JP4293895B2 - Laminated nonwoven fabric and abrasive nonwoven fabric - Google Patents

Laminated nonwoven fabric and abrasive nonwoven fabric Download PDF

Info

Publication number
JP4293895B2
JP4293895B2 JP2003421885A JP2003421885A JP4293895B2 JP 4293895 B2 JP4293895 B2 JP 4293895B2 JP 2003421885 A JP2003421885 A JP 2003421885A JP 2003421885 A JP2003421885 A JP 2003421885A JP 4293895 B2 JP4293895 B2 JP 4293895B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
heat
fiber
melting point
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003421885A
Other languages
Japanese (ja)
Other versions
JP2005179820A (en
Inventor
公紀 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DaiwaboPolytecCo.,Ltd.
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
DaiwaboPolytecCo.,Ltd.
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaiwaboPolytecCo.,Ltd., Daiwabo Co Ltd, Daiwabo Holdings Co Ltd filed Critical DaiwaboPolytecCo.,Ltd.
Priority to JP2003421885A priority Critical patent/JP4293895B2/en
Publication of JP2005179820A publication Critical patent/JP2005179820A/en
Application granted granted Critical
Publication of JP4293895B2 publication Critical patent/JP4293895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)

Description

本発明は、独特の表面タッチを有し、ハンドリング性など取り扱い性に優れるとともに、生産性に優れた積層不織布に関する。詳しくは、金属、陶磁器、プラスチックス、ガラス、皮革等の汚れ、油分、さび等を研磨および拭き取りなどに使用することができる研磨用不織布に関する。   The present invention relates to a laminated nonwoven fabric having a unique surface touch, excellent handleability such as handling, and excellent productivity. Specifically, the present invention relates to a polishing nonwoven fabric that can be used for polishing, wiping off dirt, oil, rust, and the like of metals, ceramics, plastics, glass, leather and the like.

従来、金属、陶磁器、プラスチックス、ガラス、皮革等の汚れ、油分、さび等を研磨および拭き取りなどには、一般に酸化アルミニウム、酸化鉄、ゼオライト、炭酸カルシウム等の粉末を研磨剤として用い、これを不織布などの布帛に接着させて使用する研磨布が知られている。上記以外にも例えば、特開平5−56901号公報(特許文献1)では、研磨剤を使用することなく、不織布を構成する繊維表面に瘤状固体を形成させて、その凹凸により研磨することができる研磨シートが提案されている。   Conventionally, powders of aluminum oxide, iron oxide, zeolite, calcium carbonate, etc. are generally used as abrasives for polishing and wiping dirt, oil, rust, etc. on metals, ceramics, plastics, glass, leather, etc. An abrasive cloth used by adhering to a cloth such as a nonwoven fabric is known. In addition to the above, for example, in Japanese Patent Laid-Open No. 5-56901 (Patent Document 1), without using an abrasive, a lump-like solid is formed on the surface of a fiber constituting the nonwoven fabric, and the unevenness is polished. A polishing sheet that can be used has been proposed.

特開平5−56901号公報JP-A-5-56901

しかしながら、上記研磨布および研磨シートには、以下の問題が挙げられる。研磨剤を接着剤で固着させた研磨布は、研磨剤による研磨性は優れるが、研磨剤と接着剤を必要とするだけでなく、研磨剤を不織布などの布帛製造工程とは別の工程で作製する必要があり、コスト高となる。   However, the polishing cloth and the polishing sheet have the following problems. Abrasive cloth with an abrasive fixed by an adhesive is excellent in abrasiveness by the abrasive, but not only requires an abrasive and an adhesive, but the abrasive is separated from a non-woven fabric manufacturing process. It is necessary to produce it, and the cost becomes high.

また、特開平5−56901号公報に記載の研磨シートは、シートを構成する繊維は融点の低い第1の繊維と融点の高い第2の繊維を混綿した繊維ウェブを熱処理して、第1の繊維のみを溶融して、融点の高い第2の繊維が骨格繊維となるように残存させて瘤状固体を形成している。特開平5−56901号公報に記載の別の研磨シートは、低融点成分と高融点成分とからなる複合繊維のウェブを熱処理して、低融点成分の融点より高く、高融点成分の融点より低い温度で熱処理して、高融点成分が骨格繊維となるように高融点成分上に低融点成分が融解した瘤状固体を形成している。しかしながら、前記研磨シートでは、いずれも瘤状固体の全体に占める割合が十分でなく研磨力が弱いものであった。さらに、瘤状固体の大きさも骨格繊維を有しているため、瘤状の小さい固形物しか得られず、研磨力が弱いものであった。   In addition, the polishing sheet described in JP-A-5-56901 is obtained by heat-treating a fiber web in which the fibers constituting the sheet are a mixture of a first fiber having a low melting point and a second fiber having a high melting point. Only the fiber is melted, and the second fiber having a high melting point is left as a skeletal fiber to form a knob-like solid. Another polishing sheet described in JP-A-5-56901 is a heat treatment of a composite fiber web composed of a low melting point component and a high melting point component, which is higher than the melting point of the low melting point component and lower than the melting point of the high melting point component. Heat treatment is performed at a temperature to form a knob-like solid in which the low melting point component is melted on the high melting point component so that the high melting point component becomes a skeleton fiber. However, in the polishing sheets, the proportion of the whole of the knob-shaped solid is not sufficient and the polishing power is weak. Furthermore, since the size of the lumpy solid also has skeletal fibers, only a small lumpy solid was obtained and the polishing power was weak.

また、上記研磨シートは、第1の繊維のみを溶融させるので、独特の表面タッチは有するものの、不織布全体が柔らかく仕上がるため、ハンドリング性など取り扱い性に劣る場合があり、用途を制限せざるを得ないという実情があった。   In addition, the polishing sheet melts only the first fibers, so that it has a unique surface touch, but since the entire nonwoven fabric is softly finished, handling properties such as handling properties may be inferior, and the use must be limited. There was no actual situation.

本発明は、様々な用途にも適合し得る独特の表面タッチを有し、ハンドリング性など取り扱い性に優れるとともに、生産性に優れた積層不織布、および安価であり、研磨性および拭き取り性などに優れた、金属、陶磁器、プラスチックス、ガラス、皮革等に使用することができる研磨用不織布を提供することを目的とする。   The present invention has a unique surface touch that can be adapted to various uses, and is excellent in handling properties such as handling properties, laminated nonwoven fabric excellent in productivity, and inexpensive, excellent in polishing properties and wiping properties. Another object of the present invention is to provide a polishing nonwoven fabric that can be used for metals, ceramics, plastics, glass, leather, and the like.

本発明の積層不織布は、熱融着性繊維が完全に溶融されて互いに集合した多孔状の溶融固形物を形成する表層と、前記溶融固形物の融点よりも高い融点または分解点を有する耐熱性繊維を含有する耐熱性繊維層と、前記耐熱性繊維層の少なくとも一方の面に補強繊維層が配置されてなることを特徴とする。   The laminated non-woven fabric of the present invention has a surface layer forming a porous molten solid in which heat-fusible fibers are completely melted and gathered together, and a heat resistance having a melting point or decomposition point higher than the melting point of the molten solid A heat-resistant fiber layer containing fibers and a reinforcing fiber layer are arranged on at least one surface of the heat-resistant fiber layer.

本発明の研磨不織布は、熱融着性繊維が完全に溶融されて互いに集合した多孔状の溶融固形物を形成する表層と、前記溶融固形物の融点よりも高い融点または分解点を有する耐熱性繊維を含有する耐熱性繊維層と、前記繊維層の少なくとも一方の面に補強繊維層が配置されてなる積層不織布であり、前記表層を形成する少なくとも1つの溶融固形物の厚みが0.15mm以上であることを特徴とする。   The abrasive non-woven fabric of the present invention has a surface layer that forms a porous molten solid in which heat-fusible fibers are completely melted and gathered together, and a heat resistance that has a melting point or decomposition point that is higher than the melting point of the molten solid. A heat-resistant fiber layer containing fibers and a laminated nonwoven fabric in which a reinforcing fiber layer is disposed on at least one surface of the fiber layer, and the thickness of at least one molten solid forming the surface layer is 0.15 mm or more It is characterized by being.

本発明の積層不織布は、熱融着性繊維が完全に溶融されて互いに集合した多孔状の溶融固形物を形成する表層を有しているので、ガサガサして硬い独特の表面タッチを有しており、例えば、表層を汚れ等の付着面に押し当てて払拭したとき、研磨性および拭き取り性に優れた研磨用不織布が得られる。また、本発明の積層不織布は、補強繊維層を配置することにより、ハンドリング性等の取り扱い性に優れるので、例えば、汚れ等の付着面を払拭するとき、拭き取り作業性に優れた研磨用不織布が得られる。さらに、前記溶融固形物の融点よりも高い融点または分解点を有する耐熱性繊維を含有する繊維層、および補強繊維層を有するので、熱融着性繊維を完全に溶融させる熱処理時に急激な収縮が生じることがない、あるいは熱処理時にピンテンター等の熱処理機を使用した場合、補強繊維層を有することで把持性が向上する等の生産性に優れる。   The laminated nonwoven fabric of the present invention has a surface layer that forms a porous molten solid in which heat-fusible fibers are completely melted and gathered together, and therefore has a unique surface touch that is rugged and hard. For example, when the surface layer is pressed against an adhesion surface such as dirt and wiped, a polishing nonwoven fabric excellent in polishing properties and wiping properties can be obtained. Moreover, since the laminated nonwoven fabric of the present invention is excellent in handling properties such as handling properties by arranging the reinforcing fiber layer, for example, when wiping the adhesion surface such as dirt, a polishing nonwoven fabric excellent in wiping workability is provided. can get. Further, since it has a fiber layer containing a heat-resistant fiber having a melting point or decomposition point higher than the melting point of the molten solid and a reinforcing fiber layer, rapid shrinkage occurs during heat treatment for completely melting the heat-fusible fiber. When a heat treatment machine such as a pin tenter is used at the time of heat treatment, it has excellent productivity such as having a reinforcing fiber layer to improve gripping properties.

本発明の研磨用不織布は、従来の研磨布のように研磨剤を併用しなくとも、金属、陶磁器、プラスチックス、ガラス、皮革等を研磨することができる。また、調理器等についた油汚れや醤油、ソースなどの固化物、鍋の煮こぼれ痕等、固化した強固な汚れでも容易に落とすことができる。さらに、対物以外にも、人体の手足等の皮膚でもグリース、潤滑油等の機械油、塵埃の汚れ、塗料による汚れ等を単独でまたは研磨剤、溶剤使用により容易に拭き取ることができる。   The polishing nonwoven fabric of the present invention can polish metals, ceramics, plastics, glass, leather and the like without using an abrasive in combination with a conventional polishing cloth. In addition, solid stains such as oil stains, soy sauce, sauces, etc. attached to a cooking device, and spilled traces of pots can be easily removed. In addition to objectives, skin such as human limbs can be easily wiped with grease, lubricating oil and other machine oils, dust stains, paint stains, and the like alone or with an abrasive or solvent.

本発明は、不織布の表層を構成する熱融着性繊維を完全に溶融させて互いに集合した多孔状の溶融固形物を形成させると、ガサガサして硬い独特の表面タッチを有すること、および補強繊維層を配置すると、ハンドリング性等の取り扱い性および前記溶融固形物を形成させるときの生産性が向上することを見出し、本発明に至った。すなわち、本発明の積層不織布は、熱融着性繊維が完全に溶融されて互いに集合した多孔状の溶融固形物を形成する表層と、前記溶融固形物の融点よりも高い融点または分解点を有する耐熱性繊維を含有する耐熱性繊維層と、前記繊維層の少なくとも一方の面に補強繊維層が配置されてなることを特徴とする。本発明でいう「熱融着性繊維が完全に溶融」とは、熱により溶融する樹脂が融点以上の温度で処理されたことを指し、熱融着性繊維の中に熱により溶融しない成分(例えば、無機物など)を含有する場合であっても、本発明の不織布の表面タッチを阻害しない範囲でそれらを含む概念である。   The present invention has a unique surface touch that is rugged and hard when the heat-fusible fibers constituting the surface layer of the nonwoven fabric are completely melted to form a porous molten solid aggregated together, and the reinforcing fibers The arrangement of the layers has been found to improve handling properties such as handling properties and productivity when forming the molten solid, and have led to the present invention. That is, the laminated nonwoven fabric of the present invention has a surface layer that forms a porous molten solid in which heat-fusible fibers are completely melted and gathered together, and a melting point or decomposition point that is higher than the melting point of the molten solid. A heat-resistant fiber layer containing heat-resistant fibers and a reinforcing fiber layer are disposed on at least one surface of the fiber layer. In the present invention, “the heat-fusible fiber is completely melted” means that the resin that is melted by heat is processed at a temperature equal to or higher than the melting point, and the component that is not melted by heat in the heat-fusible fiber ( For example, even if it contains an inorganic substance, etc., it is a concept including them as long as the surface touch of the nonwoven fabric of the present invention is not inhibited.

前記表層は、熱融着性繊維が完全に溶融されて互いに集合した多孔状の溶融固形物によって形成される。ここでいう「互いに集合した多孔状の溶融固形物」とは、熱融着性繊維が完全に溶融したとき、隣接する熱融着性繊維同士が溶融による収縮作用で繊維が密に集合している部分に収縮集合して見かけ上多孔状となって固化された集合物のことを指す。また溶融固形物は、凹凸状に盛り上がった多孔状に拡がる溶融固形物を形成することが好ましい。このような形態は、熱融着性繊維が完全に溶融して隣接する耐熱性繊維に接着し収縮するので、耐熱性繊維に接着していない部分、あるいは接着の弱い部分は、溶融樹脂が引っ張られて細くなり凹部となるか、あるいはちぎられてその部分が孔部になり、耐熱性繊維に強く接着した部分には、周囲の溶融した樹脂が集合して凸部になると推定される。あるいは、表層を構成する熱融着性繊維を含む繊維ウェブにおいて、熱融着性繊維が密に集合している箇所は、熱処理したときの収縮の作用によって、より密に集合して凸部を形成するとも推定される。そして、この結果、本発明の積層不織布の表層は、ガサガサした硬いものとなり、独特の表面タッチを有するものとなる。本発明の積層不織布を研磨用不織布等のワイパーとして用いた場合、研磨性および拭き取り性に優れたものとなる。   The surface layer is formed of a porous molten solid in which heat-fusible fibers are completely melted and gathered together. The term “porous molten solid aggregated together” as used herein means that when the heat-fusible fibers are completely melted, the adjacent heat-fusible fibers are closely gathered due to the shrinkage action caused by melting. This refers to an aggregate that has been shrunk and aggregated into a certain portion and apparently becomes porous and solidified. Moreover, it is preferable that a molten solid forms the molten solid which spreads in the porous shape which rose up | protruded in the uneven | corrugated shape. In such a form, the heat-fusible fiber is completely melted and adheres to the adjacent heat-resistant fiber and shrinks. Therefore, the molten resin is pulled in the part that is not adhered to the heat-resistant fiber or the weakly adhered part. It is presumed that the melted resin around it gathers into a convex part at the part strongly bonded to the heat-resistant fiber. Alternatively, in the fiber web including the heat-fusible fibers constituting the surface layer, the portions where the heat-fusible fibers are densely gathered are more densely gathered by the action of shrinkage when heat-treated, and the convex portions are formed. Estimated to form. As a result, the surface layer of the laminated nonwoven fabric according to the present invention is hard and rugged and has a unique surface touch. When the laminated nonwoven fabric of the present invention is used as a wiper such as a polishing nonwoven fabric, it has excellent polishing properties and wiping properties.

また前記補強繊維層は、前記表層の内面側に配置してなる構造を採ることが好ましい。補強繊維層は、耐熱性繊維層に比べて繊維層内の繊維同士の結び付きが強く、寸法安定性に優れる。そのため、表層を構成する熱融着性繊維と補強繊維層を構成する繊維の繊維同士は、必要以上に交絡されて熱融着性繊維が内部にまで入り込むことがなく、適度に交絡されるので、表層に熱融着性繊維がより多く露出し、完全に溶融して形成される溶融固形物の凹凸がより明瞭となるものと推定される。特に、表層を構成する熱融着性繊維と補強繊維層を構成する繊維とが三次元的に交絡していると、補強繊維層を構成する繊維の周囲にも溶融固形物が集合して多孔状の形態となり易く、好ましい。三次元的な交絡としては、水流交絡および/またはニードルパンチ交絡であることが好ましい。なお、上記表層において、表層が対象物に接触する面を表面とし、他方、他の繊維層と接触する面を内面とした。   Moreover, it is preferable that the said reinforcement fiber layer takes the structure formed by arrange | positioning on the inner surface side of the said surface layer. The reinforcing fiber layer is stronger in bonding between fibers in the fiber layer than the heat-resistant fiber layer, and is excellent in dimensional stability. Therefore, the fibers of the heat-fusible fibers constituting the surface layer and the fibers constituting the reinforcing fiber layer are entangled more than necessary, and the heat-fusible fibers do not enter the interior, and are appropriately entangled. It is presumed that more heat-fusible fibers are exposed on the surface layer, and the unevenness of the molten solid formed by melting completely becomes clearer. In particular, when the heat-fusible fibers constituting the surface layer and the fibers constituting the reinforcing fiber layer are entangled three-dimensionally, molten solids gather around the fibers constituting the reinforcing fiber layer and become porous. It is easy to be in the form of a shape and is preferable. The three-dimensional entanglement is preferably water entanglement and / or needle punch entanglement. In addition, in the said surface layer, the surface where a surface layer contacts a target object was made into the surface, and the surface which contacts another fiber layer was made into the inner surface.

前記熱融着性繊維としては、単一成分からなる繊維、または複数成分からなる複合繊維のいずれであってもよい。なかでも、融点の異なる複数成分からなる複合繊維は、熱処理した際に各成分の間で収縮率差を有するので、一方の成分を融点よりもかなり高い温度で熱処理して硬い溶融固形物を形成しても、別の成分が融点よりも高いが比較的近い温度で熱処理されるため、不織布全体の収縮を抑えることができ、好ましい。融点の異なる複数成分からなる複合繊維が低融点成分と高融点成分から構成される場合、高融点成分は、融点が耐熱性繊維の融点または分解点より低い温度の樹脂を用いるとよい。   The heat-fusible fiber may be either a single component fiber or a multicomponent composite fiber. Among them, composite fibers consisting of multiple components with different melting points have a shrinkage difference between the components when heat-treated, so one component is heat-treated at a temperature considerably higher than the melting point to form a hard molten solid. Even so, since the other component is heat-treated at a relatively close temperature, which is higher than the melting point, the shrinkage of the entire nonwoven fabric can be suppressed, which is preferable. When a composite fiber composed of a plurality of components having different melting points is composed of a low melting point component and a high melting point component, a resin having a melting point lower than the melting point or decomposition point of the heat resistant fiber may be used as the high melting point component.

前記熱融着性繊維としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、またはそれらの共重合体等の芳香族ポリエステル、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリ乳酸、またはその共重合体等の脂肪族ポリエステル、ナイロン6、ナイロン66、またはその共重合体等のポリアミド、ポリエチレン、ポリプロピレン、ポリブテン−1、またはその共重合体等のポリオレフィンなどを主成分とする繊維が挙げられる。汎用の熱処理機の加工温度を考慮すると、融点が200℃以下の共重合ポリエステル、脂肪族ポリエステル、ポリオレフィンを主成分とする繊維が好ましい。   Examples of the heat-fusible fiber include aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, and copolymers thereof, polyethylene succinate, polybutylene succinate, polylactic acid, and fats such as copolymers thereof. Examples thereof include fibers mainly composed of polyamide such as group polyester, nylon 6, nylon 66, or a copolymer thereof, and polyolefin such as polyethylene, polypropylene, polybutene-1, or a copolymer thereof. Considering the processing temperature of a general-purpose heat treatment machine, fibers having a melting point of 200 ° C. or less as a main component are copolymerized polyester, aliphatic polyester, and polyolefin.

前記熱融着性繊維が融点の異なる複数成分からなる複合繊維とする場合、複合形態としては、(偏心)鞘芯型、並列型、分割型、海島型などが挙げられるが、同心円鞘芯型の複合繊維が、不織布の収縮を抑えつつ、高度な研磨性および拭き取り性を有する不織布が得られ、好ましい。特に、鞘成分を低融点成分とし、芯成分を低融点成分よりも融点が10℃以上高い高融点成分とする鞘芯型複合繊維は、その効果が顕著である。前記複合繊維の具体的な構成としては、融点の異なる脂肪族ポリエステル同士の組み合わせ、脂肪族ポリエステルと共重合芳香族ポリエステル、ポリエチレンとポリプロピレン、ポリブテン−1とポリプロピレン、エチレン−酢酸ビニル共重合体とポリプロピレン、エチレン−(メタ)アクリル酸(エステル)共重合体とポリプロピレンなどが挙げられる。   When the heat-fusible fiber is a composite fiber composed of a plurality of components having different melting points, examples of the composite form include (eccentric) sheath-core type, parallel-type, split-type, sea-island type, etc. This composite fiber is preferable because a nonwoven fabric having a high degree of polishing and wiping properties can be obtained while suppressing shrinkage of the nonwoven fabric. In particular, the effect is remarkable in the sheath-core type composite fiber in which the sheath component is a low-melting-point component and the core component is a high-melting-point component whose melting point is 10 ° C. higher than the low-melting-point component. Specific configurations of the composite fiber include a combination of aliphatic polyesters having different melting points, aliphatic polyester and copolymerized aromatic polyester, polyethylene and polypropylene, polybutene-1 and polypropylene, ethylene-vinyl acetate copolymer and polypropylene. , Ethylene- (meth) acrylic acid (ester) copolymer and polypropylene.

前記熱融着性繊維を構成する樹脂として、ポリブテン−1樹脂が研磨性および拭き取り性に優れ、好ましい。ポリブテン−1樹脂は、単独、または他の樹脂との複合のいずれであってもよいが、ポリブテン−1樹脂を単独で溶融紡糸すると、紡糸性があまりよくないが、他のポリオレフィン樹脂と複合することによって紡糸性を向上させることができる。よって、ポリブテン−1樹脂とポリブテン−1樹脂より融点の高い他のポリオレフィン樹脂を構成成分とする複合繊維が不織布の表面で溶融固化すると、優れた研磨性および拭き取り性が得られ、好ましい。   As the resin constituting the heat-fusible fiber, polybutene-1 resin is preferable because of its excellent abrasiveness and wiping property. The polybutene-1 resin may be either alone or in combination with other resins, but when the polybutene-1 resin is melt-spun alone, the spinnability is not so good, but it is compounded with other polyolefin resins. As a result, the spinnability can be improved. Therefore, it is preferable that a composite fiber having a polybutene-1 resin and another polyolefin resin having a melting point higher than that of the polybutene-1 resin is melted and solidified on the surface of the nonwoven fabric because excellent polishing properties and wiping properties are obtained.

前記ポリブテン−1樹脂と組み合わせて複合繊維を構成する他のポリオレフィン樹脂としては、ポリブテン−1樹脂より融点の高いプロピレン、メチルペンテン、ヘキセン及びこれらの共重合体等が挙げられる。なかでも、ポリブテン−1樹脂とポリプロピレン樹脂またはその共重合体を構成成分とするものは、繊維および不織布の加工性の点で好ましい。   Examples of other polyolefin resins constituting the composite fiber in combination with the polybutene-1 resin include propylene, methylpentene, hexene and copolymers thereof having a melting point higher than that of the polybutene-1 resin. Especially, what uses polybutene-1 resin, a polypropylene resin, or its copolymer as a structural component is preferable at the point of the workability of a fiber and a nonwoven fabric.

前記複合繊維に占める低融点成分と高融点成分との断面積比(低融点成分:高融点成分)は、15:85〜80:20であることが好ましい。前記断面積比とすることにより、紡糸の工程安定性、および不織布加工時に熱融着性繊維を溶融固化させたときに十分な不織布表層の硬さを得ることができる。より好ましい断面積比(低融点成分:高融点成分)は、40:60〜60:40である。さらに好ましい断面積比は、45:55〜55:45である。   The cross-sectional area ratio (low melting point component: high melting point component) of the low melting point component and high melting point component in the composite fiber is preferably 15:85 to 80:20. By setting the cross-sectional area ratio, it is possible to obtain a sufficient nonwoven fabric surface hardness when the spinning process stability and the heat-fusible fibers are melted and solidified during the processing of the nonwoven fabric. A more preferable cross-sectional area ratio (low melting point component: high melting point component) is 40:60 to 60:40. A more preferable cross-sectional area ratio is 45:55 to 55:45.

前記熱融着性繊維の繊度は、1dtex以上10dtex以下の範囲内であることが好ましい。より好ましい繊度の下限は、3dtexである。より好ましい繊度の上限は、6dtexである。熱融着性繊維の繊度が1dtex未満であると、溶融固形物の厚みが小さくなる傾向にあり、例えば研磨用不織布に使用した場合、研磨性が低下する可能性がある。繊度が10dtexを超えると、溶融固形物が不均一な塊となる傾向にあり、対象面を必要以上に傷つける可能性がある。   The fineness of the heat-fusible fiber is preferably in the range of 1 dtex or more and 10 dtex or less. A more preferable lower limit of the fineness is 3 dtex. A more preferable upper limit of the fineness is 6 dtex. When the fineness of the heat-fusible fiber is less than 1 dtex, the thickness of the molten solid tends to be small. For example, when used for a non-woven fabric for polishing, there is a possibility that the abradability is lowered. When the fineness exceeds 10 dtex, the molten solid tends to be a non-uniform lump, and the target surface may be damaged more than necessary.

前記熱融着性繊維が表層を構成する繊維に占める割合は、70mass%以上であることが好ましい。より好ましい割合は、80mass%以上である。さらに好ましい割合は、90mass%以上である。最も好ましくは、表層を全て熱融着性繊維で占めることである。熱融着性繊維の含有量が70mass%未満であると、ガサガサした硬い独特の表面タッチが得られず、例えば研磨性および拭き取り性が低下する傾向にあるからである。   The proportion of the heat-fusible fiber in the fibers constituting the surface layer is preferably 70 mass% or more. A more desirable ratio is 80 mass% or more. A more desirable ratio is 90 mass% or more. Most preferably, the entire surface layer is occupied by heat-fusible fibers. This is because, when the content of the heat-fusible fiber is less than 70 mass%, a hard and unique surface touch that is rough cannot be obtained, and for example, the abrasiveness and the wiping property tend to decrease.

前記耐熱性繊維層は、前記溶融固形物の融点よりも高い融点または分解点を有する耐熱性繊維を含有する繊維層から構成される。すなわち、前記耐熱性繊維は、熱融着性繊維の融点よりも高い融点または分解点を有する繊維のことを指す。好ましい耐熱性繊維の融点または分解点は、熱融着性繊維の融点よりも30℃以上高い繊維である。耐熱性繊維の融点または分解点が熱融着性繊維の融点よりも低いと、不織布加工時に収縮を伴う可能性があるだけでなく、所望の不織布表層の形態が得られない可能性がある。   The heat resistant fiber layer is composed of a fiber layer containing heat resistant fibers having a melting point or decomposition point higher than the melting point of the molten solid. That is, the heat resistant fiber refers to a fiber having a melting point or decomposition point higher than the melting point of the heat-fusible fiber. The melting point or decomposition point of the preferred heat resistant fiber is a fiber that is 30 ° C. higher than the melting point of the heat-fusible fiber. If the melting point or decomposition point of the heat-resistant fiber is lower than the melting point of the heat-fusible fiber, not only may there be shrinkage during the processing of the nonwoven fabric, but the desired form of the nonwoven fabric surface layer may not be obtained.

前記耐熱性繊維としては、融点の高いポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル繊維、ナイロン等のポリアミド繊維、アクリル繊維、ポリメチルペンテン繊維、またはこれらの共重合の繊維などが挙げられる。また、非熱可塑性繊維でもよく、例えば、ビスコースレーヨン、溶剤紡糸レーヨン等の再生繊維、コットン、パルプ、麻等の天然繊維などが挙げられる。特に、上記再生繊維や天然繊維、あるいは親水性を付与した合成繊維を使用すると、不織布自体に吸水性が得られるので、積層不織布に洗浄剤、研磨剤などを液体に溶解または分散させて使用するときに有利である。   Examples of the heat-resistant fiber include polyester fibers such as polyethylene terephthalate and polybutylene terephthalate having a high melting point, polyamide fibers such as nylon, acrylic fibers, polymethylpentene fibers, and copolymers of these. Non-thermoplastic fibers may also be used, and examples thereof include regenerated fibers such as viscose rayon and solvent-spun rayon, and natural fibers such as cotton, pulp and hemp. In particular, when the above-mentioned recycled fiber, natural fiber, or synthetic fiber imparted with hydrophilicity is used, water absorption is obtained in the nonwoven fabric itself. Therefore, the laminated nonwoven fabric is used by dissolving or dispersing a cleaning agent, an abrasive, or the like in a liquid. Sometimes it is advantageous.

前記補強繊維層は、前記耐熱性繊維層よりも繊維同士の結合が強く、寸法安定性に優れた繊維層から選択される。補強繊維層としては、構成する繊維の少なくとも一部が自己融着もしくは圧着、または他の成分により接着した熱接着繊維層であることが好ましい。具体的には、エアースルー不織布、ポイントボンド不織布、スパンボンド不織布、経緯直交不織布、湿式不織布、ケミカルボンド不織布、網状物等が挙げられる。ポイントボンド不織布およびスパンボンド不織布は、部分的に熱圧着部を有しているので、後述する各層を積層して水流交絡により交絡一体化したとき、前記熱圧着部は水流が貫通しないため熱圧着部上に積層された繊維群は再配列されて実質的に存在しない状態となる。その結果、表層に形成される溶融固形物は、通常はランダムに形成されるが、上記方法によれば見かけ上熱圧着部以外の部分に存在することとなり、一定のパターンを形成させることも可能である。上記補強繊維層のうち、スパンボンド不織布は、汎用性があり、耐熱性不織布を容易に得られる点で特に好ましい。   The reinforcing fiber layer is selected from fiber layers that are stronger in bonding between fibers than the heat-resistant fiber layer and excellent in dimensional stability. The reinforcing fiber layer is preferably a heat-bonded fiber layer in which at least a part of the constituent fibers is bonded by self-bonding or pressure bonding or other components. Specific examples include an air-through nonwoven fabric, a point bond nonwoven fabric, a spunbond nonwoven fabric, a history orthogonal nonwoven fabric, a wet nonwoven fabric, a chemical bond nonwoven fabric, and a net-like material. Since the point bond nonwoven fabric and the spun bond nonwoven fabric partially have a thermocompression bonding portion, when the layers described later are laminated and entangled and integrated by hydroentanglement, the thermocompression bonding portion does not penetrate the water flow, so thermocompression bonding is performed. The fiber group laminated | stacked on the part will be rearranged, and will be in the state which does not exist substantially. As a result, the molten solid formed on the surface layer is usually formed randomly, but according to the above method, it appears to exist in parts other than the thermocompression bonding part, and it is possible to form a fixed pattern. It is. Of the reinforcing fiber layers, spunbonded nonwoven fabrics are particularly preferred because they are versatile and easily obtain heat-resistant nonwoven fabrics.

前記補強繊維層は、前記耐熱性繊維層と同様に、耐熱性繊維を用いることが好ましい。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル繊維、ナイロン等のポリアミド繊維、アクリル繊維、ポリメチルペンテン繊維、またはこれらの共重合の繊維などが挙げられる。   The reinforcing fiber layer is preferably a heat-resistant fiber, like the heat-resistant fiber layer. Examples thereof include polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, polyamide fibers such as nylon, acrylic fibers, polymethylpentene fibers, and copolymers of these.

前記補強繊維層は、前記耐熱性繊維層の少なくとも一方の面に配置されてなるものである。補強繊維層を配置することにより、積層不織布自体を補強するとともに、寸法安定性を有しており、ハンドリング性などの取り扱い性に優れた積層不織布が得られる。前記補強繊維層は、前記表層の内面側に配置されてなることが好ましい。その理由は、前述したとおりである。   The reinforcing fiber layer is disposed on at least one surface of the heat resistant fiber layer. By disposing the reinforcing fiber layer, the laminated nonwoven fabric itself is reinforced, and the laminated nonwoven fabric having dimensional stability and excellent handling properties such as handling properties can be obtained. The reinforcing fiber layer is preferably arranged on the inner surface side of the surface layer. The reason is as described above.

次に、本発明の積層不織布の製造方法について説明する。前記表層および耐熱性繊維層を形成させるために、各層それぞれ繊維ウェブを準備する。繊維ウェブの形態としては、カードウェブ、エアレイウェブ、スパンボンドウェブ、メルトブローウェブなどが挙げられる。なかでもカードウェブが三次元的に交絡し易く、好ましい。   Next, the manufacturing method of the laminated nonwoven fabric of this invention is demonstrated. In order to form the surface layer and the heat-resistant fiber layer, a fiber web is prepared for each layer. Examples of the form of the fiber web include a card web, an air lay web, a spunbond web, and a melt blow web. Among them, the card web is preferable because it can be easily entangled three-dimensionally.

前記表層を構成する繊維ウェブの目付は、10g/m2以上80g/m2以下の範囲内であることが好ましい。より好ましい目付の下限は、20g/m2である。より好ましい目付の上限は、50g/m2である。表層を構成する繊維ウェブの目付が10g/m2未満であると、溶融固形物が少なくなり、例えば研磨性等が低下する可能性がある。さらに、繊維ウェブの地合いが悪くなり、溶融固形物が不均一な塊となる可能性がある。表層を構成する繊維ウェブの目付が80g/m2を超えると、溶融固形物が不均一な塊となる可能性がある。 The basis weight of the fiber web constituting the surface layer is preferably in the range of 10 g / m 2 or more and 80 g / m 2 or less. A more preferable lower limit of basis weight is 20 g / m 2 . A more preferable upper limit of the basis weight is 50 g / m 2 . When the basis weight of the fiber web constituting the surface layer is less than 10 g / m 2 , the molten solid matter is reduced, and for example, the polishing property and the like may be lowered. Furthermore, the texture of the fiber web may be poor and the molten solid may become a non-uniform mass. When the basis weight of the fiber web constituting the surface layer exceeds 80 g / m 2 , there is a possibility that the molten solid becomes a non-uniform lump.

前記耐熱性繊維層を構成する繊維ウェブの目付は、使用する対象面等の用途に応じて適宜設定するとよいが、10g/m2以上100g/m2以下の範囲内であることが好ましい。より好ましい目付の下限は、20g/m2である。より好ましい目付の上限は、60g/m2である。繊維層を構成する繊維ウェブの目付が10g/m2未満であると、繊維ウェブの地合いが悪くなる可能性がある、あるいは研磨不織布に水分や薬液等を含浸して使用する場合に、含浸性が悪くなる可能性がある。繊維層を構成する繊維ウェブの目付が100g/m2を超えると、水流交絡処理をした場合の各層間の交絡性が低下する可能性がある。 The basis weight of the fiber web constituting the heat-resistant fiber layer may be appropriately set according to the application of the target surface to be used, but is preferably in the range of 10 g / m 2 to 100 g / m 2 . A more preferable lower limit of basis weight is 20 g / m 2 . A more preferable upper limit of the basis weight is 60 g / m 2 . When the basis weight of the fiber web constituting the fiber layer is less than 10 g / m 2 , the texture of the fiber web may be deteriorated, or the impregnation property is used when the nonwoven fabric is impregnated with moisture or chemicals. May get worse. If the basis weight of the fiber web constituting the fiber layer exceeds 100 g / m 2 , there is a possibility that the entanglement between the layers when the hydroentanglement treatment is performed is lowered.

一方、前記補強繊維層としては、例えば、エアースルー不織布、ポイントボンド不織布、スパンボンド不織布等の構成する繊維の少なくとも一部が融着または圧着した熱接着不織布を準備する。前記補強繊維層の目付は、10g/m2以上70g/m2以下の範囲内にあることが好ましい。より好ましい目付の上限は、30g/m2である。補強繊維層の目付が10g/m2未満であると、十分な補強効果が得られない可能性がある。補強繊維層の目付が70g/m2を超えると、各層との交絡性が低下する可能性がある。 On the other hand, as the reinforcing fiber layer, for example, a heat-bonded nonwoven fabric in which at least a part of fibers constituting an air-through nonwoven fabric, a point bond nonwoven fabric, a spunbond nonwoven fabric, or the like is fused or pressed is prepared. The basis weight of the reinforcing fiber layer is preferably in the range of 10 g / m 2 or more and 70 g / m 2 or less. A more preferable upper limit of the basis weight is 30 g / m 2 . If the basis weight of the reinforcing fiber layer is less than 10 g / m 2 , a sufficient reinforcing effect may not be obtained. If the basis weight of the reinforcing fiber layer exceeds 70 g / m 2 , the entanglement with each layer may be lowered.

前記各層は、前記表層を構成する繊維ウェブが不織布の少なくとも一方の表層となるように積層され、積層物となす。前記積層物は、そのまま熱処理を施してもよいが、水流交絡処理および/またはニードルパンチ処理することが好ましい。水流交絡処理および/またはニードルパンチ処理することにより、各層を構成する繊維は、三次元的に交絡し、同時に隣接している各層の繊維同士も三次元的に交絡して、各層は一体化されて交絡不織布となす。特に、得ようとする積層不織布の目付が200g/m2以下である場合、水流交絡処理を施すことが好ましい。 Each of the layers is laminated so that the fiber web constituting the surface layer becomes at least one surface layer of the nonwoven fabric. The laminate may be subjected to heat treatment as it is, but is preferably subjected to hydroentanglement treatment and / or needle punch treatment. By performing hydroentanglement treatment and / or needle punching treatment, the fibers constituting each layer are entangled three-dimensionally, and the fibers of adjacent layers are simultaneously entangled three-dimensionally so that the layers are integrated. And entangled nonwoven fabric. In particular, when the basis weight of the laminated nonwoven fabric to be obtained is 200 g / m 2 or less, it is preferable to perform hydroentanglement treatment.

そして、前記交絡不織布は必要に応じて乾燥した後、熱融着性繊維を構成する成分の融点以上の温度で、かつ耐熱性繊維層及補強繊維層を構成する繊維の融点または分解点未満の温度で熱処理することにより、熱融着性繊維を完全に溶融させることができる。好ましい熱処理温度は、熱融着性繊維を構成する成分の融点+20℃以下である。熱処理温度が熱融着性繊維を構成する成分の融点未満であると、熱融着性繊維を完全に溶融させることができない。一方、熱処理温度が耐熱性繊維の融点または分解点以上であると、耐熱性繊維自体が融解または分解すると不織布に急激な収縮を伴う可能性がある。また、形成される溶融固形物の長さが小さくなり、研磨性および拭き取り性が低下する可能性がある。熱処理の方法としては、例えば、エアースルー法、遠赤外線加熱法などが挙げられる。熱処理後、強制的に、または自然に冷却して本発明の積層不織布が得られる。   And after the said entangled nonwoven fabric dries as needed, it is the temperature more than melting | fusing point of the component which comprises a heat-fusible fiber, and less than melting | fusing point or decomposition point of the fiber which comprises a heat resistant fiber layer and a reinforcement fiber layer The heat-fusible fiber can be completely melted by heat treatment at a temperature. A preferable heat treatment temperature is the melting point of the component constituting the heat-fusible fiber + 20 ° C. or less. If the heat treatment temperature is lower than the melting point of the component constituting the heat-fusible fiber, the heat-fusible fiber cannot be completely melted. On the other hand, when the heat treatment temperature is equal to or higher than the melting point or decomposition point of the heat resistant fiber, the nonwoven fabric may be rapidly contracted when the heat resistant fiber itself is melted or decomposed. Moreover, the length of the molten solid formed may be reduced, and the polishing properties and wiping properties may be reduced. Examples of the heat treatment method include an air through method and a far infrared heating method. After the heat treatment, the laminated nonwoven fabric of the present invention is obtained by forcibly or naturally cooling.

得られた積層不織布の好ましい用途としては、研磨用不織布が挙げられる。本発明の研磨用不織布は、前記積層不織布からなり、前記表層を形成する少なくとも1つの溶融固形物の厚みが0.15mm以上であることを特徴とする。上記範囲を満たす溶融固形物を含有することにより、研磨性に優れるとともに、拭き取り性に優れた不織布が得られる。好ましい溶融固形物の厚みの下限は、0.2mmである。好ましい溶融固形物の厚みの上限は、1mmである。より好ましい溶融固形物の厚みの上限は、0.5mmである。少なくとも1つの溶融固形物の厚みが0.15mm以上の溶融固形物は、少なくとも1つの表面(片面)において50%以上を占めることが好ましい。溶融固形物の厚みは、多孔状の溶融固形物の断面から見たときに溶融固形物の隆起した部分(凸部)と孔部との高低差が大きい、つまり大きな凸部が形成されていることを示している。溶融固形物の厚みが大きいほど、研磨性および拭き取り性は向上する傾向にある。なお、溶融固形物の厚み、および0.15mm以上の厚みを有する溶融固形物が少なくとも1つの表面(片面)を占める割合を算出する方法は、下記のとおり行った。まず、不織布の縦方向(機械方向)の断面を電子顕微鏡等で50倍程度に拡大して、任意に10箇所撮影する。溶融固形物の厚みは、撮影した10箇所から溶融固形物と繊維層とが接する面(底面)と溶融固形物が隆起して最も高い位置(頂部)との間の長さを求めた。0.15mm以上の厚みを有する溶融固形物の割合は、撮影した10箇所のうち溶融固形物の切断面が出現しているものを1カウントとしたとき、全溶融固形物のカウント数に対する0.15mm以上の厚みを有する溶融固形物のカウント数の割合を求めた。   A preferable use of the obtained laminated nonwoven fabric is a polishing nonwoven fabric. The nonwoven fabric for polishing of the present invention is composed of the laminated nonwoven fabric, and the thickness of at least one molten solid forming the surface layer is 0.15 mm or more. By containing the molten solid satisfying the above range, it is possible to obtain a non-woven fabric having excellent polishing properties and excellent wiping properties. A preferable lower limit of the thickness of the molten solid is 0.2 mm. A preferable upper limit of the thickness of the molten solid is 1 mm. A more preferable upper limit of the thickness of the molten solid is 0.5 mm. It is preferable that the molten solid having a thickness of at least one molten solid of 0.15 mm or more occupies 50% or more on at least one surface (one side). As for the thickness of the molten solid, when viewed from the cross section of the porous molten solid, there is a large difference in height between the raised portion (convex portion) of the molten solid and the hole, that is, a large convex portion is formed. It is shown that. As the thickness of the molten solid is increased, the polishing property and the wiping property tend to be improved. The method for calculating the thickness of the molten solid and the proportion of the molten solid having a thickness of 0.15 mm or more occupying at least one surface (one side) was performed as follows. First, a cross section in the longitudinal direction (machine direction) of the nonwoven fabric is magnified about 50 times with an electron microscope or the like, and images are taken arbitrarily at 10 locations. As for the thickness of the molten solid, the length between the surface (bottom surface) where the molten solid and the fiber layer are in contact with each other and the highest position (top) where the molten solid is raised was obtained from the 10 positions taken. The ratio of the molten solid having a thickness of 0.15 mm or more was set to 0. 0 with respect to the total number of molten solids when the number of the photographed 10 portions where the cut surface of the molten solid appeared was 1 count. The ratio of the count number of the molten solid having a thickness of 15 mm or more was determined.

さらに前記溶融固形物は、一方向の長さが1mm以上のものを含むことが好ましい。より好ましい溶融固形物の一方向の長さは、2mm以上である。また、一方向の長さが1mm以上の溶融固形物は、不織布表面の80%以上を占めることが好ましい。溶融固形物の長さが大きいほど、あるいは溶融固形物の不織布表面に占める割合が大きいほど、研磨性および拭き取り性は向上する。なお、溶融固形物の長さ、および溶融固形物が不織布表面を占める割合を算出する方法は、下記のとおり行った。まず、不織布表面を電子顕微鏡等で50倍程度に拡大して、任意に10箇所撮影する。溶融固形物の長さは、撮影した10箇所から溶融固形物の長さを求めた。溶融固形物の割合は、撮影した10箇所のうち溶融固形物が多孔状に1mm以上にわたって連なっているものがあれば1カウントとし、10箇所中に何箇所1mm以上の溶融固形物があるかの割合を求めた。   Furthermore, it is preferable that the molten solid includes one having a length in one direction of 1 mm or more. More preferably, the length of the molten solid in one direction is 2 mm or more. Moreover, it is preferable that the molten solid substance whose length of one direction is 1 mm or more occupies 80% or more of the nonwoven fabric surface. The greater the length of the molten solid or the greater the proportion of the molten solid that occupies the nonwoven fabric surface, the better the polishing and wiping properties. In addition, the method of calculating the length of a molten solid and the ratio for which a molten solid occupies the nonwoven fabric surface was performed as follows. First, the surface of the non-woven fabric is magnified about 50 times with an electron microscope or the like, and arbitrarily photographed at 10 locations. The length of the molten solid was determined from the 10 positions taken. The ratio of the melted solids is 1 count if there are 10 consecutive locations where the melted solids are porous and spanning 1 mm or more, and how many 1 mm or more of the solids are present in 10 locations. The percentage was determined.

本発明の研磨用不織布は、従来の研磨布のように酸化鉄、タルク、酸化アルミニウム等の研磨剤を使わずとも十分な研磨力をもつことができるが、汚れの種類によってこれら研磨剤を使用することは差し支えない。   The polishing nonwoven fabric of the present invention can have sufficient polishing power without using abrasives such as iron oxide, talc and aluminum oxide as in conventional polishing cloths, but these abrasives are used depending on the type of dirt. You can do it.

また、本発明の研磨用不織布に予め洗浄剤や研磨剤などを含有する液体を含浸した湿潤不織布として用いる場合は、耐熱性繊維層を構成する繊維として、セルロース系繊維および親水化処理を施した合成繊維などの親水性繊維を含有させるとよい。   In addition, when the nonwoven fabric for polishing of the present invention is used as a wet nonwoven fabric previously impregnated with a liquid containing a cleaning agent or an abrasive, cellulose-based fibers and a hydrophilic treatment are applied as fibers constituting the heat-resistant fiber layer. It is preferable to contain hydrophilic fibers such as synthetic fibers.

以下、図面により本発明の積層不織布を説明する。図1は、本発明に用いることができる熱融着性繊維の繊維断面構造の一例を示す図である。具体的には、低融点成分(1)を鞘成分とし、高融点成分(2)を芯成分とする同心円鞘芯型複合繊維の断面構造を示している。   Hereinafter, the laminated nonwoven fabric of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an example of a fiber cross-sectional structure of a heat-fusible fiber that can be used in the present invention. Specifically, a cross-sectional structure of a concentric sheath-core type composite fiber having a low melting point component (1) as a sheath component and a high melting point component (2) as a core component is shown.

図2(a)及び(b)は、本発明の積層不織布の表面構造を示す50倍のSEM顕微鏡写真図である。熱融着性繊維が完全に溶融されて互いに集合した溶融固形物が不織布の表面に拡がって表層を形成している。また、溶融固形物は、多孔状に拡がり孔部を形成している。図2(b)の孔部には、熱圧着部が存在している。   2 (a) and 2 (b) are SEM photomicrographs of 50 times showing the surface structure of the laminated nonwoven fabric of the present invention. The melted solids in which the heat-fusible fibers are completely melted and gathered together spread on the surface of the nonwoven fabric to form a surface layer. Moreover, the molten solid is expanded in a porous shape to form a hole. The thermocompression bonding part exists in the hole part of FIG.2 (b).

図3は、本発明の積層不織布の積層構造の略図である。図3(a)は、表層(3)の一方を表面(3A)とし、表層(3)の内面(3B)側と耐熱性繊維層(4)との間に補強繊維層(5)が配置された3層構造を示す。図3(b)は、表層(3)の内面(3B)側と耐熱性繊維層(4)との間に補強繊維層(5)が配置された5層構造を示す。図3(c)は、表層(3)を一方の表面(3A)とし、表層(3)の内面(3B)側と補強繊維層(5)との間に耐熱性繊維層(4)が配置された3層構造を示す。   FIG. 3 is a schematic view of the laminated structure of the laminated nonwoven fabric of the present invention. In FIG. 3A, one of the surface layers (3) is the surface (3A), and the reinforcing fiber layer (5) is disposed between the inner surface (3B) side of the surface layer (3) and the heat resistant fiber layer (4). 3 shows a three-layer structure. FIG. 3B shows a five-layer structure in which the reinforcing fiber layer (5) is disposed between the inner surface (3B) side of the surface layer (3) and the heat-resistant fiber layer (4). In FIG. 3C, the surface layer (3) is one surface (3A), and the heat-resistant fiber layer (4) is disposed between the inner surface (3B) side of the surface layer (3) and the reinforcing fiber layer (5). 3 shows a three-layer structure.

図4(a)及び(b)は、本発明の積層不織布の断面構造を示す50倍のSEM顕微鏡写真図である。不織布は、補強繊維層の上に、熱融着性繊維が完全に溶融されて互いに集合した溶融固形物が不織布の表面に拡がって表層を形成している。また、溶融固形物は、多孔状に拡がり、凹凸状に盛り上がっており、凸部および孔部を形成している。図4(b)の孔部には、熱圧着部が存在している。   4 (a) and 4 (b) are 50-times SEM micrographs showing the cross-sectional structure of the laminated nonwoven fabric of the present invention. The nonwoven fabric has a surface layer formed on the surface of the reinforcing fiber layer by spreading molten solids in which the heat-fusible fibers are completely melted and gathered together. In addition, the molten solid material expands in a porous shape and rises in a concavo-convex shape, forming a convex portion and a hole portion. The thermocompression bonding part exists in the hole part of FIG.4 (b).

以下、実施例により本発明を詳しく説明する。
[繊維の準備]
以下の繊維を準備した。
(1)熱融着性繊維:鞘成分を融点123℃のポリブテン−1樹脂(三井化学(株)製、商品名タフマーBL7000)とし、芯成分を融点163℃のポリプロピレン樹脂(日本ポリケム(株)製)とし、繊維断面積比(鞘:芯)が5:5とした、繊度が4.2dtex、繊維長が51mmの同心円鞘芯型複合繊維。
(2)耐熱性繊維:分解点200℃以上の繊度が1.7dtex、繊維長が40mmのレーヨン繊維(ダイワボウレーヨン(株)製、商品名コロナ)。
Hereinafter, the present invention will be described in detail by way of examples.
[Fiber preparation]
The following fibers were prepared:
(1) Heat-sealable fiber: Polybutene-1 resin having a melting point of 123 ° C. (trade name Toughmer BL7000, manufactured by Mitsui Chemicals, Inc.) and a core component having a melting point of 163 ° C., polypropylene resin (Nippon Polychem Co., Ltd.) A concentric sheath-core type composite fiber having a fiber cross-sectional area ratio (sheath: core) of 5: 5, a fineness of 4.2 dtex, and a fiber length of 51 mm.
(2) Heat-resistant fiber: Rayon fiber having a decomposition point of 200 ° C. or higher and a fiber length of 40 mm (manufactured by Daiwabo Rayon Co., Ltd., trade name Corona).

[不織布の準備]
以下の不織布を補強繊維層として準備した。
(1)ポリエチレンテレフタレート樹脂製スパンボンド不織布A(旭化成(株)製、E01015)、目付15g/m2
(2)ポリエチレンテレフタレート樹脂製スパンボンド不織布B(旭化成(株)製、E01020)、目付20g/m2
(3)ポリエチレンテレフタレート樹脂製スパンボンド不織布C(東洋紡績(株)製、6151A)、目付15g/m2
[Preparation of non-woven fabric]
The following nonwoven fabric was prepared as a reinforcing fiber layer.
(1) Spunbond nonwoven fabric A made of polyethylene terephthalate resin (E01015, manufactured by Asahi Kasei Corporation), basis weight 15 g / m 2
(2) Spunbond nonwoven fabric B made of polyethylene terephthalate resin (E01020, manufactured by Asahi Kasei Co., Ltd.), basis weight 20 g / m 2
(3) Spunbond nonwoven fabric C made of polyethylene terephthalate resin (Toyobo Co., Ltd., 6151A), basis weight 15 g / m 2

[実施例1〜4]
熱融着性繊維100mass%からなる目付30g/m2の表層用のカードウェブを準備した。一方、耐熱性繊維100mass%からなる目付30g/m2の耐熱性繊維層用のカードウェブを準備した。上記2層のカードウェブの間に表1に示す補強繊維層用のスパンボンド不織布を配置して積層物とした。次いで、前記積層物をウェブ搬送用支持体に載置した後、孔径0.12mmのオリフィスが0.6mm間隔で配列したノズルから水圧3MPa、5MPaの柱状水流を表層面に噴射し、裏返して繊維層面に同じノズルから水圧5MPaの柱状水流を噴射して水流交絡処理を施した。次いで、サクションボックスにより脱水し、100℃で乾燥して交絡不織布を得た。
[Examples 1 to 4]
A card web for a surface layer having a basis weight of 30 g / m 2 and comprising 100% by mass of heat-fusible fiber was prepared. On the other hand, a card web for a heat resistant fiber layer having a basis weight of 30 g / m 2 and comprising 100 mass% of heat resistant fibers was prepared. A spunbond nonwoven fabric for reinforcing fiber layers shown in Table 1 was disposed between the two layers of card webs to form a laminate. Next, after the laminate was placed on the web conveying support, a columnar water flow with a water pressure of 3 MPa and 5 MPa was jetted onto the surface layer from a nozzle in which orifices having a pore diameter of 0.12 mm were arranged at intervals of 0.6 mm, and turned over to fiber. A water flow entanglement treatment was performed by jetting a columnar water flow of 5 MPa from the same nozzle on the layer surface. Subsequently, it dehydrated with the suction box and it dried at 100 degreeC and obtained the entangled nonwoven fabric.

前記交絡不織布に、エアースルー熱処理機を用いて、表1に示す温度の熱風で10秒間熱処理を施し、自然冷却して本発明の積層不織布を得た。   The entangled nonwoven fabric was heat-treated with hot air at a temperature shown in Table 1 for 10 seconds using an air-through heat treatment machine and naturally cooled to obtain the laminated nonwoven fabric of the present invention.

[実施例5]
実施例1の積層物の耐熱性繊維層のもう一方の面に表層用カードウェブを積層した以外は、実施例1と同様の方法で、本発明の積層不織布を得た。
[Example 5]
A laminated nonwoven fabric of the present invention was obtained in the same manner as in Example 1 except that the surface layer card web was laminated on the other surface of the heat-resistant fiber layer of the laminate of Example 1.

[比較例1]
熱融着性繊維100mass%からなる目付30g/m2のカードウェブを作製し、これを実施例1と同様の方法で交絡不織布とした。実施例1と同じ条件で熱処理したところ不織布は全体が収縮し研磨布として使用できなかった。
[Comparative Example 1]
A card web having a basis weight of 30 g / m 2 made of 100 mass% heat-fusible fiber was produced, and this was made into an entangled nonwoven fabric in the same manner as in Example 1. When heat treated under the same conditions as in Example 1, the entire nonwoven fabric contracted and could not be used as an abrasive cloth.

[比較例2]
実施例1の交絡不織布に、エアースルー熱処理機を用いて、温度140℃の熱風で10秒間熱処理を施し、自然冷却して不織布を得た。得られた不織布は、表層を構成する熱融着性繊維において、鞘成分のポリブテン−1樹脂しか溶融しておらず、熱融着性繊維が完全に溶融していなかったため、十分な表層の硬さが得られなかった。
[Comparative Example 2]
The entangled nonwoven fabric of Example 1 was heat treated with hot air at a temperature of 140 ° C. for 10 seconds using an air-through heat treatment machine, and naturally cooled to obtain a nonwoven fabric. Since the obtained non-woven fabric had only melted the sheath component polybutene-1 resin in the heat-fusible fiber constituting the surface layer, and the heat-fusible fiber was not completely melted, Was not obtained.

[比較例3]
実施例2の交絡不織布に、エアースルー熱処理機を用いて、温度160℃の熱風で10秒間熱処理を施し、自然冷却して不織布を得た。得られた不織布は、表層を構成する熱融着性繊維において、鞘成分のポリブテン−1樹脂しか溶融しておらず、熱融着性繊維が完全に溶融していなかったため、十分な表層の硬さが得られなかった。
[Comparative Example 3]
The entangled nonwoven fabric of Example 2 was heat treated with hot air at a temperature of 160 ° C. for 10 seconds using an air-through heat treatment machine, and naturally cooled to obtain a nonwoven fabric. Since the obtained non-woven fabric had only melted the sheath component polybutene-1 resin in the heat-fusible fiber constituting the surface layer, and the heat-fusible fiber was not completely melted, Was not obtained.

上記各実施例、および比較例の不織布を使って、以下に示す方法で汚れ落としテストを行った。得られた結果を表1に示す。   Using the nonwoven fabrics of the above examples and comparative examples, a soil removal test was performed by the following method. The obtained results are shown in Table 1.

[汚れ落としテスト]
(1)汚れの作製
厚さ1mmのステンレス製板、および陶器皿に黒色の油性インキA(寺西化学工業(株)製、商品名マジックインキNo.500)、および油性インキB(ゼブラ(株)製、商品名ハイ・マッキー)で直径約1cmの丸い印をつけて汚れとした。
(2)試験方法
平面上においた上記の汚れをつけたステンレス製板上に、たて、よこ2cm角に裁断した不織布を上記油性インキ、醤油でつけた汚れ印の上ほぼ中心に置いた。不織布に人差し指で約3kgの押圧がかかるようにして、1方向に20mmのこすり巾で不織布を往復させた。往復回数ごとの汚れの落ち具合を視認し、以下の評価基準で判定した。なお、不織布はドライ時およびウェット時(水を不織布質量に対して250mass%付与)でそれぞれ測定した。
6点:往復回数5回で完全に汚れがなくなっている。
5点:往復回数10回で完全に汚れがなくなっている。
4点:往復回数20回で完全に汚れがなくなっている。
3点:往復回数30回で完全に汚れがなくなっている。
2点:往復回数30回で部分的に汚れが残っている。
1点:往復回数30回で汚れが半分程度残っている。
0点:往復回数30回でも汚れがほとんど落ちていない。
[Dirt removal test]
(1) Production of dirt Black oil-based ink A (trade name Magic Ink No. 500, manufactured by Teranishi Chemical Industry Co., Ltd.) and oil-based ink B (Zebra Co., Ltd.) (Product name: High McKee) was marked with a round mark with a diameter of about 1 cm to make it dirty.
(2) Test method On the stainless steel plate with the above-mentioned stain placed on a flat surface, a non-woven fabric cut into a square of 2 cm square was placed almost at the center on the stain mark attached with the above oil-based ink and soy sauce. The nonwoven fabric was reciprocated with a scraping width of 20 mm in one direction so that about 3 kg of pressure was applied to the nonwoven fabric with an index finger. The degree of dirt removal after each round-trip was visually confirmed and judged according to the following evaluation criteria. In addition, the nonwoven fabric was measured at the time of dryness and wetness (water was given 250 mass% with respect to the mass of the nonwoven fabric).
6 points: Dirt is completely removed after 5 reciprocations.
5 points: Dirt is completely removed after 10 reciprocations.
4 points: Dirt is completely removed after 20 reciprocations.
3 points: Dirt is completely removed after 30 reciprocations.
2 points: Dirt remains partially after 30 reciprocations.
1 point: About half of the dirt remains after 30 reciprocations.
0 point: Dirt is hardly removed even after 30 reciprocations.

[曲げ硬さ]
JIS−L−1913 6.7.2に準じて、溶融固形物を含む表層が試験機の非接触面となるように載置して測定した。なお、両面が溶融固形物を含む表層である場合、両面で測定し、その平均値を曲げ硬さとした。
[Bending hardness]
According to JIS-L-1913 6.7.2, it mounted and measured so that the surface layer containing a molten solid might become a non-contact surface of a testing machine. In addition, when both surfaces are the surface layers containing a molten solid, it measured on both surfaces and made the average value bending hardness.

実施例1〜5の積層不織布は、表層を構成する熱融着性繊維が完全に溶融して互いに集合した凹凸状に盛り上がった多孔状に拡がる溶融固形物を形成しており、全体にガサガサした硬さを備えていた。得られた積層不織布の不織布表面を電子顕微鏡等で50倍に拡大して、任意に10箇所撮影したところ、溶融固形物の少なくとも一方向の長さは、2mm以上であった。さらに、上記溶融固形物は、10箇所全てに存在しており、不織布表面の100%を占めていた。   In the laminated nonwoven fabrics of Examples 1 to 5, the heat-fusible fibers constituting the surface layer were completely melted to form a melted solid material that spreads in a concavo-convex shape and gathered together, and the whole was ragged. It had hardness. When the nonwoven fabric surface of the obtained laminated nonwoven fabric was magnified 50 times with an electron microscope or the like and arbitrarily photographed at 10 locations, the length of the molten solid in at least one direction was 2 mm or more. Furthermore, the said melted solid substance existed in all 10 places, and occupied 100% of the nonwoven fabric surface.

実施例1〜5の研磨用不織布は、研磨性および拭き取り性に優れており、油性インキ汚れを落とすことができた。一方、比較例1は、熱融着性繊維のみで構成された不織布であり、繊維層を有していないため、熱処理時に急激な収縮を伴い、不織布として取り扱いできるものではなかった。比較例2の不織布は、熱融着性繊維同士の交点が融着されただけであり、溶融固形物は形成されておらず、汚れを落とすことができなかった。比較例3の不織布は、熱融着性繊維同士の交点が融着されて水掻き状に拡がっていたが、溶融固形物は形成されておらず、汚れを落とすことができなかった。   The non-woven fabrics for polishing of Examples 1 to 5 were excellent in polishing properties and wiping properties, and could remove oil-based ink stains. On the other hand, Comparative Example 1 is a non-woven fabric composed only of heat-fusible fibers and does not have a fiber layer. Therefore, it was not able to be handled as a non-woven fabric with rapid shrinkage during heat treatment. In the nonwoven fabric of Comparative Example 2, only the intersections of the heat-fusible fibers were fused, no molten solid was formed, and the stain could not be removed. In the nonwoven fabric of Comparative Example 3, the intersections of the heat-fusible fibers were fused and spread in the form of a water scrap, but no molten solid was formed and the stain could not be removed.

本発明の積層不織布は、独特の表面タッチを有し、ハンドリング性など取り扱い性に優れるので、対人ワイパー、対物ワイパー、研磨用不織布、面ファスナー材、ヘッドレスト、枕カバー、繊維製品の滑り止め材等の用途に用いることができる。   The laminated nonwoven fabric of the present invention has a unique surface touch and is excellent in handling properties such as handling properties. It can be used for

本発明に用いることができる熱融着性繊維の繊維断面構造の一例を示す図である。It is a figure which shows an example of the fiber cross-section of a heat-fusible fiber which can be used for this invention. 本発明の積層不織布の表面構造を示す50倍のSEM顕微鏡写真図である。It is a 50 times SEM micrograph figure which shows the surface structure of the laminated nonwoven fabric of this invention. 本発明の積層不織布の積層構造の略図である。1 is a schematic view of a laminated structure of a laminated nonwoven fabric of the present invention. 本発明の積層不織布の断面構造を示す50倍のSEM顕微鏡写真図である。It is a 50 times SEM micrograph figure which shows the cross-section of the laminated nonwoven fabric of this invention.

符号の説明Explanation of symbols

1 低融点成分
2 高融点成分
3 表層
3A 表面
3B 内面
4 耐熱性繊維層
5 補強繊維層
1 Low melting point component 2 High melting point component 3 Surface layer 3A Surface 3B Inner surface 4 Heat resistant fiber layer 5 Reinforcing fiber layer

Claims (9)

熱融着性繊維が完全に溶融されて互いに集合した多孔状の溶融固形物を形成する表層と、前記溶融固形物の融点よりも高い融点または分解点を有する耐熱性繊維を含有する耐熱性繊維層と、前記耐熱性繊維層の少なくとも一方の面に、構成する繊維の少なくとも一部が圧着した熱圧着部を有する熱接着不織布からなる補強繊維層が配置されてなり、
前記溶融固形物が前記熱圧着部以外の部分に存在する水流交絡積層不織布。
A heat-resistant fiber comprising a surface layer forming a porous molten solid in which heat-fusible fibers are completely melted and gathered together, and a heat-resistant fiber having a melting point or decomposition point higher than the melting point of the molten solid a layer, on at least one surface of the heat-resistant fiber layer, Ri Na are arranged reinforcing fiber layer made of heat-bonding nonwoven fabric having at least a portion is crimped heat crimping portion of the fibers constituting,
A hydroentangled laminated nonwoven fabric in which the molten solid is present in a portion other than the thermocompression bonding portion .
前記熱融着性繊維が低融点成分と高融点成分から構成される複合繊維であり、前記高融点成分の融点が耐熱性繊維の融点または分解点より低い温度である請求項1に記載の水流交絡積層不織布。 The water stream according to claim 1, wherein the heat-fusible fiber is a composite fiber composed of a low-melting-point component and a high-melting-point component, and the melting point of the high-melting-point component is lower than the melting point or decomposition point of the heat-resistant fiber. Interwoven laminated nonwoven fabric. 前記熱融着性繊維がポリブテン−1樹脂を含む請求項1または2に記載の水流交絡積層不織布。 The hydroentangled laminated nonwoven fabric according to claim 1 or 2, wherein the heat-fusible fiber contains a polybutene-1 resin. 前記熱融着性繊維がポリブテン−1樹脂を鞘成分とし、融点が前記ポリブテン−1樹脂よりも高い融点を有する他のポリオレフィン樹脂を芯成分とする鞘芯型複合繊維である請求項1〜3のいずれかに記載の水流交絡積層不織布。 The heat-fusible fiber is a sheath-core type composite fiber having polybutene-1 resin as a sheath component and other polyolefin resin having a melting point higher than that of the polybutene-1 resin as a core component. The hydroentangled laminated nonwoven fabric according to any one of the above. 前記表層において、熱融着性繊維が90mass%以上を占めてなる請求項1〜4のいずれかに記載の水流交絡積層不織布。 The hydroentangled laminated nonwoven fabric according to any one of claims 1 to 4, wherein in the surface layer, heat-fusible fibers occupy 90 mass% or more. 前記補強繊維層が前記表層の内面側に配置されてなる請求項1〜5のいずれかに記載の水流交絡積層不織布。 The hydroentangled laminated nonwoven fabric according to any one of claims 1 to 5, wherein the reinforcing fiber layer is disposed on the inner surface side of the surface layer. 前記補強繊維層が前記溶融固形物の融点よりも高い融点または分解点を有する耐熱性繊維を含有するスパンボンド不織布である請求項1〜6のいずれかに記載の水流交絡積層不織布。 The hydroentangled laminated nonwoven fabric according to any one of claims 1 to 6, wherein the reinforcing fiber layer is a spunbonded nonwoven fabric containing heat-resistant fibers having a melting point or decomposition point higher than the melting point of the molten solid. 請求項1〜のいずれかに記載の水流交絡積層不織布からなり、前記表層を形成する少なくとも1つの溶融固形物の厚みが0.15mm以上である研磨用不織布。 A polishing nonwoven fabric comprising the hydroentangled laminated nonwoven fabric according to any one of claims 1 to 7 , wherein a thickness of at least one molten solid forming the surface layer is 0.15 mm or more. 請求項1〜のいずれかに記載の水流交絡積層不織布からなり、一方向の長さが1mm以上である溶融固形物を含む研磨用不織布。 A polishing nonwoven fabric comprising the hydroentangled laminated nonwoven fabric according to any one of claims 1 to 8 , and comprising a molten solid having a length in one direction of 1 mm or more.
JP2003421885A 2003-12-19 2003-12-19 Laminated nonwoven fabric and abrasive nonwoven fabric Expired - Fee Related JP4293895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421885A JP4293895B2 (en) 2003-12-19 2003-12-19 Laminated nonwoven fabric and abrasive nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421885A JP4293895B2 (en) 2003-12-19 2003-12-19 Laminated nonwoven fabric and abrasive nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2005179820A JP2005179820A (en) 2005-07-07
JP4293895B2 true JP4293895B2 (en) 2009-07-08

Family

ID=34782921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421885A Expired - Fee Related JP4293895B2 (en) 2003-12-19 2003-12-19 Laminated nonwoven fabric and abrasive nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4293895B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019110098A1 (en) * 2017-12-06 2019-06-13 Twe Meulebeke Process for manufacturing a nonwoven sheet material having an impermeable layer on one side and an anti-slip coating on the other side

Also Published As

Publication number Publication date
JP2005179820A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
EP2347691B1 (en) Cleaning device comprising a strip mop with strips covered with microfiber for cleaning floors
JP6080319B2 (en) Nonwoven fabric, method for producing the same, and wiping material
KR100494211B1 (en) Nonwoven fabric for wiper
JP3559533B2 (en) Entangled nonwoven fabric and wiping sheet and wettable sheet using the same
TWI473591B (en) Nonwoven and its manufacturing method, and wiping material
JP4804118B2 (en) Laminated sheet and method for producing the same
JP4722736B2 (en) Floor cleaning sheet
JP4033724B2 (en) Cleaning sheet
JP2017221272A (en) Cleaning wet sheet
JP4320078B2 (en) Bulky nonwoven fabric, production method thereof, and wiping material using the same
JP4293895B2 (en) Laminated nonwoven fabric and abrasive nonwoven fabric
JP4113516B2 (en) Laminated nonwoven fabric and method for producing the same, and abrasive nonwoven fabric
JPH03152255A (en) Nonwoven fabric cleaning material and production thereof
JP4094996B2 (en) Non-woven wiper and wiper for cleaning
JP3967848B2 (en) Nonwoven fabric for cleaning and method for producing the same
JP2004236732A (en) Cleaning sheet
JP3910738B2 (en) Perforated nonwoven fabric and method for producing the same
JP3851894B2 (en) Meltblown nonwovens, laminated meltblown nonwovens, and wipers
JP4031152B2 (en) Composite nonwoven fabric, method for producing the same, and cleaning article using the same
JP3961343B2 (en) Nonwoven fabric for cleaning
JP4227630B2 (en) Wiper
JP4672192B2 (en) Non-woven wiper
JP6795167B2 (en) Bed bath
JP2006000625A (en) Wiping sheet
JPH07279020A (en) Interlaced nonwoven fabric and bonding interlining cloth using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4293895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees