JP4295190B2 - How to determine the operating conditions of the oxidation ditch - Google Patents

How to determine the operating conditions of the oxidation ditch Download PDF

Info

Publication number
JP4295190B2
JP4295190B2 JP2004295347A JP2004295347A JP4295190B2 JP 4295190 B2 JP4295190 B2 JP 4295190B2 JP 2004295347 A JP2004295347 A JP 2004295347A JP 2004295347 A JP2004295347 A JP 2004295347A JP 4295190 B2 JP4295190 B2 JP 4295190B2
Authority
JP
Japan
Prior art keywords
power input
immersion depth
input density
impeller
sludge concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004295347A
Other languages
Japanese (ja)
Other versions
JP2006102697A (en
Inventor
一夫 関沢
賢二郎 淵脇
政信 大方
悟 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2004295347A priority Critical patent/JP4295190B2/en
Publication of JP2006102697A publication Critical patent/JP2006102697A/en
Application granted granted Critical
Publication of JP4295190B2 publication Critical patent/JP4295190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、オキシデーションディッチの運転条件決定方法に関する。   The present invention relates to a method for determining operating conditions of an oxidation ditch.

小規模下水処理システムとして、オキシデーションディッチ(OD : Oxidation Ditch)法が注目されている。このOD法は、無終端の循環水路内に流入した汚水と活性汚泥との混合液を、インペラにより攪拌及び曝気し、OD内に好気ゾーンと嫌気ゾーンを生成して、各ゾーンで硝化反応、脱窒反応を行わせる、あるいはOD内での処理に時間的に好気時間帯と嫌気時間帯とを設け、各時間帯で硝化反応、脱窒反応を行わせて、有機物処理、脱窒処理を行う。   As a small-scale sewage treatment system, the oxidation ditch (OD) method has attracted attention. In this OD method, a mixture of sewage and activated sludge flowing into an endless circulation channel is stirred and aerated with an impeller to generate an aerobic zone and an anaerobic zone in the OD, and a nitrification reaction is performed in each zone. , Denitrification reaction, or processing in the OD is provided with aerobic time zone and anaerobic time zone in time, nitrification reaction and denitrification reaction are performed in each time zone, organic matter treatment, denitrification Process.

このようなODとして、例えば特許文献1に開示されているものがある。このODでは、インペラの浸漬深及び回転数を制御することで、混合液の流速を制御しながら溶存酸素量を調整して、極低負荷運転時における良好な汚水処理を図っている。
特開2001−269691号公報
An example of such an OD is disclosed in Patent Document 1. In this OD, the amount of dissolved oxygen is adjusted while controlling the flow rate of the liquid mixture by controlling the immersion depth and rotation speed of the impeller, thereby achieving good sewage treatment during extremely low load operation.
JP 2001-269691 A

しかしながら、上記した従来の方法では、インペラの浸漬深や回転数等の運転条件の設定は、熟練した運転者が勘に頼って決定していたものであり、効率的でなかった。   However, in the above-described conventional method, setting of operation conditions such as the impeller immersion depth and the number of revolutions is determined by a skilled driver depending on intuition, and is not efficient.

本発明は、上記した事情に鑑みて為されたものであり、インペラの浸漬深や回転数等の運転条件を効率的に決定することが可能なオキシデーションディッチの運転条件決定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an operating condition determining method for an oxidation ditch capable of efficiently determining operating conditions such as the immersion depth and rotation speed of an impeller. With the goal.

本発明は、無終端の循環水路と、循環水路内に流入した汚水と活性汚泥との混合液を攪拌及び曝気するインペラと、を備えたオキシデーションディッチの運転条件を決定する方法である。この方法は、混合液の流速をV、インペラの浸漬深をX、動力投入密度をY、汚泥濃度(MLSS)をZとしたとき、V=a・X+b・Y+c・Z+d(a,b,c,dは所定の定数)の関係式に基づいて、混合液の流速と汚泥濃度とから、インペラの浸漬深及び動力投入密度を決定することを特徴とする。   The present invention is a method for determining an operating condition of an oxidation ditch provided with an endless circulating water channel and an impeller that stirs and aerates a mixed liquid of sewage and activated sludge flowing into the circulating water channel. In this method, V = a · X + b · Y + c · Z + d, where V is the flow rate of the liquid mixture, X is the immersion depth of the impeller, Y is the power input density, and Z is the sludge concentration (MLSS). Based on the relational expression (a, b, c, d are predetermined constants), the impeller immersion depth and power input density are determined from the flow rate of the mixed liquid and the sludge concentration.

本発明者は、混合液の流速Vが、インペラの浸漬深X、動力投入密度Y、及び汚泥濃度(MLSS)Zの多項式で表し得ることを見出した。従って、この関係式に基づいて、所望の混合液の流速と汚泥濃度とから、インペラの浸漬深及び動力投入密度を効率的に決定することが可能となる。   The present inventor has found that the flow velocity V of the mixed solution can be expressed by a polynomial expression of impeller immersion depth X, power input density Y, and sludge concentration (MLSS) Z. Therefore, based on this relational expression, it is possible to efficiently determine the impeller immersion depth and power input density from the flow rate and sludge concentration of the desired mixed liquid.

本発明に係るオキシデーションディッチの運転条件決定方法では、決定された浸漬深と動力投入密度とに基づいて、インペラによる混合液に対する酸素供給量を求め、酸素供給量に基づいて曝気時間を決定することを特徴としてもよい。このようにすれば、過曝気や曝気不足を防止して良好な処理が可能となる。   In the method for determining the operating condition of the oxidation ditch according to the present invention, the amount of oxygen supplied to the liquid mixture by the impeller is obtained based on the determined immersion depth and power input density, and the aeration time is determined based on the amount of oxygen supplied. This may be a feature. In this way, it is possible to prevent over-aeration and insufficient aeration and to perform a good process.

本発明に係るオキシデーションディッチの運転条件決定方法では、上記関係式は、循環水路内の所定部位における流速、インペラの浸漬深、動力投入密度、及び汚泥濃度を含むデータ組を条件を変えて複数取得し、それらのデータ組を基に、流速Vに対し浸漬深X、動力投入密度Y、及び汚泥濃度Zを重回帰して得られたものであることを特徴としてもよい。このようにすれば、上記関係式を容易に得ることができる。   In the operating condition determination method of the oxidation ditch according to the present invention, the above relational expression includes a plurality of data sets including a flow rate, an impeller immersion depth, a power input density, and a sludge concentration in a predetermined part in the circulation channel by changing the conditions. It may be characterized by being obtained by multiple regression of the immersion depth X, power input density Y, and sludge concentration Z with respect to the flow velocity V based on these data sets. If it does in this way, the said relational expression can be obtained easily.

本発明は、無終端の循環水路と、循環水路内に流入した汚水と活性汚泥との混合液を攪拌及び曝気するインペラと、を備えたオキシデーションディッチの運転条件を決定する方法である。この方法は、循環水路内の所定部位における流速、インペラの浸漬深、動力投入密度、及び汚泥濃度を含むデータ組を条件を変えて複数取得し、それらのデータ組を基に、流速Vに対し浸漬深X、動力投入密度Y、及び汚泥濃度Zを重回帰して、V=a・X+b・Y+c・Z+d(a,b,c,dは所定の定数)の関係式を求める工程を含むことを特徴とする。   The present invention is a method for determining an operating condition of an oxidation ditch provided with an endless circulating water channel and an impeller that stirs and aerates a mixed liquid of sewage and activated sludge flowing into the circulating water channel. In this method, a plurality of data sets including the flow velocity, impeller immersion depth, power input density, and sludge concentration at a predetermined site in the circulation channel are acquired under different conditions. Multiple regression of immersion depth X, power input density Y, and sludge concentration Z, V = a · X + b · Y + c · Z + d (a, b, c, d are predetermined constants) The process of calculating | requiring is included.

このようにして得られた関係式に基づいて、所望の混合液の流速と汚泥濃度とから、インペラの浸漬深及び動力投入密度を効率的に決定することが可能となる。   Based on the relational expression thus obtained, it is possible to efficiently determine the impeller immersion depth and power input density from the flow rate and sludge concentration of the desired mixed liquid.

本発明は、無終端の循環水路と、循環水路内に流入した汚水と活性汚泥との混合液を攪拌及び曝気するインペラと、を備えたオキシデーションディッチの運転条件を決定する方法である。この方法は、循環水路内の所定部位における流速、インペラの浸漬深、動力投入密度、及び汚泥濃度を含むデータ組を条件を変えて複数取得し、それらのデータ組を基に、流速Vに対し浸漬深X、動力投入密度Y、汚泥濃度Z、及び浸漬深と動力投入密度の相乗効果の項(XY)を重回帰して、V=a・X+b・Y+c・Z+d+e・XY(a,b,c,d,eは所定の定数)の関係式を求める工程を含むことを特徴とする。   The present invention is a method for determining an operating condition of an oxidation ditch provided with an endless circulating water channel and an impeller that stirs and aerates a mixed liquid of sewage and activated sludge flowing into the circulating water channel. In this method, a plurality of data sets including the flow velocity, impeller immersion depth, power input density, and sludge concentration at a predetermined site in the circulation channel are acquired under different conditions. Multiple regression of the immersion depth X, power input density Y, sludge concentration Z, and the term of synergy between the immersion depth and power input density (XY), V = a · X + b · Y + c · Z + d + The method includes a step of obtaining a relational expression of e · XY (a, b, c, d, and e are predetermined constants).

このようにして得られた関係式に基づいて、所望の混合液の流速と汚泥濃度とから、インペラの浸漬深及び動力投入密度を効率的に決定することが可能となる。この関係式は、浸漬深と動力投入密度との相乗効力の影響が大きいときに有効である。   Based on the relational expression thus obtained, it is possible to efficiently determine the impeller immersion depth and power input density from the flow rate and sludge concentration of the desired mixed liquid. This relational expression is effective when the influence of the synergistic effect between the immersion depth and the power input density is large.

本発明によれば、インペラの浸漬深や回転数等の運転条件を効率的に決定することが可能なオキシデーションディッチの運転条件決定方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the operating condition determination method of the oxidation ditch which can determine operating conditions, such as the immersion depth and rotation speed of an impeller efficiently, is provided.

以下、添付図面を参照して本発明の実施形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、オキシデーションディッチ(OD)の一部破断斜視図である。また図2は、ODの構成を示す平面図である。本実施形態に係るODの運転条件決定方法は、このOD1において好適に実施することができる。   FIG. 1 is a partially broken perspective view of an oxidation ditch (OD). FIG. 2 is a plan view showing the configuration of the OD. The OD operating condition determination method according to the present embodiment can be preferably implemented in this OD1.

このOD1は、図1及び図2に示すように、無終端の循環水路8と、循環水路8内に流入した汚水と活性汚泥との混合液2を攪拌及び曝気するインペラ3と、を備えている。循環水路8は、U字型の貯水槽内にU字型の隔壁を設けてなる、いわゆる馬蹄型の構造を有する。この循環水路8の内側の流路内には、J字型の整流壁9が設けられている。循環水路8の側壁には、汚水が流入する流入口10と、処理水が排出される排出口11とが設けられている。排出口11には、図3に示すように越流ゲート12が設けられており、OD1にて処理された処理水が、越流ゲート12の上端部を越えて排出される。越流ゲート12は、モータ13により駆動されて上下動する。越流ゲート12が上昇した場合には、越流する水量が減少し、循環水路8内の混合液の水位が上昇する。一方、越流ゲート12が下降した場合には、越流する水量が増加し、循環水路8内の混合液の水位が下降する。なお、越流ゲート12は手動にて上下動させてもよい。   As shown in FIGS. 1 and 2, the OD 1 includes an endless circulating water channel 8 and an impeller 3 that stirs and aerates the mixed liquid 2 of sewage and activated sludge flowing into the circulating water channel 8. Yes. The circulating water channel 8 has a so-called horseshoe-shaped structure in which a U-shaped partition wall is provided in a U-shaped water storage tank. A J-shaped rectifying wall 9 is provided in the flow channel inside the circulation water channel 8. On the side wall of the circulation water channel 8, an inflow port 10 into which dirty water flows and an exhaust port 11 through which treated water is discharged are provided. As shown in FIG. 3, the discharge port 11 is provided with an overflow gate 12, and the treated water treated at OD <b> 1 is discharged beyond the upper end of the overflow gate 12. The overflow gate 12 is driven by a motor 13 to move up and down. When the overflow gate 12 rises, the amount of overflowing water decreases and the water level of the mixed liquid in the circulating water channel 8 rises. On the other hand, when the overflow gate 12 is lowered, the amount of overflowing water is increased, and the water level of the mixed liquid in the circulating water channel 8 is lowered. The overflow gate 12 may be manually moved up and down.

インペラ3は、図2に示すように、U字型の貯水槽の頂部に一対設けられている。このインペラ3は、図4及び図5に示すように、中央の回転軸4の周りに等間隔に配設された攪拌羽根14と、中央の回転軸4との間で通水口15を形成するように各攪拌羽根14間に配設されたコーン状板16と、を有している。各攪拌羽根14の上部は同一方向に折り曲げられ、折り曲げ部14aが設けられている。このインペラ3は、図1及び図6に示すように、回転軸4及び減速機5を介してモータ6と接続されている。減速機5及びモータ6は、架台7上に配置されている。インペラ3の直径dは、通常1000mm〜4000mmの範囲に設定される。インペラ3と水位の関係は、図6に示すように、設計水位のときにコーン状板16の上端部に水面が来るように設定される。このとき浸漬深がゼロであり、これよりも水位が上昇する方向を浸漬深の正の方向とする。   As shown in FIG. 2, a pair of impellers 3 are provided at the top of a U-shaped water tank. As shown in FIGS. 4 and 5, the impeller 3 forms a water inlet 15 between the stirring blades 14 arranged at equal intervals around the central rotating shaft 4 and the central rotating shaft 4. And a cone-like plate 16 disposed between the stirring blades 14. The upper part of each stirring blade 14 is bent in the same direction, and a bent portion 14a is provided. As shown in FIGS. 1 and 6, the impeller 3 is connected to a motor 6 via a rotating shaft 4 and a speed reducer 5. The speed reducer 5 and the motor 6 are arranged on a gantry 7. The diameter d of the impeller 3 is normally set in the range of 1000 mm to 4000 mm. As shown in FIG. 6, the relationship between the impeller 3 and the water level is set so that the water surface comes to the upper end of the cone-shaped plate 16 at the design water level. At this time, the immersion depth is zero, and the direction in which the water level increases more than this is defined as the positive direction of the immersion depth.

このOD1では、モータ6を作動させてインペラ3を回転駆動すると、循環水路8内の混合液2はインペラ3によるポンプ作用により揚水される。揚水された混合液2の一部は通水口15を通り抜けてコーン状板16の上面側に抜け、攪拌羽根14の折り曲げ部14aにより加速されて大気中に吐出される。また、混合液2の他の一部は、コーン状板16下面に沿って流動されながら攪拌羽根14の下部により加速され、回転方向に吐出される。   In this OD1, when the motor 6 is operated and the impeller 3 is rotationally driven, the liquid mixture 2 in the circulating water channel 8 is pumped by the pump action of the impeller 3. A part of the pumped liquid mixture 2 passes through the water inlet 15, passes through the upper surface side of the cone-shaped plate 16, is accelerated by the bent portion 14 a of the stirring blade 14, and is discharged into the atmosphere. Further, the other part of the mixed liquid 2 is accelerated by the lower part of the stirring blade 14 while flowing along the lower surface of the cone-like plate 16 and is discharged in the rotation direction.

大気中に吐出された混合液2は空気と衝突接触した後に下降して、インペラ3の回転方向の流れと合成され、循環水路8内では螺旋状旋回流が生じる。上記の過程で空気中の酸素が効率よく混合液に溶解されると共に、循環水路8内の上下の攪拌及び混合が十分になされる。また、この螺旋状旋回流により、循環水路8内に循環流が生起される。こうして溶け込んだ酸素により好気ゾーンが形成され硝化反応が促進される。またOD1内のインペラ3から離れた場所では、溶存酸素量が少なく嫌気ゾーンが形成されており、脱窒反応により富栄養化の原因物質である窒素が除去される。   The mixed liquid 2 discharged into the atmosphere descends after colliding with air and is combined with the flow in the rotational direction of the impeller 3, and a spiral swirl flow is generated in the circulation water channel 8. In the above process, oxygen in the air is efficiently dissolved in the liquid mixture, and upper and lower stirring and mixing in the circulation water channel 8 are sufficiently performed. Further, a circulating flow is generated in the circulating water channel 8 by this spiral swirling flow. An aerobic zone is formed by the dissolved oxygen and the nitrification reaction is accelerated. In addition, an anaerobic zone is formed in a place away from the impeller 3 in the OD 1 with a small amount of dissolved oxygen, and nitrogen that causes eutrophication is removed by the denitrification reaction.

ここで、嫌気ゾーン及び好気ゾーンを好適な配分で形成する、または、嫌気時間帯及び好気時間帯を設けるには、インペラ3により混合液2中に溶け込ませる酸素量を制御する必要がある。本実施形態に係るODの運転条件決定方法は、そのためにインペラ3の浸漬深や回転数等の運転条件を効率的に決定するためのものである。   Here, in order to form an anaerobic zone and an aerobic zone with suitable distribution, or to provide an anaerobic time zone and an aerobic time zone, it is necessary to control the amount of oxygen dissolved in the liquid mixture 2 by the impeller 3. . The OD operating condition determination method according to this embodiment is for efficiently determining the operating conditions such as the immersion depth and the rotational speed of the impeller 3 for that purpose.

次に、具体的な運転条件の決定方法を説明する前に、本発明を想到するに至った経緯について説明する。   Next, before explaining a specific method for determining operating conditions, the background to the idea of the present invention will be described.

上記のようなOD1を採用した下水処理場にて、循環水路8内での汚泥の堆積が報告されたため、図7に示すA,B,C,及びD断面において、図8に示すように幅方向1〜4の点において、その堆積状況を測定した。その結果、A,C,及びD断面で汚泥の堆積はほとんど確認されず、B断面、特にB−1において、高さ50cm〜150cmの汚泥の堆積が確認された。そこで、長期圧密により巻上げが困難なこの堆積に、T字レーキにより強制的に外力を加えて突き崩した後、設計水位において流速を測定した。   In the sewage treatment plant adopting OD1 as described above, the accumulation of sludge in the circulating water channel 8 was reported. Therefore, in the A, B, C, and D cross sections shown in FIG. 7, the width as shown in FIG. The deposition state was measured at points in directions 1 to 4. As a result, accumulation of sludge was hardly confirmed in the sections A, C, and D, and accumulation of sludge having a height of 50 cm to 150 cm was confirmed in the B section, particularly B-1. Therefore, after the T-shaped rake forcedly applied an external force to the deposit, which was difficult to wind up due to long-term consolidation, the flow velocity was measured at the design water level.

図9は、インペラの回転数を低速L(図9(a))、中速M(図9(b))、高速H(図9(c))の3段階に調節して測定したときの、A断面の各点における流速を示している。また図10は、インペラの回転数を低速L(図10(a))、中速M(図10(b))、高速H(図10(c))の3段階に調節して測定したときの、B断面の各点における流速を示している。   FIG. 9 shows a case where the rotational speed of the impeller is measured by adjusting to three stages of low speed L (FIG. 9A), medium speed M (FIG. 9B), and high speed H (FIG. 9C). , The flow velocity at each point of the A cross section is shown. Further, FIG. 10 shows the measurement when the impeller rotation speed is adjusted to three stages of low speed L (FIG. 10 (a)), medium speed M (FIG. 10 (b)), and high speed H (FIG. 10 (c)). The flow velocity at each point of the B cross section is shown.

図9及び図10に示すように、A断面、及びB断面の双方とも水路コーナー部出口で、遠心力により流れが外側に偏る傾向がある。A断面では、整流壁9の効果により、内側の流速が早く保たれている。インペラ3の回転が低速Lのとき、A―2―L(ここで、A―2―Lは、図7及び図8において、A断面内の2−Lの位置を示す。以下、同様である。)及びB―1―Lにおいて、共に底部流速が0.1m/秒より小さいが、A―2では汚泥の堆積は確認されなかった。これは、A―2―Lが比較的流れの速いA―1―LとA―3―Lとに囲まれているためと考えられる。   As shown in FIGS. 9 and 10, both the A cross section and the B cross section are outlets of the water channel corners, and the flow tends to be biased outward due to centrifugal force. In the section A, the inner flow velocity is kept fast due to the effect of the rectifying wall 9. When the rotation of the impeller 3 is at a low speed L, A-2-L (where A-2-L indicates the position of 2-L in the cross section A in FIGS. 7 and 8. The same applies hereinafter. .) And B-1-L, the bottom flow velocity is less than 0.1 m / sec, but no sludge was confirmed in A-2. This is thought to be because A-2-L is surrounded by A-1-L and A-3-L, which are relatively fast in flow.

一方、水路壁面と接するB―1―Lでは、壁面に向かって徐々に流速は小さくなり、壁面でゼロとなる。この壁面とB―1―Lとの間の流速が0.1m/秒より小さくなる領域において、汚泥の堆積が始まって堆積領域が下流へと成長したものと考えられる。そこで、流速が遅く、且つ汚泥の堆積が顕著であったB―1―Lにて、0.1m/秒以上の流速を出すための条件を検討することにした。   On the other hand, in B-1-L in contact with the water channel wall surface, the flow velocity gradually decreases toward the wall surface and becomes zero on the wall surface. In the region where the flow velocity between the wall surface and B-1-L is less than 0.1 m / sec, it is considered that the deposition of sludge started and the deposition region grew downstream. Therefore, it was decided to study the conditions for producing a flow velocity of 0.1 m / second or higher at B-1-L where the flow velocity was slow and sludge accumulation was remarkable.

まず、上記OD1においてモータの回転数と消費動力との関係を求めた。図11は、その結果を示している。図11に示すように、同一浸漬深では、モータの回転数と消費動力とは線形の関係にあるが、同一のODでも浸漬深Xが異なれば、同じ回転数でも消費動力が異なる。そこで、動力投入密度という概念を導入する。   First, the relationship between the rotational speed of the motor and the power consumption was obtained at the above OD1. FIG. 11 shows the result. As shown in FIG. 11, at the same immersion depth, the rotational speed of the motor and the power consumption are in a linear relationship. However, if the immersion depth X is different even at the same OD, the power consumption is different even at the same rotational speed. Therefore, the concept of power input density is introduced.

動力投入密度は、次式(1)で表される。   The power input density is expressed by the following formula (1).

動力投入密度[W/m ]=消費動力[W]÷混合液量[m] ・・・(1)
Power input density [W / m 3 ] = Power consumption [W] ÷ Mixed liquid amount [m 3 ] (1)

混合液量[m]=槽面積[m]×(設計水深[m]+浸漬深[m]) ・・・(2) Liquid mixture amount [m 3 ] = tank area [m 2 ] × (design water depth [m] + immersion depth [m]) (2)

この動力投入密度を用いれば、図12に示すようなモータの回転数と動力投入密度の関係が得られる。浸漬深ごとに回転数と動力投入密度の関係式が得られるが、浸漬深の差異による相違はほとんど見られなかった。従って、モータの回転数と動力投入密度との関係は、次式(3)を採用し、以降の検討においては、モータの回転数の変わりに動力投入密度を利用した。   If this power input density is used, the relationship between the rotational speed of the motor and the power input density as shown in FIG. 12 can be obtained. Although the relational expression between the number of rotations and the power input density was obtained for each immersion depth, there was almost no difference due to the difference in immersion depth. Therefore, the relationship between the rotational speed of the motor and the power input density employs the following formula (3), and in the following examination, the power input density is used instead of the rotational speed of the motor.

動力投入密度[W/m ]=α×モータ回転数[rpm]+β (α,βは所定の定数)・・・(3)
Power input density [W / m 3 ] = α × motor rotation speed [rpm] + β (α and β are predetermined constants) (3)

発明者は、循環水路8内の堆積が生じたB―1―Lの部位において、(流速[m/秒],浸漬深[mm],動力投入密度[W/m],汚泥濃度[mg/l])のデータ組を、条件を変えて(浸漬深、動力投入密度、汚泥濃度をパラメータとして種々変更して)複数取得した。そして、これらのデータ組を基に、流速Vに対し浸漬深X、動力投入密度Y、及び汚泥濃度Zを重回帰して、 The inventor made (flow rate [m / sec], immersion depth [mm], power input density [W / m 3 ], sludge concentration [mg] at the location of B-1-L where accumulation in the circulation channel 8 occurred. / L]) data sets were obtained by changing the conditions (variably changing the immersion depth, power input density, and sludge concentration as parameters). Based on these data sets, the immersion depth X, power input density Y, and sludge concentration Z are subjected to multiple regression with respect to the flow velocity V.

V=a・X+b・Y+c・Z+d(a,b,c,dは所定の定数) ・・・(4)
の関係式を求めた。
V = a * X + b * Y + c * Z + d (a, b, c, d are predetermined constants) (4)
Was obtained.

このようにして、発明者は、混合液2の流速Vが、インペラ3の浸漬深X、動力投入密度Y、及び汚泥濃度(MLSS)Zの多項式で表し得ることを見出した。そして、この関係式に基づいて、混合液2の流速と汚泥濃度とから、インペラ3の浸漬深及び動力投入密度を決定することができることが分かった。そして、動力投入密度が決定されれば、上記(3)式に基づいて、モータ6の回転数を求めることができる。   In this way, the inventor has found that the flow velocity V of the mixed liquid 2 can be expressed by a polynomial expression of an immersion depth X of the impeller 3, a power input density Y, and a sludge concentration (MLSS) Z. And based on this relational expression, it turned out that the immersion depth and power input density of the impeller 3 can be determined from the flow velocity and sludge density | concentration of the liquid mixture 2. FIG. If the power input density is determined, the rotational speed of the motor 6 can be obtained based on the above equation (3).

また、浸漬深、動力投入密度、及び酸素供給量の関係は、予め清水条件で測定することで求めることができる。例えば、浸漬深が0[mm]で動力投入密度がω[W/m]のときの酸素供給量を100%としたとき、浸漬深及び動力投入密度をそれぞれ変化させたときにおける酸素供給量P[%]は、図13に示すように求められる。 Further, the relationship between the immersion depth, power input density, and oxygen supply amount can be obtained by measuring in advance under fresh water conditions. For example, when the oxygen supply amount when the immersion depth is 0 [mm] and the power input density is ω [W / m 3 ] is 100%, the oxygen supply amount when the immersion depth and the power input density are changed respectively. P [%] is obtained as shown in FIG.

従って、浸漬深及び動力投入密度に基づいて酸素供給量Pが決定されたとき、   Therefore, when the oxygen supply amount P is determined based on the immersion depth and power input density,

曝気時間T1=U[h/日]×i[%]×10−2×100[%]/P[%] ・・・(5)
の関係式に基づいて、必要な曝気時間T1を算出することができる。ここで、Uは使用するインペラ3による曝気能力を示すものであって、計画汚水流入時に必要な酸素を供給するのに必要な時間であり、iは計画汚水量に対する流入汚水量の割合である。
Aeration time T1 = U [h / day] × i [%] × 10 −2 × 100 [%] / P [%] (5)
The required aeration time T1 can be calculated based on the relational expression. Here, U indicates the aeration capability of the impeller 3 to be used, and is the time required to supply oxygen necessary for the planned sewage inflow, and i is the ratio of the inflow sewage amount to the planned sewage amount. .

本実施形態に係るODの運転条件決定方法は、上記した知見に基づくものである。次に、具体的なODの運転条件決定方法について説明する。   The OD operating condition determination method according to the present embodiment is based on the findings described above. Next, a specific OD operation condition determination method will be described.

特に、ここではOD1の使用初期段階において、循環水路8内に堆積を生じさせないための運転条件を決定する方法について説明する。このようなOD1を備えた下水処理システムでは、下水網の整備に時間を要するが、下水網が完成してからシステムを稼動することは考えられず、完成時の処理容量を見込んで設計した処理プラントを先に建設し、これに接続する下水網を順次整備していくのが一般的である。従って、プラントの使用初期段階では、設計処理容量よりはるかに低い負荷で運転が行われる。しかしながら、こうした極低負荷運転状態においては、混合液中の活性汚泥の沈降を防ぐために必要な限度でインペラ3を低速あるいは間欠運転を行ったとしても、これにより促進される気液接触で過曝気状態となり、OD1内の微生物が自己酸化を起したり、硝化反応が進行することによりOD1内のpHが低下し、汚泥濃度が増加せず、処理能力が低下してしまう。過曝気を防ぐため、インペラ3の停止時間を長くすると、汚泥が沈降して溶存酸素量が低下せず、やはり処理能力が低下してしまうばかりか、堆積した汚泥が長期間の圧密・嫌気状態を経て、臭気を発するという問題もある。従って、このようなOD1の使用初期段階において、運転条件を効率的に且つ好適に決定する方法が重要となる。   In particular, a method for determining operating conditions for preventing sedimentation in the circulating water channel 8 at the initial use stage of OD1 will be described here. In such a sewage treatment system equipped with OD1, it takes time to develop the sewage network, but it is unlikely that the system will be operated after the sewage network is completed. It is common to construct a plant first and to gradually develop a sewer network connected to it. Therefore, in the initial stage of use of the plant, operation is performed with a load much lower than the design processing capacity. However, in such an extremely low load operation state, even if the impeller 3 is operated at a low speed or intermittent operation to the limit necessary to prevent sedimentation of the activated sludge in the mixed liquid, it is excessively aerated by the gas-liquid contact promoted by this. As a result, the microorganism in OD1 undergoes auto-oxidation or the nitrification reaction proceeds, so that the pH in OD1 decreases, the sludge concentration does not increase, and the treatment capacity decreases. In order to prevent over-aeration, if the impeller 3 is stopped for a longer time, the sludge settles and the amount of dissolved oxygen does not decrease, and the treatment capacity also decreases. After that, there is also a problem of giving off odor. Therefore, in such an initial stage of using OD1, a method for efficiently and suitably determining operating conditions is important.

まず、循環水路8内の堆積が生じる部位(図7のB―1―L)において、(流速[m/秒],浸漬深[mm],動力投入密度[W/m],汚泥濃度[mg/l])のデータ組を、条件を変えて(浸漬深、動力投入密度、汚泥濃度をパラメータとして種々変更して)複数取得する。次に、これらのデータ組を基に、流速Vに対し浸漬深X、動力投入密度Y、及び汚泥濃度Zを重回帰して、V=a・X+b・Y+c・Z+d(a,b,c,dは所定の定数)の関係式(4)を求める。また、上記(3)式に示すように、動力投入密度[W/m ]とモータ回転数[rpm]との関係を予め求めておく。
First, at the site where the accumulation in the circulation channel 8 occurs (B-1-L in FIG. 7), (flow velocity [m / sec], immersion depth [mm], power input density [W / m 3 ], sludge concentration [ mg / l]) data sets are acquired by changing the conditions (variably changing the immersion depth, power input density, and sludge concentration as parameters). Next, based on these data sets, multiple regression of immersion depth X, power input density Y, and sludge concentration Z with respect to flow velocity V, V = a · X + b · Y + c · Z + d ( The relational expression (4) of a, b, c, and d is obtained. Further, as shown in the above equation (3), the relationship between the power input density [W / m 3 ] and the motor rotation speed [rpm] is obtained in advance.

次に、所望の流速と汚泥濃度から、上記関係式(4)に基づいて浸漬深及び動力投入密度を決定する。そして、動力投入密度とモータ回転数との関係を表す式(3)から、必要なモータ6の回転数を求める。   Next, the immersion depth and power input density are determined from the desired flow rate and sludge concentration based on the above relational expression (4). Then, the necessary number of rotations of the motor 6 is obtained from the expression (3) representing the relationship between the power input density and the number of motor rotations.

また、浸漬深、動力投入密度、及び酸素供給量の関係を予め求めておく。そして、上記決定された浸漬深と動力投入密度とから、酸素供給量Pを求める。そして、式(5)に基づいて、求められた酸素供給量から曝気時間T1を決定する。   Further, the relationship between the immersion depth, power input density, and oxygen supply amount is obtained in advance. Then, an oxygen supply amount P is obtained from the determined immersion depth and power input density. Then, based on the equation (5), the aeration time T1 is determined from the obtained oxygen supply amount.

このようにして、曝気時における浸漬深X[mm]、動力投入密度Y[W/m]、すなわちモータ6の回転数[rpm]、及び曝気時間T1[h/日]を求めることができる。 In this way, the immersion depth X [mm], power input density Y [W / m 3 ], that is, the rotational speed [rpm] of the motor 6 and the aeration time T1 [h / day] at the time of aeration can be obtained. .

曝気時以外は、インペラ3の駆動を停止することも考えられるが、汚泥の堆積を防止するためには一定の流速を確保する必要があるため、曝気時以外には混合液を攪拌する。   Although it is conceivable to stop driving the impeller 3 except during aeration, it is necessary to secure a constant flow rate in order to prevent the accumulation of sludge, so the mixed liquid is agitated except during aeration.

攪拌時間は、次式(6)から、   The stirring time is calculated from the following formula (6):

攪拌時間T2=24[h/日]−曝気時間T1[h/日] ・・・(6)
に基づいて、求めることができる。なお、攪拌時には、過曝気にならないように、酸素供給量を低減する必要がある一方、汚泥の堆積を防ぐために0.1[m/秒]以上の流速を確保する必要がある。よって、上記式(4)に基づいて、曝気時よりも流速を落とした条件で、浸漬深及び動力投入密度を決定する。このとき、決定された浸漬深及び動力投入密度での酸素供給量が十分に小さいことを、浸漬深、動力投入密度、及び酸素供給量の関係から確認すると好ましい。
Agitation time T2 = 24 [h / day] −Aeration time T1 [h / day] (6)
On the basis of During stirring, it is necessary to reduce the oxygen supply amount so as not to cause excessive aeration. On the other hand, in order to prevent sludge accumulation, it is necessary to secure a flow rate of 0.1 [m / sec] or more. Therefore, based on the above formula (4), the immersion depth and power input density are determined under the condition that the flow velocity is lower than that during aeration. At this time, it is preferable to confirm that the oxygen supply amount at the determined immersion depth and power supply density is sufficiently small from the relationship between the immersion depth, power input density, and oxygen supply amount.

このようにして、攪拌時における浸漬深X[mm]、動力投入密度Y[W/m]、すなわちモータ6の回転数[rpm]、攪拌時間T2[h/日]を求めることができる。 In this way, the immersion depth X [mm] during stirring, the power input density Y [W / m 3 ], that is, the rotational speed [rpm] of the motor 6 and the stirring time T2 [h / day] can be obtained.

以上のようにして、OD1の使用初期段階において、曝気時及び攪拌時における運転条件を効率的に且つ好適に決定することが可能となる。   As described above, in the initial stage of use of OD1, it is possible to efficiently and suitably determine the operating conditions during aeration and stirring.

なお、本発明は上記した実施形態に限定されることなく、種々の変形が可能である。例えば、上記した実施形態では循環水路8が馬蹄型のものについて説明したが、これに限られず、循環水路8は長円型等の他の型のものであってもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above-described embodiment, the circulating water channel 8 is described as a horseshoe type, but the present invention is not limited to this, and the circulating water channel 8 may be of other types such as an oval type.

また、上記した実施形態ではOD1の使用初期段階における運転条件の決定方法について説明したが、他の段階での運転条件の決定にも本発明は適用可能である。   In the above-described embodiment, the method for determining the operating condition in the initial use stage of OD1 has been described. However, the present invention can also be applied to the determination of the operating condition in another stage.

また、上記した実施形態では、時間的に好気時間帯と嫌気時間帯を設け、各時間帯で硝化反応及び脱窒反応を行う、間欠運転について説明したが、循環水路8内に嫌気ゾーンと好気ゾーンを設けて処理するゾーン運転にも本発明は適用可能である。   Further, in the above-described embodiment, the intermittent operation in which the aerobic time zone and the anaerobic time zone are provided in time and the nitrification reaction and the denitrification reaction are performed in each time zone has been described. The present invention is also applicable to zone operation in which an aerobic zone is provided for processing.

また、上記した実施形態では、流速Vに対する浸漬深Xと動力投入密度Yの相乗効果X・Yが無視できるものとの前提で説明したが、この相乗効果が無視できないときには、(流速[m/秒],浸漬深[mm],動力投入密度[W/m],汚泥濃度[mg/l])のデータ組の取得数を増やし、それらのデータ組を基に、流速Vに対し浸漬深X、動力投入密度Y、汚泥濃度Z、及び浸漬深と動力投入密度の相乗効果の項(X・Y)を重回帰して、 In the above-described embodiment, the description has been made on the premise that the synergistic effect X · Y of the immersion depth X and the power input density Y with respect to the flow velocity V is negligible. Second], immersion depth [mm], power input density [W / m 3 ], sludge concentration [mg / l]), and increase the number of data sets acquired. X, Y of power input density, sludge concentration Z, and the term of the synergistic effect of immersion depth and power input density (XY),

V = a・X+b・Y+c・Z+d+e・X・Y (a,b,c,d,eは所定の定数) ・・・(4a)
の関係式を求め、この関係式(4a)に基づいて、上記と同様にして、混合液の流速と汚泥濃度とから、インペラの浸漬深及び動力投入密度を決定するようにしてもよい。このようにすれば、浸漬深と動力投入密度との相乗効果の影響が大きいときに有効である。
V = a * X + b * Y + c * Z + d + e * XY * (a, b, c, d, e are predetermined constants) (4a)
The impeller immersion depth and power input density may be determined from the flow rate of the mixed liquid and the sludge concentration based on the relational expression (4a). This is effective when the influence of the synergistic effect between the immersion depth and the power input density is large.

なお、上記(4a)式でXY項を無視することで(4)式が得られるように、流速Vに関して影響が最も小さい項は無視して、式の簡略化を図ると好ましい。   Note that it is preferable to simplify the equation while ignoring the term that has the least influence on the flow velocity V so that the equation (4) can be obtained by ignoring the XY term in the equation (4a).

以下、実施例について説明するが、本発明はこの実施例に限定されるものではない。   Hereinafter, although an example is described, the present invention is not limited to this example.

この実施例では、ODの使用初期段階において、循環水路内に堆積を生じさせないための運転条件を決定した。インペラによる曝気能力U[h/日]は、計画汚水量流入時に必要な酸素を12時間で供給できるものとした。更に、このODの使用初期段階における汚水の流入量iは、計画汚水量に対して10[%]とした。また、インペラの浸漬深は300mm〜−100mmの範囲で変更できるものとした。   In this example, in the initial stage of use of OD, the operating conditions for preventing sedimentation in the circulation channel were determined. The aeration capacity U [h / day] by the impeller was able to supply oxygen necessary for the planned sewage inflow in 12 hours. Furthermore, the inflow amount i of sewage at the initial use stage of the OD was set to 10 [%] with respect to the planned sewage amount. Further, the immersion depth of the impeller can be changed in the range of 300 mm to -100 mm.

まず、ODの循環水路内で堆積が生じる部位において、(流速[m/秒],浸漬深[mm],動力投入密度[W/m],汚泥濃度[mg/l])のデータ組を、条件を変えて複数取得した。これらのデータ組を基に、流速Vに対し浸漬深X、動力投入密度Y、及び汚泥濃度Zを重回帰して、V=a・X+b・Y+c・Z+d(a,b,c,dは所定の定数)の関係式を求めた。本実施例では、 First, a data set of (flow velocity [m / sec], immersion depth [mm], power input density [W / m 3 ], sludge concentration [mg / l]) at the site where sedimentation occurs in the circulation channel of OD. , I acquired multiple items under different conditions. Based on these data sets, multiple regression of immersion depth X, power input density Y, and sludge concentration Z with respect to flow velocity V, V = a · X + b · Y + c · Z + d (a, b , C, d are predetermined constants). In this example,

V=0.0369+0.000266X+0.00710Y+0.000010Z ・・・ (7)
で表される関係式が得られた。また、モータ回転数と動力投入密度との関係を示す式として、
V = 0.0369 + 0.000266X + 0.00710Y + 0.000010Z (7)
The relational expression represented by is obtained. In addition, as a formula showing the relationship between the motor rotation speed and power input density,

Y[W/m]=0.0072×モータ回転数[rpm]−3.61 ・・・(8)
を得た。
Y [W / m 3 ] = 0.0072 × motor rotation speed [rpm] −3.61 (8)
Got.

次に、曝気時間の初期値を設定した。循環水路内に堆積を生じさせないためには、流速が0.1[m/秒]以上である必要がある。ここでは、この条件を満たすように流速Vを0.15[m/秒]とした。また、流入量が10[%]程度の時期は供用開始直後に相当し、汚泥濃度はほぼゼロに等しいため、汚泥濃度Zをゼロとした。   Next, the initial value of the aeration time was set. In order not to cause accumulation in the circulation channel, the flow velocity needs to be 0.1 [m / sec] or more. Here, the flow velocity V was set to 0.15 [m / sec] so as to satisfy this condition. Moreover, the period when the inflow amount is about 10% corresponds to immediately after the start of service, and the sludge concentration is almost equal to zero, so the sludge concentration Z is set to zero.

これらの値を(7)式に代入し、浸漬深Xと動力投入密度Yとを決定した。このとき、初期運転時には流入する汚泥量が極めて少ないため、過曝気にならないようにインペラを深い位置で運転することが好ましい。よって、浸漬深Xを最深の300[mm]と決定し、動力投入密度Yが約5[W/m]と求められた。動力投入密度Yが5[W/m]と決められたため、式(8)により、モータの回転数は約1200[rpm]と求められた。 These values were substituted into the equation (7), and the immersion depth X and the power input density Y were determined. At this time, since the amount of sludge that flows in during the initial operation is extremely small, it is preferable to operate the impeller at a deep position so as not to cause excessive aeration. Therefore, the immersion depth X was determined to be the deepest 300 [mm], and the power input density Y was determined to be about 5 [W / m 3 ]. Since the power input density Y was determined to be 5 [W / m 3 ], the rotational speed of the motor was determined to be about 1200 [rpm] according to the equation (8).

また、浸漬深0[mm]、動力投入密度11.7[W/m]での酸素供給量を100[%]としたときの、清水条件下での浸漬深Xと動力投入密度Yと酸素供給量Pとの関係を予め求めておいた。すなわち、図13に示すグラフで示されるような関係を予め求めておいた。この実施例では、動力投入密度が10.1〜11.7[W/m]で、浸漬深を300〜0[mm]へと変化させたとき、酸素供給量は34〜100[%]と変化した。一方、動力投入密度が3.4〜4.6[W/m]では、浸漬深に関わらず酸素供給量はほぼ一定で、12〜16[%]であった。また、動力投入密度が1.2〜2.8[W/m]では、浸漬深に関わらず酸素供給量はほぼ一定で、4〜7[%]であった。この関係から、決定された浸漬深と動力投入密度に基づいて、酸素供給量は17[%]と求められた。そして、(5)式に基づいて、曝気能力Uを12[h/日]、汚泥流入量iを10[%]、酸素供給量Pを17[%]として、曝気時間T1[h/日]を決定した。 Further, when the oxygen supply amount at an immersion depth of 0 [mm] and a power input density of 11.7 [W / m 3 ] is 100 [%], the immersion depth X and the power input density Y under fresh water conditions The relationship with the oxygen supply amount P was obtained in advance. That is, the relationship as shown in the graph shown in FIG. 13 is obtained in advance. In this example, when the power input density is 10.1-11.7 [W / m 3 ] and the immersion depth is changed to 300-0 [mm], the oxygen supply amount is 34-100 [%]. And changed. On the other hand, when the power input density was 3.4 to 4.6 [W / m 3 ], the oxygen supply amount was almost constant regardless of the immersion depth, and was 12 to 16 [%]. In addition, when the power input density was 1.2 to 2.8 [W / m 3 ], the oxygen supply amount was almost constant regardless of the immersion depth, and was 4 to 7 [%]. From this relationship, the oxygen supply amount was determined to be 17% based on the determined immersion depth and power input density. Based on the formula (5), the aeration capacity U is set to 12 [h / day], the sludge inflow rate i is set to 10 [%], the oxygen supply amount P is set to 17 [%], and the aeration time T1 [h / day]. It was determined.

このようにして、曝気時における浸漬深Xを300[mm]、動力投入密度Yを5[W/m]、すなわちモータの回転数を1200[rpm]、曝気時間T1を7[h/日]と決定した。 In this way, the immersion depth X during aeration is 300 [mm], the power input density Y is 5 [W / m 3 ], that is, the rotational speed of the motor is 1200 [rpm], and the aeration time T1 is 7 [h / day]. ] Was determined.

次に、攪拌時間の初期値を設定した。攪拌時においては、過曝気にならないように、酸素供給量を低減する必要がある一方、汚泥の堆積を防ぐために0.1[m/秒]以上の流速を確保する必要がある。ここでは、この条件を満たすように流速Vを0.13[m/秒]とした。また、流入量が10[%]程度の時期は供用開始直後に相当し、汚泥濃度はほぼゼロに等しいため、汚泥濃度Zをゼロとした。   Next, the initial value of the stirring time was set. At the time of stirring, it is necessary to reduce the oxygen supply amount so as not to cause excessive aeration. On the other hand, in order to prevent sludge accumulation, it is necessary to secure a flow rate of 0.1 [m / sec] or more. Here, the flow velocity V was set to 0.13 [m / sec] so as to satisfy this condition. Moreover, the period when the inflow amount is about 10% corresponds to immediately after the start of service, and the sludge concentration is almost equal to zero, so the sludge concentration Z is set to zero.

これらの値を(7)式に代入し、浸漬深Xと動力投入密度Yとを求めた。このとき、初期運転時には流入する汚泥量が極めて少ないため、過曝気にならないようにインペラを深い位置で運転することが好ましい。よって、浸漬深Xを最深の300[mm]とすることで、動力投入密度Yが約2[W/m]と決定された。動力投入密度Yが2[W/m]と決められたため、式(8)により、モータの回転数が約780[rpm]と求められた。 By substituting these values into the equation (7), the immersion depth X and the power input density Y were determined. At this time, since the amount of sludge that flows in during the initial operation is extremely small, it is preferable to operate the impeller at a deep position so as not to cause excessive aeration. Therefore, the power input density Y was determined to be about 2 [W / m 3 ] by setting the immersion depth X to the deepest 300 [mm]. Since the power input density Y was determined to be 2 [W / m 3 ], the rotational speed of the motor was determined to be about 780 [rpm] according to the equation (8).

次に、浸漬深Xと動力投入密度Yと酸素供給量Pとの関係から、求められた浸漬深と動力投入密度とに基づいて、酸素供給量を確認した。すると、動力投入密度Yが約2[W/m]で酸素供給量Pは4〜7[%]であり、酸素供給量が低減されていることが確認された。そして、(6)式に基づいて、攪拌時間T2[h/日]を求めた。 Next, from the relationship between the immersion depth X, the power input density Y, and the oxygen supply amount P, the oxygen supply amount was confirmed based on the determined immersion depth and power input density. Then, the power input density Y was about 2 [W / m 3 ], the oxygen supply amount P was 4 to 7 [%], and it was confirmed that the oxygen supply amount was reduced. And stirring time T2 [h / day] was calculated | required based on (6) Formula.

このようにして、攪拌時における浸漬深Xを300[mm]、動力投入密度Yを2[W/m]、すなわちモータの回転数を780[rpm]、攪拌時間T2を17[h/日]と決定した。 Thus, the immersion depth X at the time of stirring is 300 [mm], the power input density Y is 2 [W / m 3 ], that is, the rotational speed of the motor is 780 [rpm], and the stirring time T2 is 17 [h / day]. ] Was determined.

以上より、上記した運転条件で、曝気1.75時間、攪拌4.25時間を1サイクルとし、1日4サイクル運転するという具合に、運転条件を効率的に且つ好適に決定することができた。   From the above, under the above operating conditions, it was possible to efficiently and suitably determine the operating conditions, such as a cycle of 1.75 hours of aeration and 4.25 hours of stirring as one cycle, and four cycles per day. .

なお、図14において直線L1は、上記(7)式に基づく直線であり、流速を0.1[m/秒]、汚泥濃度を3063[mg/l]としたときの、浸漬深と動力投入密度との関係を示している。図14に示すように、直線L1よりも上の領域では、流速0.1[m/秒]以上が担保され、汚泥の堆積が抑制される。従って、図14において斜線で示す領域内で浸漬深と動力投入密度を決定すれば好適である。ただし、本実施例では動力投入密度は1〜12[W/m]の範囲に限定され、インペラの浸漬深は−100〜300[mm]の範囲に限定されるが、動力投入密度及びインペラの浸漬深の範囲を変えてデータを取得し、同様の解析を行えば、その限りではない。このような図に基づいて浸漬深と動力投入密度を決定する行為も、上記(7)式に基づいており、且つ混合液の流速と汚泥濃度とから直線L1を定めているため、本発明の「V=a・X+b・Y+c・Z+d(a,b,c,dは所定の定数)の関係式に基づいて、混合液の流速と汚泥濃度とから、インペラの浸漬深及び動力投入密度を決定する」という概念に含まれる。なお、図14おいて点G1及び点G2は、それぞれ上記工程により決定された曝気時及び攪拌時の運転条件に対応する。 In FIG. 14, the straight line L1 is a straight line based on the above equation (7), and the immersion depth and power input when the flow rate is 0.1 [m / sec] and the sludge concentration is 3063 [mg / l]. The relationship with density is shown. As shown in FIG. 14, in the region above the straight line L1, a flow velocity of 0.1 [m / sec] or more is ensured, and sludge accumulation is suppressed. Therefore, it is preferable to determine the immersion depth and the power input density within the region indicated by the oblique lines in FIG. However, in this embodiment, the power input density is limited to a range of 1 to 12 [W / m 3 ] and the immersion depth of the impeller is limited to a range of −100 to 300 [mm]. If data is acquired by changing the immersion depth range and the same analysis is performed, this is not the case. The act of determining the immersion depth and power input density based on such a diagram is also based on the above equation (7), and the straight line L1 is determined from the flow rate of the mixed liquid and the sludge concentration. Based on the relational expression “V = a · X + b · Y + c · Z + d (a, b, c, d are predetermined constants), the impeller immersion depth is calculated from the flow rate of the liquid mixture and the sludge concentration. And determining the power input density ”. In FIG. 14, points G1 and G2 correspond to the operating conditions during aeration and stirring determined by the above steps, respectively.

ODの一部破断斜視図である。It is a partially broken perspective view of OD. ODの構成を示す平面図である。It is a top view which shows the structure of OD. 越流ゲートを説明するための図である。It is a figure for demonstrating an overflow gate. インペラを示す斜視図である。It is a perspective view which shows an impeller. インペラを下から見た状態を示す図である。It is a figure which shows the state which looked at the impeller from the bottom. インペラと水位との関係を説明するための図である。It is a figure for demonstrating the relationship between an impeller and a water level. ODにおいて流速を測定する場所を説明するための図である。It is a figure for demonstrating the place which measures the flow velocity in OD. 図7のODのA,B,C,D各断面における流速を測定する箇所を説明するための図である。It is a figure for demonstrating the location which measures the flow velocity in each A, B, C, D cross section of OD of FIG. インペラの回転数を低速L(図9(a))、中速M(図9(b))、高速H(図9(c))の3段階に調節して測定したときの、A断面の各点における流速を示す図である。When the rotational speed of the impeller is adjusted to three levels of low speed L (FIG. 9 (a)), medium speed M (FIG. 9 (b)), and high speed H (FIG. 9 (c)), It is a figure which shows the flow velocity in each point. インペラの回転数を低速L(図10(a))、中速M(図10(b))、高速H(図10(c))の3段階に調節して測定したときの、B断面の各点における流速を示す図である。When the rotational speed of the impeller is adjusted to three levels of low speed L (FIG. 10 (a)), medium speed M (FIG. 10 (b)), and high speed H (FIG. 10 (c)), It is a figure which shows the flow velocity in each point. モータの回転数と消費動力との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of a motor, and power consumption. モータの回転数と動力投入密度との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of a motor, and power input density. 浸漬深、動力投入密度、及び酸素供給量の関係を示すグラフである。It is a graph which shows the relationship between immersion depth, power input density, and oxygen supply amount. 実施例において、流速を0.1[m/秒]、汚泥濃度を3063[mg/l]としたときの浸漬深と動力投入密度との関係を示すグラフである。In an Example, it is a graph which shows the relationship between immersion depth and power input density when a flow rate is 0.1 [m / sec] and a sludge density | concentration is 3063 [mg / l].

符号の説明Explanation of symbols

1…オキシデーションディッチ、2…混合液、3…インペラ、4…回転軸、5…減速機、6…モータ、7…架台、8…循環水路、9…整流壁、10…流入口、11…排出口、12…越流ゲート、13…モータ、14…攪拌羽根、14a…折り曲げ部、15…通水口、16…コーン状板。   DESCRIPTION OF SYMBOLS 1 ... Oxidation ditch, 2 ... Mixed liquid, 3 ... Impeller, 4 ... Rotating shaft, 5 ... Reduction gear, 6 ... Motor, 7 ... Mount, 8 ... Circulating water channel, 9 ... Rectification wall, 10 ... Inlet, 11 ... Discharge port, 12 ... overflow gate, 13 ... motor, 14 ... stirring blade, 14a ... bent portion, 15 ... water inlet, 16 ... cone plate.

Claims (4)

無終端の循環水路と、該循環水路内に流入した汚水と活性汚泥との混合液を攪拌及び曝気するインペラと、を備えたオキシデーションディッチの運転条件を決定する方法であって、
前記混合液の流速をV、前記インペラの浸漬深をX、動力投入密度をY、汚泥濃度(MLSS)をZとしたとき、
V = a・X+b・Y+c・Z+d (a,b,c,dは所定の定数)
の関係式に基づいて、
前記混合液の流速Vとして0.1[m/秒]以上の値を代入し、前記汚泥濃度Zとしてオキシデーションディッチ内の汚泥濃度の値[mg/l]を代入し、前記インペラの浸漬深Xとして所定の値[mm]を代入して、前記動力投入密度Y[W/m を決定することを特徴とするオキシデーションディッチの運転条件決定方法。
A method for determining operating conditions of an oxidation ditch comprising an endless circulation channel, and an impeller for stirring and aeration of a mixed liquid of sewage and activated sludge flowing into the circulation channel,
When the flow rate of the liquid mixture is V, the impeller immersion depth is X, the power input density is Y, and the sludge concentration (MLSS) is Z,
V = a * X + b * Y + c * Z + d (a, b, c, d are predetermined constants)
Based on the relation of
A value of 0.1 [m / sec] or more is substituted as the flow velocity V of the mixed solution, a sludge concentration value [mg / l] in the oxidation ditch is substituted as the sludge concentration Z, and the impeller immersion depth is substituted. An operation condition determination method for an oxidation ditch , wherein a predetermined value [mm] is substituted as X to determine the power input density Y [W / m 3 ] .
前記浸漬深Xと決定された動力投入密度Yとに基づいて、前記インペラによる前記混合液に対する酸素供給量を求め、該酸素供給量に基づいて曝気時間を決定することを特徴とする請求項1に記載のオキシデーションディッチの運転条件決定方法。 The oxygen supply amount for the mixed liquid by the impeller is obtained based on the immersion depth X and the determined power input density Y, and the aeration time is determined based on the oxygen supply amount. The operating condition determination method of the oxidation ditch described in 1. 前記関係式は、
前記循環水路内の所定部位における流速、前記インペラの浸漬深、動力投入密度、及び汚泥濃度を含むデータ組を条件を変えて複数取得し、それらのデータ組を基に、流速Vに対し浸漬深X、動力投入密度Y、及び汚泥濃度Zを重回帰して得られたものであることを特徴とする請求項1または2に記載のオキシデーションディッチの運転条件決定方法。
The relational expression is
A plurality of data sets including the flow velocity at the predetermined site in the circulation channel, the immersion depth of the impeller, the power input density, and the sludge concentration are obtained under different conditions, and the immersion depth with respect to the flow velocity V is obtained based on these data sets. The method for determining the operating condition of the oxidation ditch according to claim 1 or 2, wherein X, power input density Y, and sludge concentration Z are obtained by multiple regression.
無終端の循環水路と、該循環水路内に流入した汚水と活性汚泥との混合液を攪拌及び曝気するインペラと、を備えたオキシデーションディッチの運転条件を決定する方法であって、A method for determining the operating conditions of an oxidation ditch comprising an endless circulation channel and an impeller for stirring and aeration of a mixed liquid of sewage and activated sludge flowing into the circulation channel,
前記混合液の流速をV、前記インペラの浸漬深をX、動力投入密度をY、汚泥濃度(MLSS)をZ、浸漬深と動力投入密度の相乗効果の項をXYとしたとき、When the flow rate of the mixed liquid is V, the immersion depth of the impeller is X, the power input density is Y, the sludge concentration (MLSS) is Z, and the term of the synergistic effect of the immersion depth and the power input density is XY,
V = a・X+b・Y+c・Z+d+e・XY (a,b,c,d,eは所定の定数)V = a * X + b * Y + c * Z + d + e * XY (a, b, c, d, e are predetermined constants)
の関係式に基づいて、Based on the relation of
前記混合液の流速Vとして0.1[m/秒]以上の値を代入し、前記汚泥濃度Zとしてオキシデーションディッチ内の汚泥濃度の値[mg/l]を代入し、前記インペラの浸漬深Xとして所定の値[mm]を代入して、前記動力投入密度Y[W/mA value of 0.1 [m / sec] or more is substituted as the flow velocity V of the mixed solution, a sludge concentration value [mg / l] in the oxidation ditch is substituted as the sludge concentration Z, and the impeller immersion depth is substituted. Substituting a predetermined value [mm] as X, the power input density Y [W / m 3 ]を決定することを特徴とするオキシデーションディッチの運転条件決定方法。], Determining the operating condition of the oxidation ditch.
JP2004295347A 2004-10-07 2004-10-07 How to determine the operating conditions of the oxidation ditch Expired - Fee Related JP4295190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295347A JP4295190B2 (en) 2004-10-07 2004-10-07 How to determine the operating conditions of the oxidation ditch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295347A JP4295190B2 (en) 2004-10-07 2004-10-07 How to determine the operating conditions of the oxidation ditch

Publications (2)

Publication Number Publication Date
JP2006102697A JP2006102697A (en) 2006-04-20
JP4295190B2 true JP4295190B2 (en) 2009-07-15

Family

ID=36372994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295347A Expired - Fee Related JP4295190B2 (en) 2004-10-07 2004-10-07 How to determine the operating conditions of the oxidation ditch

Country Status (1)

Country Link
JP (1) JP4295190B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326030A (en) * 2006-06-07 2007-12-20 Maezawa Ind Inc Operation method of oxidation ditch
JP2008049261A (en) * 2006-08-24 2008-03-06 Matsushita Electric Ind Co Ltd Oxygen water producing system
JP5000588B2 (en) * 2008-03-10 2012-08-15 住重環境エンジニアリング株式会社 Biological wastewater treatment method

Also Published As

Publication number Publication date
JP2006102697A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP2008221160A (en) Denitrifying treatment device and denitrifying treatment method
WO1996037444A1 (en) Method of aerobically treating wastewater and treatment tank
JP2004330188A (en) Aerator with function of swirling, aeration and intermittent aeration, and advanced sewage treating method using the same
JP5329021B2 (en) Sewage treatment equipment
JP2008080269A (en) Nitrogen-containing wastewater treatment apparatus and method
JP4295190B2 (en) How to determine the operating conditions of the oxidation ditch
JP3771870B2 (en) Sewage treatment system by oxidation ditch method
JP2001252681A (en) Device for controlling water level of oxidation ditch
JP6334897B2 (en) Aeration and stirring system
JPS59112894A (en) Aerator
JP2002001379A (en) Sewage treating apparatus and method
JP3621026B2 (en) Sewage treatment apparatus and treatment method
JP2006281183A (en) Water treatment apparatus using biological membrane
JP2006088022A (en) Operation control method of oxidation ditch, and oxidation ditch
JP5490491B2 (en) Sewage treatment equipment
JPH07171591A (en) Aeration device and operation thereof
JP2002320994A (en) Method for operating oxidation ditch
JP7462449B2 (en) Water treatment system with structure
JP2004041933A (en) Method of operating oxidation ditch
JP6802197B2 (en) Aeration agitation system
JPH01293192A (en) Method of operating aeration device
JP2007090235A (en) Treatment method and treatment equipment of water to be treated
JP6448177B2 (en) Aerobic / anaerobic combined reaction tank and operation method thereof
JP7166181B2 (en) Aeration and agitation system and method of operating the aeration and agitation system
JP2005040702A (en) Oxidation ditch and its operating method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees