JP4296849B2 - Powder coating method and powder coating apparatus - Google Patents
Powder coating method and powder coating apparatus Download PDFInfo
- Publication number
- JP4296849B2 JP4296849B2 JP2003158944A JP2003158944A JP4296849B2 JP 4296849 B2 JP4296849 B2 JP 4296849B2 JP 2003158944 A JP2003158944 A JP 2003158944A JP 2003158944 A JP2003158944 A JP 2003158944A JP 4296849 B2 JP4296849 B2 JP 4296849B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- powder
- powder coating
- test example
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrostatic Spraying Apparatus (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は粉体塗装方法および粉体塗装装置に関する。
【0002】
【従来の技術】
地球環境への影響と環境意識の高まりから近年、溶剤塗装から粉体塗装への移行が急速に進められている。従来、一般的に平均粒子径が35〜50μmの粉体塗料が使用されているが、溶剤塗装と比較して平滑性がかなり劣っていた。溶剤塗装なみの外観を要求される製品も多く、粉体塗装への移行を広げ、環境改善を進めるために平滑性が優れた粉体塗装を実現することが求められている。
【0003】
その目的のために平均粒子径が25μm以下の粉体塗料が使用され始めてきている。例えば、特許文献1のように平均粒子径が5〜20μmの粉体を使用する粉体流動層を用いる静電粉体塗装方法が提案されている。
【0004】
【特許文献1】
特開平10−120945号公報([0012])
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1のような平均粒子径が小さい粉体塗料を使用しても十分な平滑性が得られない問題点があった。平均粒子径が小さすぎる場合には逆に平滑性が悪くなる問題点があった。
【0006】
本発明は上記課題を解決したもので、平滑性に優れた塗膜が形成できる粉体塗装方法および粉体塗装装置を提供する。
【0007】
上記技術的課題を解決するために、本発明の請求項1において講じた技術的手段(以下、第1の技術的手段と称する。)は、第1粉体塗料を被塗物に粉体塗装する第1塗装工程と、該第1塗装工程で前記第1粉体塗料が塗装された前記被塗物に前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を粉体塗装する第2塗装工程が設けられ、第1塗装工程および第2塗装工程は粉体塗料を帯電させ被塗物に向かって吐出させて粉体塗装する静電粉体塗装であり、第1粉体塗料の吐出量が第2粉体塗料の吐出量以下であることを特徴とする粉体塗装方法である。
【0008】
上記第1の技術的手段による効果は、以下のようである。
【0009】
上記第1の技術的手段による効果は、以下のようである。すなわち、第1塗装工程で平均粒子径の大きい粉体塗料を粉体塗装し、その上に第2塗装工程で平均粒子径の小さい粉体塗料を粉体塗装するので、平滑性に優れた塗膜が形成でき、第1粉体塗料の吐出量が第2粉体塗料の吐出量以下であるので、より平滑性に優れた塗膜を形成できる。
【0010】
上記技術的課題を解決するために、本発明の請求項2において講じた技術的手段(以下、第2の技術的手段と称する。)は、前記第1塗装工程および前記第2塗装工程は粉体塗料を帯電させて粉体塗装する静電粉体塗装であり、前記第1粉体塗料の帯電印加電圧が前記第2粉体塗料の帯電印加電圧より低いことを特徴とする請求項1記載の粉体塗装方法である。
【0011】
上記第2の技術的手段による効果は、以下のようである。
【0012】
すなわち、第1粉体塗料の帯電印加電圧が第2粉体塗料の帯電印加電圧より低いので、第1粉体塗料の塗膜の帯電密度(単位面積当たりの帯電量)が小さく、かつその塗膜の上に大きな静電力により第2粉体塗料が塗装されるので、より平滑性に優れた塗膜を形成できる。
【0013】
上記技術的課題を解決するために、本発明の請求項3において講じた技術的手段(以下、第3の技術的手段と称する。)は、前記第1塗装工程および前記第2塗装工程は粉体塗料を帯電させ前記被塗物に向かって吐出させて粉体塗装する静電粉体塗装であり、前記第1粉体塗料の吐出量が前記第2粉体塗料の吐出量以下であることを特徴とする請求項1記載の粉体塗装方法である。
【0022】
【発明の実施の形態】
本発明者は平均粒子径が小さい粉体塗料を使用しても塗膜の平滑性が十分に向上しない原因を考察した。粉体塗料は、粒子径が異なる粒子が集合している。粉体塗装の際に、粒子径の大きい粒子から付着し、粒子径の小さい粒子は付着しにくい現象が見られる。これが平滑性が十分に向上できない原因と推察された。また静電粉体塗装方法や電界流動浸漬法のように静電気を使用した塗装方法では、平均粒子径が小さい粒子を使用すると、塗膜で静電反発が強くなり、塗面にゆず肌が生じ塗膜の平滑性を悪化させていた。粒子径が小さい粒子は比表面積が大きく、粒子の体積当たりの帯電量が大きいためと推察された。本発明者は、これらの推察をもとに鋭意研究し本発明に至った。
【0023】
平均粒子径が異なる2種類の粉体塗料を用意し、はじめに第1塗装工程で平均粒子径の大きい粉体塗料を粉体塗装し、次に第2塗装工程で、第1塗装工程で形成された塗膜上に平均粒子径の小さい粉体塗料を粉体塗装する。こうすることによって、平均粒子径の大きい粉体塗料と小さい粉体塗料を別々に粉体塗装するので、粒子径の小さい粒子が大きい粒子に妨げられた付着しにくい現象をなくすことができる。また第1塗装工程で大きい粒子で形成された塗膜の凹凸すなわち大きい粒子の隙間が第2塗装工程の小さな粒子で埋まるように塗装するため、効果的に小さな粒子を付着させることができ、平滑性に優れた塗膜が形成できる。さらに第1塗装工程では大きな粒子により塗膜が形成されるため、形成された塗膜の帯電密度が低いので、静電反発が少なく、ゆず肌の発生がなくなり平滑性に優れた塗膜が形成できる。
【0024】
第1塗装工程と第2塗装工程が分かれているので、平均粒子径が大きい粉体塗料を塗装する場合と、平均粒子径が大きい粉体塗料を塗装する場合で、それぞれに適した粉体塗装条件を設定できる。特に第2塗装工程において、粉体塗料の帯電量を制御することにより、静電反発を減少させ、ゆず肌の発生をなくすことができる。
【0025】
以下、本発明の実施形態について、図面に基づいて説明する。図1は実施形態の粉体塗装装置を説明する説明図である。この粉体塗装装置は、粉体塗料を帯電させ被塗物に向かって吐出させて粉体塗装する静電粉体塗装装置である。原料粉体塗料タンク1、サイクロン式分級器(分級装置)2、粗粉粉体塗装部10、微粉粉体塗装部20、粉体塗料回収装置4、塗装ブース3などから構成されている。
【0026】
粗粉粉体塗装部10は、粗粉粉体塗料タンク11、エジェクタ12、高電圧発生装置13、静電スプレーガン14などから構成されている。エジェクタ12は粗粉粉体塗料タンク11に連結されており、粗粉粉体塗料タンク11内の粉体塗料を粉体塗料輸送管路15を介して塗装ブース3内に設けられた静電スプレーガン14に輸送するものである。高電圧発生装置13は静電スプレーガン14と高圧電線16を介して連結されている。
【0027】
同様に、微粉粉体塗装部20は、微粉粉体塗料タンク21、エジェクタ22、高電圧発生装置23、静電スプレーガン24などから構成されている。エジェクタ22は微粉粉体塗料タンク21に連結されており、微粉粉体塗料タンク21内の粉体塗料を粉体塗料輸送管路25を介して塗装ブース3内に設けられた静電スプレーガン24に輸送するものである。高電圧発生装置23は静電スプレーガン24と高圧電線26を介して連結されている。
【0028】
原料粉体塗料タンク1にはサイクロン式分級器2が連結されている。サイクロン式分級器2は粉体塗料輸送管路5を介して粗粉粉体塗料タンク11に連結され、粉体塗料輸送管路6を介して微粉粉体塗料タンク21に連結されている。
【0029】
塗装ブース3内の被塗物に付着しなかった余剰の粉体塗料が粉体回収管路7を介して粉体塗料回収装置4に送られるように構成されている。粉体塗料回収装置4は粉体回収管路8を介して粉体塗料タンク1に連結されている。
【0030】
9a、9bは被塗物であり、それぞれ塗装ブース3内にアースされて設置され、被塗物9aの位置から被塗物9bの位置に順次移動するようになっている。
【0031】
原料粉体塗料タンク1内の原料粉体塗料はサイクロン式分級器2に送られ、平均粒子径が大きい粗粉粉体塗料(第1粉体塗料)と平均粒子径が小さい微粉粉体塗料(第2粉体塗料)に分級される。分級された粗粉粉体塗料は粉体塗料輸送管路5を介して粗粉粉体塗料タンク11に輸送され貯蔵され、微粉粉体塗料は粉体塗料輸送管路6を介して微粉粉体塗料タンク21に輸送され貯蔵される。
【0032】
粗粉粉体塗料タンク11に貯蔵されている粗粉粉体塗料はエジェクタ12により静電スプレーガン14に供給される。静電スプレーガン14に供給された粗粉粉体塗料は高電圧発生装置13により負に荷電され被塗物6aに向かってスプレーされる。スプレーされた粗粉粉体塗料は、接地されている被塗物6aに付着し、塗膜を形成する。
【0033】
同様に、微粉粉体塗料タンク21に貯蔵されている微粉粉体塗料はエジェクタ22により静電スプレーガン24に供給される。静電スプレーガン24に供給された微粉粉体塗料は高電圧発生装置23により負に荷電され被塗物6bに向かってスプレーされる。スプレーされた微粉粉体塗料は、接地されている被塗物6bに付着し、塗膜を形成する。
【0034】
被塗物は、はじめに被塗物6aの位置に移動され粗粉粉体塗料が静電粉体塗装される(第1塗装工程)。次に被塗物は被塗物6bの位置に移動され微粉粉体塗料が静電粉体塗装される(第2塗装工程)。
【0035】
第1塗装工程、第2塗装工程で被塗物に付着しなかった粉体塗料は、粉体回収管路7を介して粉体塗料回収装置4に回収され、粉体回収管路8を介して原料粉体塗料タンク1に戻される。
【0036】
この粉体塗装装置を使用して、以下の粉体塗装試験を実施した。
【0037】
(試験例1)
被塗物としてアルミテストパネル(日本テストパネル株式会社製 アルミ材A1050 縦150mm、横70mm、厚さ0.8mm)の一方面をスプレー側に向けて塗装した。粉体塗料としてポリエステル樹脂粉体塗料を使用した。以下のすべての試験例で、同様の被塗物を使用し、同じ材質の粉体塗料を使用した。
【0038】
第1塗装工程では平均粒子径40μmの粉体塗料を使用し、吐出量60g/分、印加電圧40kVの条件で静電粉体塗装を5秒間行った。第2塗装工程では平均粒子径15μmの粉体塗料を使用し、吐出量60g/分、印加電圧40kVの条件で静電粉体塗装を5秒間行った。平均粒子径は、株式会社島津製作所製のレーザー回析式粒度分布測定器SALD−2000Jで粒度分布を測定し、ふるい下積算体積百分率が50%の粒子径Dp50で表している。
【0039】
第1塗装工程後、第2塗装工程後それぞれで塗装膜厚を電磁式膜厚計(Kett社製LZ−330J)によって測定した。第2塗装工程後の塗装膜厚は塗装総膜厚であり、第2塗装工程の塗装膜厚は塗装総膜厚と第1塗装工程の塗装膜厚の差を計算して求めた。
【0040】
形成された塗膜の平滑性について、表面粗さ計TAYLOR HOBSON(Form Talysurf Series)を用い、測定長さ15mm、縦倍率1万倍で測定した表面形状の振幅の5点平均値を計算したうねり振幅で評価した。
【0041】
(試験例2)
第1塗装工程で平均粒子径36μmの粉体塗料を使用し、第2塗装工程では平均粒子径21μmの粉体塗料を使用した以外は、試験例1と同じ条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0042】
(試験例3)
第1塗装工程、第2塗装工程とも平均粒子径25μmの粉体塗料を使用した以外は、試験例1と同じ条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。試験例3では原料粉体塗料タンク1内の原料粉体塗料を分級せずに使用した。試験例1、2では、この原料粉体塗料をサイクロン式分級器2で分級して使用している。
【0043】
(試験例4)
平均粒子径25μmの粉体塗料を使用し第1塗装工程のみで試験例1と同様の条件で静電粉体塗装した。ただし、塗装総膜厚が上記した試験例と同じになるように塗装時間を10秒間にした。以下の試験例5、6でも同じ塗装時間である。膜厚の測定や平滑性の評価は試験例1と同様に行った。
【0044】
(試験例5)
サイクロン式分級器2で分級された平均粒子径15μmの粉体塗料を使用し、微粉粉体塗装部20を使用して試験例4と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価は試験例1と同様に行った。
【0045】
(試験例6)
サイクロン式分級器2で分級された平均粒子径40μmの粉体塗料を使用し、粗粉粉体塗装部10を使用して試験例4と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価は試験例1と同様に行った。
【0046】
(試験結果1)
表1に試験例1〜試験例6の評価結果を示す。
【表1】
試験例4〜試験例6は、一度に塗膜を形成する従来の静電粉体塗装方法を用いた試験例である。平均粒子径40μm(試験例6)から平均粒子径25μm(試験例4)に平均粒子径が小さくなるとうねり振幅も小さくなっている。しかし平均粒子径がさらに小さい15μm(試験例5)になると、逆にうねり振幅が大きくなっている。これは静電反発による肌荒れ発生のためである。すなわち、平均粒子径を小さくするだけでは平滑性向上には限界があることを示している。
【0047】
試験例3では第1塗装工程と第2塗装工程で静電粉体塗装しているが、いずれも同じ平均粒子径の粉体塗料を使用している。試験例4の平均粒子径と同じであり、吐出量・印加電圧とも同じ条件であるが、試験例3の方がうねり振幅が小さくなっている。静電塗装工程を2回に分割するだけでも平滑性が高くなる可能性があることを示している。
【0048】
試験例1と試験例2では、第2粉体塗料の平均粒子径が第1粉体塗料の平均粒子径より小さい場合の試験例である。いずれも、試験例3〜試験例6に比べてうねり振幅が非常に小さく、優れた平滑性の塗膜が得られている。特に、第1粉体塗料と第2粉体塗料の平均粒子径の差が大きい試験例1の平滑性が優れている。すなわち、第1塗装工程で平均粒子径の大きい粉体塗料を粉体塗装し、その上に第2塗装工程で平均粒子径の小さい粉体塗料を粉体塗装することにより、平滑性に優れた塗膜が形成できる。
【0049】
次に粉体塗料の吐出量の影響について試験した。吐出量とは単位時間当たりに吐出される粉体塗料の重量を表している。
【0050】
(試験例7)
第1粉体塗料、第2粉体塗料として試験例1と同じ平均粒子径40μm、15μmの粉体塗料をそれぞれ使用した。第1塗装工程では吐出量30g/分、印加電圧30kVの条件で静電粉体塗装を7秒間行った。第2塗装工程では吐出量70g/分、印加電圧30kVの条件で静電粉体塗装を4秒間行った。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0051】
(試験例8)
第1塗装工程の吐出量を70g/分にし、その粉体塗装時間を4秒間にした以外は試験例7と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0052】
(試験例9)
第2塗装工程の吐出量を30g/分にし、その粉体塗装時間を7秒間にした以外は試験例8と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0053】
(試験結果2)
表2に試験例7〜試験例9の評価結果を示す。
【表2】
第2粉体塗料の吐出量が第1粉体塗料の吐出量より小さい試験例9では、うねり振幅が大きくなっている。これは第2粉体塗料が第1粉体塗料で形成された第1塗膜上に供給される速度が小さいため、第1塗膜の第1粉体塗料粒子間の隙間に十分密に入っていかなかったためと推察される。第2粉体塗料が第1塗膜の第1粉体塗料粒子間の隙間に密に入り込んでいないと、後に被塗物温度を上げ粉体塗料を溶融するときに、第2粉体塗料が第1粉体塗料粒子間の隙間に流れ込み、最終的な塗膜の平滑性が悪くなってしまうためである。したがって、第1粉体塗料の吐出量が第2粉体塗料の吐出量に等しいか、小さいと塗膜の平滑性を向上できる。
【0054】
次に静電粉体塗装の印加電圧の影響について試験した。
【0055】
(試験例10)
第1粉体塗料、第2粉体塗料として試験例1と同じ平均粒子径40μm、15μmの粉体塗料をそれぞれ使用した。第1塗装工程では吐出量30g/分、印加電圧30kVの条件で静電粉体塗装を7秒間行った。第2塗装工程では吐出量70g/分、印加電圧60kVの条件で静電粉体塗装を4秒間行った。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0056】
(試験例11)
第1塗装工程の印加電圧を60kV以外は試験例10と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0057】
(試験例12)
第2塗装工程の印加電圧を30kV以外は試験例11と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0058】
(試験結果3)
表3に試験例10〜試験例12の評価結果を示す。
【表3】
第2塗装工程の印加電圧が第1塗装工程の印加電圧より低い試験例12では、うねり振幅が大きくなっている。第1塗装工程の印加電圧と第2塗装工程の印加電圧が等しい試験例11では試験例12よりうねり振幅が小さくなっている。第1塗装工程の印加電圧が第2塗装工程の印加電圧より低い試験例10では、うねり振幅が非常に小さく、非常に優れた平滑性を有する塗膜が得られている。
【0059】
以上の試験例の結果は、下記のようにまとめられる。
【0060】
・第1塗装工程で平均粒子径の大きい粉体塗料を粉体塗装し、その上に第2塗装工程で平均粒子径の小さい粉体塗料を粉体塗装することにより、平滑性に優れた塗膜が形成できる。これにより、従来、粉体塗装で用いられることが少なかった自動車車両、車両部品、船舶、家庭用電化製品、塗装鋼鈑等の塗膜形成方法およびその装置として使用できる。試験例では静電スプレーガンを用いて帯電した粉体塗料を被塗物に向かって吐出させる静電粉体塗装で示したが、流動浸漬法でも粉体流動層を用いる静電塗装方法でも同様の効果を奏する。
【0061】
・静電スプレーガンを用いて帯電した粉体塗料を被塗物に向かって吐出させる静電粉体塗装の場合には、第1粉体塗料の吐出量が第2粉体塗料の吐出量以下であれば、より平滑性に優れた塗膜を形成できる。
【0062】
・静電粉体塗装の場合、第1粉体塗料の帯電印加電圧が第2粉体塗料の帯電印加電圧より低ければ、より平滑性に優れた塗膜を形成できる。試験例では静電スプレーガンを用いて帯電した粉体塗料を被塗物に向かって吐出させる静電粉体塗装で示したが、粉体流動層を用いる静電塗装方法でも同様の効果を奏する。粉体塗料の帯電印加電圧の大小は、被塗物に対する粉体塗料の帯電電圧の絶対値で比較している。一般的には、被塗物がアースされ、粉体塗料が負に帯電して静電塗装される。この場合には粉体塗料の帯電印加電圧の絶対値で比較される。仮に粉体塗料を正に帯電して静電塗装する場合には、粉体塗料の帯電印加電圧をそのまま比較できる。また被塗物がアースされず、アースに対して電位を有する場合には、被塗物に対する粉体塗料の電位差の絶対値で比較される。
【0063】
・第1塗装工程と第2塗装工程に分けて粉体塗装することによって、平均粒子径の異なる粉体塗料ごとに適した塗装条件を設定することが可能となり、同じ膜厚で静電反発のない塗装外観にすることができる。また粒子径の大きい粉体塗料が先に消費され、平均粒子径の小さい粉体塗料の使用効率が悪く、粉体塗料の歩留まりが悪い問題も解決され、粉体塗料の使用効率が向上し、廃棄物を低減することができる。
【0064】
実施形態のように分級装置によって平均粒子径の大きい粉体塗料と小さい粉体塗料に分級すれば、粒度分布の大きな市販の粉体塗料が使用でき、かつ被塗物や粉体塗料等に適した平均粒子径に分級して使用でき、より平滑性に優れた塗膜を得ることができる。また第1塗装工程と第2塗装工程を同じブース内で塗装しても、被塗物に付着しなかった粉体塗料を回収し、再び使用することができ、廃棄物をより低減できる。
【0065】
図2は別の実施形態の粉体塗装装置を説明する説明図である。図1と同様の部位には同じ符号を付し説明は省略する。この粉体塗装装置では分級装置は設けられておらず、別に分級した第1粉体塗料が粗粉粉体塗料タンク11に入れられ、第1粉体塗料より小さい平均粒子径を有する第2粉体塗料が微粉粉体塗料タンク21にに入れられている。この実施形態でも第1塗装工程と第2塗装工程を同じブース内で塗装しているが、第1塗装工程と第2塗装工程の塗装ブースを仕切り、それぞれの塗装ブースで被塗物に付着しなかった粉体塗料を回収し、それぞれの粉体塗料タンクに戻して再使用してもよい。
【0066】
【発明の効果】
以上のように、本発明は、第1粉体塗料を被塗物に粉体塗装する第1塗装工程と、該第1塗装工程で前記第1粉体塗料が塗装された前記被塗物に前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を粉体塗装する第2塗装工程が設けられていることを特徴とする粉体塗装方法または第1粉体塗料を被塗物に粉体塗装する粗粉粉体塗装部と、前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を前記被塗物に粉体塗装する微粉粉体塗装部が設けられていることを特徴とする粉体塗装装置であるので、平滑性に優れた塗膜が形成できる。
【図面の簡単な説明】
【図1】実施形態の静電粉体塗装装置を説明する説明図
【図2】別の実施形態の粉体塗装装置を説明する説明図
【符号の説明】
2…サイクロン式分級器(分級装置)
9a、9b…被塗物
10…粗粉粉体塗装部
11…粗粉粉体塗料タンク
13…高電圧発生装置
14…静電スプレーガン
20…微粉粉体塗装部
21…微粉粉体塗料タンク
23…高電圧発生装置
24…静電スプレーガン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder coating method and a powder coating apparatus.
[0002]
[Prior art]
In recent years, the transition from solvent coating to powder coating has been promoted rapidly due to the impact on the global environment and the increase in environmental awareness. Conventionally, a powder coating having an average particle diameter of 35 to 50 μm is generally used, but the smoothness is considerably inferior to solvent coating. Many products are required to have an appearance similar to that of solvent coating, and in order to expand the transition to powder coating and improve the environment, it is required to realize powder coating with excellent smoothness.
[0003]
For this purpose, powder coatings having an average particle size of 25 μm or less have begun to be used. For example, an electrostatic powder coating method using a powder fluidized bed using a powder having an average particle diameter of 5 to 20 μm as in
[0004]
[Patent Document 1]
JP-A-10-120945 ([0012])
[0005]
[Problems to be solved by the invention]
However, there is a problem in that sufficient smoothness cannot be obtained even if a powder coating material having a small average particle diameter as in
[0006]
This invention solves the said subject and provides the powder coating method and powder coating apparatus which can form the coating film excellent in smoothness.
[0007]
In order to solve the above technical problem, the technical means taken in
[0008]
The effects of the first technical means are as follows.
[0009]
The effects of the first technical means are as follows. That is, a powder coating with a large average particle size is powder-coated in the first coating step, and a powder coating with a small average particle size is powder-coated thereon in the second coating step. film can in formation, because the discharge amount of the first powder coating is less than the discharge amount of the second powder coating can be formed smoother excellent in coating film.
[0010]
In order to solve the above technical problem, the technical means taken in claim 2 of the present invention (hereinafter referred to as second technical means) is that the first painting process and the second painting process are powder. 2. The electrostatic powder coating in which a body coating is charged to perform powder coating, wherein the charging application voltage of the first powder coating is lower than the charging application voltage of the second powder coating. This is a powder coating method.
[0011]
The effects of the second technical means are as follows.
[0012]
That is, since the charge application voltage of the first powder paint is lower than the charge application voltage of the second powder paint, the charge density (charge amount per unit area) of the coating film of the first powder paint is small, and the application Since the second powder coating is applied on the film by a large electrostatic force, a coating film with more excellent smoothness can be formed.
[0013]
In order to solve the above technical problem, the technical means taken in claim 3 of the present invention (hereinafter referred to as third technical means) is that the first painting process and the second painting process are powder. Electrostatic powder coating in which a body coating is charged and discharged toward the object to be coated, and the discharge amount of the first powder coating is less than or equal to the discharge amount of the second powder coating The powder coating method according to
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor has considered the reason why the smoothness of the coating film is not sufficiently improved even when a powder coating material having a small average particle diameter is used. The powder coating is a collection of particles having different particle sizes. During powder coating, a phenomenon is observed in which particles having a large particle diameter are attached and particles having a small particle diameter are difficult to adhere. This is presumed to be the reason why the smoothness cannot be sufficiently improved. Also, in electrostatic coating methods such as the electrostatic powder coating method and the electric field flow dipping method, if particles with a small average particle diameter are used, electrostatic repulsion will be strong in the coating film, and the skin will be distorted. The smoothness of the coating film was deteriorated. It was inferred that particles having a small particle size had a large specific surface area and a large charge amount per particle volume. The present inventor has intensively studied based on these inferences to arrive at the present invention.
[0023]
Two types of powder paints with different average particle sizes are prepared. First, powder paint with a large average particle size is powder-coated in the first coating process, and then formed in the first coating process in the second coating process. A powder coating with a small average particle size is powder coated on the coated film. By doing so, since the powder coating having a large average particle size and the powder coating having a small average particle size are separately powder-coated, the phenomenon that the particles having a small particle size are prevented from adhering to the large particles can be eliminated. In addition, since coating is performed so that the unevenness of the coating film formed with large particles in the first coating process, that is, the gap between large particles is filled with small particles in the second coating process, small particles can be effectively adhered and smooth. A coating film with excellent properties can be formed. Furthermore, since the coating film is formed with large particles in the first coating process, the charge density of the formed coating film is low, so there is little electrostatic repulsion, and there is no occurrence of distorted skin, and a coating film with excellent smoothness is formed. it can.
[0024]
Since the first painting process and the second painting process are separated, the powder coating suitable for the case of painting a powder paint with a large average particle diameter and the case of painting a powder paint with a large average particle diameter You can set conditions. In particular, in the second coating step, by controlling the amount of charge of the powder coating material, electrostatic repulsion can be reduced and the occurrence of distorted skin can be eliminated.
[0025]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view illustrating a powder coating apparatus according to an embodiment. This powder coating apparatus is an electrostatic powder coating apparatus that performs powder coating by charging a powder coating material and discharging it toward an object to be coated. A raw material
[0026]
The coarse
[0027]
Similarly, the fine
[0028]
A cyclone classifier 2 is connected to the raw material
[0029]
Excess powder paint that has not adhered to the object to be coated in the painting booth 3 is sent to the powder paint collection device 4 via the powder collection pipe 7. The powder paint recovery device 4 is connected to the
[0030]
[0031]
The raw material powder paint in the raw material
[0032]
The coarse powder paint stored in the coarse
[0033]
Similarly, the fine powder paint stored in the fine
[0034]
The object to be coated is first moved to the position of the object to be coated 6a, and the coarse powder coating is electrostatic powder coated (first coating process). Next, the object to be coated is moved to the position of the object to be coated 6b, and the fine powder coating material is electrostatically powder coated (second coating process).
[0035]
The powder paint that has not adhered to the object to be coated in the first painting process and the second painting process is collected by the powder paint collecting device 4 through the powder collecting pipe 7 and through the
[0036]
Using this powder coating apparatus, the following powder coating test was carried out.
[0037]
(Test Example 1)
As an object to be coated, one surface of an aluminum test panel (aluminum material A1050 manufactured by Nippon Test Panel Co., Ltd., length 150 mm, width 70 mm, thickness 0.8 mm) was applied toward the spray side. A polyester resin powder coating was used as the powder coating. In all the following test examples, the same coated material was used, and a powder coating material of the same material was used.
[0038]
In the first coating step, a powder coating having an average particle diameter of 40 μm was used, and electrostatic powder coating was performed for 5 seconds under the conditions of a discharge rate of 60 g / min and an applied voltage of 40 kV. In the second coating step, a powder coating material having an average particle diameter of 15 μm was used, and electrostatic powder coating was performed for 5 seconds under the conditions of a discharge rate of 60 g / min and an applied voltage of 40 kV. The average particle size, the particle size distribution measured with a laser diffraction particle size distribution measuring apparatus SALD-2000J manufactured by Shimadzu Corporation, minus sieve cumulative volume percentage is expressed in 50% of the particle diameter D p50.
[0039]
After the first coating step and after the second coating step, the coating film thickness was measured by an electromagnetic film thickness meter (LZ-330J manufactured by Kett). The coating film thickness after the second coating process is the total coating film thickness, and the coating film thickness in the second coating process was obtained by calculating the difference between the coating total film thickness and the coating film thickness in the first coating process.
[0040]
For the smoothness of the formed coating film, a surface roughness meter TAYLOR HOBSON (Form Talysurf Series) was used to calculate a five-point average value of the amplitude of the surface shape measured at a measurement length of 15 mm and a vertical magnification of 10,000 times. The amplitude was evaluated.
[0041]
(Test Example 2)
Electrostatic powder coating was performed under the same conditions as in Test Example 1 except that a powder coating material having an average particle size of 36 μm was used in the first coating step and a powder coating material having an average particle size of 21 μm was used in the second coating step. Measurement of film thickness and evaluation of smoothness were also performed in the same manner as in Test Example 1.
[0042]
(Test Example 3)
Electrostatic powder coating was performed under the same conditions as in Test Example 1 except that a powder coating material having an average particle diameter of 25 μm was used in both the first coating process and the second coating process. Measurement of film thickness and evaluation of smoothness were also performed in the same manner as in Test Example 1. In Test Example 3, the raw material powder paint in the raw material
[0043]
(Test Example 4)
A powder coating material having an average particle diameter of 25 μm was used, and electrostatic powder coating was performed under the same conditions as in Test Example 1 only in the first coating step. However, the coating time was set to 10 seconds so that the total coating thickness would be the same as in the above test example. The same coating time is used in the following Test Examples 5 and 6. Measurement of film thickness and evaluation of smoothness were performed in the same manner as in Test Example 1.
[0044]
(Test Example 5)
The powder coating material with an average particle diameter of 15 μm classified by the cyclone classifier 2 was used, and electrostatic powder coating was performed using the fine
[0045]
(Test Example 6)
The powder coating material with an average particle diameter of 40 μm classified by the cyclone classifier 2 was used, and the coarse
[0046]
(Test result 1)
Table 1 shows the evaluation results of Test Examples 1 to 6.
[Table 1]
Test Examples 4 to 6 are test examples using a conventional electrostatic powder coating method for forming a coating film at a time. As the average particle size decreases from the average particle size of 40 μm (Test Example 6) to the average particle size of 25 μm (Test Example 4), the swell amplitude also decreases. However, when the average particle diameter is 15 μm (Test Example 5), the undulation amplitude is increased. This is due to the occurrence of rough skin due to electrostatic repulsion. That is, it is shown that there is a limit to improving smoothness only by reducing the average particle size.
[0047]
In Test Example 3, electrostatic powder coating is performed in the first coating step and the second coating step, but both use a powder coating having the same average particle diameter. Although it is the same as the average particle diameter of Test Example 4 and the discharge amount and the applied voltage are the same, the swell amplitude is smaller in Test Example 3. It shows that even if the electrostatic coating process is divided only twice, smoothness may be increased.
[0048]
Test Example 1 and Test Example 2 are test examples when the average particle size of the second powder paint is smaller than the average particle size of the first powder paint. In any case, the swell amplitude was very small as compared with Test Examples 3 to 6, and a coating film having excellent smoothness was obtained. In particular, the smoothness of Test Example 1 having a large difference in average particle diameter between the first powder coating and the second powder coating is excellent. That is, by applying powder coating with a large average particle diameter in the first coating process and powder coating with powder coating with a small average particle diameter in the second coating process, excellent smoothness is achieved. A coating film can be formed.
[0049]
Next, the influence of the discharge amount of the powder paint was tested. The discharge amount represents the weight of the powder coating material discharged per unit time.
[0050]
(Test Example 7)
As the first powder coating material and the second powder coating material, the same powder coating materials having average particle diameters of 40 μm and 15 μm as in Test Example 1 were used. In the first coating step, electrostatic powder coating was performed for 7 seconds under the conditions of a discharge rate of 30 g / min and an applied voltage of 30 kV. In the second coating step, electrostatic powder coating was performed for 4 seconds under the conditions of a discharge rate of 70 g / min and an applied voltage of 30 kV. Measurement of film thickness and evaluation of smoothness were also performed in the same manner as in Test Example 1.
[0051]
(Test Example 8)
Electrostatic powder coating was performed under the same conditions as in Test Example 7 except that the discharge amount in the first coating step was 70 g / min and the powder coating time was 4 seconds. Measurement of film thickness and evaluation of smoothness were also performed in the same manner as in Test Example 1.
[0052]
(Test Example 9)
The electrostatic powder coating was performed under the same conditions as in Test Example 8 except that the discharge amount in the second coating step was 30 g / min and the powder coating time was 7 seconds. Measurement of film thickness and evaluation of smoothness were also performed in the same manner as in Test Example 1.
[0053]
(Test result 2)
Table 2 shows the evaluation results of Test Example 7 to Test Example 9.
[Table 2]
In Test Example 9 in which the discharge amount of the second powder paint is smaller than the discharge amount of the first powder paint, the undulation amplitude is large. This is because the speed at which the second powder coating material is supplied onto the first coating film formed by the first powder coating material is small, so that the gap between the first powder coating particles of the first coating film is sufficiently dense. It is inferred that this was not possible. If the second powder paint does not penetrate into the gaps between the first powder paint particles of the first coating film, the second powder paint will be used when the temperature of the object is increased later and the powder paint is melted. It is because it flows into the gaps between the first powder coating particles and the smoothness of the final coating film is deteriorated. Therefore, if the discharge amount of the first powder paint is equal to or smaller than the discharge amount of the second powder paint, the smoothness of the coating film can be improved.
[0054]
Next, the influence of the applied voltage of electrostatic powder coating was tested.
[0055]
(Test Example 10)
As the first powder coating material and the second powder coating material, the same powder coating materials having average particle diameters of 40 μm and 15 μm as in Test Example 1 were used. In the first coating step, electrostatic powder coating was performed for 7 seconds under the conditions of a discharge rate of 30 g / min and an applied voltage of 30 kV. In the second coating step, electrostatic powder coating was performed for 4 seconds under the conditions of a discharge rate of 70 g / min and an applied voltage of 60 kV. Measurement of film thickness and evaluation of smoothness were also performed in the same manner as in Test Example 1.
[0056]
(Test Example 11)
Electrostatic powder coating was performed under the same conditions as in Test Example 10 except that the applied voltage in the first coating step was 60 kV. Measurement of film thickness and evaluation of smoothness were also performed in the same manner as in Test Example 1.
[0057]
(Test Example 12)
Electrostatic powder coating was performed under the same conditions as in Test Example 11 except that the applied voltage in the second coating step was 30 kV. Measurement of film thickness and evaluation of smoothness were also performed in the same manner as in Test Example 1.
[0058]
(Test result 3)
Table 3 shows the evaluation results of Test Example 10 to Test Example 12.
[Table 3]
In Test Example 12 in which the applied voltage in the second painting process is lower than the applied voltage in the first painting process, the swell amplitude is large. In Test Example 11 in which the applied voltage in the first painting process and the applied voltage in the second painting process are equal, the undulation amplitude is smaller than in Test Example 12. In Test Example 10 where the applied voltage in the first coating process is lower than the applied voltage in the second coating process, a coating film having very small undulation amplitude and excellent smoothness is obtained.
[0059]
The results of the above test examples are summarized as follows.
[0060]
-Powder coating with a large average particle diameter is applied in the first coating process, and powder coating with a small average particle diameter is applied on the powder coating in the second coating process. A film can be formed. Thereby, it can be used as a coating film forming method and apparatus for automobile vehicles, vehicle parts, ships, household appliances, painted steel plates, etc., which have been rarely used in powder coating. In the test example, the electrostatic powder coating was used to discharge the charged powder coating toward the substrate by using an electrostatic spray gun, but the same applies to both the fluid immersion method and the electrostatic coating method using a powder fluidized bed. The effect of.
[0061]
-In the case of electrostatic powder coating in which a charged powder paint is discharged toward an object using an electrostatic spray gun, the discharge amount of the first powder paint is less than the discharge amount of the second powder paint. If it is, the coating film excellent in smoothness can be formed.
[0062]
In the case of electrostatic powder coating, if the charge application voltage of the first powder paint is lower than the charge application voltage of the second powder paint, a coating film with better smoothness can be formed. In the test example, the electrostatic powder coating was used to discharge the charged powder paint toward the workpiece using an electrostatic spray gun. However, the electrostatic coating method using a powder fluidized bed has the same effect. . The magnitude of the charging applied voltage of the powder coating is compared with the absolute value of the charging voltage of the powder coating with respect to the object to be coated. In general, the object to be coated is grounded, and the powder coating is negatively charged and electrostatically coated. In this case, the absolute value of the charging applied voltage of the powder coating is compared. If the powder coating is positively charged and electrostatically applied, the charging applied voltage of the powder coating can be compared as it is. When the object to be coated is not grounded and has a potential with respect to the ground, the absolute value of the potential difference of the powder coating material with respect to the object to be coated is compared.
[0063]
-By applying powder coating in the first coating process and the second coating process, it is possible to set suitable coating conditions for each powder coating material with different average particle diameters, and electrostatic repulsion can be achieved with the same film thickness. There can be no painted appearance. In addition, powder paint with a large particle size is consumed first, the use efficiency of powder paint with a small average particle size is poor, the problem of poor yield of powder paint is solved, the use efficiency of powder paint is improved, Waste can be reduced.
[0064]
By classifying into a powder paint with a large average particle size and a powder paint with a small average particle size using a classifier as in the embodiment, a commercially available powder paint with a large particle size distribution can be used and suitable for objects to be coated and powder paints. Thus, it is possible to obtain a coating film which is classified into an average particle diameter and is more excellent in smoothness. Even if the first painting process and the second painting process are applied in the same booth, the powder paint that has not adhered to the object can be collected and reused, and waste can be further reduced.
[0065]
FIG. 2 is an explanatory view illustrating a powder coating apparatus according to another embodiment. The same parts as those in FIG. In this powder coating apparatus, no classification device is provided, and the first powder paint classified separately is put in the coarse
[0066]
【The invention's effect】
As described above, the present invention provides a first coating process in which a first powder coating is powder-coated on an object to be coated, and the coating on which the first powder coating is coated in the first coating process. A powder coating method or a first powder coating method is provided, wherein a second coating step of powder coating a second powder coating having an average particle size smaller than the first powder coating is provided. There are provided a coarse powder coating portion for powder coating on an object and a fine powder coating portion for powder coating a second powder coating having an average particle size smaller than that of the first powder coating on the object to be coated. Since the powder coating apparatus is characterized in that, a coating film having excellent smoothness can be formed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating an electrostatic powder coating apparatus according to an embodiment. FIG. 2 is an explanatory diagram illustrating a powder coating apparatus according to another embodiment.
2. Cyclone classifier (classifier)
9a, 9b ...
Claims (2)
該第1塗装工程で前記第1粉体塗料が塗装された前記被塗物に前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を粉体塗装する第2塗装工程が設けられ、
前記第1塗装工程および前記第2塗装工程は粉体塗料を帯電させ前記被塗物に向かって吐出させて粉体塗装する静電粉体塗装であり、
前記第1粉体塗料の吐出量が前記第2粉体塗料の吐出量以下であることを特徴とする粉体塗装方法。A first coating step of powder-coating a first powder coating material to be coated;
A second coating step is provided in which a second powder coating having an average particle size smaller than that of the first powder coating is powder-coated on the object to be coated with the first powder coating in the first coating step. And
The first coating step and the second coating step are electrostatic powder coatings in which a powder coating is charged and discharged toward the object to be coated, and powder coating is performed.
A powder coating method, wherein a discharge amount of the first powder paint is equal to or less than a discharge amount of the second powder paint .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003158944A JP4296849B2 (en) | 2003-06-04 | 2003-06-04 | Powder coating method and powder coating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003158944A JP4296849B2 (en) | 2003-06-04 | 2003-06-04 | Powder coating method and powder coating apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004358337A JP2004358337A (en) | 2004-12-24 |
JP4296849B2 true JP4296849B2 (en) | 2009-07-15 |
Family
ID=34052150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003158944A Expired - Fee Related JP4296849B2 (en) | 2003-06-04 | 2003-06-04 | Powder coating method and powder coating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4296849B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5820736B2 (en) * | 2012-01-31 | 2015-11-24 | 本田技研工業株式会社 | Electrostatic coating equipment |
-
2003
- 2003-06-04 JP JP2003158944A patent/JP4296849B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004358337A (en) | 2004-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3770482A (en) | Electrostatic coating method of applying multilayer coating | |
NZ295894A (en) | Apparatus for electrostatic charging of resinous powder particles in fluidised bed | |
SK16362003A3 (en) | Powder coating process with electrostatically charged fluidised bed | |
US3690298A (en) | Apparatus for coating articles with a dry powdered material | |
JP4296849B2 (en) | Powder coating method and powder coating apparatus | |
Taylor et al. | Particle loading effect in cold spray | |
JP2011177706A (en) | Powder coating apparatus | |
US20120231174A1 (en) | Device and method for applying paints | |
Wang et al. | Experimental study of particle trajectory in electrostatics powder coating process | |
Böttner et al. | Numerical calculation of electrostatic powder painting using the Euler/Lagrange approach | |
Shah et al. | Numerical investigation of coarse powder and air flow in an electrostatic powder coating process | |
Sims et al. | Electrostatic effects on first pass transfer efficiency in the application of powder coatings | |
Meng et al. | Characterization of particle size evolution of the deposited layer during electrostatic powder coating processes | |
Li et al. | Numerical simulations of ultrafine powder coating systems | |
US7205027B2 (en) | Powder coating method providing enhanced finish characteristics | |
JP5467949B2 (en) | Powder coating method | |
Banerjee et al. | Surface microstructure of powder layers influenced by the forces of deposition and adhesion in electrostatic coating process | |
Lothongkum et al. | Powder characteristics and coating conditions of fresh and reused polyester resins for electrostatic powder coating: powder recycling and loss prevention | |
Barmuta et al. | Electroseparation and efficiency of deposition during electrostatic powder coating | |
Ahmad et al. | Investigation of epoxy powder coated galvanized steel substrate through electrostatic powder coating system | |
KR101119048B1 (en) | Powder coating method utilizing ultrasonic vibrator | |
CN103983580A (en) | Detection device and method for adhesion degrees of metal powder coating | |
JP6033256B2 (en) | Powder coating method | |
Biris et al. | Reduction of Dendrite Formations to Improve the Appearance of the Powder Cured Films for Automotive Industry | |
JP3408718B2 (en) | Method of forming metal material surface coating structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090406 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |