JPH08164438A - Forcing method of thin disk - Google Patents

Forcing method of thin disk

Info

Publication number
JPH08164438A
JPH08164438A JP33202594A JP33202594A JPH08164438A JP H08164438 A JPH08164438 A JP H08164438A JP 33202594 A JP33202594 A JP 33202594A JP 33202594 A JP33202594 A JP 33202594A JP H08164438 A JPH08164438 A JP H08164438A
Authority
JP
Japan
Prior art keywords
rotary forging
reduction
die
disk
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33202594A
Other languages
Japanese (ja)
Inventor
Tomihiko Fukuyasu
富彦 福安
Masayoshi Akiyama
雅義 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33202594A priority Critical patent/JPH08164438A/en
Publication of JPH08164438A publication Critical patent/JPH08164438A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/025Special design or construction with rolling or wobbling dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/008Incremental forging

Abstract

PURPOSE: To secure the stability of stock while reducing load, to reduce outer peripheral burrs and to improve the yield of material. CONSTITUTION: In producing a thin disk by rotary forging, an inclined angle αand the number of revolution N of a forming die (upper die) are set to the range of (1.0 deg.<=α<=10.0 deg.) and (N>=60rpm). Further, a rolling reduction δ (mm/rev) per revolution of rotary forging is respectively adjusted to satisfy (δ<0.0003.α.df) at the initial stage of reduction (contacting time between forming die and material) or (δ>=0.0004.α.df) up to the neighborhood of the final stage of reduction (up to the range of t/tf>=1.2), provided, t: thickness (mm) of disk stock during forming, tf: rotary forging finished thickness (mm) of disk stock, df: rotary forging finished outer diameter (mm) of disk stock.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、薄肉ディスクを製造
するための回転鍛造成形法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary forging method for producing a thin disk.

【0002】[0002]

【従来技術とその課題】回転鍛造法は、大荷重を加えて
素材全体を一度に加工するのとは異なり、部分的加工を
繰り返すことによって全体を所望形状にまで加工する技
術であるため、比較的小さな加工力で成形できる塑性加
工手段として知られている。特に、多品種少量生産がな
されるディスク材等の製造には回転鍛造法が極めて有効
な生産手段となるが、現在、この回転鍛造法としては、
下型を回転駆動し上型を従動させて成形を行う“下型回
転形式”と下型を固定し上型を揺動させて成形を行う
“揺動ダイ形式”とが実用されている。なお、どちらの
形式の回転鍛造法でも被成形材料及び下型と上型との相
対運動は同じで成形原理自体には格別な差異はないこと
から、以下、図1に示す“下型回転形式”を例に回転鍛
造を説明する。
2. Description of the Related Art The rotary forging method is a technology for processing the entire material to a desired shape by repeating partial processing, unlike processing the entire material at once by applying a large load. It is known as a plastic working means that can be formed with a relatively small working force. In particular, the rotary forging method is an extremely effective production means for the production of disc materials and the like that are produced in small quantities for a wide variety of products.
The "lower mold rotating type" in which the lower mold is rotationally driven and the upper mold is driven to perform molding, and the "oscillating die type" in which the lower mold is fixed and the upper mold is swung to perform molding are in practical use. In both types of rotary forging methods, the relative movements of the material to be molded and the lower mold and the upper mold are the same, and there is no particular difference in the molding principle itself. "For example, rotary forging will be explained.

【0003】さて、従来、上記回転鍛造は“上型(成形
型)の傾斜角度(傾角) α",“下型の回転数N”並びに
“圧下速度v”を特定の値に設定して実施されている。
この場合、上記設定項目と成形荷重との間には下記の関
係が存在することが知られていることから、回転鍛造成
形の加工力や加工時間、とりわけ加工力ができるだけ小
さくて済むように“上型傾角α",“下型回転数N”及び
“圧下速度v”の設定には鋭意工夫が凝らされてきた。 a) 上型傾角αを大きくすると成形荷重は小さくなる, b) 下型回転数Nを大きくすると成形荷重は小さくな
る, c) 圧下速度を大きくすると成形荷重も大きくなる。
Conventionally, the rotary forging is carried out by setting the "angle of inclination (tilt) α of the upper die (molding die)", the "rotational speed N of the lower die" and the "rolling speed v" to specific values. Has been done.
In this case, it is known that the following relationship exists between the setting items and the forming load, so that the processing force and processing time of rotary forging, especially the processing force, should be as small as possible. The upper mold tilt angle α ", the" lower mold rotation speed N ", and the" rolling speed v "have been carefully devised. a) The forming load decreases as the upper die inclination angle α increases, b) the forming load decreases as the lower mold rotation speed N increases, and c) the forming load increases as the reduction speed increases.

【0004】しかしながら、この回転鍛造成形法では、
特に肉厚の薄いディスク材を成形しようとする場合には
“加工力”や“加工時間”の他にも「成形中における素
材の安定性」や「外周バリ」が大きな問題となる。なぜ
なら、薄肉ディスクの場合には、成形中材料に反りが生
じ型内での安定性が悪くなって成形作業に悪影響を及ぼ
しがちであり、また外周バリの発生が目立って材料歩留
への悪影響が顕著となりがちだからである。しかるに、
現在のところ上記問題への対処法が十分に確立されてお
らず、回転鍛造成形法によって薄肉ディスクを効率良く
安定成形できる手段が切実に望まれていた。
However, in this rotary forging method,
In particular, when forming a thin disk material, "stability of material during forming" and "outer peripheral burr" are major problems in addition to "processing force" and "processing time". This is because, in the case of a thin-walled disc, the material is warped during molding and the stability in the mold deteriorates, which tends to adversely affect the molding work. Is likely to be noticeable. However,
At present, a method for coping with the above problem has not been sufficiently established, and a means for efficiently and stably forming a thin disk by a rotary forging method has been urgently desired.

【0005】このようなことから、本発明が目的とした
のは、荷重低減を図りながらも成形中における素材の安
定性を確保し、かつ外周バリを低減して材料歩留の向上
をも可能とする薄肉ディスクの回転鍛造成形法を確立す
ることである。
Therefore, the object of the present invention is to secure the stability of the material during molding while reducing the load, and to reduce the peripheral burr to improve the material yield. It is to establish a rotary forging forming method for thin-walled discs.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく、まず薄肉ディスクを回転鍛造成形する場
合に問題となる素材の安定性阻害因子を究明すべく実験
を重ねたところ、成形中における素材の不安定につなが
る現象は、大きく分けると次の2種類に集約されること
が判明した。
Means for Solving the Problems In order to achieve the above object, the inventors of the present invention firstly conducted experiments to find out a factor for inhibiting the stability of a material which is a problem in the case of rotary forging a thin disk. It was found that the phenomena leading to instability of the material during molding are roughly classified into the following two types.

【0007】(a) 圧下初期の上型と材料が接触する時点
で上型が材料をはじき飛ばすように作用し、そのため材
料のセンタ−が外れてしまう。これは、正常な圧下状態
では下型と材料との摩擦によって材料は型から移動する
ことはないが、圧下初期には材料が下型に十分押さえ付
けられておらず、そのため下型との摩擦力が十分に作用
しないので上型の接触によって材料がずれてしまうこと
に起因するものと考えられる。 (b) 圧下終期近くになり、上型に圧下されている面の反
対側で材料が下型から浮き上がってしまい、甚だしい場
合には下型からはみ出してしまう。これは、材料が薄く
なると反りや曲がりが生じやすくなるが、回転鍛造では
上型と材料の接触面は材料上面全体ではなくて図2で示
すように一部分のみであり、そのため圧下側のメタルフ
ロ−により圧下されている部分とは反対側で材料が下型
より浮き上がることに起因するものと考えられる。
(A) When the material comes into contact with the upper mold in the initial stage of pressing, the upper mold acts to repel the material, so that the center of the material comes off. This is because the material does not move from the mold due to the friction between the lower mold and the material in the normal rolling state, but the material is not sufficiently pressed to the lower mold in the initial stage of rolling and therefore the friction with the lower mold is caused. It is considered that this is because the material does not move sufficiently due to the contact of the upper mold because the force does not sufficiently act. (b) Near the end of rolling, the material floats up from the lower die on the side opposite to the surface being pressed by the upper die, and in extreme cases, it bulges out of the lower die. This is because as the material becomes thinner, warping and bending are likely to occur, but in rotary forging, the contact surface between the upper die and the material is not the entire upper surface of the material but only a part as shown in FIG. 2, and therefore the metal flow on the pressing side is reduced. It is considered that this is because the material floats up from the lower mold on the side opposite to the part that is pressed by.

【0008】そこで、成形中での素材の不安定につなが
る上記現象を解消すべく研究を行った結果、これらの解
消には“回転鍛造の初期”と“その後から終期近くま
で”とで圧下速度(回転鍛造一回転当り圧下量)をそれ
ぞれにコントロ−ルするのが効果的であり、またこれに
よって外周バリの発生も抑制されるとの知見を得ること
ができた。
[0008] Therefore, as a result of research to eliminate the above-mentioned phenomenon leading to instability of the material during forming, the reduction rate is determined by "the initial stage of rotary forging" and "after that until the end stage". It has been found that it is effective to control (the amount of reduction per one rotation of the rotary forging) for each, and the occurrence of peripheral burrs is also suppressed by this.

【0009】即ち、前記 (a)項に示した現象(材料のズ
レ)については、圧下初期に上型が材料へ急激に食い込
まないようにゆっくりと圧下することにより防止でき、
そしてこの材料のズレが解消されることにより外周バリ
の発生が抑えられることが分かった。
That is, the phenomenon (displacement of the material) described in the item (a) can be prevented by slowly pressing down the upper die so as not to abruptly cut into the material at the initial stage of the pressing.
It was also found that the occurrence of peripheral burrs can be suppressed by eliminating this material deviation.

【0010】また、圧下終期近くに見られるところの前
記 (b)項に示した現象(材料の部分的な浮き上がり)に
ついては、圧下速度を極力速くすると上型と材料の接触
面が増えて材料の浮き上がりが防止されるものの、むや
みに圧下速度を速くすると荷重が大幅に増加してしまう
ことが分かった。しかし、“材料の成形進行程度”及び
“圧下速度”と“型からの浮き上がり傾向”との間には
特定の関係があり、これらの関係から荷重の増加を最小
限に抑えた材料の浮き上がり防止圧下速度の把握が可能
であることが明らかとなった。
Regarding the phenomenon (partial lifting of the material) described in the item (b) near the end of rolling, if the rolling speed is as fast as possible, the contact surface between the upper die and the material increases and the material Although it was possible to prevent the floating of, the load was significantly increased if the rolling speed was unnecessarily increased. However, there is a specific relationship between "the degree of progress of molding of material" and "reduction rate" and "promotion of rising from the mold". From these relationships, the prevention of material lifting that minimizes the increase in load It became clear that it is possible to grasp the rolling speed.

【0011】更に、前述したように、回転鍛造に際して
の回転鍛造機の設定は一般に上型傾角,下型回転数,圧
下速度の3条件についてなされるため、圧下速度を“残
りの2条件”と“ディスク素材の回転鍛造仕上げ外径”
との関数として整理してやれば、最終仕上げ形状が与え
られると最適圧下パタ−ンが決定でき、この圧下パタ−
ンに従うことで素材の不安定現象,バリの発生が抑制さ
れることをも確認することができた。
Further, as described above, the setting of the rotary forging machine at the time of rotary forging is generally made for the three conditions of the upper mold tilt angle, the lower mold rotation speed, and the reduction speed, so that the reduction speed is defined as "remaining two conditions". "Rotating forged outer diameter of disc material"
If it is arranged as a function of and, the optimum rolling pattern can be determined given the final finishing shape.
It was also confirmed that the instability phenomenon of the material and the generation of burrs are suppressed by following the instructions.

【0012】本発明は、上記知見事項等を基になされた
ものであり、「回転鍛造によって薄肉ディスクを製造す
るに際し、 上型の傾角α(°)と回転数N(rpm) とを 1.0 °≦ α ≦ 10.0 °, N ≧ 60rpm なる範囲に設定すると共に、 回転鍛造の一回転当り圧下
量δ(mm/rev)を、 圧下の初期(成形型と材料との接触
時)には δ < 0.0003・α・df に、また圧下の終期近くまで(t/tf ≧ 1.2の範囲)は δ ≧ 0.0004・α・df を満足する如くにそれぞれ調整しつつ成形を行うことに
より、 極力小さい加工力でもって成形中における素材の
安定性を確保しつつ、 かつ外周バリの発生を抑制しなが
ら薄肉ディスクの効率の良い回転鍛造成形ができるよう
にした点」に大きな特徴を有するものである。
The present invention is based on the above findings and the like. "When manufacturing a thin disk by rotary forging, the inclination angle α (°) of the upper die and the rotation speed N (rpm) are 1.0 °. ≦ α ≦ 10.0 °, N ≧ 60 rpm, and the reduction amount δ (mm / rev) per rotation of the rotary forging is δ <0.0003 in the initial stage of the reduction (when the die and the material are in contact).・ Α ・ df and δ ≧ 0.0004 ・ α ・ df until near end of rolling (range of t / tf ≧ 1.2) By performing the forming while adjusting each to satisfy the above conditions, while ensuring the stability of the material during forming with the smallest possible processing force, while suppressing the occurrence of peripheral burrs, efficient rotary forging of thin discs It has a great feature in that it is "moldable".

【0013】ここで、上記「回転鍛造」は“下型回転形
式",“揺動ダイ形式”の何れであっても良く、また圧下
速度をv(mm/sec),成形型の回転数をN(rpm) とすれば
回転鍛造の一回転当り圧下量δ(mm/rev)は δ = 60×v/N で表されることは言うまでもない。
Here, the above-mentioned "rotary forging" may be either a "lower die rotating type" or an "oscillating die type", the rolling speed is v (mm / sec), and the rotating speed of the forming die is Needless to say, if N (rpm) is given, the amount of reduction δ (mm / rev) per rotation of the rotary forging is represented by δ = 60 × v / N.

【作用】[Action]

【0014】以下、本発明において薄肉ディスクの回転
鍛造条件を前記の如くに限定した理由をその作用と共に
説明する。 A) 成形型(上型)の傾角α 回転鍛造では上型に傾角α(前記図1参照)を付けるこ
とで部分加工を行っているが、この角度αが 1.0°未満
では荷重低減効果は少なく、一方、10.0°を超えると荷
重低減効果が飽和し始めるばかりか、逆に材料の浮き上
がり傾向が増す等のデメリットが多なる。従って、上型
傾角α(°)は 1.0 °≦ α ≦ 10.0 ° の条件を満たすことと定めた。
Hereinafter, the reason why the rotary forging conditions for the thin disk are limited as described above in the present invention will be explained together with its action. A) Tilt angle α of forming die (upper die) In rotary forging, the upper die is given an inclination angle α (see Fig. 1) to perform partial processing. However, if this angle α is less than 1.0 °, the load reduction effect is small. On the other hand, when the angle exceeds 10.0 °, not only the load reducing effect begins to be saturated, but conversely, the tendency of the material to rise increases, which is a disadvantage. Therefore, it was determined that the upper mold tilt angle α (°) satisfies the condition of 1.0 ° ≤ α ≤ 10.0 °.

【0015】B) 成形型(下型)の回転数N 材料の加工時間を短くするためには上下型の回転数を高
くすることが必要であり、熱間加工を想定した場合には
温度降下等の関係で最低でも60rpm とすることが必要
である。従って、下型の回転数N(rpm) は N ≧ 60rpm の条件を満たすことと定めた。
B) Number of revolutions N of forming die (lower die) It is necessary to increase the number of revolutions of the upper and lower dies in order to shorten the processing time of the material, and the temperature drop when hot working is assumed. Therefore, it is necessary to set the speed to 60 rpm at least. Therefore, it has been determined that the rotation speed N (rpm) of the lower die satisfies the condition of N ≧ 60 rpm.

【0016】C) 回転鍛造の一回転当り圧下量δ 実験を繰り返しながら行われた研究により明らかとなっ
たことであるが、回転鍛造を行う際の圧下初期(上型と
材料との接触時)における一回転当り圧下量δを「δ<
0.0003・α・df」の範囲とすることで、材料と上型との
接触時に起きがちな材料の移動(ズレ)を防止すること
が可能となる。これに対して、圧下初期における一回転
当り圧下量δをこれより大きくすると材料が成形型から
ずれるようになって安定性が保てず、また外周バリが発
生するようになる。従って、圧下初期(上型と材料との
接触時)には一回転当り圧下量δ(mm/rev)を δ < 0.0003・α・df の範囲に調整することと定めた。
C) Reduction amount per rotation of rotary forging δ It was made clear by a study carried out while repeating the experiment, that is, the initial stage of reduction during rotary forging (at the time of contact between the upper die and the material). The reduction amount δ per rotation at
By setting the range to "0.0003 / α / df", it becomes possible to prevent the movement (deviation) of the material that tends to occur when the material and the upper mold are in contact with each other. On the other hand, if the amount of reduction δ per rotation in the initial stage of reduction is made larger than this, the material will be displaced from the molding die and stability will not be maintained, and peripheral burrs will occur. Therefore, it was decided to adjust the amount of reduction δ (mm / rev) per rotation in the range of δ <0.0003 · α · df in the initial stage of rolling (when the upper die and the material are in contact).

【0017】一方、上型と材料との接触してから少なく
ともディスク部の厚さtが最終仕上げ厚さtfの 1.2倍と
なる圧下の終期近くまで(t/tf ≧ 1.2)は、圧下速度
を高くしても荷重の急激な上昇は見られず、従って回転
鍛造の一回転当り圧下量δを大きくすることによって材
料の浮き上がりを防止することかできる。この場合、一
回転当り圧下量δが「δ<0.0004・α・df」の範囲であ
ると材料の浮き上がりを十分に防止することができず、
「δ≧0.0004・α・df」の範囲とすることで初めて“材
料の浮き上がり防止のために最低限必要な上型と材料と
の接触面積”が確保できて材料の浮き上がりを防止でき
ることから、上型と材料の接触後から圧下の終期近くま
で(t/tf ≧ 1.2の範囲)は一回転当り圧下量δ(mm/re
v)を δ ≧ 0.0004・α・df の範囲に調整することと定めた。なお、これ以降につい
てはメタルフロ−がそれほど多くはないので、一回転当
り圧下量δが如何ほどであっても材料の浮き上がりが生
じることはなく、従って圧延荷重が極端に高くならない
程度に一回転当り圧下量δを設定すれば良い。
On the other hand, from the contact between the upper die and the material, at least until the end of the reduction (t / tf ≧ 1.2) at which the thickness t of the disk portion becomes 1.2 times the final finish thickness tf, the reduction speed is Even if the load is increased, the load does not suddenly increase. Therefore, it is possible to prevent the material from rising by increasing the rolling reduction amount δ per rotation of the rotary forging. In this case, if the reduction amount δ per rotation is in the range of “δ <0.0004 · α · df”, it is not possible to sufficiently prevent the material from floating,
For the first time, by setting the range of “δ ≧ 0.0004 ・ α ・ df”, the minimum contact area between the upper die and the material to prevent the material from rising can be secured and the material can be prevented from rising. The amount of reduction per revolution δ (mm / re) after the contact between the die and the material until near the end of the reduction (range of t / tf ≧ 1.2)
It was decided that v) should be adjusted within the range of δ ≧ 0.0004 · α · df. Since there is not so much metal flow after this, no material is lifted up regardless of the amount of rolling reduction δ per revolution, and therefore the rolling load per revolution is not so high. It suffices to set the reduction amount δ.

【0018】続いて、本発明を実施例により説明する。Next, the present invention will be described with reference to examples.

【実施例】図1に示したような“下型回転形式”の回転
鍛造機を用い、外径が450mmφで厚さが300mmの高
炭素鋼鋼片より図3に示す形状・寸法のディスク素材を
成形する試験を実施した。
[Example] Using a "lower mold rotary type" rotary forging machine as shown in FIG. 1, a disk material having the shape and dimensions shown in FIG. 3 from a high carbon steel billet having an outer diameter of 450 mmφ and a thickness of 300 mm. The test which shape | molds was implemented.

【0019】なお、この回転鍛造成形では、上記高炭素
鋼鋼片の複数を1250℃に加熱してからスケ−ル除去
を行い、何れも下型回転数N(rpm) を90rpm 一定とす
ると共に上型傾角α (°) 及び圧下速度v(mm/sec)につ
いてはそれぞれ変化させた条件でディスク素材形状に成
形した。これら試験条件と試験結果を表1にまとめて示
す。ここで、表1に示す成形型一回転当り圧下量δは δ(mm/rev) = 60×v/N で表されることは前述した通りである。
In this rotary forging process, a plurality of the above high carbon steel billets are heated to 1250 ° C. and then the scale is removed to make the lower mold rotation speed N (rpm) constant at 90 rpm. The upper die tilt angle α (°) and the rolling speed v (mm / sec) were changed to form the disk material. Table 1 summarizes these test conditions and test results. Here, as described above, the reduction amount δ per one revolution of the forming die shown in Table 1 is represented by δ (mm / rev) = 60 × v / N.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示される結果からは次のことが確認
できる。即ち、回転鍛造成形条件が本発明の規定を満た
しておれば回転鍛造初期の素材の移動(ズレ)と浮き上
がりが共に抑制され、良好な成形性を示すのに対して、
成形型一回転当り圧下量δが本発明で規定する条件を満
たさない場合には、外周バリが発生したり、回転鍛造初
期に材料が型からはみ出して成形性を悪化すると共に外
周部にバリをも発生することが明らかである。
From the results shown in Table 1, the following can be confirmed. That is, if the rotary forging molding conditions satisfy the requirements of the present invention, both the movement (deviation) and the lifting of the material in the initial stage of rotary forging are suppressed, and good moldability is shown.
When the rolling reduction δ per one rotation of the molding die does not satisfy the conditions specified in the present invention, an outer peripheral burr is generated, or the material is extruded from the mold at the initial stage of rotary forging to deteriorate the formability and form a burr on the outer peripheral portion. It is clear that also occurs.

【0022】[0022]

【効果の総括】以上に説明した如く、この発明によれ
ば、回転鍛造により成形中に材料が下型から浮き上がる
等の不都合や外周バリの発生を抑えつつ健全形状の薄肉
ディスクを材料歩留良く安定成形できるようになるな
ど、産業上有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, a thin-walled disk having a healthy shape can be produced with a good material yield while suppressing the inconvenience such as the material being lifted from the lower die during forming by rotary forging and the occurrence of peripheral burrs. Industrially useful effects such as stable molding become possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】下型回転形式の回転鍛造に関する説明図であ
る。
FIG. 1 is an explanatory diagram related to rotary forging of a lower die rotary type.

【図2】回転鍛造時における上型と材料の接触面に関す
る説明図である。
FIG. 2 is an explanatory diagram of a contact surface between an upper die and a material during rotary forging.

【図3】実施例において製造を試みた薄肉ディスク素材
の形状・寸法に関する説明図である。
FIG. 3 is an explanatory diagram regarding the shape and dimensions of a thin-walled disc material that was attempted to be manufactured in Examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転鍛造によって薄肉ディスクを製造す
るに際し、上型の傾角α(°)と回転数N(rpm) とを 1.0 °≦ α ≦ 10.0 °, N ≧ 60rpm なる範囲に設定すると共に、回転鍛造の一回転当り圧下
量δ(mm/rev)を、圧下の初期(成形型と材料との接触
時)には δ < 0.0003・α・df に、また圧下の終期近くまで(t/tf ≧ 1.2の範囲)は δ ≧ 0.0004・α・df を満足する如くにそれぞれ調整しつつ成形を行うことを
特徴とする、薄肉ディスクの回転鍛造成形法。
1. When manufacturing a thin disk by rotary forging, the inclination angle α (°) of the upper die and the rotation speed N (rpm) are set in the range of 1.0 ° ≦ α ≦ 10.0 °, N ≧ 60 rpm, and The amount of reduction δ (mm / rev) per rotation of rotary forging is δ <0.0003 · α · df at the initial stage of rolling (when the die and the material are in contact), and until the end of rolling (t / tf). ≧ 1.2 range) is δ ≧ 0.0004 ・ α ・ df A rotary forging method for thin-walled disks, which is characterized in that the molding is performed while adjusting so as to satisfy the above conditions.
JP33202594A 1994-12-12 1994-12-12 Forcing method of thin disk Pending JPH08164438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33202594A JPH08164438A (en) 1994-12-12 1994-12-12 Forcing method of thin disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33202594A JPH08164438A (en) 1994-12-12 1994-12-12 Forcing method of thin disk

Publications (1)

Publication Number Publication Date
JPH08164438A true JPH08164438A (en) 1996-06-25

Family

ID=18250302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33202594A Pending JPH08164438A (en) 1994-12-12 1994-12-12 Forcing method of thin disk

Country Status (1)

Country Link
JP (1) JPH08164438A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014201A1 (en) * 2003-08-11 2005-02-17 Washi Kosan Co., Ltd. Method of producing wheel and the wheel
JP2012197932A (en) * 2011-03-07 2012-10-18 Jtekt Corp Manufacturing method for wheel roller bearing device
CN103418722A (en) * 2013-08-20 2013-12-04 浙江戴卡宏鑫科技有限公司 Processing method of carrying out rotary forging on forge pieces with high precision of truck hub
CN108393421A (en) * 2018-03-02 2018-08-14 武汉理工大学 Metal hand casing cold drawn section manufacturing process
CN108480539A (en) * 2018-03-02 2018-09-04 武汉理工大学 Metal notebook computer casing rotary roll method
CN111167983A (en) * 2019-12-31 2020-05-19 太原重工股份有限公司 Forging process of large cake forging with center hole and conical surface
CN114789325A (en) * 2022-03-09 2022-07-26 武汉理工大学 Double-roller rotary forging forming method for constructing large-diameter thin-wall composite metal disc

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014201A1 (en) * 2003-08-11 2005-02-17 Washi Kosan Co., Ltd. Method of producing wheel and the wheel
US7523635B2 (en) 2003-08-11 2009-04-28 Washi Kosan Co., Ltd. Method of producing wheel and the wheel
JP2012197932A (en) * 2011-03-07 2012-10-18 Jtekt Corp Manufacturing method for wheel roller bearing device
CN103418722A (en) * 2013-08-20 2013-12-04 浙江戴卡宏鑫科技有限公司 Processing method of carrying out rotary forging on forge pieces with high precision of truck hub
CN108393421A (en) * 2018-03-02 2018-08-14 武汉理工大学 Metal hand casing cold drawn section manufacturing process
CN108480539A (en) * 2018-03-02 2018-09-04 武汉理工大学 Metal notebook computer casing rotary roll method
CN111167983A (en) * 2019-12-31 2020-05-19 太原重工股份有限公司 Forging process of large cake forging with center hole and conical surface
CN114789325A (en) * 2022-03-09 2022-07-26 武汉理工大学 Double-roller rotary forging forming method for constructing large-diameter thin-wall composite metal disc

Similar Documents

Publication Publication Date Title
EP1541708B1 (en) Tantalum sputtering target and method for preparation thereof
KR101368057B1 (en) Sputter targets and methods of forming same by rotary axial forging
JP4754617B2 (en) Method for manufacturing tantalum sputtering target
JPH08164438A (en) Forcing method of thin disk
CA2066285A1 (en) Procedure for production of vehicle wheels
JP3715239B2 (en) Titanium material excellent in upset forgeability and its manufacturing method
WO2007080750A1 (en) Process for production of titanium material for sputtering
JPH082484B2 (en) Austenitic stainless steel strip-shaped slab with excellent surface quality, thin plate manufacturing method, and strip-shaped slab
CN111155060A (en) Method for manufacturing cobalt target blank
JP2004358541A (en) Method for manufacturing shaped bloom and caliber roll
JPH0857571A (en) Rotary forging method of thin thickness disk
KR100467942B1 (en) Method of Fabricating High Strength Ultrafine Grained Aluminum Alloys Plates by Constrained Groove Pressing(CGP)
CN106799423B (en) The eccentric forming device and method of bowl-type thin-wall part
JP3559207B2 (en) Cold rolling method with excellent dimensional accuracy
KR20050032451A (en) Method and apparatus for manufacturing a release strip
JPH01107937A (en) Manufacture of spiral formed body
CN113857342B (en) Method for improving friction stir incremental forming performance of thin-wall forming part
CN114193083B (en) Spinning roller preparation method suitable for spinning forming process of internal and external tooth parts
JP2848201B2 (en) Manufacturing method of unequal side unequal angle steel
JPH0557336A (en) Manufacture of forming die for lipstick
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JP3521122B2 (en) Method of manufacturing H-section steel
JPS63149025A (en) Deep drawing method and tool for deep drawing
JPH08164414A (en) Die for extruding aluminum and extruded shape excellent in surface property
JP2023035283A (en) Flow forming processing device