JP4295535B2 - Method for activating p-type AlGaN compound semiconductor - Google Patents

Method for activating p-type AlGaN compound semiconductor Download PDF

Info

Publication number
JP4295535B2
JP4295535B2 JP2003081407A JP2003081407A JP4295535B2 JP 4295535 B2 JP4295535 B2 JP 4295535B2 JP 2003081407 A JP2003081407 A JP 2003081407A JP 2003081407 A JP2003081407 A JP 2003081407A JP 4295535 B2 JP4295535 B2 JP 4295535B2
Authority
JP
Japan
Prior art keywords
gan
compound semiconductor
based compound
type
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003081407A
Other languages
Japanese (ja)
Other versions
JP2004289013A (en
Inventor
光 平野
智 上山
浩 天野
勇 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soko Kagaku Co Ltd
Original Assignee
Soko Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soko Kagaku Co Ltd filed Critical Soko Kagaku Co Ltd
Priority to JP2003081407A priority Critical patent/JP4295535B2/en
Publication of JP2004289013A publication Critical patent/JP2004289013A/en
Application granted granted Critical
Publication of JP4295535B2 publication Critical patent/JP4295535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線センサ等の受光素子、或は、紫外、青色発光レーザダイオード、紫外、青色発光ダイオード等の発光素子に利用されるGaN系化合物半導体の製造方法に関し、詳しくは、p型不純物の注入されたAlN組成比が20%以上のAlGaNを主として含むGaN系化合物半導体を低抵抗にp型活性化する方法に関する。
【0002】
【従来の技術】
GaN系化合物半導体(一般式:AlGaIn1−x−yN)は直接遷移型のエネルギバンド構造を有し、そのバンドギャップエネルギが室温で1.9eV〜6.2eVに及ぶワイドバンドギャップであるため、紫外域から可視光域をカバーする発光ダイオード、レーザダイオード、及び、紫外線センサ等の受光素子として広範な応用が可能である。
【0003】
従来から、p型半導体、n型半導体、i型半導体等の半導体層を積層して様々な素子構造の化合物半導体素子が作製されている。例えば、p型AlGa1−xN層(0≦x≦1)を含む受光素子では、基板側からPN、NP、PIN、NIP、PNP、PINP、NPN、NPIN等の順番に各半導体層を積層して、ダイオード構造またはトランジスタ構造を構成し、当該構造のi型半導体層やPN接合層に形成される受光領域で発生する電流をp型半導体、n型半導体に設けられた電極から検出可能に構成したものがある。ここで、p型半導体やn型半導体が、夫々p型不純物、n型不純物の注入によって形成されることで、上記各種素子構造が構成されるのであるが、更には、p型半導体層やn型半導体層におけるp型化、n型化、つまりは低抵抗化を十分に行うことで、電極材料との良好な電気的接続を可能にし、更には、素子構造における寄生抵抗成分を小さくして受光素子としての電気的特性の向上を図ることができる。
【0004】
しかしながら、GaN系化合物半導体においては、結晶成長時の窒素源として、一般にNHが用いられており、成長中にこのNHが分解して原子状水素となりGaN系化合物半導体内に滞留し、この原子状水素がp型不純物として注入されたMg等と結合することにより、当該p型不純物がアクセプタとして作用するのを阻害すると考えられ、単にp型不純物を注入するだけでは、GaN系化合物半導体のp型化は必ずしも成されず、高抵抗のまま十分な素子特性が得られないばかりか、素子構造自体が形成されない場合もあった。
【0005】
そこで、例えば、特許文献1に開示されたp型窒化ガリウム系化合物半導体の製造方法では、気相成長法によりp型不純物の注入されたGaN系化合物半導体を成長させた後、400℃以上の温度でアニーリングを行うことで、GaN系化合物半導体のp型活性化を行い、低抵抗のp型GaN系化合物半導体を作製している。
【0006】
【特許文献1】
特許第2540791号明細書
【0007】
【発明が解決しようとする課題】
特許文献1に開示された実施例では、p型不純物としてMgを使用した場合のGaNのp型活性化について詳細が開示されているが、p型不純物としてMgを使用した場合、AlN組成比(モル分率)が20%以上のAlGaNを主として含むGaN系化合物半導体では、十分なp型活性化(低抵抗化)が困難であった。
【0008】
また、特許文献1に開示されたp型窒化ガリウム系化合物半導体の製造方法では、400℃以上の温度でアニーリングを行うことで、GaN系化合物半導体中で結合した原子状水素とMg等のp型不純物が分離し、GaN系化合物半導体表面に移動する。しかし、p型不純物から分離した原子状水素は、GaN系化合物半導体表面のポテンシャル障壁のために外部に放出されずに表面近傍に滞留するようになり、GaN系化合物半導体中での分離がそれ以上に進行せず、p型活性化がある程度で飽和してしまう虞がある。従って、更にp型活性化を促進させるには、アニーリング温度を上昇させる必要がある。しかし、アニーリング温度を上昇し過ぎると、窒素が脱離して、結晶が劣化するために、アニーリング温度の上限が存在する。GaNの場合は、900℃以下が必要であり、InGaNが含まれる場合は、800℃以下に設定しなければならない。また、600℃以下の低温でアニーリングを行う場合に、十分なp型活性化を実現するに長時間を要することになり、400℃が実用上の下限温度である。
【0009】
また、当該製造方法では、水素が実質的に含まれていない雰囲気中でアニーリングを行う必要があり、例えば、アニーリングを別のアニーリング装置内に移動して行うか、同じ反応室内で処理する場合は、p型窒化ガリウム系化合物半導体の窒素材料となるNHやH(キャリアガス)を反応室から事前に除去する必要がある。製造工程上、工数増加となり、製造コスト増加の要因となる。
【0010】
本発明は、上述の問題点に鑑みてなされたものであり、その目的は、上記問題点を解消し、AlN組成比が20%以上のAlGaNを主として含むGaN系化合物半導体を低抵抗のp型半導体にできるp型活性化方法を提供することにある。更には、アニーリング雰囲気中に実質的に水素が含まれていても、低温または短時間のアニーリング処理で、上記GaN系化合物半導体を低抵抗のp型半導体にできるp型活性化方法を提供することにある。
【0011】
【課題を解決するための手段】
この目的を達成するための本発明に係るGaN系化合物半導体のp型活性化方法の第一の特徴構成は、少なくともベリリウムを含むp型不純物の注入されたAlN組成比が20%以上のAlGaNを主として含むGaN系化合物半導体を形成後、前記GaN系化合物半導体をアニーリングすることにより、前記GaN系化合物半導体中に注入されたp型不純物と結合している水素を脱離させて前記GaN系化合物半導体をp型活性化する点にある。
【0012】
上記第一の特徴構成によれば、p型不純物としてベリリウムを含むことで、従来p型不純物としてMgを使用した場合、十分なp型活性化が困難であったAlN組成比が20%以上のAlGaNを主として含むGaN系化合物半導体についても十分なp型活性化が可能となる。
【0013】
これは、水素とBeの電気陰性度の差が水素とMgの電気陰性度の差より小さいことから、水素とBeの方が、水素とMgより結合のイオン性が低いため、アニーリングによる水素の脱離がより容易に促進される結果と考えられる。一般にアクセプタ順位が深くなると同じ不純物濃度でも正孔キャリア密度が低くなり、また、AlN組成比が高くなるにつれてアクセプタ順位が深くなるため、同じAlN組成比におけるアクセプタ順位がMgに比べて浅いBeを使用することで、AlN組成比が20%以上のGaN系化合物半導体に対しても十分なP型活性化が得られる。
【0014】
上記第一の特徴構成において、前記GaN系化合物半導体の形成を有機金属化合物気相成長法で行い、ベリリウムの原料として、ビスシクロペンタジエニルベリリウム(CpBe)またはビス(R−シクロペンタジエニル)ベリリウムでシクロペンタジエニル基に1〜4価のアルキル基が付随したものの何れかを使用するのが好ましい。
【0015】
更に、前記GaN系化合物半導体の形成を有機金属化合物気相成長法で行い、ベリリウムの原料として、ビス(R−シクロペンタジエニル)ベリリウムでシクロペンタジエニル基に2〜4価のアルキル基が付随したものの何れかを使用するのが、尚好ましい。
【0016】
上記のベリリウム原料を使用すれば、有機金属化合物気相成長法を用いてGaN系化合物半導体にベリリウムをp型不純物として注入でき、その後のアニーリングによりAlN組成比が20%以上であってもp型活性化できる。
【0017】
ところで、有機金属化合物気相成長法を用いてp型、n型及びi型半導体を所定の順序で段階的に形成するにあたり、各型に対応する不純物原料を結晶成長させる反応室内に配管を通して供給する場合に、各半導体層の成長を切り換えるときに、不純物原料の供給も切り換えるが、同じ配管を使用する場合に、配管内壁に残留した残留不純物による影響(メモリ効果)が無視できずに各半導体層間の界面近傍において所期の不純物濃度が達成できないという問題がある。
【0018】
しかしながら、上記ベリリウム原料、特に後者の原料を使用すれば、分子サイズが、CpBeの場合より大きく、分極による分子間力が弱まるため、配管内壁への残留が少なくなるため、上記メモリ効果を抑制することができ、より効果的にp型活性化が促進される。
【0019】
同第二の特徴構成は、上記第一の特徴構成に加えて、前記p型不純物の注入されたAlN組成比が20%以上のAlGaNを主として含む前記GaN系化合物半導体の表面に、前記GaN系化合物半導体中の水素を吸収して外部へ放出する作用を有する水素吸収透過膜を形成してから、還元雰囲気中で前記GaN系化合物半導体をアニーリングする点にある。
【0020】
上記第二の特徴構成によれば、更にp型活性化が促進され、アニーリング温度が低温でも水素吸収透過膜がない場合に比べて短時間に活性化が進む。つまり、アニーリングによりp型不純物と分離してGaN系化合物半導体表面近傍に滞留する水素原子を水素吸収透過膜が吸収して外部に放出することにより、かかる滞留によりGaN系化合物半導体のp型活性化が飽和するのが防止され、更なる活性化が阻害されずに促進される。
【0021】
更に、還元雰囲気中でアニーリングすることにより、水素吸収透過膜形成後に、酸化雰囲気の空気または窒素雰囲気中でアニーリングした場合、酸素または残留酸素の影響により、水素吸収透過膜の表面が原子層レベルで酸化、或いは、表面状態の劣化が生じて、水素吸収透過膜の性能が劣化するのを回避できる。
【0022】
同第三の特徴構成は、上記第二の特徴構成に加えて、前記アニーリング時の還元雰囲気に水素が含まれる点にある。
【0023】
上記第三の特徴構成によれば、還元雰囲気中の水素分子が、還元雰囲気中の平衡酸素濃度以下の微量酸素による水素吸収透過膜表面の酸化を防止するクリーニング作用を発揮し、水素吸収透過膜のGaN系化合物半導体中の水素を吸収して外部へ放出する機能が良好に維持され、結果としてGaN系化合物半導体のp型活性化が促進される。
【0024】
同第四の特徴構成は、上記第二または第三の特徴構成に加えて、前記水素吸収透過膜がニッケル、パラジウム、銀パラジウム合金、白金、ルテニウムから選択される一つ以上の物質からなる点にある。
【0025】
上記第四の特徴構成によれば、水素吸収透過膜がニッケル、パラジウム、銀パラジウム合金、白金、ルテニウムから選択される一つ以上の物質から形成されるので、GaN系化合物半導体中の水素を吸収して外部へ放出する作用が発揮され、結果としてGaN系化合物半導体のp型活性化が促進される。
【0026】
同第五の特徴構成は、上記第二乃至第四の特徴構成に加えて、前記水素吸収透過膜が前記GaN系化合物半導体中の原子状水素を吸収して水素分子として外部へ放出する触媒作用を有する点にある。
【0027】
上記第五の特徴構成によれば、水素吸収透過膜の原子状水素を分子化する化学反応が触媒作用によって促進されるため、GaN系化合物半導体中の水素を吸収して外部へ放出する作用が良好に発揮され、結果としてGaN系化合物半導体のp型活性化が促進される。
【0028】
同第六の特徴構成は、上記第二乃至第五の特徴構成に加えて、前記アニーリング時の前記還元雰囲気が大気圧以下である点にある。
【0029】
同第七の特徴構成は、上記第六の特徴構成に加えて、前記アニーリング時の前記還元雰囲気が、ロータリーポンプのみにより4000Pa(約30Torr)以下に減圧されている点にある。
【0030】
上記第六または第七の特徴構成によれば、還元雰囲気が減圧下にあることで、水素吸収透過膜の劣化が抑制され、表面状態がより良好に維持され、特に4000Pa(約30Torr)以下でその効果がより顕著となり、GaN系化合物半導体のp型活性化が促進される。また、後工程で電極金属等の他の金属をその上面に堆積させる場合に、良好な表面状態が特に好適となる。また、ロータリーポンプのみにより減圧することで、減圧処理時間も短くスループットが上がり、また、還元ガスを導入後にガスを引くため減圧処理による汚染物質の混入も防止できる。更に、大気圧下では還元ガスの置換が必要となるがその手間も省ける。
【0031】
同第八の特徴構成は、上記第二乃至第五の特徴構成に加えて、前記p型不純物の注入されたGaN系化合物半導体を形成後、その表面に前記水素吸収透過膜だけを形成してから、還元雰囲気中で前記GaN系化合物半導体をアニーリングする点にある。
【0032】
例えば、水素吸収透過膜と他の金属膜を重ねてp型電極を形成する場合に、他の金属膜を先に堆積してアニーリングすると水素吸収透過膜の水素を吸収して外部へ放出する機能が阻害され、水素吸収透過膜と他の金属膜の間に蓄積された水素がその金属膜を通過する過程で、その金属膜に穴が開き、金属膜の品質劣化を招く結果となる。
【0033】
そこで、上記第八の特徴構成によれば、還元雰囲気中でアニーリングすることとの相乗効果で、かかる問題が効果的に解消される。特に水素を含む減圧還元雰囲気中でアニーリングすると特に効果的である。
【0034】
同第九の特徴構成は、上記各特徴構成に加えて、前記p型不純物の注入された前記GaN系化合物半導体のAlN組成比が40%以上である点にある。
【0035】
上記第九の特徴構成によれば、p型不純物としてベリリウムを含むことで、従来p型不純物としてMgを使用した場合、十分なp型活性化が困難であったAlN組成比が40%以上のAlGaNを主として含むGaN系化合物半導体についても十分なp型活性化が可能となる。この結果、p型GaN系化合物半導体層を通過して光の入射または出射を行う受光素子や発光素子に応用する場合に、p型GaN系化合物半導体層を通過する光の吸収波長域の長波長端を、AlN組成比が大きいほど短波長化できるので、AlN組成比を40%以上に設定できれば、それだけ受光波長域及び発光波長域の設定自由度が広くなり有用である。
【0036】
本発明に係るGaN系化合物半導体装置、受光素子、及び、発光素子の特徴構成は、上記第一乃至第九の特徴構成のGaN系化合物半導体のp型活性化方法によりp型活性化されたGaN系化合物半導体を備えてなる点にある。
【0037】
上記特徴構成によれば、上記第一乃至第九の特徴構成のGaN系化合物半導体のp型活性化方法により活性化されたp型GaN系化合物半導体を備えた所期の特性を有する半導体装置、受光素子、或は、発光素子を作製することができる。
【0038】
特に、上記受光素子は、バンドギャップエネルギが3.6eV以上のAlGaNを主とする受光領域を備えることにより、3.6eV以上のエネルギを有する光が吸収されることで、波長約344nm(3.6eV)以下の波長の紫外線を上記受光領域によって選択的に検出することができる。
【0039】
更に、バンドギャップエネルギが4.1eV、4.3eV、或は、4.6eV以上のAlGaNを主とする受光領域を備えるとすれば、上記受光領域において夫々4.1eV、4.3eV、或は、4.6eV以上のエネルギを有する光が吸収されることで、波長約300nm(4.1eV)以下、約290nm(4.3eV)以下、或は、約280nm(4.6eV)以下の波長の紫外線を上記受光領域によって検出することができる。
【0040】
ここで、バンドギャップエネルギが4.1eV以上のAlGaNを主とする受光領域を備えるとすれば、波長約300nmを超える波長の光、即ち、各種照明機器などからの室内光に対しては上記受光領域が感度を有さないので、波長約300nm以下の紫外線を含む例えば火炎光に対して選択的に感度を有する紫外線受光素子(火炎センサ)を得ることができる。
【0041】
また、バンドギャップエネルギが4.3eV以上のAlGaNを主とする受光領域を備えるとすれば、4.3eV以上(波長約290nm以下)のエネルギを有する光が吸収されることで、紫外線受光素子に照射される光に太陽光等の外乱光が含まれていたとしても、波長約290nm以下ではそれらの外乱光の光強度が非常に小さくなり、波長約290nm以下の紫外線を含む例えば火炎光に対して選択的に感度を有する、太陽光等の外乱光の影響を極めて受けにくい紫外線受光素子(火炎センサ)を得ることができる。
【0042】
更に、バンドギャップエネルギが4.6eV以上のAlGaNを主とする受光領域を備えるとすれば、4.6eV以上(波長約280nm以下)のエネルギを有する光が吸収されることで、紫外線受光素子に照射される光に太陽光等の外乱光が含まれていたとしても、各種照明機器などからの室内光および太陽光(自然光)に対しては上記受光領域が感度を有さないので、波長約280nm以下の紫外線を含む例えば火炎光に対して選択的に感度を有する、室内光や太陽光等の外乱光の影響を受けない紫外線受光素子(火炎センサ)を得ることができる。
【0043】
また、上記発光素子は、活性層のAlGaNのAlN組成比を適当に選択することで、光エネルギが3.4eVから6.2eVの発光を得ることができる。
【0044】
特に、p型GaN系化合物半導体層を通過して光の入射または出射を行う受光素子や発光素子の場合、p型GaN系化合物半導体層を通過する光の吸収波長域の長波長端を、AlN組成比が大きいほど短波長化できるので、AlN組成比を20%以上(波長約315〜330nm以下)或いは40%以上(波長約280nm以下)に設定できれば、それだけ受光波長域及び発光波長域の設定自由度が広くなる。
【0045】
【発明の実施の形態】
本発明に係るGaN系化合物半導体のp型活性化方法(以下、適宜「本発明方法」という。)の実施の形態につき、紫外線受光素子20の作製工程に適用する場合を例に、図面に基づいて説明する。
【0046】
〈第1実施形態〉
図1に示す紫外線受光素子20は、PIN型の素子構造を採用した場合の例である。この紫外線受光素子20は、基板1上に、下地構造部とデバイス構造部とを順次積層して形成される。下地構造部は、基板1上に、低温堆積緩衝層2と、結晶改善層3と、低温堆積中間層4とを順次積層して形成され、デバイス構造部は、低温堆積中間層4上に、n型半導体層5と、i型半導体層(受光領域)6と、AlxGa1-xN(0≦x≦1)からなるp型半導体層7とを順次積層して形成される。また、n型半導体層5が部分的に露出するようにデバイス構造部をエッチングなどによって除去し、その露出部位に電極8が形成され、p型半導体層7上には電極9が形成される。尚、電極8および電極9は、それぞれn型半導体層5およびp型半導体層7との間の電気的な特性がオーミックなものとなるオーミック電極である。
【0047】
図1に例示した紫外線受光素子20では、(0001)サファイア基板1上に、AlNの低温堆積緩衝層2、GaNの結晶改善層3、AlNの低温堆積中間層4、n型AlGaN層5、i型AlGaN層6、p型AlGaN層7が、夫々形成されている。上記の各GaN系化合物半導体層は、トリメチルアルミニウム(Al源)、トリメチルガリウム(Ga源)、アンモニア(窒素源)などの各原料ガスを使用したMOCVD法(有機金属化合物気相成長法)を利用して作製可能である。
【0048】
尚、上記下地構造部2〜4の目的は、デバイス構造部5〜7の結晶品質を良好なものとすることである。サファイア基板1の結晶成長表面における格子間隔と、デバイス構造部を構成するAlxGa1-xN(0≦x≦1)の格子定数との間には大きな差が存在するが、下地構造部によってその格子不整合を緩和し、AlGaN層を成長させる際に加わる格子不整合による応力を小さくすることができる。その結果、デバイス構造部中のAlGaN層の結晶品質を良好にすることができる。
【0049】
尚、格子不整合を緩和し、その上部に形成されるデバイス構造部の結晶品質を改善するための下地構造部の構造及びその形成過程は、種々提案されている。本発明の要旨は下地構造部ではなく、デバイス構造部のp型半導体層7にあるので、下地構造部は、例えば、上記のような公知の構造を公知の製造過程で形成したものを利用すればよく、また、上記以外の新規な構造を用いてもよい。また、基板1も(0001)サファイア基板に限定されるものではない。
【0050】
次に、本発明方法による紫外線受光素子20のp型AlGaN層7に対するp型活性化方法について説明する。
【0051】
先ず、p型AlGaN層7は、MOCVD法を用いて作製する。ここで、Al、Ga、Nの原料として上記のトリメチルアルミニウム(Al源)、トリメチルガリウム(Ga源)、アンモニア(窒素源)等の各原料ガスを使用し、p型不純物の原料ガスとして、CpBe(ビスシクロペンタジエニルベリリウム)ガスを流しながら、Be(ベリリウム)を注入(ドープ)したp型AlGaN層7を成長させる。この状態では、N源として用いたNHが分解して原子状水素となりp型AlGaN層7内に滞留し、この原子状水素がp型不純物として注入されたBeと結合することにより、p型不純物であるBeがアクセプタとして作用するのを阻害する結果、p型AlGaN層7は十分にp型活性化されずに高抵抗状態のままである。
【0052】
次に、p型AlGaN層7をアニーリング処理する。処理温度は、例えば400℃以上の温度範囲で適宜選択する。p型AlGaN層7の成長、及び、アニーリング処理は同じ反応容器内で行ってもよく、また、夫々別容器で行っても構わない。
【0053】
本実施形態では、AlN組成比が20%以上、或いは更に40%以上のp型AlGaN層7のアニーリング処理であっても、p型不純物としてBeを用いることで十分なp型活性化が可能である。
【0054】
アニーリング処理によるp型活性化後に、p型半導体層7とi型半導体層6の一部をn型半導体層5が部分的に露出するまでエッチング等によって除去し、その露出部位にn型電極8を形成し、p型半導体層7上にp型電極9を形成する。ここで、n型電極8、p型電極9は、夫々の極性に応じてAl、Au、Ni、Ti等の公知の材料を公知の方法で作製すればよい。本発明方法により、p型半導体層7が十分にp型活性化することで、p型電極9とのオーミック接触が可能となる。
【0055】
また、n型電極8は、ZrB2を電極材料として用いて、イオンビームスパッタ、レーザアブレーション、CVDなどの蒸着方法により作製してもよい。特に、Zr源としてZr[N(C2524、またはZr(BH44などを使用し、B源としてトリメチルボロンを使用したMOCVD法を利用してZrB2を作製する場合、デバイス構造部を形成する各窒化物半導体層と共通の成膜装置を使用することができるという利点がある。尚、作製されたZrB2電極上にAl、Au、Ni、Tiなどの金属を更に形成してZrB2電極を保護するような多層電極(保護電極)を形成してもよい。
【0056】
また、p型電極9は、ZrNを電極材料として用いて、イオンビームスパッタ、レーザアブレーション、CVDなどの蒸着方法により作製してもよい。ZrNは、p型半導体層7上に作製したZrB2をアンモニアガスなどを用いて窒化処理することで得られる。また、n型電極8の場合と同様に、作製されたZrN電極上にAl、Au、Ni、Tiなどの金属を更に形成してZrN電極9を保護するような多層電極(保護電極)を形成してもよい。
【0057】
ここで、光がp型電極9側(図面上側)から入射される場合、p型電極9はメッシュ状または受光領域へ光を透過させる他の形状または素材で形成される。逆に、光が基板1側(図面下側)から入射される場合は、下地構造部のGaN結晶改善層3で入射光が吸収されてi型半導体層(受光領域)6まで到達しなくなるので、基板1及び下地構造部の少なくとも低温堆積緩衝層2と結晶改善層3の受光領域に当たる部分をエッチング等で除去開口して入射窓を形成する必要がある。或いは、基板1と下地構造部をi型半導体層(受光領域)6で検出すべき波長範囲の光を吸収せず透過する材料を使用すればよい。例えば、結晶改善層3でGaNを用いずに、i型半導体層(受光領域)6よりAlN組成比の大きいAlGaNまたはAlNを用いればよい。
【0058】
図1に示した紫外線受光素子20に対して外部から光が照射された場合、その光はメッシュ状の電極9とp型半導体層7とを透過して受光領域であるi型半導体層6に入射して吸収され、光キャリアが発生する。p型電極8およびn型電極9の間には電界が印加されており、発生された光キャリアは光電流として外部に出力される。
【0059】
デバイス構造部を構成するAlxGa1-xN(0≦x≦1)のバンドギャップエネルギはAlN組成比を変えることで調整され、AlN組成比xとバンドギャップエネルギとは図2に示すような関係で示される。図2から読み取れるように、AlN組成比xを変えることで、AlxGa1-xNのバンドギャップエネルギを3.42eVから6.2eVにまで調整することができる。従って、i型半導体層(受光領域)6で吸収可能な光の波長範囲の長波長端は約360nm〜約200nmの間で調整可能である。
【0060】
同様に、p型AlGaN層7で吸収される光の波長範囲もAlN組成比xで変わり、AlN組成比xが0.2(20%)または0.4(40%)以上では、吸収波長範囲の長波長端が約330nm約200nmの間または約280nm〜約200nmの間で調整可能である。
【0061】
ここで、光の入射がp型AlGaN層7側(つまり、図面上側)からの場合は、受光領域6に対してp型AlGaN層7が受光窓となるためには、p型AlGaN層7のAlN組成比xが、i型半導体層(受光領域)6のAlN組成比xと同じかそれ以上である必要がある。よって、AlN組成比xが0.2(20%)または0.4(40%)以上と設定できれば、i型半導体層(受光領域)6のAlN組成比xがより広範囲に設定できることになる。かかる観点からも、p型不純物としてBeを使用する意義は大きいと言える。
【0062】
また、紫外線受光素子20において火炎の光を検出する場合には、図3の発光スペクトルに示すような火炎の発光を吸収できるだけのバンドギャップエネルギを有する受光領域を形成すればよい。尚、図3に示す火炎の発光スペクトルは、ガス(炭化水素)を燃焼させた際に発生する火炎のスペクトルである。また、太陽光のスペクトルと、各種照明機器からの光による室内光のスペクトルも同時に示す。
【0063】
以下には、受光領域のバンドギャップエネルギについて説明する。紫外線受光素子20に波長選択性を持たせるためには、受光領域(AlxGa1-xN)におけるAlN組成比を調整して、そのバンドギャップエネルギを所望の値に設定することが行われる。例えば、波長約344nm以下の波長域に比較的大きい強度で現れる火炎の光を選択的に受光することのできる火炎センサを作製したい場合には、受光領域のバンドギャップエネルギが3.6eV以上となるようにAlN組成比x=0.05、或いはそれ以上とすればよい。或いは、約300nm以上の波長域に含まれる、各種照明機器からの光(室内光)を受光せずに、検出対象波長範囲にある火炎の光を受光するような火炎センサを作製したい場合には、受光領域のバンドギャップエネルギが4.1eV以上となるようにAlN組成比x=0.25、或いはそれ以上とすればよい。また、約280nm以上の波長域に含まれる、太陽光からの光を受光せずに、検出対象波長範囲にある火炎の光のみを受光するような火炎センサを作製したい場合には、受光領域のバンドギャップエネルギが4.4eV以上となるようにAlN組成比x=0.35、或いはそれ以上とすればよい。
【0064】
更に、弱い光強度であれば太陽光などの外乱光が受光領域において吸収されても構わない場合には、受光領域のバンドギャップエネルギが4.3eV以上(波長約290nm以下)となるようにAlN組成比x=0.31、或いはそれ以上とすればよい。波長約290nm以下では図2に示すようにそれらの外乱光の光強度が非常に小さくなり、他方で火炎の光は大きいので、結果として火炎の光が存在することを検出することができる。
【0065】
更に、紫外線受光素子20がエンジン内部などの閉鎖空間に設置され、そこで燃焼される燃料の発光を検出したい場合には、上述した室内光や太陽光が存在しないため、それらを排除するような大きいバンドギャップエネルギを設定する必要はない。そのため、検出対象波長範囲にある火炎の光の中でも特に炭化水素を含む化合物(エンジンで燃焼される燃料)を燃焼させた場合に観測されるOHラジカルの発光に起因する発光ピーク(波長約310nm(310nm±10nm):4.0eV)の光(波長310nm以上344nm以下の火炎の光)を選択的に受光することのできる紫外線受光素子20を作製した場合には、受光領域のバンドギャップエネルギが3.6eV以上4.0eV以下となるように、AlN組成比xを0.05以上0.23以下とすればよい。
【0066】
尚、上述したAlN組成比xとバンドギャップエネルギとの関係は理論値に基づいて説明したものであり、AlN組成比xが同じになるように成膜を行ったとしても実際に得られるAlGaN層のバンドギャップエネルギが異なる可能性もある。例えば、三元混晶化合物であるAlGaNの場合には、二元化合物であるGaNが生成され易く、その結果、バンドギャップエネルギが低エネルギ側(長波長側)にシフトする傾向にある。従って、理論値通りのバンドギャップエネルギを得たい場合には、AlN組成比を予め大きく設定した上で成膜することが行われることもある。
【0067】
〈第2実施形態〉
次に、本発明方法の第2実施形態につき説明する。上記第1実施形態では、p型AlGaN層7の成長に係るp型不純物として用いるBeの原料ガスとしてCpBeガスを用いたが、(R−Cp)Beガス[ビス(R−シクロペンタジエニル)ベリリウム]ガス(Rは1〜4価のアルキル基)を用いるのも更に好ましい。特に、Rが2〜4価のアルキル基の(R−Cp)Beガスを用いるのがより好ましい。
【0068】
当該原料ガスを用いることにより、MOCVD法を用いてp型、n型及びi型半導体を所定の順序で段階的に形成するにあたり、各型に対応する不純物原料を結晶成長させる反応室内に配管を通して供給する場合に、各半導体層の成長を切り換えるときに、不純物原料の供給も切り換えるが、同じ配管を使用する場合に、配管内壁に残留した残留不純物による影響(メモリ効果)が無視できずに各半導体層間の界面近傍において所期の不純物濃度が達成できないという問題に対して、改善効果を発揮するからである。つまり、当該原料ガスの分子サイズが、CpBeより大きく、分極による分子間力が弱まるため、配管内壁への残留が少なくなるため、上記メモリ効果を抑制することができ、より効果的にp型活性化が促進される。
【0069】
尚、下地構造部の形成過程、及び、他のデバイス構造部の形成過程、特に、p型AlGaN層7成長後におけるp型AlGaN層7のアニーリング処理については、上記第1実施形態と同様である。
【0070】
〈第3実施形態〉
次に、本発明方法の第3実施形態につき説明する。上記各実施形態のp型活性化方法では、p型AlGaN層7成長後に、当該p型AlGaN層7に対して何の前処理も施さずに直接アニーリング処理を行っていたが、本第3実施形態では、図4(A)〜(B)に示すように、Be注入したp型AlGaN層7を成長した後に、その表面に水素吸収透過膜10を形成する。水素吸収透過膜10は、ニッケル、パラジウム、銀パラジウム合金、白金、ルテニウムから選択される一つ以上の物質からなり、イオンビームスパッタ(IBS)、電子ビーム蒸着(EB)、レーザアブレーション、RFスパッタ、メッキ等の手法を用いて形成する。尚、生産性では電子ビーム蒸着が有利で、膜の緻密性はIBSまたはレーザアブレーションが有利であると考えられる。特に、膜の緻密性を優先させることで、水素吸収透過膜10の水素透過性能と触媒作用が高くなり、後工程でのアニーリングのスループットが向上する。従って、IBSまたはレーザアブレーションの使用が好適である。
【0071】
尚、上記水素吸収透過膜10の形成は、図1におけるn型半導体層5が部分的に露出するようにデバイス構造部をエッチングする前に行っても、そのエッチング後に行っても構わない。
【0072】
次に、図4(C)に示すように、水素吸収透過膜10形成後に、p型AlGaN層7をアニーリング処理する。処理温度は400℃以上の温度範囲で適宜選択する。p型AlGaN層7の成長、水素吸収透過膜10の形成、及び、アニーリング処理は同じ反応容器内で行ってもよく、また、夫々別容器で行っても構わない。ここで、処理雰囲気は、水素を含む還元雰囲気とし、還元ガスとして、水素、窒素、アルゴンで構成される混合ガスを反応容器内に導入し、導入後に、ロータリーポンプのみにより短時間で還元ガスを吸引して4000Pa(約30Torr)以下に減圧する。このように還元ガス導入後に減圧することで、汚染物質の反応容器内への進入を防止できる。尚、水素を含む還元雰囲気は、水素を主成分とする還元ガス(例えば水素100%)でも構わない。
【0073】
本第3実施形態では、400℃以下の低温でのアニーリングでも、水素吸収透過膜10の奏する触媒作用により、十分なp型活性化が可能である。即ち、アニーリングによりBeから脱離した水素原子が、p型AlGaN層7の表面近傍に滞留することなく、水素吸収透過膜10に吸収され、水素分子化され、外部雰囲気中に放出されるため、p型AlGaN層7中に原子状水素が滞留して飽和することなく、Beから水素が脱離するので、p型不純物として注入されたBeがアクセプタとして機能する。
【0074】
また、水素吸収透過膜10は、Ni(ニッケル)、Pd(パラジウム)、Pd−Ag(銀パラジウム合金)等の単層膜であっても、これらを組み合わせた複層膜であってもよい。更に、水素吸収透過膜10の一部に上記金属以外の水素吸蔵合金を含んでいても構わない。他の水素吸蔵合金としては、例えば、La0.8Nb0.2Ni2.5Co2.4Al0.1、La0.8Nb0.2Zr0.03Ni3.8Co0.7Al0.5、MmNi3.65Co0.75Mn0.4Al0.3、MmNi2.5Co0.7Al0.8、Mm0.85Zr0.15Ni1.0Al0.80.2等がある。ここで、Mmはミッシュメタルで、Ce(40〜50%),La(20〜40%),Pr,Nd を主要構成元素とした希土類の混合物である。
【0075】
尚、上記アニーリング時の反応容器内には水素が含まれていることが好ましい。一般に、p型AlGaN層7の表面に水素吸収透過膜10を設けずにアニーリング処理を行うとすれば、アニーリング処理雰囲気中の水素の存在は、Be等のp型不純物からの水素の脱離を阻害する要因と考えられていたが、水素吸収透過膜10を設けた場合は、処理雰囲気中の水素分子が水素吸収透過膜表面の酸化を防止するクリーニング作用を発揮するため、水素吸収透過膜10が所期の効果を十分に発揮できるため、水素の存在は寧ろ好ましい。
【0076】
また、このことは、p型AlGaN層7を成長させた同じ反応容器内でアニーリング処理を行えることを意味する。つまり、MOCVD法による成長時の原料ガスのキャリアガスとして水素を使用するので、その水素を主成分とする還元雰囲気をそのまま利用することができる。
【0077】
アニーリング処理によるp型活性化後に、水素吸収透過膜10をエッチング等によって除去するとともに、p型半導体層7とi型半導体層6の一部をn型半導体層5が部分的に露出するまでエッチング等によって除去し、その露出部位にn型電極8を形成し、p型半導体層7上にp型電極9を形成する。ここで、n型電極8、p型電極9は、夫々の極性に応じてAl、Au、Ni、Ti等の公知の材料を公知の方法で作製すればよい。本発明方法により、p型半導体層7が十分にp型活性化することで、p型電極9とのオーミック接触が可能となる。
【0078】
ここで、p型電極9として、例えば第1層にパラジウム(Pd)を使用して第2層に金(Au)を用いる場合は、当該第1層目のパラジウムと水素吸収透過膜10のパラジウムを兼用しても構わない。この場合、例えば、水素吸収透過膜10の膜厚を100オングストローム(10−8m)、第2層の金の膜厚を1000オングストローム(10−7m)とすることで、良好なp型オーミック電極が形成できる。
【0079】
尚、下地構造部の形成過程、及び、デバイス構造部の他のAlGaN層の形成過程は、上記第1または第2実施形態と同様である。
【0080】
以下に、別の実施形態につき説明する。
〈1〉上記実施形態では、本発明に係るGaN系化合物半導体のp型活性化方法を紫外線受光素子20の作製工程に適用する場合を例示したが、本発明方法は、紫外線受光素子以外の受光素子、発光素子、その他の半導体装置に適用可能である。特に、発光素子は、デバイス構造上、受光素子と類似するので、上記実施形態の方法が適用できる。
【0081】
〈2〉上記実施形態では、デバイス構造部はPIN構造を例に説明したが、デバイス構造部にp型AlGaN層を含む場合は、本発明方法によるp型活性化が適用可能であり、デバイス構造部はPIN構造に限定されない。
【図面の簡単な説明】
【図1】本発明に係るGaN系化合物半導体のp型活性化方法を用いて作製される紫外線受光素子の構成を示す素子断面図
【図2】AlGaNのバンドギャップエネルギを示すグラフ
【図3】火炎の光、太陽光、および室内光のスペクトルを示すグラフ
【図4】本発明に係るGaN系化合物半導体のp型活性化方法の処理工程を説明する素子断面図
【符号の説明】
1 基板
2 低温堆積緩衝層
3 結晶改善層
4 低温堆積中間層
5 n型半導体層
6 i型半導体層
7 p型半導体層
8 n型電極
9 p型電極
10 水素吸収透過膜
20 紫外線受光素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a GaN-based compound semiconductor used for a light-receiving element such as an ultraviolet sensor, or a light-emitting element such as an ultraviolet or blue light-emitting laser diode, ultraviolet or blue light-emitting diode. The present invention relates to a method for p-type activation of a low-resistance GaN-based compound semiconductor mainly containing AlGaN having an AlN composition ratio of 20% or more.
[0002]
[Prior art]
GaN compound semiconductor (general formula: Al x Ga y In 1-xy N) has a direct transition type energy band structure, and the band gap energy is a wide band gap ranging from 1.9 eV to 6.2 eV at room temperature. A wide range of applications are possible as light receiving elements such as diodes and ultraviolet sensors.
[0003]
Conventionally, compound semiconductor elements having various element structures have been manufactured by stacking semiconductor layers such as a p-type semiconductor, an n-type semiconductor, and an i-type semiconductor. For example, p-type Al x Ga 1-x In a light-receiving element including an N layer (0 ≦ x ≦ 1), each semiconductor layer is stacked in the order of PN, NP, PIN, NIP, PNP, PINP, NPN, NPIN, etc. from the substrate side to form a diode structure or a transistor structure The current generated in the light-receiving region formed in the i-type semiconductor layer and PN junction layer having the structure is configured to be detectable from the electrodes provided in the p-type semiconductor and the n-type semiconductor. Here, p-type semiconductors and n-type semiconductors are formed by implanting p-type impurities and n-type impurities, respectively. Thus, the various element structures are configured. P-type, n-type, i.e., low resistance in the p-type semiconductor layer is sufficient to enable good electrical connection with the electrode material, and further to reduce the parasitic resistance component in the element structure. The electrical characteristics as the light receiving element can be improved.
[0004]
However, in a GaN-based compound semiconductor, NH is generally used as a nitrogen source during crystal growth. 3 This NH is used during growth. 3 Is decomposed into atomic hydrogen and stays in the GaN-based compound semiconductor, and this atomic hydrogen is combined with Mg or the like implanted as a p-type impurity to inhibit the p-type impurity from acting as an acceptor. It is conceivable that the GaN-based compound semiconductor is not necessarily made p-type simply by injecting p-type impurities, and sufficient device characteristics cannot be obtained with high resistance, and the device structure itself may not be formed. there were.
[0005]
Thus, for example, in the method for manufacturing a p-type gallium nitride compound semiconductor disclosed in Patent Document 1, a GaN-based compound semiconductor into which a p-type impurity has been implanted is grown by vapor deposition, and then a temperature of 400 ° C. or higher. The p-type activation of the GaN-based compound semiconductor is carried out by annealing in order to produce a low-resistance p-type GaN-based compound semiconductor.
[0006]
[Patent Document 1]
Japanese Patent No. 2540791
[0007]
[Problems to be solved by the invention]
The example disclosed in Patent Document 1 discloses details of p-type activation of GaN when Mg is used as a p-type impurity. However, when Mg is used as a p-type impurity, the AlN composition ratio ( In a GaN-based compound semiconductor mainly containing AlGaN having a molar fraction) of 20% or more, sufficient p-type activation (low resistance) is difficult.
[0008]
Moreover, in the manufacturing method of the p-type gallium nitride compound semiconductor disclosed in Patent Document 1, by performing annealing at a temperature of 400 ° C. or higher, atomic hydrogen bonded in the GaN-based compound semiconductor and p-type such as Mg Impurities are separated and move to the surface of the GaN-based compound semiconductor. However, the atomic hydrogen separated from the p-type impurity stays in the vicinity of the surface without being released to the outside due to the potential barrier on the surface of the GaN-based compound semiconductor, and the separation in the GaN-based compound semiconductor is more than that. However, the p-type activation may be saturated to some extent. Therefore, to further promote p-type activation, it is necessary to increase the annealing temperature. However, if the annealing temperature is raised too much, nitrogen is desorbed and the crystals deteriorate, so there is an upper limit for the annealing temperature. In the case of GaN, the temperature needs to be 900 ° C. or lower, and when InGaN is included, it must be set to 800 ° C. or lower. In addition, when annealing is performed at a low temperature of 600 ° C. or lower, it takes a long time to realize sufficient p-type activation, and 400 ° C. is a practical lower limit temperature.
[0009]
Further, in the production method, it is necessary to perform annealing in an atmosphere substantially free of hydrogen.For example, when annealing is performed by moving to another annealing apparatus or processing is performed in the same reaction chamber. NH as a nitrogen material for p-type gallium nitride compound semiconductors 3 And H 2 It is necessary to remove (carrier gas) from the reaction chamber in advance. In the manufacturing process, the number of man-hours increases, which causes an increase in manufacturing costs.
[0010]
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to solve the above-described problems and to reduce a p-type GaN-based compound semiconductor mainly containing AlGaN having an AlN composition ratio of 20% or more. It is an object of the present invention to provide a p-type activation method that can be made into a semiconductor. Furthermore, the present invention provides a p-type activation method capable of turning the GaN-based compound semiconductor into a low-resistance p-type semiconductor by annealing at a low temperature or in a short time even when hydrogen is substantially contained in the annealing atmosphere. It is in.
[0011]
[Means for Solving the Problems]
In order to achieve this object, the first feature of the p-type activation method for a GaN-based compound semiconductor according to the present invention is that AlGaN having an AlN composition ratio of 20% or more implanted with p-type impurities containing at least beryllium is used. After forming the GaN-based compound semiconductor mainly contained, the GaN-based compound semiconductor is annealed to desorb hydrogen bonded to the p-type impurity implanted into the GaN-based compound semiconductor, and the GaN-based compound semiconductor. P-type activation.
[0012]
According to the first characteristic configuration described above, when Mg is used as the p-type impurity by including beryllium as the p-type impurity, the AlN composition ratio, which has been difficult to sufficiently activate p-type, is 20% or more. Sufficient p-type activation is also possible for a GaN-based compound semiconductor mainly containing AlGaN.
[0013]
This is because the difference in electronegativity between hydrogen and Be is smaller than the difference between electronegativity between hydrogen and Mg, and hydrogen and Be have lower ionicity than hydrogen and Mg. This is thought to be the result of easier detachment promotion. In general, when the acceptor order becomes deeper, the hole carrier density becomes lower even at the same impurity concentration, and as the AlN composition ratio becomes higher, the acceptor order becomes deeper. Therefore, the acceptor order at the same AlN composition ratio is shallower than Mg. By doing so, sufficient P-type activation can be obtained even for a GaN-based compound semiconductor having an AlN composition ratio of 20% or more.
[0014]
In the first characteristic configuration, the GaN-based compound semiconductor is formed by an organic metal compound vapor phase growth method, and biscyclopentadienylberyllium (Cp) is used as a beryllium raw material. 2 It is preferred to use either Be) or bis (R-cyclopentadienyl) beryllium with a cyclopentadienyl group attached to a 1-4 valent alkyl group.
[0015]
Furthermore, the formation of the GaN-based compound semiconductor is performed by an organic metal compound vapor phase growth method. As a raw material for beryllium, bis (R-cyclopentadienyl) beryllium is a bipentavalent alkyl group on the cyclopentadienyl group. It is still preferred to use any of the accompanying ones.
[0016]
If the above beryllium raw material is used, beryllium can be implanted as a p-type impurity into a GaN-based compound semiconductor by using an organic metal compound vapor phase growth method, and p-type even if the AlN composition ratio is 20% or more by subsequent annealing. Can be activated.
[0017]
By the way, when p-type, n-type, and i-type semiconductors are formed stepwise in a predetermined order using the organometallic compound vapor phase growth method, an impurity material corresponding to each type is supplied through a pipe into a reaction chamber for crystal growth. When switching the growth of each semiconductor layer, the supply of the impurity source is also switched. However, when using the same pipe, the influence of the residual impurities remaining on the inner wall of the pipe (memory effect) cannot be ignored. There is a problem that a desired impurity concentration cannot be achieved in the vicinity of the interface between layers.
[0018]
However, if the beryllium raw material, especially the latter raw material, is used, the molecular size is Cp 2 Since the intermolecular force due to polarization is weaker than in the case of Be, and the residual on the inner wall of the pipe is reduced, the memory effect can be suppressed, and the p-type activation is promoted more effectively.
[0019]
In the second feature configuration, in addition to the first feature configuration, the surface of the GaN-based compound semiconductor mainly containing AlGaN having an AlN composition ratio of 20% or more implanted with the p-type impurity is provided on the surface of the GaN-based compound semiconductor. The point is that after forming a hydrogen absorbing and permeable film having an action of absorbing hydrogen in the compound semiconductor and releasing it to the outside, the GaN-based compound semiconductor is annealed in a reducing atmosphere.
[0020]
According to said 2nd characteristic structure, p-type activation is further accelerated | stimulated and activation progresses in a short time compared with the case where there is no hydrogen absorption permeable film even if annealing temperature is low. In other words, hydrogen atoms that are separated from the p-type impurities by annealing and stay in the vicinity of the surface of the GaN-based compound semiconductor are absorbed by the hydrogen absorption / permeation film and released to the outside, thereby activating the p-type activation of the GaN-based compound semiconductor. Is prevented from saturating and further activation is promoted without inhibition.
[0021]
Further, by annealing in a reducing atmosphere, after forming the hydrogen absorbing and permeable film, when annealing in an oxidizing atmosphere air or nitrogen atmosphere, the surface of the hydrogen absorbing and permeable film is at the atomic layer level due to the influence of oxygen or residual oxygen. It can be avoided that the performance of the hydrogen absorbing and permeable membrane is deteriorated due to oxidation or deterioration of the surface state.
[0022]
The third characteristic configuration is that, in addition to the second characteristic configuration, hydrogen is contained in the reducing atmosphere during the annealing.
[0023]
According to the third characteristic configuration, the hydrogen molecule in the reducing atmosphere exhibits a cleaning action that prevents oxidation of the surface of the hydrogen absorbing and permeable film by a trace amount of oxygen below the equilibrium oxygen concentration in the reducing atmosphere, and the hydrogen absorbing and permeable film The function of absorbing and releasing hydrogen in the GaN-based compound semiconductor is maintained well, and as a result, p-type activation of the GaN-based compound semiconductor is promoted.
[0024]
In the fourth feature configuration, in addition to the second or third feature configuration, the hydrogen absorbing and permeable membrane is made of one or more substances selected from nickel, palladium, silver palladium alloy, platinum, and ruthenium. It is in.
[0025]
According to the fourth characteristic configuration, the hydrogen absorbing / permeable membrane is formed of one or more substances selected from nickel, palladium, silver palladium alloy, platinum, and ruthenium, and therefore absorbs hydrogen in the GaN-based compound semiconductor. Thus, the effect of releasing to the outside is exhibited, and as a result, the p-type activation of the GaN-based compound semiconductor is promoted.
[0026]
In the fifth feature configuration, in addition to the second to fourth feature configurations, the hydrogen absorbing / permeable film absorbs atomic hydrogen in the GaN-based compound semiconductor and releases it as hydrogen molecules to the outside. It is in the point which has.
[0027]
According to the fifth characteristic configuration, the chemical reaction for molecularizing atomic hydrogen in the hydrogen absorbing and permeable membrane is promoted by catalytic action, so that the action of absorbing hydrogen in the GaN-based compound semiconductor and releasing it to the outside is achieved. As a result, p-type activation of the GaN-based compound semiconductor is promoted.
[0028]
The sixth feature configuration is that, in addition to the second to fifth feature configurations, the reducing atmosphere during the annealing is at atmospheric pressure or lower.
[0029]
The seventh characteristic configuration is that, in addition to the sixth characteristic configuration, the reducing atmosphere at the time of annealing is reduced to 4000 Pa (about 30 Torr) or less only by a rotary pump.
[0030]
According to the sixth or seventh feature, the reduction atmosphere is under reduced pressure, so that the deterioration of the hydrogen absorbing and permeable membrane is suppressed, and the surface state is better maintained, particularly at 4000 Pa (about 30 Torr) or less. The effect becomes more remarkable, and the p-type activation of the GaN compound semiconductor is promoted. Also, a good surface condition is particularly suitable when other metals such as electrode metals are deposited on the upper surface in a later step. Further, by reducing the pressure only with the rotary pump, the pressure reduction processing time is shortened and the throughput is increased. Further, since the gas is drawn after introducing the reducing gas, contamination by the pressure reduction processing can be prevented. Furthermore, the replacement of the reducing gas is required under atmospheric pressure, but this can be saved.
[0031]
In the eighth feature configuration, in addition to the second to fifth feature configurations, after forming the GaN-based compound semiconductor into which the p-type impurity is implanted, only the hydrogen absorbing / transmitting film is formed on the surface thereof. Therefore, the GaN-based compound semiconductor is annealed in a reducing atmosphere.
[0032]
For example, when a p-type electrode is formed by stacking a hydrogen absorption / permeation film and another metal film, when the other metal film is first deposited and annealed, the hydrogen of the hydrogen absorption / permeation film is absorbed and released to the outside. In the process in which hydrogen accumulated between the hydrogen absorbing / permeable film and another metal film passes through the metal film, holes are formed in the metal film, resulting in deterioration of the quality of the metal film.
[0033]
Therefore, according to the eighth characteristic configuration, this problem is effectively solved by a synergistic effect with annealing in a reducing atmosphere. It is particularly effective to anneal in a reduced pressure reducing atmosphere containing hydrogen.
[0034]
The ninth feature configuration is that, in addition to the above feature configurations, the AlN composition ratio of the GaN-based compound semiconductor into which the p-type impurity is implanted is 40% or more.
[0035]
According to the ninth feature, when Al is used as the p-type impurity by including beryllium as the p-type impurity, the AlN composition ratio, which has been difficult to sufficiently activate p-type, is 40% or more. Sufficient p-type activation is also possible for a GaN-based compound semiconductor mainly containing AlGaN. As a result, when applied to a light-receiving element or a light-emitting element in which light enters or exits through a p-type GaN-based compound semiconductor layer, a long wavelength in the absorption wavelength range of light passing through the p-type GaN-based compound semiconductor layer As the AlN composition ratio increases, the wavelength can be shortened. Therefore, if the AlN composition ratio can be set to 40% or more, the light receiving wavelength region and the light emitting wavelength region can be set more freely and usefully.
[0036]
The characteristic configurations of the GaN-based compound semiconductor device, the light receiving element, and the light-emitting element according to the present invention are p-type activated GaN by the p-type activation method for the GaN-based compound semiconductor having the first to ninth characteristic configurations described above. A compound semiconductor.
[0037]
According to the above characteristic configuration, a semiconductor device having desired characteristics, comprising the p-type GaN-based compound semiconductor activated by the p-type activation method of the GaN-based compound semiconductor of the first to ninth characteristic configurations, A light receiving element or a light emitting element can be manufactured.
[0038]
In particular, the light receiving element includes a light receiving region mainly composed of AlGaN having a band gap energy of 3.6 eV or more, so that light having an energy of 3.6 eV or more is absorbed, whereby a wavelength of about 344 nm (3. UV light having a wavelength of 6 eV) or less can be selectively detected by the light receiving region.
[0039]
Further, if a light receiving region mainly composed of AlGaN having a band gap energy of 4.1 eV, 4.3 eV, or 4.6 eV or more is provided, the light receiving region has 4.1 eV, 4.3 eV, or By absorbing light having energy of 4.6 eV or more, a wavelength of about 300 nm (4.1 eV) or less, about 290 nm (4.3 eV) or less, or about 280 nm (4.6 eV) or less. Ultraviolet rays can be detected by the light receiving region.
[0040]
Here, if a light receiving region mainly composed of AlGaN having a band gap energy of 4.1 eV or more is provided, the above light receiving is performed for light having a wavelength exceeding about 300 nm, that is, indoor light from various lighting devices. Since the region does not have sensitivity, an ultraviolet light receiving element (flame sensor) having selective sensitivity to, for example, flame light including ultraviolet light having a wavelength of about 300 nm or less can be obtained.
[0041]
Further, if a light receiving region mainly composed of AlGaN having a band gap energy of 4.3 eV or more is provided, light having energy of 4.3 eV or more (wavelength of about 290 nm or less) is absorbed, so that the ultraviolet light receiving element is absorbed. Even if disturbance light such as sunlight is included in the irradiated light, the light intensity of the disturbance light becomes very small at a wavelength of about 290 nm or less, and for example, flame light including ultraviolet light at a wavelength of about 290 nm or less. Therefore, it is possible to obtain an ultraviolet light receiving element (flame sensor) that has selective sensitivity and is extremely unaffected by disturbance light such as sunlight.
[0042]
Furthermore, if a light receiving region mainly composed of AlGaN having a band gap energy of 4.6 eV or more is provided, light having an energy of 4.6 eV or more (wavelength of about 280 nm or less) is absorbed. Even if ambient light such as sunlight is included in the irradiated light, the light receiving area has no sensitivity to room light and sunlight (natural light) from various lighting equipment, etc. An ultraviolet light receiving element (flame sensor) that is selectively sensitive to, for example, flame light including ultraviolet light of 280 nm or less and that is not affected by ambient light such as room light or sunlight can be obtained.
[0043]
The light emitting device can obtain light emission with a light energy of 3.4 eV to 6.2 eV by appropriately selecting the AlN composition ratio of AlGaN in the active layer.
[0044]
In particular, in the case of a light receiving element or light emitting element that passes light through a p-type GaN-based compound semiconductor layer and emits light, the long wavelength end of the absorption wavelength region of light that passes through the p-type GaN-based compound semiconductor layer is expressed as AlN. As the composition ratio increases, the wavelength can be shortened. Therefore, if the AlN composition ratio can be set to 20% or more (wavelength of about 315 to 330 nm or less) or 40% or more (wavelength of about 280 nm or less), the light receiving wavelength region and the light emitting wavelength region are set accordingly. Increased freedom.
[0045]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the p-type activation method for a GaN-based compound semiconductor according to the present invention (hereinafter referred to as “the present invention method” as appropriate) is applied to the manufacturing process of the ultraviolet light receiving element 20 as an example, based on the drawings. I will explain.
[0046]
<First Embodiment>
The ultraviolet light receiving element 20 shown in FIG. 1 is an example in the case of adopting a PIN type element structure. The ultraviolet light receiving element 20 is formed on the substrate 1 by sequentially laminating a base structure portion and a device structure portion. The base structure is formed by sequentially laminating a low temperature deposition buffer layer 2, a crystal improvement layer 3, and a low temperature deposition intermediate layer 4 on the substrate 1, and the device structure is formed on the low temperature deposition intermediate layer 4. n-type semiconductor layer 5, i-type semiconductor layer (light-receiving region) 6, Al x Ga 1-x A p-type semiconductor layer 7 made of N (0 ≦ x ≦ 1) is sequentially stacked. Further, the device structure is removed by etching or the like so that the n-type semiconductor layer 5 is partially exposed, and an electrode 8 is formed on the exposed portion, and an electrode 9 is formed on the p-type semiconductor layer 7. Note that the electrode 8 and the electrode 9 are ohmic electrodes in which electrical characteristics between the n-type semiconductor layer 5 and the p-type semiconductor layer 7 are ohmic.
[0047]
In the ultraviolet light receiving element 20 illustrated in FIG. 1, on a (0001) sapphire substrate 1, a low-temperature deposition buffer layer 2 of AlN, a crystal improvement layer 3 of GaN, a low-temperature deposition intermediate layer 4 of AlN, an n-type AlGaN layer 5, i. A type AlGaN layer 6 and a p-type AlGaN layer 7 are respectively formed. Each of the above GaN compound semiconductor layers utilizes MOCVD (organic metal compound vapor phase growth method) using each source gas such as trimethylaluminum (Al source), trimethylgallium (Ga source), ammonia (nitrogen source), etc. Can be produced.
[0048]
The purpose of the base structure portions 2 to 4 is to improve the crystal quality of the device structure portions 5 to 7. Lattice spacing on the crystal growth surface of the sapphire substrate 1 and Al constituting the device structure x Ga 1-x Although there is a large difference with the lattice constant of N (0 ≦ x ≦ 1), the lattice mismatch is relaxed by the underlying structure portion, and the stress due to the lattice mismatch applied when growing the AlGaN layer is reduced. can do. As a result, the crystal quality of the AlGaN layer in the device structure can be improved.
[0049]
Various proposals have been made for the structure of the underlying structure and its formation process in order to alleviate the lattice mismatch and improve the crystal quality of the device structure formed thereon. Since the gist of the present invention is not the underlying structure but the p-type semiconductor layer 7 of the device structure, for example, the underlying structure formed by a known manufacturing process as described above may be used. In addition, a new structure other than the above may be used. The substrate 1 is not limited to the (0001) sapphire substrate.
[0050]
Next, a p-type activation method for the p-type AlGaN layer 7 of the ultraviolet light receiving element 20 according to the method of the present invention will be described.
[0051]
First, the p-type AlGaN layer 7 is produced using the MOCVD method. Here, each source gas such as trimethylaluminum (Al source), trimethylgallium (Ga source), ammonia (nitrogen source) or the like is used as a source material for Al, Ga, and N, and Cp is used as a source gas for p-type impurities. 2 While flowing Be (biscyclopentadienylberyllium) gas, a p-type AlGaN layer 7 implanted (doped) with Be (beryllium) is grown. In this state, NH used as the N source 3 Is decomposed into atomic hydrogen and stays in the p-type AlGaN layer 7, and this atomic hydrogen combines with Be implanted as a p-type impurity, whereby the p-type impurity Be acts as an acceptor. As a result of the inhibition, the p-type AlGaN layer 7 is not sufficiently p-type activated and remains in a high resistance state.
[0052]
Next, the p-type AlGaN layer 7 is annealed. The treatment temperature is appropriately selected within a temperature range of, for example, 400 ° C. or higher. The growth of the p-type AlGaN layer 7 and the annealing treatment may be performed in the same reaction vessel, or may be performed in separate vessels.
[0053]
In the present embodiment, even when annealing the p-type AlGaN layer 7 with an AlN composition ratio of 20% or more, or even 40% or more, sufficient p-type activation is possible by using Be as a p-type impurity. is there.
[0054]
After the p-type activation by the annealing treatment, a part of the p-type semiconductor layer 7 and the i-type semiconductor layer 6 is removed by etching or the like until the n-type semiconductor layer 5 is partially exposed, and the n-type electrode 8 is formed at the exposed portion. The p-type electrode 9 is formed on the p-type semiconductor layer 7. Here, the n-type electrode 8 and the p-type electrode 9 may be made of a known material such as Al, Au, Ni, or Ti by a known method in accordance with the respective polarities. By the method of the present invention, the p-type semiconductor layer 7 is sufficiently p-type activated, so that ohmic contact with the p-type electrode 9 becomes possible.
[0055]
The n-type electrode 8 is made of ZrB 2 May be prepared by an evaporation method such as ion beam sputtering, laser ablation, or CVD. In particular, Zr [N (C 2 H Five ) 2 ] Four Or Zr (BH Four ) Four ZrB using the MOCVD method using trimethylboron as the B source 2 Is advantageous in that a film forming apparatus common to each nitride semiconductor layer forming the device structure portion can be used. In addition, the produced ZrB 2 A metal such as Al, Au, Ni, Ti is further formed on the electrode to form ZrB. 2 A multilayer electrode (protective electrode) that protects the electrode may be formed.
[0056]
Further, the p-type electrode 9 may be produced by an evaporation method such as ion beam sputtering, laser ablation, or CVD using ZrN as an electrode material. ZrN is ZrB produced on the p-type semiconductor layer 7. 2 Can be obtained by nitriding with ammonia gas or the like. Further, as in the case of the n-type electrode 8, a multilayer electrode (protective electrode) that protects the ZrN electrode 9 by further forming a metal such as Al, Au, Ni, Ti, etc. on the produced ZrN electrode is formed. May be.
[0057]
Here, when light is incident from the p-type electrode 9 side (upper side in the drawing), the p-type electrode 9 is formed in a mesh shape or other shape or material that transmits light to the light receiving region. On the contrary, when light is incident from the substrate 1 side (lower side in the drawing), the incident light is absorbed by the GaN crystal improvement layer 3 of the underlying structure and does not reach the i-type semiconductor layer (light receiving region) 6. In addition, it is necessary to remove and open at least portions of the substrate 1 and the base structure portion corresponding to the light receiving regions of the low temperature deposition buffer layer 2 and the crystal improvement layer 3 by etching or the like to form an incident window. Alternatively, a material that does not absorb light in the wavelength range to be detected by the i-type semiconductor layer (light-receiving region) 6 between the substrate 1 and the base structure portion may be used. For example, instead of using GaN in the crystal improvement layer 3, AlGaN or AlN having a higher AlN composition ratio than the i-type semiconductor layer (light receiving region) 6 may be used.
[0058]
When light is applied to the ultraviolet light receiving element 20 shown in FIG. 1 from the outside, the light passes through the mesh electrode 9 and the p-type semiconductor layer 7 and enters the i-type semiconductor layer 6 which is a light receiving region. Incident light is absorbed and photocarriers are generated. An electric field is applied between the p-type electrode 8 and the n-type electrode 9, and the generated photocarriers are output to the outside as a photocurrent.
[0059]
Al constituting the device structure x Ga 1-x The band gap energy of N (0 ≦ x ≦ 1) is adjusted by changing the AlN composition ratio, and the AlN composition ratio x and the band gap energy are represented by the relationship shown in FIG. As can be seen from FIG. 2, by changing the AlN composition ratio x, Al x Ga 1-x The band gap energy of N can be adjusted from 3.42 eV to 6.2 eV. Therefore, the long wavelength end of the wavelength range of light that can be absorbed by the i-type semiconductor layer (light receiving region) 6 can be adjusted between about 360 nm and about 200 nm.
[0060]
Similarly, the wavelength range of light absorbed by the p-type AlGaN layer 7 also varies with the AlN composition ratio x, and when the AlN composition ratio x is 0.2 (20%) or 0.4 (40%) or more, the absorption wavelength range. The long wavelength end of can be adjusted between about 330 nm and about 200 nm, or between about 280 nm and about 200 nm.
[0061]
Here, in the case where light is incident from the p-type AlGaN layer 7 side (that is, the upper side in the drawing), the p-type AlGaN layer 7 becomes a light-receiving window with respect to the light-receiving region 6. The AlN composition ratio x needs to be equal to or higher than the AlN composition ratio x of the i-type semiconductor layer (light receiving region) 6. Therefore, if the AlN composition ratio x can be set to 0.2 (20%) or 0.4 (40%) or more, the AlN composition ratio x of the i-type semiconductor layer (light receiving region) 6 can be set in a wider range. From this point of view, it can be said that the significance of using Be as a p-type impurity is great.
[0062]
When detecting the light of the flame in the ultraviolet light receiving element 20, a light receiving region having a band gap energy sufficient to absorb the light emission of the flame as shown in the emission spectrum of FIG. 3 may be formed. Note that the emission spectrum of the flame shown in FIG. 3 is a spectrum of a flame generated when gas (hydrocarbon) is burned. In addition, the spectrum of sunlight and the spectrum of room light due to light from various lighting devices are also shown.
[0063]
Hereinafter, the band gap energy of the light receiving region will be described. In order to provide the ultraviolet light receiving element 20 with wavelength selectivity, a light receiving region (Al x Ga 1-x The AlN composition ratio in N) is adjusted and the band gap energy is set to a desired value. For example, when it is desired to produce a flame sensor that can selectively receive flame light that appears at a relatively large intensity in a wavelength range of about 344 nm or less, the band gap energy of the light receiving region is 3.6 eV or more. Thus, the AlN composition ratio x may be 0.05 or more. Alternatively, when it is desired to produce a flame sensor that receives the light of the flame in the detection target wavelength range without receiving light (indoor light) from various illumination devices included in the wavelength range of about 300 nm or more. The AlN composition ratio x = 0.25 or more may be used so that the band gap energy of the light receiving region is 4.1 eV or more. In addition, when it is desired to produce a flame sensor included in a wavelength range of about 280 nm or more and receiving only light of a flame in the detection target wavelength range without receiving light from sunlight, The AlN composition ratio x = 0.35 or more may be set so that the band gap energy is 4.4 eV or more.
[0064]
Further, when disturbance light such as sunlight may be absorbed in the light receiving region if the light intensity is weak, AlN is set so that the band gap energy of the light receiving region is 4.3 eV or more (wavelength of about 290 nm or less). The composition ratio x = 0.31 or higher. When the wavelength is about 290 nm or less, as shown in FIG. 2, the light intensity of those disturbance lights becomes very small, and on the other hand, the flame light is large, so that the presence of flame light can be detected as a result.
[0065]
Furthermore, when the ultraviolet light receiving element 20 is installed in a closed space such as the inside of the engine and it is desired to detect the light emission of the fuel burned there, the room light and sunlight described above do not exist, so that they are large enough to eliminate them. There is no need to set the band gap energy. Therefore, an emission peak (wavelength of about 310 nm (wavelength of about 310 nm), which is observed when a compound containing hydrocarbon (fuel burned by the engine) is burned, particularly among the light of the flame in the detection target wavelength range. 310 nm ± 10 nm): 4.0 eV) (flame light having a wavelength of 310 nm or more and 344 nm or less) When the ultraviolet light receiving element 20 capable of selectively receiving light is manufactured, the band gap energy of the light receiving region is 3 The AlN composition ratio x may be set to 0.05 or more and 0.23 or less so that it becomes 0.6 eV or more and 4.0 eV or less.
[0066]
The above-described relationship between the AlN composition ratio x and the band gap energy has been described based on theoretical values, and an AlGaN layer actually obtained even when film formation is performed so that the AlN composition ratio x is the same. The band gap energy may be different. For example, in the case of AlGaN, which is a ternary mixed crystal compound, GaN, which is a binary compound, is easily generated, and as a result, the band gap energy tends to shift to the low energy side (long wavelength side). Therefore, when it is desired to obtain the band gap energy as the theoretical value, the film formation may be performed after the AlN composition ratio is set large in advance.
[0067]
Second Embodiment
Next, a second embodiment of the method of the present invention will be described. In the first embodiment, Cp is used as a source gas of Be used as a p-type impurity related to the growth of the p-type AlGaN layer 7. 2 Be gas was used, but (R-Cp) 2 It is further preferable to use Be gas [bis (R-cyclopentadienyl) beryllium] gas (R is a 1 to 4 valent alkyl group). In particular, R is a divalent to tetravalent alkyl group (R—Cp). 2 It is more preferable to use Be gas.
[0068]
By using the source gas, when the p-type, n-type and i-type semiconductors are formed stepwise in a predetermined order using the MOCVD method, a pipe is passed through the reaction chamber for crystal growth of the impurity source corresponding to each type. When switching the growth of each semiconductor layer, the supply of the impurity material is also switched. However, when the same pipe is used, the influence (memory effect) due to residual impurities remaining on the inner wall of the pipe cannot be ignored. This is because an improvement effect is exhibited against the problem that a desired impurity concentration cannot be achieved in the vicinity of the interface between the semiconductor layers. That is, the molecular size of the source gas is Cp 2 Since it is larger than Be and the intermolecular force due to polarization is weakened, the residual on the inner wall of the pipe is reduced, so that the memory effect can be suppressed, and p-type activation is more effectively promoted.
[0069]
The formation process of the base structure part and the formation process of other device structure parts, in particular, the annealing process of the p-type AlGaN layer 7 after the growth of the p-type AlGaN layer 7 is the same as in the first embodiment. .
[0070]
<Third Embodiment>
Next, a third embodiment of the method of the present invention will be described. In the p-type activation method of each of the above embodiments, after the p-type AlGaN layer 7 is grown, the p-type AlGaN layer 7 is directly annealed without any pretreatment. In the embodiment, as shown in FIGS. 4A to 4B, after the Be-implanted p-type AlGaN layer 7 is grown, the hydrogen absorbing / permeable film 10 is formed on the surface thereof. The hydrogen absorbing / transmitting film 10 is made of one or more materials selected from nickel, palladium, silver palladium alloy, platinum, and ruthenium, and includes ion beam sputtering (IBS), electron beam evaporation (EB), laser ablation, RF sputtering, It forms using techniques, such as plating. Incidentally, it is considered that electron beam evaporation is advantageous for productivity, and IBS or laser ablation is advantageous for the denseness of the film. In particular, by giving priority to the denseness of the membrane, the hydrogen permeation performance and catalytic action of the hydrogen absorbing and permeable membrane 10 are enhanced, and the annealing throughput in the subsequent process is improved. Therefore, the use of IBS or laser ablation is preferred.
[0071]
The hydrogen absorbing / permeable film 10 may be formed before or after the device structure is etched so that the n-type semiconductor layer 5 in FIG. 1 is partially exposed.
[0072]
Next, as shown in FIG. 4C, after the hydrogen absorption / permeation film 10 is formed, the p-type AlGaN layer 7 is annealed. The treatment temperature is appropriately selected within a temperature range of 400 ° C. or higher. The growth of the p-type AlGaN layer 7, the formation of the hydrogen absorption / permeation film 10, and the annealing treatment may be performed in the same reaction container, or may be performed in separate containers. Here, the treatment atmosphere is a reducing atmosphere containing hydrogen, and as the reducing gas, a mixed gas composed of hydrogen, nitrogen, and argon is introduced into the reaction vessel. The pressure is reduced to 4000 Pa (about 30 Torr) or less by suction. By reducing the pressure after introducing the reducing gas in this way, it is possible to prevent contaminants from entering the reaction vessel. The reducing atmosphere containing hydrogen may be a reducing gas containing hydrogen as a main component (for example, 100% hydrogen).
[0073]
In the third embodiment, sufficient p-type activation is possible even by annealing at a low temperature of 400 ° C. or lower due to the catalytic action exhibited by the hydrogen absorbing and permeable membrane 10. That is, hydrogen atoms desorbed from Be by annealing are absorbed in the hydrogen absorption / permeation film 10 without being retained in the vicinity of the surface of the p-type AlGaN layer 7, are converted into hydrogen molecules, and are released into the external atmosphere. Since atomic hydrogen stays in the p-type AlGaN layer 7 and does not saturate and hydrogen is desorbed from Be, Be implanted as a p-type impurity functions as an acceptor.
[0074]
Further, the hydrogen absorbing / permeable membrane 10 may be a single layer film such as Ni (nickel), Pd (palladium), Pd—Ag (silver palladium alloy), or may be a multilayer film combining these. Further, a part of the hydrogen absorbing / permeable membrane 10 may contain a hydrogen storage alloy other than the above metal. Other hydrogen storage alloys include, for example, La 0.8 Nb 0.2 Ni 2.5 Co 2.4 Al 0.1 , La 0.8 Nb 0.2 Zr 0.03 Ni 3.8 Co 0.7 Al 0.5 , MmNi 3.65 Co 0.75 Mn 0.4 Al 0.3 , MmNi 2.5 Co 0.7 Al 0.8 , Mm 0.85 Zr 0.15 Ni 1.0 Al 0.8 V 0.2 Etc. Here, Mm is a misch metal, which is a rare earth mixture containing Ce (40 to 50%), La (20 to 40%), Pr and Nd as main constituent elements.
[0075]
In addition, it is preferable that hydrogen is contained in the reaction vessel at the time of the annealing. In general, if the annealing process is performed without providing the hydrogen absorption / permeation film 10 on the surface of the p-type AlGaN layer 7, the presence of hydrogen in the annealing process atmosphere causes the desorption of hydrogen from p-type impurities such as Be. Although it was thought to be a hindrance factor, when the hydrogen absorption / permeation membrane 10 is provided, hydrogen molecules in the processing atmosphere exert a cleaning action to prevent oxidation of the surface of the hydrogen absorption / permeation membrane. However, the presence of hydrogen is preferable because the desired effect can be sufficiently exhibited.
[0076]
This also means that the annealing process can be performed in the same reaction vessel in which the p-type AlGaN layer 7 is grown. That is, since hydrogen is used as the carrier gas of the source gas during growth by the MOCVD method, a reducing atmosphere mainly containing the hydrogen can be used as it is.
[0077]
After the p-type activation by the annealing process, the hydrogen absorbing / transmitting film 10 is removed by etching or the like, and part of the p-type semiconductor layer 7 and the i-type semiconductor layer 6 is etched until the n-type semiconductor layer 5 is partially exposed. The n-type electrode 8 is formed on the exposed portion, and the p-type electrode 9 is formed on the p-type semiconductor layer 7. Here, the n-type electrode 8 and the p-type electrode 9 may be made of a known material such as Al, Au, Ni, or Ti by a known method in accordance with the respective polarities. By the method of the present invention, the p-type semiconductor layer 7 is sufficiently p-type activated, so that ohmic contact with the p-type electrode 9 becomes possible.
[0078]
Here, as the p-type electrode 9, for example, when palladium (Pd) is used for the first layer and gold (Au) is used for the second layer, the first layer of palladium and the palladium of the hydrogen absorption permeable membrane 10 are used. You may use both. In this case, for example, the thickness of the hydrogen absorbing / transmitting film 10 is set to 100 angstroms (10 -8 m), the gold film thickness of the second layer is 1000 angstroms (10 -7 m), a good p-type ohmic electrode can be formed.
[0079]
The formation process of the base structure part and the formation process of the other AlGaN layers of the device structure part are the same as those in the first or second embodiment.
[0080]
Hereinafter, another embodiment will be described.
<1> In the above-described embodiment, the case where the p-type activation method of the GaN-based compound semiconductor according to the present invention is applied to the manufacturing process of the ultraviolet light receiving element 20 is exemplified. The present invention can be applied to elements, light emitting elements, and other semiconductor devices. In particular, since the light emitting element is similar to the light receiving element in terms of the device structure, the method of the above embodiment can be applied.
[0081]
<2> In the above embodiment, the device structure portion has been described by taking the PIN structure as an example. However, when the device structure portion includes a p-type AlGaN layer, p-type activation by the method of the present invention can be applied, and the device structure The part is not limited to the PIN structure.
[Brief description of the drawings]
FIG. 1 is an element cross-sectional view showing a configuration of an ultraviolet light receiving element manufactured using a p-type activation method for a GaN-based compound semiconductor according to the present invention.
FIG. 2 is a graph showing the band gap energy of AlGaN.
FIG. 3 is a graph showing spectra of flame light, sunlight, and room light.
FIG. 4 is a device cross-sectional view illustrating a processing step of a p-type activation method for a GaN-based compound semiconductor according to the present invention.
[Explanation of symbols]
1 Substrate
2 Low temperature deposition buffer layer
3 Crystal improvement layer
4 Low temperature deposition intermediate layer
5 n-type semiconductor layer
6 i-type semiconductor layer
7 p-type semiconductor layer
8 n-type electrode
9 p-type electrode
10 Hydrogen absorbing and permeable membrane
20 UV detector

Claims (15)

少なくともベリリウムを含むp型不純物の注入されたAlN組成比が20%以上のAlGaNを主として含むGaN系化合物半導体を形成後、前記GaN系化合物半導体の表面に、前記GaN系化合物半導体中の水素を吸収して外部へ放出する作用を有する水素吸収透過膜を形成してから、還元雰囲気中で前記GaN系化合物半導体をアニーリングすることにより、前記GaN系化合物半導体中に注入されたp型不純物と結合している水素を脱離させて前記GaN系化合物半導体をp型活性化することを特徴とするGaN系化合物半導体のp型活性化方法。After forming a GaN-based compound semiconductor mainly containing AlGaN having an AlN composition ratio of 20% or more implanted with p-type impurities including at least beryllium, the surface of the GaN-based compound semiconductor absorbs hydrogen in the GaN-based compound semiconductor. Then, after forming a hydrogen absorbing and permeable film having an action of releasing to the outside, the GaN-based compound semiconductor is bonded in the GaN-based compound semiconductor by annealing the GaN-based compound semiconductor in a reducing atmosphere. A p-type activation method for a GaN-based compound semiconductor, wherein the GaN-based compound semiconductor is p-type activated by desorbing hydrogen. 前記アニーリング時の還元雰囲気に水素が含まれることを特徴とする請求項に記載のGaN系化合物半導体のp型活性化方法。GaN-based compound semiconductor of the p-type activation method according to claim 1, characterized in that hydrogen is contained in a reducing atmosphere at the time of the annealing. 前記水素吸収透過膜がニッケル、パラジウム、銀パラジウム合金、白金、ルテニウムから選択される一つ以上の物質からなることを特徴とする請求項またはに記載のGaN系化合物半導体のp型活性化方法。The hydrogen absorbing permeable membrane nickel, palladium, silver-palladium alloys, platinum, p-type activation of GaN-based compound semiconductor according to claim 1 or 2, characterized in that it consists of one or more substances selected from ruthenium Method. 前記水素吸収透過膜が前記GaN系化合物半導体中の原子状水素を吸収して水素分子として外部へ放出する触媒作用を有することを特徴とする請求項の何れか1項に記載のGaN系化合物半導体のp型活性化方法。GaN according to any one of claims 1 to 3, characterized in that it has a catalytic action the hydrogen absorbing permeable film is released to the outside as a hydrogen molecule absorbs atomic hydrogen of the GaN-based compound semiconductor P-type activation method for semiconductor compound semiconductors. 前記アニーリング時の前記還元雰囲気が大気圧以下であることを特徴とする請求項の何れか1項に記載のGaN系化合物半導体のp型活性化方法。GaN-based compound semiconductor of the p-type activation method according to any one of claims 1 to 4, wherein the reducing atmosphere during the annealing is less than atmospheric pressure. 前記アニーリング時の前記還元雰囲気が、ロータリーポンプのみにより4000Pa以下に減圧されていることを特徴とする請求項に記載のGaN系化合物半導体のp型活性化方法。6. The p-type activation method for a GaN-based compound semiconductor according to claim 5 , wherein the reducing atmosphere during the annealing is reduced to 4000 Pa or less only by a rotary pump. 前記p型不純物の注入されたGaN系化合物半導体を形成後、その表面に前記水素吸収透過膜だけを形成してから、還元雰囲気中で前記GaN系化合物半導体をアニーリングすることを特徴とする請求項の何れか1項に記載のGaN系化合物半導体のp型活性化方法。The GaN compound semiconductor is annealed in a reducing atmosphere after forming only the hydrogen absorption / permeation film on the surface after forming the GaN compound semiconductor into which the p-type impurity is implanted. The p-type activation method for a GaN-based compound semiconductor according to any one of 1 to 6 . 前記p型不純物の注入された前記GaN系化合物半導体のAlN組成比が40%以上であることを特徴とする請求項1〜の何れか1項に記載のGaN系化合物半導体のp型活性化方法。The p-type activation of a GaN-based compound semiconductor according to any one of claims 1 to 7 , wherein the AlN composition ratio of the GaN-based compound semiconductor into which the p-type impurity is implanted is 40% or more. Method. 請求項1〜の何れか1項に記載のGaN系化合物半導体のp型活性化方法によりp型活性化されたGaN系化合物半導体を備えてなるGaN系化合物半導体装置。A GaN-based compound semiconductor device comprising a GaN-based compound semiconductor that is p-type activated by the p-type activation method for a GaN-based compound semiconductor according to any one of claims 1 to 8 . 請求項1〜の何れか1項に記載のGaN系化合物半導体のp型活性化方法によりp型活性化されたGaN系化合物半導体を備えてなる受光素子。GaN-based compound semiconductor of the p-type activation method comprising comprises a p-type activated GaN-based compound semiconductor by the light receiving element according to any one of claims 1-8. バンドギャップエネルギが3.6eV以上のAlGaNを主とする受光領域を備えてなることを特徴とする請求項1に記載の受光素子。Light-receiving element according to claim 1 0 bandgap energy is characterized by including a light receiving region mainly containing more than AlGaN 3.6 eV. 前記p型活性化されたGaN系化合物半導体を通して受光領域に受光対象波長域の光が入射することを特徴とする請求項1または1に記載の受光素子。Light-receiving element according to claim 1 0 or 1 1 which the light receiving target wavelength region in the light receiving region through the p-type activated GaN-based compound semiconductor which is characterized in that incident. 請求項1〜の何れか1項に記載のGaN系化合物半導体のp型活性化方法によりp型活性化されたGaN系化合物半導体を備えてなる発光素子。A light-emitting device comprising a GaN-based compound semiconductor that is p-type activated by the p-type activation method for a GaN-based compound semiconductor according to any one of claims 1 to 8 . AlGaNを主とする活性層を備えてなることを特徴とする請求項1に記載の発光素子。The light emitting device according to claim 1 to 3, characterized in that it comprises an active layer mainly containing AlGaN. 活性層で発光した光が、前記p型活性化されたGaN系化合物半導体を通して出射することを特徴とする請求項1または1に記載の発光素子。Light generated in the active layer, the light emitting device according to claim 1 3 or 1 4, characterized in that exiting through the p-type activated GaN-based compound semiconductor.
JP2003081407A 2003-03-24 2003-03-24 Method for activating p-type AlGaN compound semiconductor Expired - Lifetime JP4295535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081407A JP4295535B2 (en) 2003-03-24 2003-03-24 Method for activating p-type AlGaN compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081407A JP4295535B2 (en) 2003-03-24 2003-03-24 Method for activating p-type AlGaN compound semiconductor

Publications (2)

Publication Number Publication Date
JP2004289013A JP2004289013A (en) 2004-10-14
JP4295535B2 true JP4295535B2 (en) 2009-07-15

Family

ID=33294985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081407A Expired - Lifetime JP4295535B2 (en) 2003-03-24 2003-03-24 Method for activating p-type AlGaN compound semiconductor

Country Status (1)

Country Link
JP (1) JP4295535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201484A (en) * 2011-05-06 2011-09-28 中国科学院上海技术物理研究所 AlGaN ultraviolet detector with secondary mesa wrapping electrode and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777003B2 (en) * 2005-07-28 2011-09-21 三菱電機株式会社 Semiconductor layer inspection method and apparatus
JP5046324B2 (en) * 2007-02-01 2012-10-10 日本碍子株式会社 Method for improving p-type conductivity of Mg-doped group III nitride semiconductor and method for producing p-type group III nitride semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201484A (en) * 2011-05-06 2011-09-28 中国科学院上海技术物理研究所 AlGaN ultraviolet detector with secondary mesa wrapping electrode and manufacturing method thereof
CN102201484B (en) * 2011-05-06 2013-01-09 中国科学院上海技术物理研究所 AlGaN ultraviolet detector with secondary mesa wrapping electrode and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004289013A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP3794876B2 (en) Manufacturing method of semiconductor device
JP3344257B2 (en) Gallium nitride based compound semiconductor and device manufacturing method
US7601553B2 (en) Method of manufacturing a gallium nitride semiconductor light emitting device
US20120034718A1 (en) Vertical deep ultraviolet light emitting diodes
KR20040104959A (en) Doped Group III-V Nitride Material, And Microelectronic Device And Device Precursor Structures Comprising Same
JPH09312416A (en) Family-3 nitride compound semiconductor light emitting element
CN1306560C (en) n-electrode for III group nitride based compound semiconductor element
WO2018208957A1 (en) Fabrication of ultraviolet light emitting diode with tunnel junction
WO2003107442A2 (en) Electrode for p-type gallium nitride-based semiconductors
WO2007061260A1 (en) A manufacturing method for p type gan device
US20040004225A1 (en) Light emitting diode and manufacturing method thereof
JP2008021745A (en) Group iii nitride compound semiconductor laminated structure, and method for growth thereof
JP4295535B2 (en) Method for activating p-type AlGaN compound semiconductor
JP4371681B2 (en) GaN compound semiconductor p-type activation method
JP3522610B2 (en) Method for manufacturing p-type nitride semiconductor
WO2002099901A1 (en) Method for manufacturing group-iii nitride compound semiconductor device
KR100664039B1 (en) Nitride compound semiconductor device manufacturing method
CN115863503A (en) Deep ultraviolet LED epitaxial wafer, preparation method thereof and deep ultraviolet LED
JPH11274557A (en) Manufacture of p-type gallium nitride compound semiconductor layer
KR100734810B1 (en) Method for fabricating a zno based light emitting device and a zno based light emitting device fabricated by the method
US7713770B2 (en) Fabrication method of nitride semiconductor light emitting device and nitride semiconductor light emitting device thereby
JP2995186B1 (en) Semiconductor light emitting device
JP2004363401A (en) Method for manufacturing semiconductor device
KR100432246B1 (en) III-Nitride compound semiconductor light emitting device
JP7484572B2 (en) Method for manufacturing p-type group III nitride semiconductor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4295535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190417

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term