JP4297388B2 - Piezoelectric transformer - Google Patents

Piezoelectric transformer Download PDF

Info

Publication number
JP4297388B2
JP4297388B2 JP13121198A JP13121198A JP4297388B2 JP 4297388 B2 JP4297388 B2 JP 4297388B2 JP 13121198 A JP13121198 A JP 13121198A JP 13121198 A JP13121198 A JP 13121198A JP 4297388 B2 JP4297388 B2 JP 4297388B2
Authority
JP
Japan
Prior art keywords
piezoelectric transformer
length direction
rectangular plate
electrode
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13121198A
Other languages
Japanese (ja)
Other versions
JPH11307838A (en
Inventor
超史 勝野
良明 布田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP13121198A priority Critical patent/JP4297388B2/en
Publication of JPH11307838A publication Critical patent/JPH11307838A/en
Application granted granted Critical
Publication of JP4297388B2 publication Critical patent/JP4297388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電セラミックスよりなる矩形板の高次モードの長さ振動を用いた圧電トランスに関し、特に、前記圧電トランスの入力部、あるいは出力部を外部に電気的に接続する電極に関する。
【0002】
【従来の技術】
圧電トランスの出力電力POUTは、(1)式で与えられる。
【0003】
OUT=αkeff 22mf・・・・・・(1)
【0004】
ここで、keffは出力部の実効的な電気機械結合係数、Vは振動速度(温度上昇によって定まる実用上の限界速度)、mは圧電トランスの質量、fは駆動周波数、αは形状、振動モード等で決まる定数である。
【0005】
(1)式より、大きな出力電力POUTを得るための圧電材料に求められる条件は、より高い結合係数keffと、より高い限界振動速度Vであり、構造上に求められる条件は、より大きなαが得られる構造(設計)と、高い駆動周波数である。
【0006】
一方、長さ方向の振動は、駆動周波数fと、圧電トランスの長さ寸法lとの間に、振動の次数をnとして、
l=(定数×n)/f・・・・・・(2)
の関係がある。
【0007】
(1)式より、大きな出力電力POUTを得るために駆動周波数fを増大させようとすれば、(2)式より、長さ寸法lを減少させねばならず、そのために質量mが小さくなり、出力電力POUTが減少する。
【0008】
質量mの減少を補うため、圧電トランスの幅w、及び厚み寸法tを増大して質量mを維持しようとしても、図5に示すように、形状の影響、即ち、波長λとトランス幅寸法wの関係によって(λ/wが3.5以下では細長い形状ほどkeffは大きくなる)、実効的な結合係数keffが減少し、出力電力を増やすことはできない。このことは、厚み寸法tについても同様である。
【0009】
このとき、高い結合係数keffと、大きな質量mを維持し、更に、高い駆動周波数にして、出力電力を増大する方法として、(2)式における高次の振動(次数n)を用いることが考えられる。
【0010】
高次の振動を用いること、すなわち、振動の次数nを大きくすることで、駆動周波数fの増大に関わらず、圧電トランスの長さ寸法lのn倍を圧電トランスの長さにする事が出来るから、質量mの減少を招くことはなく、結果として出力電力POUTを増大することができる。
【0011】
図2は、高次の振動を示す説明図で、図2(a)は、nが2のときの振動子を示し、図2(b)はnが3のときの振動子を示し、図2(c)はnが6のときの振動子を示す説明図である。
【0012】
図2中、10は圧電トランスの出力部、20は圧電トランスの入力部、11は出力部の露出した内部電極、12は出力部の外部電極、21は入力部の露出した内部電極、22は入力部の外部電極を示す。
【0013】
図2(a)に示すnが2のときの振動子は、従来の圧電トランスと同じであり、図2(b)に示すnが3のときは、圧電トランスとして、結合係数keffを下げることなく体積を増やして、出力電力POUTを大きくすることができ、さらに、図2(c)に示すnが6のときは、圧電トランスの出力対大きさの比率を、格段に改善(従来比)できる。
【0014】
高次の振動を用いる圧電トランスは、図3に示すように、基本モードの長さ振動の圧電トランスを長さ方向に機械的に従属接続したものである。
【0015】
【発明が解決しようとする課題】
しかしながら、長さ振動の高次モードを用いた場合、図3に示すように、隣り合う1/2波長部分同士は、応力の位相が反転することになる。図3中、40は応力分布を示し、矢印30は、圧電トランスの端部と応力分布の対応関係を示す。
【0016】
図4は、高次モード(n=6)の圧電トランスにおける分極、及び出力の極性を説明する図で、図4(a)は分極時に印加する電圧の極性を示し、図4(b)は、出力電圧の極性を示す図である。
【0017】
圧電トランスを単一の入力電力で駆動するため、あるいは、出力側における同位相の出力電力を取り出すためには、図4に示すように、隣り合う1/2波長部分同士(図中13と14)の極性を逆に分極しておくか、あるいは同極で分極(図示せず)した後に、端子の接続を逆にする必要がある。そして、隣り合う1/2波長部分同士(図中13と14)の極性を逆に分極しておけば、隣り合う外部電極(図中15と16)の出力の極性は同じになる。
【0018】
高次モード(n次)を利用する圧電トランスの場合、長さ方向にn箇所の1/2波長部分が、存在するため、接続用端子の数の増加は避けられず、振動のノード点(図3における応力最大の部分)に端子を接続した場合でも、有限寸法の端子により、Qmが低下がしやすいという問題があった。
【0019】
特に、高出力及び高出力密度をねらう圧電トランスの場合は、僅かなQmの低下であっても、全体でのロスとしては大きくなるため、体積が小さく、従って熱容量も、放熱面積(表面積)も小さい圧電トランスでは、ロスを熱として散逸させることは難しく、わずかなロスが大きな温度上昇を引き起こすことがあった。
【0020】
また、端子の数が多いことは、部品点数、製作工数の増大を招き、原価低減の支障ともなっている。このような理由から、圧電トランスの端子の数は、可能な限り少ないことが望ましい。
【0021】
そこで、本発明の課題は、高次の振動モードを用いる圧電トランスであって端子数を少くした、温度上昇が少なく、ロスが少なく、原価低減可能な圧電トランスを提供することである。
【0022】
【課題を解決するための手段】
本発明は、圧電セラミックスよりなる矩形板の長さ方向に分極がなされ、駆動用と出力用の電極として前記矩形板の長さ方向に対向して設けられた複数の内部電極を用い、前記矩形板の長さ方向のn次(nは3以上の自然数を示す)共振モードを利用した圧電トランスであって、前記矩形板の長さ方向にn等分した部分のうちの少なくとも2箇所の部分の駆動用あるいは出力取り出し用の外部電極を、後付け電極によって電気的に接続して1つにまとめた圧電トランスである。
【0023】
また、本発明は、圧電セラミックスよりなる矩形板の長さ方向に分極がなされ、駆動用と出力用の電極として前記矩形板の長さ方向に対向して設けられた複数の内部電極を用い、前記矩形板の長さ方向のn次(nは3以上の自然数を示す)共振モードを利用した圧電トランスであって、前記矩形板の長さ方向にn等分した部分のうちのm箇所(mは2以上で、nより小さい自然数)の駆動用、あるいは出力取り出し用の外部電極を、後付け電極によって電気的に接続し、m個未満の箇所にまとめた圧電トランスである。
【0024】
また、本発明は、前記後付け電極が、導電銀よりなる上記の圧電トランスである。
【0025】
また、本発明は、前記後付け電極が、スパッタによる導体膜よりなる上記の圧電トランスである。
【0026】
また、本発明は、前記後付け電極は、めっきによる導体膜よりなる上記の圧電トランスである。
【0027】
すなわち、本発明は、上記の課題を解決するため、圧電セラミックス矩形板の長さ方向のn次(nは3以上の自然数)共振モードを利用した圧電トランスであって、矩形板の長さ方向にn等分した部分のうちの少なくとも2箇所の部分の駆動用信号入力用、あるいは出力信号取り出し用の外部電極を分極処理後、導電銀、スパッタ電極あるいはめっき電極等の後付け電極によって1つにまとめたことを特徴とする圧電トランスである。
【0028】
また、本発明は、矩形板の長さ方向にn等分した部分のうちのm箇所(m<n)の駆動用、あるいは出力信号取り出し用の外部電極を分極処理後、導電銀、スパッタ電極あるいはめっき電極等の後付け電極によってm箇所未満にまとめたことを特徴とする圧電トランスである。
【0029】
【発明の実施の形態】
本発明の実施の形態を、n=6次の高次モードの圧電トランスの出力部を例にして、図を用いて説明する。
【0030】
n=6次の高次モードの圧電トランスの出力部の外部電極は、両端から2つの1/2波長分の、計4箇所にある。
【0031】
図1に、本発明の圧電トランスを説明する図を示す。図1(a)は、圧電トランスの分極の説明図、図1(b)は従来の圧電トランス(比較例)の説明図、図1(c)は本発明の後付け電極を有する圧電トランスの説明図である。
【0032】
図1(a)に示すように、圧電トランスの隣り合う1/2波長分同士13,14を逆極性で分極し、次いで、図1(c)に示すように、隣り合う二つ出力側の電極を後付け電極であるめっきによる導体膜1で一つにまとめた。このようにして、出力部の電極を8箇所から4箇所にした本発明の圧電トランスを得て、特性の評価を行った。
【0033】
また、比較のために、図1(b)に示すように、分極後に単にリード線を付け替えて出力の位相をそろえた比較例の圧電トランスも同時に特性の評価をした。
【0034】
特性の評価としては、2種類の圧電トランスに、交流電圧AC100Vrmsを印加したときの、出力特性(Qm、温度上昇ΔT、変換効率)を測定した。測定結果を表1に示す。表中で、Qmは出力側のQmであり、これは微少振動レベルで測定した値である。
【0035】
(表1)

Figure 0004297388
【0036】
表1に示すように、リード線の数が少ない本発明の圧電トランスの方がQmが大きく、その為に、数10wの出力電力を出していても、温度上昇は少なく、変換効率も、より大きくなった。
【0037】
本実施の形態において、後付け電極として、めっきによる導体膜を用いたが、導電銀であっても、スパッタによる導体膜であっても、その効果に変わりはない。
【0038】
【発明の効果】
以上、述べたように、本発明によれば、高次の振動モードを用いる圧電トランスにおいて端子数を減少させることが可能となり、Qmの低下による効率の低下防止、温度上昇の防止、更に端子数の減少により部品点数及び工数の削減が可能となる。すなわち、本発明によれば、高次の振動モードを用いる圧電トランスであって端子数を少くした、温度上昇が少なく、ロスが少なく、原価低減可能な圧電トランスが得られる。
【図面の簡単な説明】
【図1】本発明の圧電トランスを説明する図で、図1(a)は、圧電トランスの分極を説明する図、図1(b)は従来の圧電トランス(比較例)の説明図、図1(c)は本発明の後付け電極を有する圧電トランスの説明図。
【図2】高次の振動を示す説明図、図2(a)は、nが2のときの圧電トランスを示す説明図、図2(b)はnが3のときの圧電トランスを示す説明図、図2(c)はnが6のときの圧電トランスを示す説明図。
【図3】高次モード(n=6)における応力分布を示す説明図。
【図4】高次モード(n=6)の圧電トランスにおける分極及び、出力の極性を説明する図で、図4(a)は分極時に印加する電圧の極性を示し、図4(b)は、出力電圧の極性を示す図。
【図5】波長λとトランス幅wの関係(keffに対する形状効果)を示す図。
【符号の説明】
1 (後付け電極である)導体膜
10 (圧電トランスの)出力部
11 (出力部の露出した)内部電極
12 (出力部の)外部電極
13,14 隣り合う1/2波長部分同士
15,16 隣り合う外部電極
20 (圧電トランスの)入力部
21 (入力部の露出した)内部電極
22 (入力部の)外部電極
30 (圧電トランスの端部と応力分布の対応関係を示す)矢印
40 (応力分布を示す)曲線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric transformer using a high-order mode length vibration of a rectangular plate made of piezoelectric ceramics, and more particularly to an electrode for electrically connecting an input portion or an output portion of the piezoelectric transformer to the outside.
[0002]
[Prior art]
The output power P OUT of the piezoelectric transformer is given by equation (1).
[0003]
P OUT = αk eff 2 V 2 mf (1)
[0004]
Here, k eff is the effective electromechanical coupling coefficient of the output section, V is the vibration speed (practical limit speed determined by temperature rise), m is the mass of the piezoelectric transformer, f is the drive frequency, α is the shape, and vibration It is a constant determined by the mode.
[0005]
From the equation (1), the conditions required for the piezoelectric material for obtaining a large output power P OUT are a higher coupling coefficient k eff and a higher limit vibration speed V, and the conditions required for the structure are larger. The structure (design) from which α is obtained and the high drive frequency.
[0006]
On the other hand, the vibration in the length direction is between the drive frequency f and the length dimension l of the piezoelectric transformer, where the vibration order is n,
l = (constant × n) / f (2)
There is a relationship.
[0007]
If the drive frequency f is increased in order to obtain a large output power P OUT from the equation (1), the length dimension l must be decreased from the equation (2), and the mass m is reduced accordingly. The output power P OUT decreases.
[0008]
In order to compensate for the decrease in the mass m, if the mass m is maintained by increasing the width w and the thickness dimension t of the piezoelectric transformer, the influence of the shape, that is, the wavelength λ and the transformer width dimension w as shown in FIG. ( K.sub.eff becomes larger as .lamda. / W is less than 3.5), the effective coupling coefficient k.sub.eff decreases and the output power cannot be increased. The same applies to the thickness dimension t.
[0009]
At this time, as a method of increasing the output power by maintaining a high coupling coefficient k eff and a large mass m, and further increasing the output power, the higher order vibration (order n) in the equation (2) is used. Conceivable.
[0010]
By using higher-order vibrations, that is, by increasing the vibration order n, the length of the piezoelectric transformer can be made to be n times the length dimension l of the piezoelectric transformer regardless of the increase in the driving frequency f. Therefore, the mass m is not reduced, and as a result, the output power P OUT can be increased.
[0011]
2A and 2B are explanatory diagrams showing high-order vibrations. FIG. 2A shows a vibrator when n is 2, FIG. 2B shows a vibrator when n is 3, and FIG. 2 (c) is an explanatory diagram showing the vibrator when n is 6. FIG.
[0012]
In FIG. 2, 10 is the output part of the piezoelectric transformer, 20 is the input part of the piezoelectric transformer, 11 is the exposed internal electrode of the output part, 12 is the external electrode of the output part, 21 is the exposed internal electrode of the input part, 22 is The external electrode of an input part is shown.
[0013]
The vibrator when n is 2 shown in FIG. 2A is the same as a conventional piezoelectric transformer, and when n is 3 shown in FIG. 2B, the coupling coefficient k eff is lowered as a piezoelectric transformer. The output power P OUT can be increased without increasing the volume, and when n shown in FIG. 2 (c) is 6, the ratio of output to size of the piezoelectric transformer is greatly improved (conventional). Ratio).
[0014]
As shown in FIG. 3, the piezoelectric transformer using higher-order vibration is obtained by mechanically connecting a piezoelectric transformer having a length vibration in a basic mode in the longitudinal direction.
[0015]
[Problems to be solved by the invention]
However, when a high-order mode of length vibration is used, the stress phase is inverted between adjacent half-wavelength portions as shown in FIG. In FIG. 3, 40 indicates the stress distribution, and the arrow 30 indicates the correspondence between the end of the piezoelectric transformer and the stress distribution.
[0016]
FIG. 4 is a diagram for explaining the polarization and output polarity in the high-order mode (n = 6) piezoelectric transformer. FIG. 4 (a) shows the polarity of the voltage applied during polarization, and FIG. It is a figure which shows the polarity of an output voltage.
[0017]
In order to drive the piezoelectric transformer with a single input power or to extract the output power of the same phase on the output side, as shown in FIG. It is necessary to reverse the polarity of the terminal) or to reverse the terminal connection after polarization (not shown) with the same polarity. Then, if the polarities of the adjacent ½ wavelength portions (13 and 14 in the figure) are reversed, the polarities of the outputs of the adjacent external electrodes (15 and 16 in the figure) become the same.
[0018]
In the case of a piezoelectric transformer using a high-order mode (n-order), since there are n half-wavelength portions in the length direction, an increase in the number of connection terminals is inevitable, and the vibration node point ( Even when a terminal is connected to the portion having the maximum stress in FIG. 3, there is a problem in that Qm tends to decrease due to the terminal having a finite dimension.
[0019]
In particular, in the case of a piezoelectric transformer aiming at high output and high output density, even a slight decrease in Qm increases the overall loss, so the volume is small, and therefore the heat capacity and heat dissipation area (surface area) are both small. With a small piezoelectric transformer, it is difficult to dissipate the loss as heat, and a slight loss may cause a large temperature increase.
[0020]
In addition, the large number of terminals leads to an increase in the number of parts and the number of manufacturing steps, which also hinders cost reduction. For these reasons, it is desirable that the number of terminals of the piezoelectric transformer is as small as possible.
[0021]
SUMMARY OF THE INVENTION An object of the present invention is to provide a piezoelectric transformer that uses a higher-order vibration mode and has a reduced number of terminals, a small temperature rise, a small loss, and a cost reduction.
[0022]
[Means for Solving the Problems]
The present invention uses a plurality of internal electrodes which are polarized in the length direction of a rectangular plate made of piezoelectric ceramics, and are provided as driving and output electrodes so as to face each other in the length direction of the rectangular plate. A piezoelectric transformer using an n-order (n is a natural number of 3 or more) resonance mode in the length direction of the plate, and at least two portions among the portions equally divided in the length direction of the rectangular plate This is a piezoelectric transformer in which external electrodes for driving or taking out outputs are connected together by a post-attached electrode.
[0023]
Further, the present invention uses a plurality of internal electrodes that are polarized in the length direction of a rectangular plate made of piezoelectric ceramics and are provided facing the length direction of the rectangular plate as driving and output electrodes, the length of the rectangular plate direction of the n-th order (n represents 3 or more natural number) a piezoelectric transformer which utilizes a resonance mode, m portions of the longitudinal direction in n equal portions of the rectangular plate ( m is a piezoelectric transformer in which external electrodes for driving or output taking out (natural number smaller than n) is equal to or greater than 2 and electrically connected by post-attached electrodes and collected in less than m locations.
[0024]
The present invention is the above-described piezoelectric transformer, wherein the post-attached electrode is made of conductive silver.
[0025]
The present invention is also the above-described piezoelectric transformer, wherein the post-attached electrode is made of a conductor film formed by sputtering.
[0026]
The present invention is the above-described piezoelectric transformer, wherein the post-attached electrode is made of a conductor film formed by plating.
[0027]
That is, the present invention is a piezoelectric transformer using an n-order (n is a natural number of 3 or more) resonance mode in the length direction of a piezoelectric ceramic rectangular plate in order to solve the above-described problem, The external electrodes for driving signal input or output signal extraction in at least two parts of the parts divided into n equal to n are subjected to polarization treatment, and then are combined into one by a retrofitted electrode such as conductive silver, sputter electrode or plating electrode The piezoelectric transformer is characterized by being summarized.
[0028]
Further, the present invention provides a conductive silver, sputter electrode after polarization of an external electrode for driving m points (m <n) or for taking out an output signal of n portions equally divided in the length direction of the rectangular plate. Alternatively, the piezoelectric transformer is characterized in that it is gathered to less than m places by a post-attached electrode such as a plating electrode.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described with reference to the drawings, taking as an example the output part of a piezoelectric transformer of n = 6th order higher-order mode.
[0030]
The external electrodes of the output part of the n = 6th-order higher-order mode piezoelectric transformer are located at a total of four locations corresponding to two ½ wavelengths from both ends.
[0031]
FIG. 1 is a diagram illustrating a piezoelectric transformer according to the present invention. 1A is an explanatory diagram of polarization of a piezoelectric transformer, FIG. 1B is an explanatory diagram of a conventional piezoelectric transformer (comparative example), and FIG. 1C is an explanatory diagram of a piezoelectric transformer having a retrofit electrode of the present invention. FIG.
[0032]
As shown in FIG. 1A, adjacent half-wavelengths 13 and 14 of the piezoelectric transformer are polarized with opposite polarities, and then, as shown in FIG. The electrodes were combined into a conductor film 1 formed by plating, which is a retrofit electrode. Thus, the piezoelectric transformer of the present invention in which the number of electrodes of the output portion was changed from 8 to 4 was obtained, and the characteristics were evaluated.
[0033]
For comparison, as shown in FIG. 1B, the characteristics of the piezoelectric transformer of the comparative example in which the lead wire is simply changed after polarization and the phases of the outputs are aligned were simultaneously evaluated.
[0034]
As an evaluation of the characteristics, output characteristics (Qm, temperature rise ΔT, conversion efficiency) when an AC voltage AC 100 Vrms was applied to two types of piezoelectric transformers were measured. The measurement results are shown in Table 1. In the table, Qm is Qm on the output side, which is a value measured at a minute vibration level.
[0035]
(Table 1)
Figure 0004297388
[0036]
As shown in Table 1, the piezoelectric transformer of the present invention with a small number of lead wires has a larger Qm. Therefore, even if output power of several tens of w is output, the temperature rise is small, and the conversion efficiency is further improved. It became bigger.
[0037]
In the present embodiment, a conductive film by plating is used as a retrofit electrode. However, the effect remains the same regardless of whether it is conductive silver or a conductive film by sputtering.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce the number of terminals in a piezoelectric transformer using a high-order vibration mode, thereby preventing a decrease in efficiency due to a decrease in Qm, preventing an increase in temperature, and further the number of terminals. By reducing the number of parts, the number of parts and the number of man-hours can be reduced. That is, according to the present invention, it is possible to obtain a piezoelectric transformer that uses a high-order vibration mode and that has a reduced number of terminals, a small temperature rise, a small loss, and a low cost.
[Brief description of the drawings]
1A and 1B are diagrams illustrating a piezoelectric transformer according to the present invention, in which FIG. 1A illustrates the polarization of the piezoelectric transformer, FIG. 1B illustrates a conventional piezoelectric transformer (comparative example), and FIG. 1 (c) is an explanatory view of a piezoelectric transformer having a retrofit electrode of the present invention.
2A and 2B are explanatory diagrams showing high-order vibration, FIG. 2A is an explanatory diagram showing a piezoelectric transformer when n is 2, and FIG. 2B is an explanatory diagram showing a piezoelectric transformer when n is 3. FIG. FIG. 2 and FIG. 2C are explanatory views showing the piezoelectric transformer when n is 6. FIG.
FIG. 3 is an explanatory diagram showing stress distribution in a higher-order mode (n = 6).
4A and 4B are diagrams for explaining polarization and output polarity in a high-order mode (n = 6) piezoelectric transformer. FIG. 4A shows the polarity of a voltage applied during polarization, and FIG. The figure which shows the polarity of an output voltage.
FIG. 5 is a graph showing the relationship between wavelength λ and transformer width w (shape effect on k eff ).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conductor film | membrane 10 (it is an after-mentioned electrode) Output part 11 (Piezoelectric transformer) Output part 11 (Output part exposed) Internal electrode 12 (Output part) External electrode 13,14 Adjacent 1/2 wavelength parts 15,16 Adjacent Matching external electrode 20 (Piezoelectric transformer) Input part 21 (Input part exposed) Internal electrode 22 (Input part) External electrode 30 (Indicating the correspondence between the ends of the piezoelectric transformer and the stress distribution) Arrow 40 (Stress distribution Curve)

Claims (5)

圧電セラミックスよりなる矩形板の長さ方向に分極がなされ、駆動用と出力用の電極として前記矩形板の長さ方向に対向して設けられた複数の内部電極を用い、前記矩形板の長さ方向のn次(nは3以上の自然数を示す)共振モードを利用した圧電トランスであって、前記矩形板の長さ方向にn等分した部分のうちの少なくとも2箇所の部分の駆動用あるいは出力取り出し用の外部電極を、後付け電極によって電気的に接続して1つにまとめたことを特徴とする圧電トランス。The rectangular plate made of piezoelectric ceramics is polarized in the length direction, and a plurality of internal electrodes provided facing the length direction of the rectangular plate are used as driving and output electrodes. A piezoelectric transformer using an n-order resonance mode (where n is a natural number of 3 or more) resonance mode, for driving at least two portions of the rectangular plate divided in the length direction, or A piezoelectric transformer characterized in that external electrodes for taking out outputs are electrically connected by a retrofit electrode to be integrated into one. 圧電セラミックスよりなる矩形板の長さ方向に分極がなされ、駆動用と出力用の電極として前記矩形板の長さ方向に対向して設けられた複数の内部電極を用い、前記矩形板の長さ方向のn次(nは3以上の自然数を示す)共振モードを利用した圧電トランスであって、前記矩形板の長さ方向にn等分した部分のうちのm箇所(mは2以上で、nより小さい自然数)の駆動用、あるいは出力取り出し用の外部電極を、後付け電極によって電気的に接続しm個未満の箇所にまとめたことを特徴とする圧電トランス。The rectangular plate made of piezoelectric ceramics is polarized in the length direction, and a plurality of internal electrodes provided facing the length direction of the rectangular plate are used as driving and output electrodes. A piezoelectric transformer using an n-order resonance mode (where n is a natural number of 3 or more) resonance mode, and m parts (m is 2 or more) of n parts equally divided in the length direction of the rectangular plate A piezoelectric transformer characterized in that external electrodes for driving or taking out outputs (natural number smaller than n) are electrically connected by post-attached electrodes and collected in less than m locations. 前記後付け電極は、導電銀よりなることを特徴とする請求項1または2記載の圧電トランス。  The piezoelectric transformer according to claim 1, wherein the post-attached electrode is made of conductive silver. 前記後付け電極は、スパッタによる導体膜よりなることを特徴とする請求項1または2記載の圧電トランス。  The piezoelectric transformer according to claim 1, wherein the post-attached electrode is made of a conductor film formed by sputtering. 前記後付け電極は、めっきによる導体膜よりなることを特徴とする請求項1または2記載の圧電トランス。  The piezoelectric transformer according to claim 1, wherein the post-attached electrode is made of a conductive film formed by plating.
JP13121198A 1998-04-24 1998-04-24 Piezoelectric transformer Expired - Fee Related JP4297388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13121198A JP4297388B2 (en) 1998-04-24 1998-04-24 Piezoelectric transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13121198A JP4297388B2 (en) 1998-04-24 1998-04-24 Piezoelectric transformer

Publications (2)

Publication Number Publication Date
JPH11307838A JPH11307838A (en) 1999-11-05
JP4297388B2 true JP4297388B2 (en) 2009-07-15

Family

ID=15052646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13121198A Expired - Fee Related JP4297388B2 (en) 1998-04-24 1998-04-24 Piezoelectric transformer

Country Status (1)

Country Link
JP (1) JP4297388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847472B2 (en) 2012-11-13 2017-12-19 Murata Manufacturing Co., Ltd. Piezoelectric transformer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172286B2 (en) * 2013-10-03 2017-08-02 株式会社村田製作所 Power receiving device and power transmitting device for wireless power transmission system
CN104064668B (en) * 2014-06-05 2017-01-18 中国科学院苏州生物医学工程技术研究所 Piezoelectric transformer for outputting voltages based on stress change

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847472B2 (en) 2012-11-13 2017-12-19 Murata Manufacturing Co., Ltd. Piezoelectric transformer

Also Published As

Publication number Publication date
JPH11307838A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US5576590A (en) Piezoelectric ceramic transformer
JP2508575B2 (en) Piezoelectric transformer and its driving method
JP2606667B2 (en) Piezoelectric transformer and driving method thereof
US6608428B2 (en) Longitudinally coupled multi-mode piezoelectric filter
US5818150A (en) Four-terminal piezoelectric ceramic transformer
JP4297388B2 (en) Piezoelectric transformer
JP2643810B2 (en) Piezoelectric transformer and its driving method
JP2581394B2 (en) Piezoelectric transformer and driving method thereof
JP2508964B2 (en) Piezoelectric transformer and driving method thereof
JP2555985B2 (en) Piezoelectric transformer and its driving method
JP2725603B2 (en) Piezoelectric transformer and its driving method
JP2576648B2 (en) Thickness longitudinal vibration piezoelectric transformer and its driving method
JP2940282B2 (en) Thickness vertical vibration piezoelectric transformer and method of driving the same
JP2755177B2 (en) Piezoelectric transformer
JP2727969B2 (en) Method of manufacturing piezoelectric ceramic transformer having comb-shaped electrode
JP2757561B2 (en) Thickness longitudinal vibration piezoelectric transformer and its driving method
JP2531087B2 (en) Piezoelectric transformer and driving method thereof
JP3673433B2 (en) Piezoelectric transformer
JP3709114B2 (en) Piezoelectric transformer
JP4831859B2 (en) Piezoelectric transformer
JP3010896B2 (en) Piezoelectric transformer and its driving method
JP2904137B2 (en) Multilayer piezoelectric transformer
JP2508575C (en)
JP3510516B2 (en) Piezoelectric transformer
JP2001068753A (en) Piezoelectric transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees