底部の肉厚制御とを、それぞれ独立させて制御しながら熱間プレス加工することを特徴とする形状精度に優れた成形品の成形方法。  A plate presser is placed on the die separately from the punch, and a counter punch is placed at the punch insertion point in the die. When pressing into the product, the thickness control of the product flange by adjusting the plate pressing amount and the thickness control of the product punch bottom by adjusting the punch pressing amount and counter punch pressing amount are controlled independently. A method for forming a molded article with excellent shape accuracy, characterized by hot pressing. 金型の両端に設置した電極により板状金属素材を通電加熱し、温度調整しながら熱間プレス加工する請求項1に記載の形状精度に優れた成形品の成形方法。  The method for forming a molded article having excellent shape accuracy according to claim 1, wherein the plate-shaped metal material is energized and heated by electrodes installed at both ends of the mold, and hot pressing is performed while adjusting the temperature. 熱間プレス加工後、切削加工する請求項1又は2に記載の形状精度に優れた成形品の成形方法。After hot pressing, according to claim 1 or 2 molding method of a molded article having excellent shape accuracy according to cutting.
JP2002163973A 2002-06-05 2002-06-05 Molding method of metal molded products with excellent shape accuracy Expired - Fee Related JP4299500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163973A JP4299500B2 (en) 2002-06-05 2002-06-05 Molding method of metal molded products with excellent shape accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163973A JP4299500B2 (en) 2002-06-05 2002-06-05 Molding method of metal molded products with excellent shape accuracy

Publications (2)

Publication Number Publication Date
JP2004009080A JP2004009080A (en) 2004-01-15
JP4299500B2 true JP4299500B2 (en) 2009-07-22

Family

ID=30432250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163973A Expired - Fee Related JP4299500B2 (en) 2002-06-05 2002-06-05 Molding method of metal molded products with excellent shape accuracy

Country Status (1)

Country Link
JP (1) JP4299500B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260761A (en) * 2006-03-30 2007-10-11 Nisshin Steel Co Ltd Hot press forming device
JP5224259B2 (en) * 2006-11-17 2013-07-03 新潟県 Plastic processing method of magnesium alloy sheet
JP5237573B2 (en) * 2007-03-30 2013-07-17 株式会社神戸製鋼所 Aluminum alloy sheet, sheet, and method for producing molded member
JP5486039B2 (en) * 2012-04-17 2014-05-07 オーディールエンタープライズ(エス) プライベイト リミティド Spacer used in magnetic disk device and magnetic disk device
KR101542969B1 (en) 2013-09-04 2015-08-07 현대자동차 주식회사 Blank forming device using electric direct heating method and the manufacturing method using this
JP6351780B1 (en) * 2017-03-17 2018-07-04 日新製鋼株式会社 Ferritic stainless steel and spacer

Also Published As

Publication number Publication date
JP2004009080A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US8252126B2 (en) Sputter targets and methods of forming same by rotary axial forging
CN102747242B (en) Method for preparing large-size hard alloy
US20080041108A1 (en) Methods for producing substrate blank, substrate and information recording medium
JP4299500B2 (en) Molding method of metal molded products with excellent shape accuracy
CN110125629B (en) High-flatness roller shear blade machining process
KR101093953B1 (en) Method of forming metal blanks for sputtering targets
JP6284666B1 (en) Manufacturing method of hard disk spacer parts
CN111715879A (en) Method for preparing various grid components with ultra-thin wall thickness by adopting 3D printing
CN108751691B (en) Production process method of multi-face trimming prism
JPS62157327A (en) Production of substrate for memory disk
CN1775391A (en) Method for manufacturing low-name oriented electrical steel sheet
JP5739552B2 (en) Method for manufacturing glass blank for magnetic disk and method for manufacturing glass substrate for magnetic disk
JP3286956B2 (en) Method for manufacturing thin plate glass, method for manufacturing glass substrate for information recording medium, and magnetic recording medium
JPH08164438A (en) Forcing method of thin disk
JP3460068B1 (en) Press molding equipment
CN115255189B (en) Method for forming rolling plate of oil film bearing
JP4052627B2 (en) Manufacturing method of glass base material, manufacturing method of disk-shaped glass and manufacturing method of information recording medium
JPH11228152A (en) Method and device for forming glass substrate
JP3995190B2 (en) Disc glass manufacturing method, glass substrate manufacturing method, and information recording medium
JP4249477B2 (en) Glass blank and method for manufacturing the same, method for manufacturing substrate for information recording medium, method for manufacturing information recording medium
JP2866646B1 (en) Glass substrate manufacturing method
JP4926898B2 (en) Disc glass, information recording medium substrate, and information recording medium manufacturing method
JPH07121464B2 (en) Method for producing intermetallic compound material
JP4227382B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JP2707681B2 (en) Method for producing crude material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4299500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees