JP2004358337A - Powder coating method and powder coating apparatus - Google Patents

Powder coating method and powder coating apparatus Download PDF

Info

Publication number
JP2004358337A
JP2004358337A JP2003158944A JP2003158944A JP2004358337A JP 2004358337 A JP2004358337 A JP 2004358337A JP 2003158944 A JP2003158944 A JP 2003158944A JP 2003158944 A JP2003158944 A JP 2003158944A JP 2004358337 A JP2004358337 A JP 2004358337A
Authority
JP
Japan
Prior art keywords
powder coating
coating
powder
average particle
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003158944A
Other languages
Japanese (ja)
Other versions
JP4296849B2 (en
Inventor
Takahisa Kanie
隆久 蟹江
Kenji Io
健児 井尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2003158944A priority Critical patent/JP4296849B2/en
Publication of JP2004358337A publication Critical patent/JP2004358337A/en
Application granted granted Critical
Publication of JP4296849B2 publication Critical patent/JP4296849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder coating method and a powder coating apparatus capable of forming a coating film excellent in smoothness. <P>SOLUTION: Two kinds of powder coatings different in average powder diameter are prepared. First, a first powder coating large in average powder diameter is applied in the first coating process, and then a secondary powder coating small in average powder diameter is powder applied on a coating film formed by the first coating process in the secondary coating process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は粉体塗装方法および粉体塗装装置に関する。
【0002】
【従来の技術】
地球環境への影響と環境意識の高まりから近年、溶剤塗装から粉体塗装への移行が急速に進められている。従来、一般的に平均粒子径が35〜50μmの粉体塗料が使用されているが、溶剤塗装と比較して平滑性がかなり劣っていた。溶剤塗装なみの外観を要求される製品も多く、粉体塗装への移行を広げ、環境改善を進めるために平滑性が優れた粉体塗装を実現することが求められている。
【0003】
その目的のために平均粒子径が25μm以下の粉体塗料が使用され始めてきている。例えば、特許文献1のように平均粒子径が5〜20μmの粉体を使用する粉体流動層を用いる静電粉体塗装方法が提案されている。
【0004】
【特許文献1】
特開平10−120945号公報([0012])
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1のような平均粒子径が小さい粉体塗料を使用しても十分な平滑性が得られない問題点があった。平均粒子径が小さすぎる場合には逆に平滑性が悪くなる問題点があった。
【0006】
本発明は上記課題を解決したもので、平滑性に優れた塗膜が形成できる粉体塗装方法および粉体塗装装置を提供する。
【0007】
【課題を解決するための手段】
上記技術的課題を解決するために、本発明の請求項1において講じた技術的手段(以下、第1の技術的手段と称する。)は、第1粉体塗料を被塗物に粉体塗装する第1塗装工程と、該第1塗装工程で前記第1粉体塗料が塗装された前記被塗物に前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を粉体塗装する第2塗装工程が設けられていることを特徴とする粉体塗装方法である。
【0008】
上記第1の技術的手段による効果は、以下のようである。
【0009】
すなわち、第1塗装工程で平均粒子径の大きい粉体塗料を粉体塗装し、その上に第2塗装工程で平均粒子径の小さい粉体塗料を粉体塗装するので、平滑性に優れた塗膜が形成できる。
【0010】
上記技術的課題を解決するために、本発明の請求項2において講じた技術的手段(以下、第2の技術的手段と称する。)は、前記第1塗装工程および前記第2塗装工程は粉体塗料を帯電させて粉体塗装する静電粉体塗装であり、前記第1粉体塗料の帯電印加電圧が前記第2粉体塗料の帯電印加電圧より低いことを特徴とする請求項1記載の粉体塗装方法である。
【0011】
上記第2の技術的手段による効果は、以下のようである。
【0012】
すなわち、第1粉体塗料の帯電印加電圧が第2粉体塗料の帯電印加電圧より低いので、第1粉体塗料の塗膜の帯電密度(単位面積当たりの帯電量)が小さく、かつその塗膜の上に大きな静電力により第2粉体塗料が塗装されるので、より平滑性に優れた塗膜を形成できる。
【0013】
上記技術的課題を解決するために、本発明の請求項3において講じた技術的手段(以下、第3の技術的手段と称する。)は、前記第1塗装工程および前記第2塗装工程は粉体塗料を帯電させ前記被塗物に向かって吐出させて粉体塗装する静電粉体塗装であり、前記第1粉体塗料の吐出量が前記第2粉体塗料の吐出量以下であることを特徴とする請求項1記載の粉体塗装方法である。
【0014】
上記第3の技術的手段による効果は、以下のようである。
【0015】
すなわち、第1粉体塗料の吐出量が第2粉体塗料の吐出量以下であるので、より平滑性に優れた塗膜を形成できる。
【0016】
上記技術的課題を解決するために、本発明の請求項4において講じた技術的手段(以下、第4の技術的手段と称する。)は、第1粉体塗料を被塗物に粉体塗装する粗粉粉体塗装部と、前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を前記被塗物に粉体塗装する微粉粉体塗装部が設けられていることを特徴とする粉体塗装装置である。
【0017】
上記第4の技術的手段による効果は、以下のようである。
【0018】
すなわち、粗粉粉体塗装部で平均粒子径の大きい粉体塗料を粉体塗装し、微粉粉体塗装部で平均粒子径の小さい粉体塗料を粉体塗装するので、平滑性に優れた塗膜が形成できる。
【0019】
上記技術的課題を解決するために、本発明の請求項5において講じた技術的手段(以下、第5の技術的手段と称する。)は、原料粉体塗料を前記第1粉体塗料と前記第2粉体塗料に分級し、前記第1粉体塗料を前記粗粉粉体塗装部に供給するとともに、前記第2粉体塗料を前記微粉粉体塗装部に供給する分級装置が設けられていることを特徴とする請求項4記載の粉体塗装装置である。
【0020】
上記第5の技術的手段による効果は、以下のようである。
【0021】
すなわち、請求項3と同様、有することができる。
【0022】
【発明の実施の形態】
本発明者は平均粒子径が小さい粉体塗料を使用しても塗膜の平滑性が十分に向上しない原因を考察した。粉体塗料は、粒子径が異なる粒子が集合している。粉体塗装の際に、粒子径の大きい粒子から付着し、粒子径の小さい粒子は付着しにくい現象が見られる。これが平滑性が十分に向上できない原因と推察された。また静電粉体塗装方法や電界流動浸漬法のように静電気を使用した塗装方法では、平均粒子径が小さい粒子を使用すると、塗膜で静電反発が強くなり、塗面にゆず肌が生じ塗膜の平滑性を悪化させていた。粒子径が小さい粒子は比表面積が大きく、粒子の体積当たりの帯電量が大きいためと推察された。本発明者は、これらの推察をもとに鋭意研究し本発明に至った。
【0023】
平均粒子径が異なる2種類の粉体塗料を用意し、はじめに第1塗装工程で平均粒子径の大きい粉体塗料を粉体塗装し、次に第2塗装工程で、第1塗装工程で形成された塗膜上に平均粒子径の小さい粉体塗料を粉体塗装する。こうすることによって、平均粒子径の大きい粉体塗料と小さい粉体塗料を別々に粉体塗装するので、粒子径の小さい粒子が大きい粒子に妨げられた付着しにくい現象をなくすことができる。また第1塗装工程で大きい粒子で形成された塗膜の凹凸すなわち大きい粒子の隙間が第2塗装工程の小さな粒子で埋まるように塗装するため、効果的に小さな粒子を付着させることができ、平滑性に優れた塗膜が形成できる。さらに第1塗装工程では大きな粒子により塗膜が形成されるため、形成された塗膜の帯電密度が低いので、静電反発が少なく、ゆず肌の発生がなくなり平滑性に優れた塗膜が形成できる。
【0024】
第1塗装工程と第2塗装工程が分かれているので、平均粒子径が大きい粉体塗料を塗装する場合と、平均粒子径が大きい粉体塗料を塗装する場合で、それぞれに適した粉体塗装条件を設定できる。特に第2塗装工程において、粉体塗料の帯電量を制御することにより、静電反発を減少させ、ゆず肌の発生をなくすことができる。
【0025】
以下、本発明の実施形態について、図面に基づいて説明する。図1は実施形態の粉体塗装装置を説明する説明図である。この粉体塗装装置は、粉体塗料を帯電させ被塗物に向かって吐出させて粉体塗装する静電粉体塗装装置である。原料粉体塗料タンク1、サイクロン式分級器(分級装置)2、粗粉粉体塗装部10、微粉粉体塗装部20、粉体塗料回収装置4、塗装ブース3などから構成されている。
【0026】
粗粉粉体塗装部10は、粗粉粉体塗料タンク11、エジェクタ12、高電圧発生装置13、静電スプレーガン14などから構成されている。エジェクタ12は粗粉粉体塗料タンク11に連結されており、粗粉粉体塗料タンク11内の粉体塗料を粉体塗料輸送管路15を介して塗装ブース3内に設けられた静電スプレーガン14に輸送するものである。高電圧発生装置13は静電スプレーガン14と高圧電線16を介して連結されている。
【0027】
同様に、微粉粉体塗装部20は、微粉粉体塗料タンク21、エジェクタ22、高電圧発生装置23、静電スプレーガン24などから構成されている。エジェクタ22は微粉粉体塗料タンク21に連結されており、微粉粉体塗料タンク21内の粉体塗料を粉体塗料輸送管路25を介して塗装ブース3内に設けられた静電スプレーガン24に輸送するものである。高電圧発生装置23は静電スプレーガン24と高圧電線26を介して連結されている。
【0028】
原料粉体塗料タンク1にはサイクロン式分級器2が連結されている。サイクロン式分級器2は粉体塗料輸送管路5を介して粗粉粉体塗料タンク11に連結され、粉体塗料輸送管路6を介して微粉粉体塗料タンク21に連結されている。
【0029】
塗装ブース3内の被塗物に付着しなかった余剰の粉体塗料が粉体回収管路7を介して粉体塗料回収装置4に送られるように構成されている。粉体塗料回収装置4は粉体回収管路8を介して粉体塗料タンク1に連結されている。
【0030】
9a、9bは被塗物であり、それぞれ塗装ブース3内にアースされて設置され、被塗物9aの位置から被塗物9bの位置に順次移動するようになっている。
【0031】
原料粉体塗料タンク1内の原料粉体塗料はサイクロン式分級器2に送られ、平均粒子径が大きい粗粉粉体塗料(第1粉体塗料)と平均粒子径が小さい微粉粉体塗料(第2粉体塗料)に分級される。分級された粗粉粉体塗料は粉体塗料輸送管路5を介して粗粉粉体塗料タンク11に輸送され貯蔵され、微粉粉体塗料は粉体塗料輸送管路6を介して微粉粉体塗料タンク21に輸送され貯蔵される。
【0032】
粗粉粉体塗料タンク11に貯蔵されている粗粉粉体塗料はエジェクタ12により静電スプレーガン14に供給される。静電スプレーガン14に供給された粗粉粉体塗料は高電圧発生装置13により負に荷電され被塗物6aに向かってスプレーされる。スプレーされた粗粉粉体塗料は、接地されている被塗物6aに付着し、塗膜を形成する。
【0033】
同様に、微粉粉体塗料タンク21に貯蔵されている微粉粉体塗料はエジェクタ22により静電スプレーガン24に供給される。静電スプレーガン24に供給された微粉粉体塗料は高電圧発生装置23により負に荷電され被塗物6bに向かってスプレーされる。スプレーされた微粉粉体塗料は、接地されている被塗物6bに付着し、塗膜を形成する。
【0034】
被塗物は、はじめに被塗物6aの位置に移動され粗粉粉体塗料が静電粉体塗装される(第1塗装工程)。次に被塗物は被塗物6bの位置に移動され微粉粉体塗料が静電粉体塗装される(第2塗装工程)。
【0035】
第1塗装工程、第2塗装工程で被塗物に付着しなかった粉体塗料は、粉体回収管路7を介して粉体塗料回収装置4に回収され、粉体回収管路8を介して原料粉体塗料タンク1に戻される。
【0036】
この粉体塗装装置を使用して、以下の粉体塗装試験を実施した。
【0037】
(試験例1)
被塗物としてアルミテストパネル(日本テストパネル株式会社製 アルミ材A1050 縦150mm、横70mm、厚さ0.8mm)の一方面をスプレー側に向けて塗装した。粉体塗料としてポリエステル樹脂粉体塗料を使用した。以下のすべての試験例で、同様の被塗物を使用し、同じ材質の粉体塗料を使用した。
【0038】
第1塗装工程では平均粒子径40μmの粉体塗料を使用し、吐出量60g/分、印加電圧40kVの条件で静電粉体塗装を5秒間行った。第2塗装工程では平均粒子径15μmの粉体塗料を使用し、吐出量60g/分、印加電圧40kVの条件で静電粉体塗装を5秒間行った。平均粒子径は、株式会社島津製作所製のレーザー回析式粒度分布測定器SALD−2000Jで粒度分布を測定し、ふるい下積算体積百分率が50%の粒子径Dp50で表している。
【0039】
第1塗装工程後、第2塗装工程後それぞれで塗装膜厚を電磁式膜厚計(Kett社製LZ−330J)によって測定した。第2塗装工程後の塗装膜厚は塗装総膜厚であり、第2塗装工程の塗装膜厚は塗装総膜厚と第1塗装工程の塗装膜厚の差を計算して求めた。
【0040】
形成された塗膜の平滑性について、表面粗さ計TAYLOR HOBSON(Form Talysurf Series)を用い、測定長さ15mm、縦倍率1万倍で測定した表面形状の振幅の5点平均値を計算したうねり振幅で評価した。
【0041】
(試験例2)
第1塗装工程で平均粒子径36μmの粉体塗料を使用し、第2塗装工程では平均粒子径21μmの粉体塗料を使用した以外は、試験例1と同じ条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0042】
(試験例3)
第1塗装工程、第2塗装工程とも平均粒子径25μmの粉体塗料を使用した以外は、試験例1と同じ条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。試験例3では原料粉体塗料タンク1内の原料粉体塗料を分級せずに使用した。試験例1、2では、この原料粉体塗料をサイクロン式分級器2で分級して使用している。
【0043】
(試験例4)
平均粒子径25μmの粉体塗料を使用し第1塗装工程のみで試験例1と同様の条件で静電粉体塗装した。ただし、塗装総膜厚が上記した試験例と同じになるように塗装時間を10秒間にした。以下の試験例5、6でも同じ塗装時間である。膜厚の測定や平滑性の評価は試験例1と同様に行った。
【0044】
(試験例5)
サイクロン式分級器2で分級された平均粒子径15μmの粉体塗料を使用し、微粉粉体塗装部20を使用して試験例4と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価は試験例1と同様に行った。
【0045】
(試験例6)
サイクロン式分級器2で分級された平均粒子径40μmの粉体塗料を使用し、粗粉粉体塗装部10を使用して試験例4と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価は試験例1と同様に行った。
【0046】
(試験結果1)
表1に試験例1〜試験例6の評価結果を示す。
【表1】

Figure 2004358337
試験例4〜試験例6は、一度に塗膜を形成する従来の静電粉体塗装方法を用いた試験例である。平均粒子径40μm(試験例6)から平均粒子径25μm(試験例4)に平均粒子径が小さくなるとうねり振幅も小さくなっている。しかし平均粒子径がさらに小さい15μm(試験例5)になると、逆にうねり振幅が大きくなっている。これは静電反発による肌荒れ発生のためである。すなわち、平均粒子径を小さくするだけでは平滑性向上には限界があることを示している。
【0047】
試験例3では第1塗装工程と第2塗装工程で静電粉体塗装しているが、いずれも同じ平均粒子径の粉体塗料を使用している。試験例4の平均粒子径と同じであり、吐出量・印加電圧とも同じ条件であるが、試験例3の方がうねり振幅が小さくなっている。静電塗装工程を2回に分割するだけでも平滑性が高くなる可能性があることを示している。
【0048】
試験例1と試験例2では、第2粉体塗料の平均粒子径が第1粉体塗料の平均粒子径より小さい場合の試験例である。いずれも、試験例3〜試験例6に比べてうねり振幅が非常に小さく、優れた平滑性の塗膜が得られている。特に、第1粉体塗料と第2粉体塗料の平均粒子径の差が大きい試験例1の平滑性が優れている。すなわち、第1塗装工程で平均粒子径の大きい粉体塗料を粉体塗装し、その上に第2塗装工程で平均粒子径の小さい粉体塗料を粉体塗装することにより、平滑性に優れた塗膜が形成できる。
【0049】
次に粉体塗料の吐出量の影響について試験した。吐出量とは単位時間当たりに吐出される粉体塗料の重量を表している。
【0050】
(試験例7)
第1粉体塗料、第2粉体塗料として試験例1と同じ平均粒子径40μm、15μmの粉体塗料をそれぞれ使用した。第1塗装工程では吐出量30g/分、印加電圧30kVの条件で静電粉体塗装を7秒間行った。第2塗装工程では吐出量70g/分、印加電圧30kVの条件で静電粉体塗装を4秒間行った。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0051】
(試験例8)
第1塗装工程の吐出量を70g/分にし、その粉体塗装時間を4秒間にした以外は試験例7と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0052】
(試験例9)
第2塗装工程の吐出量を30g/分にし、その粉体塗装時間を7秒間にした以外は試験例8と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0053】
(試験結果2)
表2に試験例7〜試験例9の評価結果を示す。
【表2】
Figure 2004358337
第2粉体塗料の吐出量が第1粉体塗料の吐出量より小さい試験例9では、うねり振幅が大きくなっている。これは第2粉体塗料が第1粉体塗料で形成された第1塗膜上に供給される速度が小さいため、第1塗膜の第1粉体塗料粒子間の隙間に十分密に入っていかなかったためと推察される。第2粉体塗料が第1塗膜の第1粉体塗料粒子間の隙間に密に入り込んでいないと、後に被塗物温度を上げ粉体塗料を溶融するときに、第2粉体塗料が第1粉体塗料粒子間の隙間に流れ込み、最終的な塗膜の平滑性が悪くなってしまうためである。したがって、第1粉体塗料の吐出量が第2粉体塗料の吐出量に等しいか、大きいと塗膜の平滑性を向上できる。
【0054】
次に静電粉体塗装の印加電圧の影響について試験した。
【0055】
(試験例10)
第1粉体塗料、第2粉体塗料として試験例1と同じ平均粒子径40μm、15μmの粉体塗料をそれぞれ使用した。第1塗装工程では吐出量30g/分、印加電圧30kVの条件で静電粉体塗装を7秒間行った。第2塗装工程では吐出量70g/分、印加電圧60kVの条件で静電粉体塗装を4秒間行った。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0056】
(試験例11)
第1塗装工程の印加電圧を60kV以外は試験例10と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0057】
(試験例12)
第2塗装工程の印加電圧を30kV以外は試験例11と同様の条件で静電粉体塗装した。膜厚の測定や平滑性の評価も試験例1と同様に行った。
【0058】
(試験結果3)
表3に試験例10〜試験例12の評価結果を示す。
【表3】
Figure 2004358337
第2塗装工程の印加電圧が第1塗装工程の印加電圧より低い試験例12では、うねり振幅が大きくなっている。第1塗装工程の印加電圧と第2塗装工程の印加電圧が等しい試験例11では試験例12よりうねり振幅が小さくなっている。第1塗装工程の印加電圧が第2塗装工程の印加電圧より低い試験例10では、うねり振幅が非常に小さく、非常に優れた平滑性を有する塗膜が得られている。
【0059】
以上の試験例の結果は、下記のようにまとめられる。
【0060】
・第1塗装工程で平均粒子径の大きい粉体塗料を粉体塗装し、その上に第2塗装工程で平均粒子径の小さい粉体塗料を粉体塗装することにより、平滑性に優れた塗膜が形成できる。これにより、従来、粉体塗装で用いられることが少なかった自動車車両、車両部品、船舶、家庭用電化製品、塗装鋼鈑等の塗膜形成方法およびその装置として使用できる。試験例では静電スプレーガンを用いて帯電した粉体塗料を被塗物に向かって吐出させる静電粉体塗装で示したが、流動浸漬法でも粉体流動層を用いる静電塗装方法でも同様の効果を奏する。
【0061】
・静電スプレーガンを用いて帯電した粉体塗料を被塗物に向かって吐出させる静電粉体塗装の場合には、第1粉体塗料の吐出量が第2粉体塗料の吐出量以下であれば、より平滑性に優れた塗膜を形成できる。
【0062】
・静電粉体塗装の場合、第1粉体塗料の帯電印加電圧が第2粉体塗料の帯電印加電圧より低ければ、より平滑性に優れた塗膜を形成できる。試験例では静電スプレーガンを用いて帯電した粉体塗料を被塗物に向かって吐出させる静電粉体塗装で示したが、粉体流動層を用いる静電塗装方法でも同様の効果を奏する。粉体塗料の帯電印加電圧の大小は、被塗物に対する粉体塗料の帯電電圧の絶対値で比較している。一般的には、被塗物がアースされ、粉体塗料が負に帯電して静電塗装される。この場合には粉体塗料の帯電印加電圧の絶対値で比較される。仮に粉体塗料を正に帯電して静電塗装する場合には、粉体塗料の帯電印加電圧をそのまま比較できる。また被塗物がアースされず、アースに対して電位を有する場合には、被塗物に対する粉体塗料の電位差の絶対値で比較される。
【0063】
・第1塗装工程と第2塗装工程に分けて粉体塗装することによって、平均粒子径の異なる粉体塗料ごとに適した塗装条件を設定することが可能となり、同じ膜厚で静電反発のない塗装外観にすることができる。また粒子径の大きい粉体塗料が先に消費され、平均粒子径の小さい粉体塗料の使用効率が悪く、粉体塗料の歩留まりが悪い問題も解決され、粉体塗料の使用効率が向上し、廃棄物を低減することができる。
【0064】
実施形態のように分級装置によって平均粒子径の大きい粉体塗料と小さい粉体塗料に分級すれば、粒度分布の大きな市販の粉体塗料が使用でき、かつ被塗物や粉体塗料等に適した平均粒子径に分級して使用でき、より平滑性に優れた塗膜を得ることができる。また第1塗装工程と第2塗装工程を同じブース内で塗装しても、被塗物に付着しなかった粉体塗料を回収し、再び使用することができ、廃棄物をより低減できる。
【0065】
図2は別の実施形態の粉体塗装装置を説明する説明図である。図1と同様の部位には同じ符号を付し説明は省略する。この粉体塗装装置では分級装置は設けられておらず、別に分級した第1粉体塗料が粗粉粉体塗料タンク11に入れられ、第1粉体塗料より小さい平均粒子径を有する第2粉体塗料が微粉粉体塗料タンク21にに入れられている。この実施形態でも第1塗装工程と第2塗装工程を同じブース内で塗装しているが、第1塗装工程と第2塗装工程の塗装ブースを仕切り、それぞれの塗装ブースで被塗物に付着しなかった粉体塗料を回収し、それぞれの粉体塗料タンクに戻して再使用してもよい。
【0066】
【発明の効果】
以上のように、本発明は、第1粉体塗料を被塗物に粉体塗装する第1塗装工程と、該第1塗装工程で前記第1粉体塗料が塗装された前記被塗物に前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を粉体塗装する第2塗装工程が設けられていることを特徴とする粉体塗装方法または第1粉体塗料を被塗物に粉体塗装する粗粉粉体塗装部と、前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を前記被塗物に粉体塗装する微粉粉体塗装部が設けられていることを特徴とする粉体塗装装置であるので、平滑性に優れた塗膜が形成できる。
【図面の簡単な説明】
【図1】実施形態の静電粉体塗装装置を説明する説明図
【図2】別の実施形態の粉体塗装装置を説明する説明図
【符号の説明】
2…サイクロン式分級器(分級装置)
9a、9b…被塗物
10…粗粉粉体塗装部
11…粗粉粉体塗料タンク
13…高電圧発生装置
14…静電スプレーガン
20…微粉粉体塗装部
21…微粉粉体塗料タンク
23…高電圧発生装置
24…静電スプレーガン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a powder coating method and a powder coating device.
[0002]
[Prior art]
In recent years, the shift from solvent coating to powder coating has been rapidly progressing due to the influence on the global environment and increasing environmental awareness. Conventionally, a powder coating having an average particle diameter of 35 to 50 μm is generally used, but the smoothness is considerably inferior to that of solvent coating. Many products require an appearance similar to that of solvent coating, and it is required to realize powder coating with excellent smoothness in order to expand the transition to powder coating and promote environmental improvements.
[0003]
For that purpose, powder coatings having an average particle diameter of 25 μm or less have begun to be used. For example, an electrostatic powder coating method using a powder fluidized bed using a powder having an average particle diameter of 5 to 20 μm as in Patent Document 1 has been proposed.
[0004]
[Patent Document 1]
JP-A-10-120945 ([0012])
[0005]
[Problems to be solved by the invention]
However, there is a problem that sufficient smoothness cannot be obtained even when a powder coating having a small average particle size as in Patent Document 1 is used. When the average particle size is too small, there is a problem that the smoothness is deteriorated.
[0006]
The present invention has solved the above problems and provides a powder coating method and a powder coating apparatus capable of forming a coating film having excellent smoothness.
[0007]
[Means for Solving the Problems]
In order to solve the above technical problem, the technical means (hereinafter, referred to as first technical means) taken in claim 1 of the present invention is a method in which the first powder paint is applied to the object by powder coating. A first coating step of applying a second powder coating having an average particle diameter smaller than that of the first powder coating on the object coated with the first powder coating in the first coating step. A powder coating method, wherein a second coating step is performed.
[0008]
The effects of the first technical means are as follows.
[0009]
That is, a powder coating having a large average particle diameter is powder-coated in the first coating step, and a powder coating having a small average particle diameter is powder-coated in the second coating step. A film can be formed.
[0010]
In order to solve the above technical problem, the technical means (hereinafter referred to as a second technical means) taken in claim 2 of the present invention is characterized in that the first coating step and the second coating step are powdered. 2. An electrostatic powder coating for applying powder by charging a body paint, wherein a charge application voltage of the first powder paint is lower than a charge application voltage of the second powder paint. Powder coating method.
[0011]
The effects of the second technical means are as follows.
[0012]
That is, since the charge application voltage of the first powder paint is lower than the charge application voltage of the second powder paint, the charge density (charge amount per unit area) of the coating film of the first powder paint is small, and Since the second powder coating is applied on the film by a large electrostatic force, a coating film having more excellent smoothness can be formed.
[0013]
In order to solve the above technical problem, the technical measures taken in claim 3 of the present invention (hereinafter, referred to as third technical means) are that the first coating step and the second coating step are powdery. An electrostatic powder coating in which a body paint is charged and discharged toward the object to be coated to perform powder coating, wherein a discharge amount of the first powder paint is equal to or less than a discharge amount of the second powder paint. The powder coating method according to claim 1, wherein:
[0014]
The effects of the third technical means are as follows.
[0015]
That is, since the discharge amount of the first powder coating is equal to or less than the discharge amount of the second powder coating, a coating film having more excellent smoothness can be formed.
[0016]
In order to solve the above technical problem, a technical measure taken in claim 4 of the present invention (hereinafter, referred to as a fourth technical measure) is to apply the first powder paint to the object by powder coating. And a fine powder coating unit for powder coating the object to be coated with a second powder coating having an average particle diameter smaller than that of the first powder coating. Powder coating apparatus.
[0017]
The effects of the fourth technical means are as follows.
[0018]
That is, a powder coating having a large average particle diameter is coated in the coarse powder coating section, and a powder coating having a small average particle diameter is coated in the fine powder coating section. A film can be formed.
[0019]
In order to solve the above technical problem, the technical means (hereinafter, referred to as fifth technical means) taken in claim 5 of the present invention is that a raw material powder coating is combined with the first powder coating and the first powder coating. A classification device that classifies the powder into a second powder coating, supplies the first powder coating to the coarse powder coating unit, and supplies the second powder coating to the fine powder coating unit; 5. The powder coating apparatus according to claim 4, wherein:
[0020]
The effects of the fifth technical means are as follows.
[0021]
That is, similarly to the third aspect, it can be provided.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have considered the reason why the smoothness of the coating film is not sufficiently improved even when a powder coating material having a small average particle size is used. In the powder coating, particles having different particle diameters are aggregated. At the time of powder coating, a phenomenon is observed in which particles having a large particle diameter adhere and particles having a small particle diameter do not easily adhere. This was presumed to be the reason that the smoothness could not be sufficiently improved. In addition, in a coating method using static electricity such as an electrostatic powder coating method or an electric field fluid immersion method, when particles having a small average particle size are used, the electrostatic repulsion of the coating film becomes strong, and the coating surface has orange peel. This deteriorated the smoothness of the coating film. It was presumed that the particles having a small particle diameter had a large specific surface area and a large charge amount per volume of the particles. The inventor of the present invention has conducted intensive studies based on these assumptions and has arrived at the present invention.
[0023]
Two kinds of powder coatings having different average particle diameters are prepared. First, a powder coating having a large average particle diameter is powder coated in a first coating step, and then formed in a second coating step in a first coating step. A powder coating having a small average particle size is powder-coated on the coated film. By doing so, the powder coating having a large average particle diameter and the powder coating having a small average particle diameter are separately coated, so that a phenomenon in which particles having a small particle diameter are prevented from being adhered by large particles can be eliminated. In addition, since the unevenness of the coating film formed by the large particles in the first coating step, that is, the gap between the large particles is coated so as to be filled with the small particles in the second coating step, the small particles can be effectively adhered, and the coating can be performed smoothly. A coating film having excellent properties can be formed. Furthermore, in the first coating step, a coating film is formed by large particles, and the formed coating film has a low charge density, so that a coating film having low electrostatic repulsion, no occurrence of yuzu skin and excellent smoothness is formed. it can.
[0024]
Since the first coating process and the second coating process are separated, a powder coating suitable for each of a case where a powder coating having a large average particle size is applied and a case where a powder coating having a large average particle size is applied. You can set conditions. In particular, in the second coating step, by controlling the amount of charge of the powder coating, it is possible to reduce electrostatic repulsion and eliminate the occurrence of citron skin.
[0025]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram illustrating a powder coating apparatus according to an embodiment. This powder coating apparatus is an electrostatic powder coating apparatus that applies a powder coating to a target and discharges the powder coating toward an object to perform powder coating. It comprises a raw material powder coating tank 1, a cyclone classifier (classifier) 2, a coarse powder coating unit 10, a fine powder coating unit 20, a powder coating recovery device 4, a coating booth 3, and the like.
[0026]
The coarse powder coating unit 10 includes a coarse powder coating tank 11, an ejector 12, a high voltage generator 13, an electrostatic spray gun 14, and the like. The ejector 12 is connected to the coarse powder coating tank 11, and sprays the powder coating in the coarse powder coating tank 11 via the powder coating transport line 15 in the electrostatic spray booth 3. It is transported to the gun 14. The high voltage generator 13 is connected to an electrostatic spray gun 14 via a high voltage electric wire 16.
[0027]
Similarly, the fine powder coating unit 20 includes a fine powder coating tank 21, an ejector 22, a high voltage generator 23, an electrostatic spray gun 24, and the like. The ejector 22 is connected to the fine powder paint tank 21 and transfers the powder paint in the fine powder paint tank 21 to the electrostatic spray gun 24 provided in the painting booth 3 via the powder paint transport line 25. To be transported to The high voltage generator 23 is connected to an electrostatic spray gun 24 via a high voltage electric wire 26.
[0028]
A cyclone classifier 2 is connected to the raw material powder coating tank 1. The cyclone classifier 2 is connected to a coarse powder paint tank 11 via a powder paint transport pipe 5 and to a fine powder paint tank 21 via a powder paint transport pipe 6.
[0029]
Excess powder paint that has not adhered to the object to be coated in the coating booth 3 is sent to the powder paint collecting device 4 via the powder collecting pipe 7. The powder paint recovery device 4 is connected to the powder paint tank 1 via a powder recovery pipe 8.
[0030]
Reference numerals 9a and 9b denote objects to be coated, which are installed in the coating booth 3 while being grounded, and sequentially move from the position of the object 9a to the position of the object 9b.
[0031]
The raw material powder coating material in the raw material powder coating tank 1 is sent to the cyclone classifier 2, and a coarse powder powder coating material (first powder coating material) having a large average particle size and a fine powder powder coating material having a small average particle size (first powder coating material) Second powder coating). The classified coarse powder paint is transported and stored in the coarse powder paint tank 11 via the powder paint transport pipe 5, and the fine powder powder paint is finely powdered via the powder paint transport pipe 6. It is transported to the paint tank 21 and stored.
[0032]
The coarse powder coating material stored in the coarse powder coating tank 11 is supplied to the electrostatic spray gun 14 by the ejector 12. The coarse powder coating material supplied to the electrostatic spray gun 14 is negatively charged by the high voltage generator 13 and sprayed toward the object 6a. The sprayed coarse powder coating adheres to the grounded object 6a to form a coating film.
[0033]
Similarly, the fine powder paint stored in the fine powder paint tank 21 is supplied to the electrostatic spray gun 24 by the ejector 22. The fine powder paint supplied to the electrostatic spray gun 24 is negatively charged by the high voltage generator 23 and sprayed toward the object 6b. The sprayed fine powder paint adheres to the grounded work 6b to form a coating film.
[0034]
The object to be coated is first moved to the position of the object to be coated 6a, and the coarse powder coating is subjected to electrostatic powder coating (first coating step). Next, the object to be coated is moved to the position of the object to be coated 6b, and the fine powder coating is subjected to electrostatic powder coating (second coating step).
[0035]
The powder coating that has not adhered to the object in the first coating step and the second coating step is recovered by the powder coating recovery device 4 through the powder recovery pipe 7 and is recovered through the powder recovery pipe 8. To the raw material powder coating tank 1.
[0036]
The following powder coating test was performed using this powder coating apparatus.
[0037]
(Test Example 1)
One surface of an aluminum test panel (aluminum material A1050 manufactured by Nippon Test Panel Co., Ltd., 150 mm in length, 70 mm in width, and 0.8 mm in thickness) as a material to be coated was painted with the spray side facing. A polyester resin powder coating was used as the powder coating. In all the following test examples, the same coating material was used, and powder coatings of the same material were used.
[0038]
In the first coating step, a powder coating having an average particle diameter of 40 μm was used, and electrostatic powder coating was performed for 5 seconds under the conditions of a discharge rate of 60 g / min and an applied voltage of 40 kV. In the second coating step, a powder coating having an average particle diameter of 15 μm was used, and electrostatic powder coating was performed for 5 seconds under the conditions of a discharge rate of 60 g / min and an applied voltage of 40 kV. The average particle size, the particle size distribution measured with a laser diffraction particle size distribution measuring apparatus SALD-2000J manufactured by Shimadzu Corporation, minus sieve cumulative volume percentage is expressed in 50% of the particle diameter D p50.
[0039]
After the first coating step and after the second coating step, the coating film thickness was measured by an electromagnetic film thickness meter (KZ, LZ-330J). The coating thickness after the second coating step is the total coating thickness, and the coating thickness in the second coating step was obtained by calculating the difference between the total coating thickness and the coating thickness in the first coating step.
[0040]
For the smoothness of the formed coating film, using a surface roughness meter TAYLOR HOBSON (Form Talysurf Series), a 5-point average value of the amplitude of the surface shape measured at a measurement length of 15 mm and a vertical magnification of 10,000 times was calculated. It was evaluated by amplitude.
[0041]
(Test Example 2)
Electrostatic powder coating was performed under the same conditions as in Test Example 1, except that a powder coating having an average particle diameter of 36 μm was used in the first coating step, and a powder coating having an average particle diameter of 21 μm was used in the second coating step. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0042]
(Test Example 3)
Electrostatic powder coating was performed under the same conditions as in Test Example 1, except that a powder coating having an average particle diameter of 25 μm was used in both the first coating step and the second coating step. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1. In Test Example 3, the raw material powder coating material in the raw material powder coating tank 1 was used without being classified. In Test Examples 1 and 2, this raw material powder coating was classified by a cyclone classifier 2 and used.
[0043]
(Test Example 4)
Using a powder coating having an average particle diameter of 25 μm, electrostatic powder coating was performed under the same conditions as in Test Example 1 only in the first coating step. However, the coating time was set to 10 seconds so that the total coating film thickness was the same as in the above-mentioned test example. The same coating time is used in Test Examples 5 and 6 below. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0044]
(Test Example 5)
Using the powder coating having an average particle diameter of 15 μm classified by the cyclone classifier 2, electrostatic powder coating was performed using the fine powder coating unit 20 under the same conditions as in Test Example 4. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0045]
(Test Example 6)
Using the powder coating having an average particle diameter of 40 μm classified by the cyclone classifier 2, electrostatic powder coating was performed using the coarse powder coating section 10 under the same conditions as in Test Example 4. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0046]
(Test result 1)
Table 1 shows the evaluation results of Test Examples 1 to 6.
[Table 1]
Figure 2004358337
Test Examples 4 to 6 are test examples using a conventional electrostatic powder coating method for forming a coating film at a time. As the average particle diameter decreases from an average particle diameter of 40 μm (Test Example 6) to an average particle diameter of 25 μm (Test Example 4), the undulation amplitude also decreases. However, when the average particle diameter is further reduced to 15 μm (Test Example 5), the undulation amplitude increases. This is due to the occurrence of rough skin due to electrostatic repulsion. In other words, it shows that there is a limit in improving smoothness only by reducing the average particle diameter.
[0047]
In Test Example 3, the electrostatic powder coating is performed in the first coating step and the second coating step, and the powder coating having the same average particle diameter is used in each case. The average particle diameter is the same as that of Test Example 4, and the discharge amount and the applied voltage are the same, but the undulation amplitude of Test Example 3 is smaller. This indicates that even if the electrostatic coating process is divided into two times, the smoothness may be improved.
[0048]
Test Examples 1 and 2 are test examples in which the average particle size of the second powder coating is smaller than the average particle size of the first powder coating. In each case, the undulation amplitude was very small as compared with Test Examples 3 to 6, and coating films having excellent smoothness were obtained. In particular, the smoothness of Test Example 1 in which the difference between the average particle diameters of the first powder coating and the second powder coating is large is excellent. That is, the powder coating having a large average particle diameter is applied in the first coating step, and the powder coating having a small average particle diameter is applied in the second coating step. A coating film can be formed.
[0049]
Next, the effect of the discharge amount of the powder coating was tested. The discharge amount indicates the weight of the powder paint discharged per unit time.
[0050]
(Test Example 7)
As the first powder coating and the second powder coating, powder coatings having the same average particle diameter of 40 μm and 15 μm as in Test Example 1 were used. In the first coating step, electrostatic powder coating was performed for 7 seconds under the conditions of a discharge rate of 30 g / min and an applied voltage of 30 kV. In the second coating step, electrostatic powder coating was performed for 4 seconds under the conditions of a discharge rate of 70 g / min and an applied voltage of 30 kV. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0051]
(Test Example 8)
Electrostatic powder coating was performed under the same conditions as in Test Example 7 except that the discharge rate in the first coating step was 70 g / min and the powder coating time was 4 seconds. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0052]
(Test Example 9)
Electrostatic powder coating was performed under the same conditions as in Test Example 8 except that the discharge rate in the second coating step was 30 g / min and the powder coating time was 7 seconds. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0053]
(Test result 2)
Table 2 shows the evaluation results of Test Examples 7 to 9.
[Table 2]
Figure 2004358337
In Test Example 9 in which the discharge amount of the second powder paint is smaller than the discharge amount of the first powder paint, the undulation amplitude is large. This is because the speed at which the second powder coating is supplied onto the first coating formed by the first powder coating is low, so that the second coating enters the gap between the first powder coating particles of the first coating sufficiently densely. It is presumed that it did not go. If the second powder coating does not penetrate closely into the gaps between the first powder coating particles of the first coating film, the second powder coating will be melted when the temperature of the object to be coated is increased later. This is because they flow into the gaps between the first powder coating particles and the final coating film has poor smoothness. Therefore, when the discharge amount of the first powder paint is equal to or larger than the discharge amount of the second powder paint, the smoothness of the coating film can be improved.
[0054]
Next, the effect of the applied voltage of the electrostatic powder coating was tested.
[0055]
(Test Example 10)
As the first powder coating and the second powder coating, powder coatings having the same average particle diameter of 40 μm and 15 μm as in Test Example 1 were used. In the first coating step, electrostatic powder coating was performed for 7 seconds under the conditions of a discharge rate of 30 g / min and an applied voltage of 30 kV. In the second coating step, electrostatic powder coating was performed for 4 seconds under the conditions of a discharge rate of 70 g / min and an applied voltage of 60 kV. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0056]
(Test Example 11)
Electrostatic powder coating was performed under the same conditions as in Test Example 10 except that the applied voltage in the first coating step was 60 kV. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0057]
(Test Example 12)
Electrostatic powder coating was performed under the same conditions as in Test Example 11 except that the applied voltage in the second coating step was 30 kV. The measurement of the film thickness and the evaluation of the smoothness were performed in the same manner as in Test Example 1.
[0058]
(Test result 3)
Table 3 shows the evaluation results of Test Examples 10 to 12.
[Table 3]
Figure 2004358337
In Test Example 12 in which the applied voltage in the second painting step was lower than the applied voltage in the first painting step, the undulation amplitude was large. In Test Example 11 in which the applied voltage in the first coating step is equal to the applied voltage in the second coating step, the undulation amplitude is smaller than in Test Example 12. In Test Example 10 in which the applied voltage in the first coating step was lower than the applied voltage in the second coating step, a coating film having very small undulation amplitude and extremely excellent smoothness was obtained.
[0059]
The results of the above test examples are summarized as follows.
[0060]
・ A powder coating having a large average particle diameter is applied in the first coating step, and a powder coating having a small average particle diameter is applied in the second coating step. A film can be formed. Thereby, it can be used as a method and an apparatus for forming a coating film on automobile vehicles, vehicle parts, ships, household appliances, painted steel plates, etc., which have been rarely used in powder coating. In the test example, the electrostatic powder coating in which the charged powder paint is discharged toward the object to be coated using the electrostatic spray gun is shown, but the same applies to the fluid immersion method and the electrostatic coating method using the powder fluidized bed. Has the effect of
[0061]
In the case of electrostatic powder coating in which charged powder paint is discharged toward an object to be coated using an electrostatic spray gun, the discharge amount of the first powder paint is equal to or less than the discharge amount of the second powder paint. If so, a coating film having more excellent smoothness can be formed.
[0062]
In the case of electrostatic powder coating, if the applied voltage of the first powder coating is lower than the applied voltage of the second powder coating, a coating film having more excellent smoothness can be formed. In the test example, the electrostatic powder coating in which the charged powder coating material is discharged toward the object to be coated by using the electrostatic spray gun is shown, but the same effect can be obtained by the electrostatic coating method using the powder fluidized bed. . The magnitude of the applied voltage of the powder coating is compared by the absolute value of the charging voltage of the powder coating with respect to the object to be coated. Generally, the object to be coated is grounded, and the powder coating is negatively charged and electrostatically coated. In this case, the comparison is made based on the absolute value of the applied voltage of the powder coating. If the powder paint is positively charged and electrostatically applied, the applied voltage of the powder paint can be directly compared. When the object to be coated is not grounded and has a potential with respect to the ground, the comparison is made with the absolute value of the potential difference of the powder coating material with respect to the object to be coated.
[0063]
-By applying powder coating separately in the first coating step and the second coating step, it becomes possible to set appropriate coating conditions for powder coatings having different average particle diameters, and to achieve the same film thickness for electrostatic repulsion. There can be no painted appearance. In addition, the powder paint with a large particle diameter is consumed first, the use efficiency of the powder paint with a small average particle diameter is poor, and the problem of the poor yield of the powder paint is also solved.The use efficiency of the powder paint is improved, Waste can be reduced.
[0064]
By classifying into a powder coating having a large average particle size and a powder coating having a small average particle size by a classifier as in the embodiment, a commercially available powder coating having a large particle size distribution can be used, and is suitable for an object to be coated or a powder coating. Can be used after being classified into the average particle diameter, and a coating film having more excellent smoothness can be obtained. Also, even if the first coating step and the second coating step are performed in the same booth, the powder coating that has not adhered to the object to be coated can be collected and reused, thereby further reducing waste.
[0065]
FIG. 2 is an explanatory diagram illustrating a powder coating apparatus according to another embodiment. The same reference numerals are given to the same parts as those in FIG. In this powder coating apparatus, a classifier is not provided, and the first powder coating separately classified is put into the coarse powder coating tank 11 and the second powder having an average particle diameter smaller than that of the first powder coating. Body paint is placed in a fine powder paint tank 21. In this embodiment, the first coating step and the second coating step are performed in the same booth. However, the coating booths in the first coating step and the second coating step are separated from each other, and the coating booths adhere to the workpieces in the respective coating booths. The powder paint that has not been collected may be collected, returned to the respective powder paint tanks, and reused.
[0066]
【The invention's effect】
As described above, the present invention provides a first coating step of powder-coating a first powder coating on an object to be coated, and applying the first powder coating to the object coated with the first powder coating in the first coating step. A second coating step of powder coating a second powder coating having an average particle diameter smaller than that of the first powder coating; A coarse powder coating unit for powder coating an object, and a fine powder coating unit for powder coating a second powder coating having an average particle diameter smaller than the first powder coating on the object to be coated. Therefore, a coating film having excellent smoothness can be formed.
[Brief description of the drawings]
FIG. 1 is an explanatory view illustrating an electrostatic powder coating apparatus according to an embodiment. FIG. 2 is an explanatory view illustrating a powder coating apparatus according to another embodiment.
2. Cyclone classifier (classifier)
9a, 9b: Coating object 10: Coarse powder coating unit 11 ... Coarse powder coating tank 13 ... High voltage generator 14 ... Electrostatic spray gun 20 ... Fine powder coating unit 21 ... Fine powder coating tank 23 ... High voltage generator 24 ... Electrostatic spray gun

Claims (5)

第1粉体塗料を被塗物に粉体塗装する第1塗装工程と、該第1塗装工程で前記第1粉体塗料が塗装された前記被塗物に前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を粉体塗装する第2塗装工程が設けられていることを特徴とする粉体塗装方法。A first coating step in which the first powder coating is powder-coated on the object; and an average smaller than the first powder coating on the object on which the first powder coating is coated in the first coating step. A powder coating method, comprising a second coating step of powder coating a second powder coating having a particle diameter. 前記第1塗装工程および前記第2塗装工程は粉体塗料を帯電させて粉体塗装する静電粉体塗装であり、前記第1粉体塗料の帯電印加電圧が前記第2粉体塗料の帯電印加電圧より低いことを特徴とする請求項1記載の粉体塗装方法。The first coating step and the second coating step are electrostatic powder coating in which powder coating is performed by charging a powder coating, and a voltage applied to the first powder coating is applied to the second powder coating. 2. The powder coating method according to claim 1, wherein the applied voltage is lower than the applied voltage. 前記第1塗装工程および前記第2塗装工程は粉体塗料を帯電させ前記被塗物に向かって吐出させて粉体塗装する静電粉体塗装であり、前記第1粉体塗料の吐出量が前記第2粉体塗料の吐出量以下であることを特徴とする請求項1記載の粉体塗装方法。The first coating step and the second coating step are electrostatic powder coating in which the powder coating is charged and discharged toward the object to be coated by powder coating, and the discharge amount of the first powder coating is 2. The powder coating method according to claim 1, wherein the discharge amount is equal to or less than the discharge amount of the second powder coating. 第1粉体塗料を被塗物に粉体塗装する粗粉粉体塗装部と、前記第1粉体塗料より小さい平均粒子径を有する第2粉体塗料を前記被塗物に粉体塗装する微粉粉体塗装部が設けられていることを特徴とする粉体塗装装置。A coarse powder coating unit for powder coating the first powder coating on the object; and a second powder coating having an average particle diameter smaller than the first powder coating on the substrate. A powder coating apparatus comprising a fine powder coating section. 原料粉体塗料を前記第1粉体塗料と前記第2粉体塗料に分級し、前記第1粉体塗料を前記粗粉粉体塗装部に供給するとともに、前記第2粉体塗料を前記微粉粉体塗装部に供給する分級装置が設けられていることを特徴とする請求項4記載の粉体塗装装置。The raw powder coating material is classified into the first powder coating material and the second powder coating material, and the first powder coating material is supplied to the coarse powder coating portion, and the second powder coating material is divided into the fine powder coating material. 5. The powder coating apparatus according to claim 4, further comprising a classifier for supplying the powder coating section.
JP2003158944A 2003-06-04 2003-06-04 Powder coating method and powder coating apparatus Expired - Fee Related JP4296849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158944A JP4296849B2 (en) 2003-06-04 2003-06-04 Powder coating method and powder coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158944A JP4296849B2 (en) 2003-06-04 2003-06-04 Powder coating method and powder coating apparatus

Publications (2)

Publication Number Publication Date
JP2004358337A true JP2004358337A (en) 2004-12-24
JP4296849B2 JP4296849B2 (en) 2009-07-15

Family

ID=34052150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158944A Expired - Fee Related JP4296849B2 (en) 2003-06-04 2003-06-04 Powder coating method and powder coating apparatus

Country Status (1)

Country Link
JP (1) JP4296849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114672A1 (en) * 2012-01-31 2013-08-08 本田技研工業株式会社 Electrostatic coating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114672A1 (en) * 2012-01-31 2013-08-08 本田技研工業株式会社 Electrostatic coating device
JP2013154322A (en) * 2012-01-31 2013-08-15 Honda Motor Co Ltd Electrostatic coating apparatus

Also Published As

Publication number Publication date
JP4296849B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
Bailey The science and technology of electrostatic powder spraying, transport and coating
US3770482A (en) Electrostatic coating method of applying multilayer coating
RU2162375C2 (en) Process of induction of electrostatic charge on powders used for coating
NZ295894A (en) Apparatus for electrostatic charging of resinous powder particles in fluidised bed
MXPA97002463A (en) Apparatus for covering substrates with inductivame loaded powder resin particles
SK16362003A3 (en) Powder coating process with electrostatically charged fluidised bed
US5637136A (en) Triboelectric coating powder and process
Taylor et al. Particle loading effect in cold spray
Shah et al. Comparison of electrostatic fine powder coating and coarse powder coating by numerical simulations
JP4296849B2 (en) Powder coating method and powder coating apparatus
US4027366A (en) Multilayer coated substrate
Barletta et al. Electrostatic fluidized bed deposition of a high performance polymeric powder on metallic substrates
Böttner et al. Numerical calculation of electrostatic powder painting using the Euler/Lagrange approach
Sims et al. Electrostatic effects on first pass transfer efficiency in the application of powder coatings
Meng et al. Characterization of particle size evolution of the deposited layer during electrostatic powder coating processes
Wang et al. Experimental study of particle trajectory in electrostatics powder coating process
Barmuta et al. Electroseparation and efficiency of deposition during electrostatic powder coating
Banerjee et al. Surface microstructure of powder layers influenced by the forces of deposition and adhesion in electrostatic coating process
EP0827989A3 (en) Powder coating, method for coating same and coating film obtained therefrom
Lothongkum et al. Powder characteristics and coating conditions of fresh and reused polyester resins for electrostatic powder coating: powder recycling and loss prevention
US20060068089A1 (en) Powder coating method providing enhanced finish characteristics
JPH1176919A (en) Reusing of powder coating material
JPH03293049A (en) Method and apparatus for two layer type powder electrostatic coating
Biris et al. Reduction of Dendrite Formations to Improve the Appearance of the Powder Cured Films for Automotive Industry
JP3444664B2 (en) Electrostatic powder coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060524

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090406

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees