JP4292952B2 - Transparent laminate and plastic substrate for display element using the same - Google Patents

Transparent laminate and plastic substrate for display element using the same Download PDF

Info

Publication number
JP4292952B2
JP4292952B2 JP2003376514A JP2003376514A JP4292952B2 JP 4292952 B2 JP4292952 B2 JP 4292952B2 JP 2003376514 A JP2003376514 A JP 2003376514A JP 2003376514 A JP2003376514 A JP 2003376514A JP 4292952 B2 JP4292952 B2 JP 4292952B2
Authority
JP
Japan
Prior art keywords
transparent
resin composition
resin
transparent laminate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003376514A
Other languages
Japanese (ja)
Other versions
JP2005138389A (en
Inventor
宏典 丸山
澄夫 柴原
渉 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003376514A priority Critical patent/JP4292952B2/en
Publication of JP2005138389A publication Critical patent/JP2005138389A/en
Application granted granted Critical
Publication of JP4292952B2 publication Critical patent/JP4292952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は透明性およびガスバリア性に優れた透明積層体に関する。   The present invention relates to a transparent laminate excellent in transparency and gas barrier properties.

一般に、液晶表示素子や有機EL表示素子用の表示素子基板(特にアクティブマトリッ
クスタイプ)、カラーフィルター基板、太陽電池用基板等としては、ガラス板が広く用い
られている。しかしながらガラス板は、割れ易い、曲げられない、比重が大きく軽量化に不向きなどの理由から、近年、その代替として樹脂素材が検討されている。
In general, glass plates are widely used as display element substrates (particularly active matrix type) for liquid crystal display elements and organic EL display elements, color filter substrates, solar cell substrates, and the like. However, in recent years, resin materials have been studied as an alternative to glass plates because they are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction.

表示素子用プラスチック基板に用いられる樹脂としては、例えば特許文献3には脂環式エポキシ樹脂、酸無水物系硬化剤、アルコール、硬化触媒からなる組成物、特許文献4には脂環式エポキシ樹脂、アルコールで部分エステル化した酸無水物系硬化剤、硬化触媒からなる樹脂組成物が、特許文献5には脂環式エポキシ樹脂、カルボン酸を有する酸無水物系硬化剤、硬化触媒からなる樹脂組成物が示されている。しかしながら、これら従来のガラス代替用プラスチック材料は、ガラス板に比べ線膨張係数が大きく、特に、アクティブマトリックス表示素子基板に用いるとその製造工程において反りやアルミ配線の断線などの問題が生じ、これら用途への使用は困難である。したがって、表示素子基板、特にアクティブマトリックス表示素子用基板に要求される、透明性や耐熱性等を満足しつつ線膨張係数の小さなプラスチック素材が求められている。   Examples of the resin used for the plastic substrate for display elements include a composition comprising an alicyclic epoxy resin, an acid anhydride curing agent, an alcohol, and a curing catalyst in Patent Document 3, and an alicyclic epoxy resin in Patent Document 4. A resin composition comprising an acid anhydride curing agent partially esterified with an alcohol and a curing catalyst is disclosed in Patent Document 5 as a resin comprising an alicyclic epoxy resin, an acid anhydride curing agent having a carboxylic acid, and a curing catalyst. The composition is shown. However, these conventional plastic materials for glass substitutes have a larger coefficient of linear expansion than glass plates, and particularly when used for active matrix display element substrates, problems such as warping and disconnection of aluminum wiring occur in the manufacturing process. It is difficult to use. Accordingly, there is a demand for a plastic material having a low coefficient of linear expansion while satisfying the transparency and heat resistance required for a display element substrate, particularly an active matrix display element substrate.

このような問題を解決するため、スチレン−メタクリレート共重合体の組成を調整して屈折率をガラス繊維に一致させる方法、あるいはアクリル樹脂とスチレン−アクリロニトリル共重合体とをブレンドして屈折率を調整する方法、さらにはN−置換マレイミド−オレフィン系共重合体の組成を調整することにより屈折率を調整する方法など、様々な方法が提案されている。(特許文献6、特許文献7、特許文献8など)しかしながら、これらの材料をガラス基板に代えてアクティブマトリックス表示素子基板などに用いると耐熱性が不充分であった。   In order to solve such problems, the refractive index is adjusted by adjusting the composition of the styrene-methacrylate copolymer to match the refractive index with the glass fiber, or by blending acrylic resin and styrene-acrylonitrile copolymer. Various methods have been proposed, such as a method for adjusting the refractive index by adjusting the composition of the N-substituted maleimide-olefin copolymer. However, when these materials are used for an active matrix display element substrate or the like instead of a glass substrate, heat resistance is insufficient.

また、表示用樹脂基板に求められる特性のひとつにガスや水蒸気を遮断するバリア性がある。バリア性能が高い樹脂基板ほど、例えば液晶表示素子であれば、酸素や水蒸気の液晶セル内への進入を妨げる効果が大きく液晶の劣化すなわち表示品位の劣化を防ぐことができる。   Further, one of the characteristics required for the display resin substrate is a barrier property that blocks gas and water vapor. If the resin substrate has a higher barrier performance, for example, if it is a liquid crystal display element, the effect of preventing the entry of oxygen and water vapor into the liquid crystal cell is great, and deterioration of the liquid crystal, that is, display quality can be prevented.

このような問題を解決するため、樹脂基板上に酸化珪素を蒸着したものや、酸化アルミニウムを蒸着したものが考案(特許文献1、特許文献2など)されているが、表示素子用樹脂基板用途とするにはより高いバリア性能が要求されている。
特開昭53−12953号公報 特開昭58−217344号公報 特開平6−337408 特開2001−59015 特開2001−59014 特開昭54−24993号公報 特公平6−94523号公報 特許第3216179号公報
In order to solve such problems, those in which silicon oxide is vapor-deposited on a resin substrate and those in which aluminum oxide is vapor-deposited have been devised (Patent Document 1, Patent Document 2, etc.). Therefore, higher barrier performance is required.
JP-A-53-12953 JP 58-217344 A JP-A-6-337408 JP 2001-59015 A JP 2001-59014 A JP 54-24993 A Japanese Patent Publication No. 6-94523 Japanese Patent No. 3216179

本発明の目的は、ガス・水蒸気バリア性が高く、かつ線膨張係数が小さく、透明性、耐熱性に優れ、ガラスに代替可能な透明積層体を提供することにある。本発明の透明積層体は、アクティブマトリックスタイプを含む液晶表示素子用基板、有機EL表示素子基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などの光学シート、透明板、光学レンズ、光学素子、光導波路、LED封止材等に好適に用いられる。   An object of the present invention is to provide a transparent laminate having a high gas / water vapor barrier property, a small linear expansion coefficient, excellent transparency and heat resistance, and capable of replacing glass. The transparent laminate of the present invention is a liquid crystal display element substrate including an active matrix type, an organic EL display element substrate, a color filter substrate, a touch panel substrate, an optical sheet such as a solar cell substrate, a transparent plate, an optical lens, and an optical element. It is suitably used for optical waveguides, LED sealing materials and the like.

本発明者らは上記課題を達成すべく鋭意検討した。その結果、透明樹脂(a)とガラスフィラー(b)からなる透明複合体組成物1の少なくとも片面に樹脂組成物2を積層させ、さらに樹脂組成物2の層の外側に透明な無機物から成る無機物質層3を堆積させた透明積層体がアクティブマトリックスタイプを含む液晶表示素子用基板、有機EL表示素子基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などの光学シート、透明板、光学レンズ、光学素子、光導波路、LED封止材等に好適に用いられる利用できることを見出し、本発明を完成するに至った。   The present inventors diligently studied to achieve the above problems. As a result, the resin composition 2 is laminated on at least one surface of the transparent composite composition 1 composed of the transparent resin (a) and the glass filler (b), and the inorganic material composed of a transparent inorganic substance is formed outside the layer of the resin composition 2. Optical sheets such as liquid crystal display element substrates, organic EL display element substrates, color filter substrates, touch panel substrates, solar cell substrates, etc., in which the transparent laminate on which the material layer 3 is deposited includes an active matrix type, transparent plates, optical lenses The present invention was completed by finding that it can be suitably used for optical elements, optical waveguides, LED sealing materials and the like.

すなわち本発明は、
(1)透明樹脂(a)とガラスフィラー(b)からなる透明複合体組成物1の少なくとも片面に樹脂組成物2を積層させ、さらに樹脂組成物2の層の外側に透明な無機物から成る無機物質層3を堆積させた積層体であって、該積層体のJIS K 7129 Bに規定する水蒸気透過度が0.1[g/m2/day/40℃、90%RH]以下であり、か
つ30〜150℃の平均線膨張係数が40ppm以下である透明積層体。
(2)前記透明樹脂(a)が、2つ以上の官能基を有するエポキシ樹脂を主成分とするエポキシ樹脂硬化物を構成成分として含む(1)の透明積層体。
(3)前記エポキシ樹脂硬化物が、酸無水物系硬化剤で硬化した架橋体または、カチオン系硬化触媒で硬化した架橋体を構成成分として含む(2)の透明積層体。
(4)前記透明複合体組成物1中の透明樹脂(a)が、トリグリシジルイソシアヌレート、または脂環式エポキシ樹脂を構成成分として含む(1)の透明積層体。
(5)前記透明複合体組成物1中の透明樹脂(a)が下記化学式(1)で示される水添ビフェニル型脂環式エポキシ樹脂を構成成分として含む(1)の透明積層体。
That is, the present invention
(1) An inorganic material comprising a transparent composite composition 1 composed of a transparent resin (a) and a glass filler (b), the resin composition 2 being laminated on at least one side, and a transparent inorganic substance on the outside of the resin composition 2 layer. A layered product in which the material layer 3 is deposited, and the water vapor permeability specified in JIS K 7129 B of the layered product is 0.1 [g / m 2 / day / 40 ° C., 90% RH] or less, And the transparent laminated body whose average linear expansion coefficient of 30-150 degreeC is 40 ppm or less.
(2) The transparent laminate according to (1), wherein the transparent resin (a) includes, as a constituent component, a cured epoxy resin mainly composed of an epoxy resin having two or more functional groups.
(3) The transparent laminate according to (2), wherein the epoxy resin cured product includes a crosslinked product cured with an acid anhydride curing agent or a crosslinked product cured with a cationic curing catalyst as a constituent component.
(4) The transparent laminate according to (1), wherein the transparent resin (a) in the transparent composite composition 1 contains triglycidyl isocyanurate or an alicyclic epoxy resin as a constituent component.
(5) The transparent laminate of (1), wherein the transparent resin (a) in the transparent composite composition 1 contains a hydrogenated biphenyl alicyclic epoxy resin represented by the following chemical formula (1) as a constituent component.

Figure 0004292952
(6)前記透明複合体組成物1中の透明樹脂(a)がオキセタニル基をもつシルセスキオキサン(c)を構成成分として含む(1)の透明積層体。
(7) 前記透明複合体組成物1中の透明樹脂(a)の硬化後の屈折率と前記ガラスフィラー(b)の屈折率との差が0.01以下である(1)〜(6)の透明積層体。
(8) 前記透明複合体組成物1中のガラスフィラー(b)の屈折率が1.45〜1.55である(1)〜(7)の透明積層体。
(9) 前記透明複合体組成物1中のガラスフィラー(b)がガラス繊維布である(1)〜(8)の透明積層体。
(10) 前記樹脂組成物2がアクリレートモノマーから成る紫外線硬化性樹脂組成物かもしくはエポキシ系の紫外線硬化性樹脂である(1)〜(9)の透明積層体。
(11) 前記樹脂組成物2が脂環式エポキシを含む(1)〜(10)の透明積層体。
(12) 前記無機物質層3がSi、Ta、Nb、Al、In、W、Sn、Zn、Ti、Cu、Ce、Ca、Na、B、Pb、Mg、P、Ba、Ge、Li、KおよびZrか
ら選ばれる1種以上を含む酸化物または窒化物または酸化窒化物を主成分とする(1)〜(11)の透明積層体。
(13) (1)〜(12)の透明積層体の無機物質層3のさらに外側に樹脂組成物21を積層させた透明積層体。
(14) (13)の透明積層体の樹脂組成物21のさらに外側に無機物質層31を堆積させた透明積層体。
(15) 前記樹脂組成物21がアクリレートモノマーから成る紫外線硬化性樹脂組成物かもしくはエポキシ系の紫外線硬化性樹脂である(13)、(14)の透明積層体。
(16) 前記樹脂組成物21が脂環式エポキシを含む(13)、(14)の透明積層体。
(17) 前記無機物質層31がSi、Ta、Nb、Al、In、W、Sn、Zn、Ti、Cu、Ce、Ca、Na、B、Pb、Mg、P、Ba、Ge、Li、KおよびZrから選ばれる1種以上を含む酸化物または窒化物または酸化窒化物を主成分とする(14)の透明積層体。
(18) 波長550nmでの光線透過率が50%以上であることを特徴とする(1)〜(17)の透明積層体。
(19) (1)〜(18)の透明積層体を用いた表示素子用プラスチック基板。
(20) (1)〜(18)の透明積層体を用いたアクティブマトリックス表示素子用基板。
である。
Figure 0004292952
(6) The transparent laminate of (1), wherein the transparent resin (a) in the transparent composite composition 1 contains silsesquioxane (c) having an oxetanyl group as a constituent component.
(7) The difference between the refractive index after curing of the transparent resin (a) in the transparent composite composition 1 and the refractive index of the glass filler (b) is 0.01 or less (1) to (6) Transparent laminate.
(8) The transparent laminate of (1) to (7), wherein the refractive index of the glass filler (b) in the transparent composite composition 1 is 1.45 to 1.55.
(9) The transparent laminate of (1) to (8), wherein the glass filler (b) in the transparent composite composition 1 is a glass fiber cloth.
(10) The transparent laminate of (1) to (9), wherein the resin composition 2 is an ultraviolet curable resin composition comprising an acrylate monomer or an epoxy ultraviolet curable resin.
(11) The transparent laminate of (1) to (10), wherein the resin composition 2 contains an alicyclic epoxy.
(12) The inorganic material layer 3 is made of Si, Ta, Nb, Al, In, W, Sn, Zn, Ti, Cu, Ce, Ca, Na, B, Pb, Mg, P, Ba, Ge, Li, K And a transparent laminate of (1) to (11), the main component of which is an oxide, nitride or oxynitride containing at least one selected from Zr.
(13) The transparent laminated body which laminated | stacked the resin composition 21 on the further outer side of the inorganic substance layer 3 of the transparent laminated body of (1)-(12).
(14) A transparent laminate in which an inorganic substance layer 31 is deposited on the outer side of the resin composition 21 of the transparent laminate of (13).
(15) The transparent laminate of (13) and (14), wherein the resin composition 21 is an ultraviolet curable resin composition comprising an acrylate monomer or an epoxy ultraviolet curable resin.
(16) The transparent laminate of (13) and (14), wherein the resin composition 21 contains an alicyclic epoxy.
(17) The inorganic material layer 31 is made of Si, Ta, Nb, Al, In, W, Sn, Zn, Ti, Cu, Ce, Ca, Na, B, Pb, Mg, P, Ba, Ge, Li, K. (14) The transparent laminated body which has as a main component the oxide or nitride or oxynitride containing 1 or more types chosen from Zr.
(18) The transparent laminate according to (1) to (17), wherein the light transmittance at a wavelength of 550 nm is 50% or more.
(19) A plastic substrate for a display element using the transparent laminate of (1) to (18).
(20) A substrate for an active matrix display element using the transparent laminate of (1) to (18).
It is.

以上のように本発明の透明積層体は、高いガスバリア性を持ち、低線膨張係数で、透明性や耐熱性に優れ、透明板、光学レンズ、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、導光板、光学素子、光導波路、LED封止材等に好適に利用できる。   As described above, the transparent laminate of the present invention has a high gas barrier property, a low linear expansion coefficient, excellent transparency and heat resistance, a transparent plate, an optical lens, a plastic substrate for a liquid crystal display element, a substrate for a color filter, It can be suitably used for plastic substrates for organic EL display elements, solar cell substrates, touch panels, light guide plates, optical elements, optical waveguides, LED sealing materials, and the like.

以下、本発明を詳細に説明する。
本発明に用いられる透明複合体組成物1は透明樹脂(a)とガラスフィラー(b)から成ることを特徴とする。透明樹脂(a)について、好ましくは2つ以上の官能基を有するエポキシ樹脂を主成分とする硬化したエポキシ樹脂を用いることにより、優れた耐熱性と良好な透明性を両立することができる。より好ましくは一般式(1)で示される水添ビフェニル型脂環式エポキシ樹脂を用いることにより、極めて優れた耐熱性と良好な透明性を両立することができる。具体的には、熱カチオン系硬化触媒で水添ビフェニル型脂環式エポキシ樹脂を硬化した場合には、ガラス転移温度が300℃で透明な硬化物を得ることができる。
Hereinafter, the present invention will be described in detail.
The transparent composite composition 1 used in the present invention is characterized by comprising a transparent resin (a) and a glass filler (b). About the transparent resin (a), it is possible to achieve both excellent heat resistance and good transparency by using a cured epoxy resin that is preferably composed mainly of an epoxy resin having two or more functional groups. More preferably, by using the hydrogenated biphenyl type alicyclic epoxy resin represented by the general formula (1), it is possible to achieve both excellent heat resistance and good transparency. Specifically, when a hydrogenated biphenyl type alicyclic epoxy resin is cured with a thermal cationic curing catalyst, a transparent cured product having a glass transition temperature of 300 ° C. can be obtained.

本発明の透明樹脂(a)は、ガラスフィラー(b)との屈折率を合わせる目的で水添ビフェニル型脂環式エポキシ樹脂と屈折率の異なる成分を併用することが好ましい。水添ビフェニル型脂環式エポキシ樹脂と屈折率の異なる成分としては、併用することでガラスフィラー(b)と屈折率を合わせる事ができ、透明な複合体を得ることができる成分であれば特に制限されないが、エポキシ基を有する化合物やオキセタニル基を有する化合物が、水添ビフェニル型脂環式エポキシ樹脂と共架橋するので好ましい。   The transparent resin (a) of the present invention preferably uses a component having a refractive index different from that of the hydrogenated biphenyl type alicyclic epoxy resin for the purpose of matching the refractive index with the glass filler (b). The component having a refractive index different from that of the hydrogenated biphenyl type alicyclic epoxy resin is particularly a component that can be combined with the glass filler (b) to have a refractive index and can obtain a transparent composite. Although not limited, a compound having an epoxy group or a compound having an oxetanyl group is preferable because it co-crosslinks with the hydrogenated biphenyl type alicyclic epoxy resin.

ガラスフィラー(b)として、NEガラスやSガラスを用いる場合には、水添ビフェニル型脂環式エポキシ樹脂よりも屈折率の低い樹脂を併用することが好ましい。水添ビフェニル型脂環式エポキシ樹脂よりも屈折率の低い成分としては、各種のエポキシ基を有する化合物やオキセタニル基を有する化合物を用いることができるが、耐熱性が優れていることからオキセタニル基を有するシルセスキオキサン(c)が特に好ましい。オキセタニル
基を有するシルセスキオキサン(c)を併用することで、優れた耐熱性を維持したまま、ガラスフィラー(b)と屈折率を合わせる事ができる。
When NE glass or S glass is used as the glass filler (b), it is preferable to use a resin having a refractive index lower than that of the hydrogenated biphenyl type alicyclic epoxy resin. As a component having a refractive index lower than that of the hydrogenated biphenyl type alicyclic epoxy resin, various compounds having an epoxy group and compounds having an oxetanyl group can be used, but since the heat resistance is excellent, the oxetanyl group is used. The silsesquioxane (c) is particularly preferred. By using together the silsesquioxane (c) which has an oxetanyl group, a refractive index can be match | combined with a glass filler (b), maintaining the outstanding heat resistance.

本発明で用いられる透明樹脂(a)は、耐熱性が高い硬化物が得られることからカチオン系硬化触媒(d)で硬化することが好ましい。カチオン系硬化触媒(d)としては、加熱によりカチオン重合を開始させる物質を放出する開始剤や活性エネルギー線によってカチオン重合を開始させる物質を放出させる開始剤などがあげられるが、耐熱性が高い硬化物が得られることから加熱によりカチオン重合を開始する物質を放出する開始剤、すなわち熱カチオン系硬化触媒が特に好ましい。   The transparent resin (a) used in the present invention is preferably cured with a cationic curing catalyst (d) because a cured product having high heat resistance is obtained. Examples of the cationic curing catalyst (d) include an initiator that releases a substance that initiates cationic polymerization by heating and an initiator that releases a substance that initiates cationic polymerization by active energy rays. In particular, an initiator that releases a substance that initiates cationic polymerization upon heating, that is, a thermal cationic curing catalyst, is preferable because a product is obtained.

好ましい熱カチオン硬化触媒としては、芳香族スルホニウム塩、芳香族ヨードニウム塩、アルミニウムキレートなどがある。   Preferred thermal cation curing catalysts include aromatic sulfonium salts, aromatic iodonium salts, aluminum chelates and the like.

本発明の透明樹脂(a)の屈折率とガラスフィラー(b)の屈折率との差は、優れた透明性を維持するため0.01以下であることが好ましく、0.005以下がより好ましい。屈折率差が0.01より大きい場合には、得られるプラスチック基板の透明性が劣る傾向があ
る。
The difference between the refractive index of the transparent resin (a) of the present invention and the refractive index of the glass filler (b) is preferably 0.01 or less, more preferably 0.005 or less in order to maintain excellent transparency. . When the refractive index difference is larger than 0.01, the resulting plastic substrate tends to be inferior in transparency.

本発明で用いるガラスフィラー(b)の屈折率は、優れた透明性の複合体を得るため1.
45〜1.55であるのが好ましい。特にガラスフィラー(b)の屈折率が1.50〜1.
54の場合には、ガラスのアッベ数に近い透明樹脂が選択できるので特に好ましい。透明樹脂とガラスとのアッベ数が近いと広い波長領域で屈折率が一致し、広範囲で高い光線透過率が得られる。
The refractive index of the glass filler (b) used in the present invention is 1. in order to obtain an excellent transparent composite.
It is preferably 45 to 1.55. In particular, the refractive index of the glass filler (b) is 1.50 to 1.
In the case of 54, a transparent resin close to the Abbe number of glass can be selected, which is particularly preferable. When the Abbe number between the transparent resin and the glass is close, the refractive indexes coincide in a wide wavelength region, and a high light transmittance can be obtained in a wide range.

本発明で用いるガラスフィラー(b)としては、ガラス繊維、ガラスクロスやガラス不織布などのガラス繊維布、ガラスビーズ、ガラスフレーク、ガラスパウダー、ミルドガラスなどがあげられ、中でも線膨張係数の低減効果が高いことから、ガラス繊維、ガラスクロス、ガラス不織布が好ましく、ガラスクロスが最も好ましい。   Examples of the glass filler (b) used in the present invention include glass fiber cloths such as glass fiber, glass cloth and glass nonwoven fabric, glass beads, glass flakes, glass powder, and milled glass. Since it is high, glass fiber, glass cloth and glass nonwoven fabric are preferable, and glass cloth is most preferable.

ガラスの種類としては、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、クオーツ、低誘電率ガラス、高誘電率ガラスなどが挙げられ、中でもアルカリ金属などのイオン性不純物がすくなく入手の容易なEガラス、Sガラス、Tガラス、NEガラスが好ましい。   Examples of the glass include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, quartz, low dielectric constant glass, and high dielectric constant glass. E glass, S glass, T glass, and NE glass, which have few impurities and are easily available, are preferred.

ガラスフィラー(b)の配合量は1〜90重量%が好ましく、より好ましくは10〜80重量%、さらに好ましくは30〜70重量%である。ガラスフィラー(b)の配合量がこの範囲であれば成形が容易で、複合化による線膨張の低下の効果が認められる。   The blending amount of the glass filler (b) is preferably 1 to 90% by weight, more preferably 10 to 80% by weight, and still more preferably 30 to 70% by weight. If the blending amount of the glass filler (b) is within this range, molding is easy, and the effect of reducing linear expansion due to compounding is recognized.

本発明の透明複合体組成物1においては、ガラスフィラー(b)と樹脂とが密着しているほど、表示素子用プラスチック基板など複合体組成物の透明性がよくなるため、ガラスフィラー(b)表面をシランカップリング剤などの公知の表面処理剤で処理するのが好ましい。好ましいシランカップリング剤しては、カチオン硬化触媒で樹脂とともに反応することからエポキシシランやオキセタニルシランなどがあげられる。   In the transparent composite composition 1 of the present invention, as the glass filler (b) and the resin are in close contact with each other, the transparency of the composite composition such as a plastic substrate for display elements is improved. Is preferably treated with a known surface treating agent such as a silane coupling agent. Preferable silane coupling agents include epoxy silane and oxetanyl silane because they react with a resin with a cationic curing catalyst.

本発明の複合体組成物には、必要に応じて、透明性、耐溶剤性、耐熱性等の特性を損なわない範囲で、熱可塑性又は熱硬化性のオリゴマーやポリマーを併用してよい。これら熱可塑性または熱硬化性のオリゴマーやポリマーを併用する場合は、全体の屈折率がガラスフィラー(b)の屈折率に合うように組成比を調整する必要がある。また、本発明の透明複合体組成物1中には、必要に応じて、透明性、耐溶剤性、耐熱性等の特性を損なわない範囲で、少量の酸化防止剤、紫外線吸収剤、染顔料、他の無機フィラー等の充填剤等を含
んでいても良い。
If necessary, the composite composition of the present invention may be used in combination with a thermoplastic or thermosetting oligomer or polymer as long as the properties such as transparency, solvent resistance and heat resistance are not impaired. When these thermoplastic or thermosetting oligomers and polymers are used in combination, it is necessary to adjust the composition ratio so that the overall refractive index matches the refractive index of the glass filler (b). Further, in the transparent composite composition 1 of the present invention, a small amount of an antioxidant, an ultraviolet absorber, and a dye / pigment are included in a range that does not impair the properties such as transparency, solvent resistance, and heat resistance, if necessary. In addition, a filler such as other inorganic fillers may be included.

透明複合体組成物1の成形方法に制限はなく、例えば、未硬化の樹脂組成物とガラスフィラー(b)とを直接混合し、必要な型に注型したのち架橋させてシートなどとする方法、未硬化の樹脂組成物を溶剤に溶解しガラスフィラー(b)を分散させキャストした後、架橋させてシートなどとする方法、未硬化の樹脂組成物をガラスクロスやガラス不織布に含浸させたのち架橋させてシートなどとする方法等々が挙げられる。   There is no restriction | limiting in the shaping | molding method of the transparent composite composition 1, For example, the method which mix | blends an uncured resin composition and a glass filler (b) directly, casts into a required type | mold, and is made into a sheet | seat etc. , A method in which an uncured resin composition is dissolved in a solvent and the glass filler (b) is dispersed and cast, followed by crosslinking to form a sheet, etc., after impregnating a glass cloth or a glass nonwoven fabric with the uncured resin composition Examples of the method include cross-linking to form a sheet.

本発明の透明積層体を、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル等の光学用途として用いる場合、基板の厚さは好ましくは50〜2000μmであり、より好ましくは50〜1000μmである。基板の厚さがこの範囲にあると平坦性に優れ、ガラス基板と比較して基板の軽量化を図ることができる。   When the transparent laminate of the present invention is used for optical applications such as a liquid crystal display element plastic substrate, a color filter substrate, an organic EL display element plastic substrate, a solar cell substrate, and a touch panel, the thickness of the substrate is preferably from 50 to 50. It is 2000 micrometers, More preferably, it is 50-1000 micrometers. When the thickness of the substrate is within this range, the flatness is excellent, and the weight of the substrate can be reduced as compared with the glass substrate.

また、この透明積層体を前記光学用途として用いる場合、30〜150℃における平均線膨張係数が40ppm以下であることが好ましく、より好ましくは30ppm以下、最も好ましくは20ppm以下である。例えば、この透明積層体をアクティブマトリックス表示素子基板に用いた場合、この上限値を越えると、その製造工程において反りやアルミ配線の断線などの問題が生じる恐れがある。   Moreover, when using this transparent laminated body for the said optical use, it is preferable that the average linear expansion coefficient in 30-150 degreeC is 40 ppm or less, More preferably, it is 30 ppm or less, Most preferably, it is 20 ppm or less. For example, when this transparent laminate is used for an active matrix display element substrate, if this upper limit is exceeded, problems such as warping and disconnection of aluminum wiring may occur in the manufacturing process.

本発明の透明積層体の樹脂組成物2および樹脂組成物21の樹脂は優れた透明性、耐熱性、耐薬品性を有していることが好ましく、具体的には多官能アクリレートやエポキシ樹脂などが好ましい。より具体的には、脂環式エポキシ、エポキシアクリレート、ウレタンアクリレート、イソシアヌール酸トリアクリレート、ネオペンチルアクリレート、ペンタエリスリトールアクリレート、トリメチロールプロパンアクリレート、エチレングリコールアクリレート、ポリエステルアクリレート等の少なくとも一種以上含む組成物を用いることができる。   The resin of the transparent laminate resin composition 2 and the resin composition 21 of the present invention preferably have excellent transparency, heat resistance, and chemical resistance, and specifically, polyfunctional acrylates, epoxy resins, and the like Is preferred. More specifically, a composition containing at least one of alicyclic epoxy, epoxy acrylate, urethane acrylate, isocyanuric acid triacrylate, neopentyl acrylate, pentaerythritol acrylate, trimethylolpropane acrylate, ethylene glycol acrylate, polyester acrylate and the like. Can be used.

樹脂組成物2および樹脂組成物21の厚みは0.1〜50μmが好ましく、厚みが0.
1μm以下であると十分な表面平滑性が得られずかつ無機物質層との十分な接着性も得られない。このような樹脂組成物2または樹脂組成物21の上に堆積させる無機物質層3は十分な膜質が得られず、透明積層体のバリア性能が劣化する。また逆に50μm以上になると樹脂組成物2の層の曲げに対する耐性が劣るため好ましくない。より好ましくは0.
5〜30μmの範囲であり、この範囲にすることで表面性と曲げ耐久性がすぐれた透明積層体となる。
As for the thickness of the resin composition 2 and the resin composition 21, 0.1-50 micrometers is preferable, and thickness is 0.00.
When the thickness is 1 μm or less, sufficient surface smoothness cannot be obtained, and sufficient adhesion to the inorganic material layer cannot be obtained. The inorganic material layer 3 deposited on the resin composition 2 or the resin composition 21 does not have sufficient film quality, and the barrier performance of the transparent laminate is deteriorated. Conversely, if it is 50 μm or more, the resistance to bending of the layer of the resin composition 2 is inferior, which is not preferable. More preferably 0.
It is the range of 5-30 micrometers, By setting it as this range, it becomes a transparent laminated body which was excellent in surface property and bending durability.

本発明の透明積層体の無機物質層3および無機物質層31についてはSi、Ta、Nb、Al、In、W、Sn、Zn、Ti、Cu、Ce、Ca、Na、B、Pb、Mg、P、Ba、Ge、Li、KおよびZrから選ばれる1種以上を含む酸化物または窒化物または酸化窒化物を主成分とすることがこのましい。これらの物質は良好なガス水蒸気バリア性および透明性を両立させるものである。無機物質層3および無機物質層31の厚みに関しては特に限定はしないが、厚さ10〜500nmが好ましい。この範囲であれば、良好な光線透過率と水蒸気バリア性および曲げによるクラック耐性が得られる。窒化酸化珪素層の形成方法については真空蒸着、イオンプレーティング、CVD、スパッタリングなどの手段で実現される。特に、組成のコントロール性がよく、緻密な膜を形成できるスパッタリングやCVDが好ましい。スパッタリングには原材料としてSi、Ta、Nb、Al、In、W、Sn、Zn、Ti、Cu、Ce、Ca、Na、B、Pb、Mg、P、Ba、Ge、Li、KおよびZrから選ばれる1種以上を含む酸化物または窒化物または酸化窒化物を用いるRFスパッタリング方式がある。また、Si、Ta、Nb、Al、In、W、Sn、Zn、Ti、Cu、Ce、Ca、Na、B、Pb、Mg、P、Ba、Ge、Li、
K、およびZrから選ばれる1種以上を含むターゲットを用いてプロセス中に反応性ガスとしてOやNを導入するDCスパッタリング方式もあるがこの場合はRFスパッタリング方式も選択できる。
For the inorganic material layer 3 and the inorganic material layer 31 of the transparent laminate of the present invention, Si, Ta, Nb, Al, In, W, Sn, Zn, Ti, Cu, Ce, Ca, Na, B, Pb, Mg, It is preferable that the main component is an oxide, nitride, or oxynitride containing one or more selected from P, Ba, Ge, Li, K, and Zr. These substances achieve both good gas water vapor barrier properties and transparency. The thickness of the inorganic material layer 3 and the inorganic material layer 31 is not particularly limited, but a thickness of 10 to 500 nm is preferable. If it is this range, favorable light transmittance, water vapor | steam barrier property, and the crack tolerance by bending will be obtained. About the formation method of a silicon oxynitride layer, it implement | achieves by means, such as vacuum evaporation, ion plating, CVD, sputtering. In particular, sputtering and CVD, which have good composition controllability and can form a dense film, are preferable. For sputtering, raw materials are selected from Si, Ta, Nb, Al, In, W, Sn, Zn, Ti, Cu, Ce, Ca, Na, B, Pb, Mg, P, Ba, Ge, Li, K, and Zr There is an RF sputtering method using an oxide, a nitride, or an oxynitride containing one or more of the above. Also, Si, Ta, Nb, Al, In, W, Sn, Zn, Ti, Cu, Ce, Ca, Na, B, Pb, Mg, P, Ba, Ge, Li,
There is also a DC sputtering method in which O 2 or N 2 is introduced as a reactive gas during the process using a target containing one or more selected from K and Zr. In this case, an RF sputtering method can also be selected.

本発明の各層の構成については、透明複合体組成物1、樹脂組成物2および無機物質層3で構成されるのが基本であるが、用途に応じて樹脂組成物21や無機物質層31を積層することができる。例えば、本発明の透明積層体を液晶表示素子として用いる場合には無機物質層3の上に樹脂組成物21を積層することで液晶表示素子を作成するプロセスにおける無機物質層3へのキズやダメージを防ぐことができる。また本発明の透明積層体をガスや水分、イオン性不純物等に非常に敏感な素子に用いる場合は、無機物質と比較してガスや水分やイオン性不純物を含有しやすい樹脂組成物21の上に無機物質層31を積層することで素子を微量なガスや水分、イオン性不純物から守ることもできる。さらに、樹脂組成物2および無機物質層3又は、樹脂組成物2、無機物質層3、樹脂組成物21および無機物質層31の構成を透明複合体組成物1の反対面側に積層することも可能で、これらの構成とすることで、例えば電極の成膜等の真空プロセス中で、透明複合体組成物1や樹脂組成物2および21の持つガスや水分、イオン性不純物等の排出をより抑えることができ、良好な真空プロセスを行うことができる。このような構成は、透明複合体組成物1を挟んで対照的な構成であり、反りを起こしにくいことも優れた特徴である。   About the structure of each layer of this invention, although it is fundamentally comprised by the transparent composite composition 1, the resin composition 2, and the inorganic substance layer 3, depending on a use, the resin composition 21 and the inorganic substance layer 31 are comprised. Can be stacked. For example, when the transparent laminate of the present invention is used as a liquid crystal display element, scratches and damages to the inorganic material layer 3 in the process of forming the liquid crystal display element by laminating the resin composition 21 on the inorganic material layer 3. Can be prevented. When the transparent laminate of the present invention is used for an element that is very sensitive to gas, moisture, ionic impurities, etc., the resin composition 21 is more likely to contain gas, moisture, ionic impurities than inorganic substances. The element can be protected from a very small amount of gas, moisture, and ionic impurities by laminating the inorganic material layer 31 on the surface. Further, the resin composition 2 and the inorganic substance layer 3 or the resin composition 2, the inorganic substance layer 3, the resin composition 21 and the inorganic substance layer 31 may be laminated on the opposite side of the transparent composite composition 1. With these configurations, the gas, moisture, ionic impurities, etc. of the transparent composite composition 1 and the resin compositions 2 and 21 can be more discharged in a vacuum process such as film formation of electrodes, for example. Therefore, a good vacuum process can be performed. Such a configuration is a contrasting configuration with the transparent composite composition 1 sandwiched therebetween, and is also excellent in that it does not easily warp.

本発明の透明積層体を包装用フィルム等に用いる場合は波長550nmにおける光線透過率が少なくとも50%以上必要である。また、表示基板用プラスチック基板として用いる場合、波長550nmにおける光線透過率80%以上が必要であり、さらに好ましくは85%以上であり、最も好ましくは88%以上である。波長550nmにおける光線透過率が80%より低いと表示性能が充分でない。   When the transparent laminate of the present invention is used for a packaging film or the like, the light transmittance at a wavelength of 550 nm is required to be at least 50%. Further, when used as a plastic substrate for a display substrate, the light transmittance at a wavelength of 550 nm is required to be 80% or more, more preferably 85% or more, and most preferably 88% or more. If the light transmittance at a wavelength of 550 nm is lower than 80%, the display performance is not sufficient.

以下、本発明の内容を実施例により詳細に説明するが、本発明は、その要旨を越えない限り以下の例に限定されるものではない。
(実施例1)
Sガラス系ガラスクロス(厚さ100μm、屈折率1.528、ユニチカクロス製、#2117タイプ)を焼きだしし、有機物を除去した後、グリシドキシプロピルトリメトキシ
シラン(エポキシシラン)で処理した。このガラスクロスに、水添ビフェニル型脂環式エポキシ樹脂(ダイセル化学工業製E−BP)94重量部、オキセタニル基を有するシルキセスキオキサン(東亞合成製OX−SQ)4重量部、芳香族スルホニウム系熱カチオン触媒(三新化学製SI−100L)1重量部を溶融混合した樹脂(硬化後の樹脂の屈折率1.530)を含浸し、脱泡した。このガラスクロスを離型処理したガラス板に挟み込んで、オーブン中、80℃にて2時間加熱後、さらに200℃にて2時間加熱して、厚さ0.1m
mのシート状の透明複合体組成物1を得た。つぎに水添ビフェニル型脂環式エポキシを80重量部、オキセタニル基を有するシルセスキオキサンを17重量部、光カチオン開始剤3重量部を均一に混合させ、透明複合体組成物1の片面にワイヤーバーで塗布した後、高圧水銀灯にて1100mJ/cmの紫外線を照射しさらに250℃で2時間加熱することで厚さ5μmの樹脂組成物2を積層した。つぎに、樹脂組成物2を積層した面を堆積面としてRFスパッタリング装置の真空チャンバー内へセットした。5×10−4Paの真空に達したところでArガスを0.1Pa導入し、透明積層体と原材料のSiOターゲットの間に0.3kWのRF電力を投入し放電を開始した。放電が安定したところで透明積層体と原材料の間に具備されたシャッターを開き透明積層体の樹脂組成物2上へのSiOxから成る無機物質層3の堆積を開始した。無機物質層3が100nm堆積したところでシャッターを閉じて堆積を終了し、真空チャンバーを大気開放して透明積層体を得た。
Hereinafter, the contents of the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
(Example 1)
S glass-based glass cloth (thickness: 100 μm, refractive index: 1.528, manufactured by Unitika cloth, # 2117 type) was baked to remove organic substances, and then treated with glycidoxypropyltrimethoxysilane (epoxysilane). In this glass cloth, 94 parts by weight of hydrogenated biphenyl type alicyclic epoxy resin (E-BP manufactured by Daicel Chemical Industries), 4 parts by weight of silxesquioxane (OX-SQ manufactured by Toagosei Co., Ltd.) having an oxetanyl group, aromatic sulfonium The resin was melted and mixed with 1 part by weight of a system thermal cation catalyst (SI-100L, manufactured by Sanshin Chemical Co., Ltd.) (refractive index of cured resin 1.530) and defoamed. The glass cloth was sandwiched between release-molded glass plates, heated in an oven at 80 ° C. for 2 hours, and further heated at 200 ° C. for 2 hours to obtain a thickness of 0.1 m.
m sheet-like transparent composite composition 1 was obtained. Next, 80 parts by weight of hydrogenated biphenyl type alicyclic epoxy, 17 parts by weight of silsesquioxane having an oxetanyl group, and 3 parts by weight of a photocationic initiator are mixed uniformly, and one side of the transparent composite composition 1 is mixed. After coating with a wire bar, a resin composition 2 having a thickness of 5 μm was laminated by irradiating with ultraviolet rays of 1100 mJ / cm 2 with a high pressure mercury lamp and further heating at 250 ° C. for 2 hours. Next, the surface on which the resin composition 2 was laminated was set as a deposition surface in a vacuum chamber of an RF sputtering apparatus. When a vacuum of 5 × 10 −4 Pa was reached, 0.1 Pa of Ar gas was introduced, and 0.3 kW of RF power was applied between the transparent laminate and the raw material SiO 2 target to start discharging. When the discharge was stabilized, the shutter provided between the transparent laminate and the raw material was opened, and deposition of the inorganic substance layer 3 made of SiOx on the resin composition 2 of the transparent laminate was started. When the inorganic material layer 3 was deposited to 100 nm, the shutter was closed to finish the deposition, and the vacuum chamber was opened to the atmosphere to obtain a transparent laminate.

(実施例2)
NEガラス系ガラスクロス(厚さ100μm、屈折率1.510、日東紡製)を焼きだし
して有機物を除去した後、グリシドキシプロピルトリメトキシシラン(エポキシシラン)で処理した。このガラスクロスに水添ビフェニル型脂環式エポキシ樹脂(ダイセル化学工業製E−BP)75重量部、オキセタニル基を有するシルキセスキオキサン(東亞合成製O
X−SQ)25重量部、芳香族スルホニウム系熱カチオン触媒(三新化学製SI−100
L)1重量部を溶融混合した樹脂(硬化後の樹脂の屈折率1.510)を含浸し、脱泡した。溶融混合した樹脂を含浸し、脱泡した。樹脂を含浸したこのガラスクロスを離型処理したガラス板に挟み込んで、オーブン中、実施例1と同条件にて加熱処理を行い、厚さ0.1mmのシート状の透明複合体組成物1を得た。つぎに、イソシアヌール酸トリアクリレート40重量部、光開始剤(チバガイギー社製 IRG−907)2.5重量部、メチルセロソルブアセテート(沸点=145℃)8.5重量部、乳酸エチル(沸点=155℃)30重量部,ブチルセロソルブ(沸点=170℃)6.0重量部にて撹拌、溶解してRC=48.8wt%の均一な溶液としたものを、透明複合体組成物1の片面にワイヤーバーにて塗布し、加熱乾燥機中90℃で5分間続いて120℃で2分間加熱して溶媒を除去後、高圧水銀灯にて350mJ/cmの紫外線を照射させ厚さ5μmの樹脂組成物2を積層した。つぎに、樹脂組成物2を積層した面を堆積面としてRFスパッタリング装置の真空チャンバー内へセットした。5×10−4Paの真空に達したところでArガスを0.5Pa、Oガスを0.005Pa導入し、透明積層体と原材料のSiターゲットの間に0.3kWのRF電力を投入し放電を開始した。放電が安定したところで透明積層体と原材料の間に具備されたシャッターを開き透明積層体の樹脂組成物2上へのSiOxNyから成る無機物質層3の堆積を開始した。無機物質層3が100nm堆積したところでシャッターを閉じて堆積を終了し、真空チャンバーを大気開放して透明積層体を得た。
(Example 2)
NE glass-based glass cloth (thickness: 100 μm, refractive index: 1.510, manufactured by Nittobo) was baked to remove organic substances, and then treated with glycidoxypropyltrimethoxysilane (epoxysilane). On this glass cloth, 75 parts by weight of hydrogenated biphenyl type alicyclic epoxy resin (E-BP manufactured by Daicel Chemical Industries) and silxesquioxane having an oxetanyl group (O manufactured by Toagosei Co., Ltd.)
X-SQ) 25 parts by weight, aromatic sulfonium-based thermal cation catalyst (SI-100 manufactured by Sanshin Chemical)
L) Impregnation was performed by impregnating a resin (refractive index of cured resin: 1.510) obtained by melting and mixing 1 part by weight. The melt-mixed resin was impregnated and degassed. The glass cloth impregnated with the resin is sandwiched between the release-treated glass plates and subjected to heat treatment in the oven under the same conditions as in Example 1 to obtain a sheet-like transparent composite composition 1 having a thickness of 0.1 mm. Obtained. Next, 40 parts by weight of isocyanuric acid triacrylate, 2.5 parts by weight of a photoinitiator (IRG-907 manufactured by Ciba Geigy), 8.5 parts by weight of methyl cellosolve acetate (boiling point = 145 ° C.), ethyl lactate (boiling point = 155) C.) 30 parts by weight, butyl cellosolve (boiling point = 170.degree. C.) is stirred and dissolved in 6.0 parts by weight to obtain a uniform solution of RC = 48.8 wt% on one side of the transparent composite composition 1 A resin composition having a thickness of 5 μm was applied by a bar, heated for 5 minutes at 90 ° C. in a heat dryer and then heated at 120 ° C. for 2 minutes to remove the solvent, and then irradiated with 350 mJ / cm 2 ultraviolet rays with a high-pressure mercury lamp. 2 were laminated. Next, the surface on which the resin composition 2 was laminated was set as a deposition surface in a vacuum chamber of an RF sputtering apparatus. When a vacuum of 5 × 10 −4 Pa is reached, 0.5 Pa of Ar gas and 0.005 Pa of O 2 gas are introduced, and an RF power of 0.3 kW is applied between the transparent laminate and the raw material Si 3 N 4 target. The discharge was started. When the discharge was stabilized, the shutter provided between the transparent laminate and the raw material was opened, and deposition of the inorganic substance layer 3 made of SiOxNy on the resin composition 2 of the transparent laminate was started. When the inorganic material layer 3 was deposited to 100 nm, the shutter was closed to finish the deposition, and the vacuum chamber was opened to the atmosphere to obtain a transparent laminate.

(実施例3)
平均粒径3.2μmのNEガラスパウダー(日東紡製、屈折率1.510)を焼きだしして有機物を除去した後、アクリロイロキシプロピルトリエトキシシラン(アクリルシラン)で処理した。このガラスパウダー100重量部を、ノルボルナンジメチロールジアクリレート(東亞合成製 TO−2111、架橋後の屈折率1.520)90重量部とヒドロキシピバルアルデシヒドとトリメチロールプロパンのアセタール化合物のジアクリレート(日本化薬(株)製KAYARAD R−604、架橋後の屈折率1.496)10重量部、光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(チバスペシャリティケミカル製のイルガキュア184)を0.5重量部とからなる樹脂(架橋後の屈折率1.512)に分散し、脱泡した。これを厚さ80μmのアルミ箔をスペーサーとしてガラス板に挟み込んで、両面から約10J/cm2のUV光を照射して硬化させた
。さらに真空オーブン中、250℃で3時間加熱し、0.1mmのシート状の透明複合体組成物1を得た。つぎに実施例2と同様にして樹脂組成物2および無機物質層3を積層して透明積層体を得た。
(Example 3)
NE glass powder having an average particle size of 3.2 μm (manufactured by Nittobo Co., Ltd., refractive index: 1.510) was baked to remove organic substances, and then treated with acryloyloxypropyltriethoxysilane (acrylic silane). 100 parts by weight of this glass powder was mixed with 90 parts by weight of norbornane dimethylol diacrylate (TO-2111 manufactured by Toagosei Co., Ltd., refractive index 1.520 after crosslinking), diacrylate of an acetal compound of hydroxypivalaldehyde and trimethylolpropane. (Nippon Kayaku Co., Ltd. KAYARAD R-604, refractive index after crosslinking 1.496) 10 parts by weight, 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 made by Ciba Specialty Chemicals) as a photopolymerization initiator It was dispersed in a resin consisting of 0.5 parts by weight (refractive index after cross-linking: 1.512) and defoamed. This was sandwiched between glass plates with an aluminum foil having a thickness of 80 μm as a spacer, and cured by irradiating UV light of about 10 J / cm 2 from both sides. Furthermore, it heated at 250 degreeC in the vacuum oven for 3 hours, and obtained the 0.1-mm sheet-like transparent composite composition 1. FIG. Next, the resin composition 2 and the inorganic material layer 3 were laminated in the same manner as in Example 2 to obtain a transparent laminate.

(実施例4)
実施例2と同様にして得られた透明積層体の無機物質層3上に、実施例2の樹脂組成物2と同様にして樹脂組成物21を積層した。つぎに、樹脂組成物21を積層した面を堆積面として実施例2の無機物質層3と同様にして樹脂組成物21上へのSiOxNyから成る無機物質層31の堆積を行った。
(Example 4)
A resin composition 21 was laminated on the inorganic material layer 3 of the transparent laminate obtained in the same manner as in Example 2 in the same manner as the resin composition 2 in Example 2. Next, the inorganic material layer 31 made of SiOxNy was deposited on the resin composition 21 in the same manner as the inorganic material layer 3 of Example 2 using the surface on which the resin composition 21 was laminated as a deposition surface.

(比較例1)
ビスフェノールA型エポキシ樹脂樹脂(商品名エピコート828、JER(株)製)100重量部、メチルヘキサヒドロフタル酸(商品名MH−700)78重量部、テトラフェニルホスホニウムブロマイド(北興化学工業製TPP−PB)1重量部を溶融混合し100℃/2h、200℃/2h硬化し厚さ300μmのシートを得た。
(比較例2)脂環式エポキシ樹脂(商品名CFL‐2021P)100重量部、メチルヘキサヒドロフタル酸(商品名MH−700)114重量部、テトラフェニルホスホニウムブロマイド(北興化学工業製TPP−PB)1重量部を溶融混合し100℃/2h、200℃/2h硬化し厚さ300μmのシートを得た。つぎに実施例1と同様にして樹脂組成物2を前記シートの片面に積層した。つぎに、樹脂組成物を積層した面を堆積面として実施例1と同様にして樹脂組成物2上へのSiOxから成る無機物質層の堆積を行いシート状の積層体を得た。
(Comparative Example 1)
100 parts by weight of bisphenol A type epoxy resin (trade name Epicoat 828, manufactured by JER), 78 parts by weight of methylhexahydrophthalic acid (trade name MH-700), tetraphenylphosphonium bromide (TPP-PB manufactured by Hokuko Chemical Industries) ) 1 part by weight was melt mixed and cured at 100 ° C./2 h and 200 ° C./2 h to obtain a sheet having a thickness of 300 μm.
(Comparative Example 2) 100 parts by weight of an alicyclic epoxy resin (trade name CFL-2021P), 114 parts by weight of methylhexahydrophthalic acid (trade name MH-700), tetraphenylphosphonium bromide (TPP-PB manufactured by Hokuko Chemical Co., Ltd.) 1 part by weight was melt-mixed and cured at 100 ° C./2 h and 200 ° C./2 h to obtain a sheet having a thickness of 300 μm. Next, the resin composition 2 was laminated on one side of the sheet in the same manner as in Example 1. Next, an inorganic substance layer made of SiOx was deposited on the resin composition 2 in the same manner as in Example 1 using the surface on which the resin composition was laminated as a deposition surface, to obtain a sheet-like laminate.

以上のようにして作製したシート状の透明積層体について、下記に示す評価方法により、各種特性を測定した。実施例、比較例の結果を表1に示す。
a)ガスバリア性
JIS K 7126B法による酸素透過性およびJIS K 7129B法40℃90%による水蒸気透過性の測定を行った。
b)平均線膨張係数
セイコー電子(株)製TMA/SS120C型熱応力歪測定装置を用いて、窒素雰囲気下、1分間に5℃の割合で温度を30℃から150℃まで上昇させた後、一旦0℃まで冷却し、再び1分間に5℃の割合で温度を上昇させて30℃〜150℃の時の値を測定して求めた。荷重を5gにし、引張モードで測定を行った。
c)耐熱性(Tg)
セイコー電子(株)製DMS―210型粘弾性測定装置で測定し、1Hzでのtanδの最大値をガラス転移温度(Tg)とした。
d)光線透過率
分光光度計U3200(島津製作所製)で550nmの光線透過率を測定した。
About the sheet-like transparent laminated body produced as mentioned above, various characteristics were measured with the evaluation method shown below. The results of Examples and Comparative Examples are shown in Table 1.
a) Gas barrier properties Oxygen permeability according to JIS K 7126B method and water vapor permeability according to JIS K 7129B method 40 ° C 90% were measured.
b) Average linear expansion coefficient After increasing the temperature from 30 ° C. to 150 ° C. at a rate of 5 ° C. per minute under a nitrogen atmosphere using a TMA / SS120C type thermal stress strain measuring device manufactured by Seiko Electronics Co., Ltd. Once cooled to 0 ° C., the temperature was increased again at a rate of 5 ° C. per minute, and the value at 30 ° C. to 150 ° C. was measured and determined. The load was 5 g and the measurement was performed in the tensile mode.
c) Heat resistance (Tg)
Measured with a DMS-210 viscoelasticity measuring device manufactured by Seiko Electronics Co., Ltd., and the maximum value of tan δ at 1 Hz was defined as the glass transition temperature (Tg).
d) Light transmittance The light transmittance at 550 nm was measured with a spectrophotometer U3200 (manufactured by Shimadzu Corporation).

Figure 0004292952
Figure 0004292952

以上のように本発明の透明積層体は、高いガスバリア性を持ち、低線膨張係数で、透明性や耐熱性に優れ、透明板、光学レンズ、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、導光板、光学素子、光導波路、LED封止材等に好適に利用できる。   As described above, the transparent laminate of the present invention has a high gas barrier property, a low linear expansion coefficient, excellent transparency and heat resistance, a transparent plate, an optical lens, a plastic substrate for a liquid crystal display element, a substrate for a color filter, It can be suitably used for plastic substrates for organic EL display elements, solar cell substrates, touch panels, light guide plates, optical elements, optical waveguides, LED sealing materials, and the like.

本発明の透明積層体は、例えば、透明板、光学レンズ、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路、LED封止材等に好適に用いられる。   The transparent laminate of the present invention includes, for example, a transparent plate, an optical lens, a liquid crystal display element plastic substrate, a color filter substrate, an organic EL display element plastic substrate, a solar cell substrate, a touch panel, an optical element, an optical waveguide, and an LED seal. It is suitably used for a fixing material or the like.

本発明の一実施例を示す断面図である。It is sectional drawing which shows one Example of this invention. 本発明の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of this invention. 本発明のいま一つの実施例を示す断面図である。It is sectional drawing which shows another Example of this invention.

符号の説明Explanation of symbols

1 透明複合体組成物
2 樹脂組成物
3 無機物質層
21 樹脂組成物
31 無機物質層
DESCRIPTION OF SYMBOLS 1 Transparent composite composition 2 Resin composition 3 Inorganic substance layer 21 Resin composition 31 Inorganic substance layer

Claims (15)

透明樹脂(a)とガラスフィラー(b)からなる透明複合体組成物1の少なくとも片面に樹脂組成物2を積層させ、さらに樹脂組成物2の層の外側に透明な無機物から成る無機物質層3を堆積させた積層体であって、該積層体のJIS K 7129 Bに規定する水蒸気透過度が0.1[g/m2/day/40℃、90%RH]以下であり、かつ30〜150℃の平均線膨張係数が40ppm以下である透明積層体であって、透明樹脂(a)が下記化学式(1)で示される水添ビフェニル型脂環式エポキシ樹脂又はオキセタニル基をもつシルセスキオキサン(c)を構成成分として含む透明積層体
Figure 0004292952
A resin composition 2 is laminated on at least one surface of a transparent composite composition 1 made of a transparent resin (a) and a glass filler (b), and an inorganic substance layer 3 made of a transparent inorganic substance is formed outside the layer of the resin composition 2. The water vapor permeability specified in JIS K 7129 B of the laminate is 0.1 [g / m 2 / day / 40 ° C., 90% RH] or less, and 30 to A transparent laminate having an average linear expansion coefficient of 40 ppm or less at 150 ° C. , wherein the transparent resin (a) is a hydrogenated biphenyl alicyclic epoxy resin represented by the following chemical formula (1) or a silsesquioxy having an oxetanyl group A transparent laminate comprising sun (c) as a constituent component .
Figure 0004292952
前記透明複合体組成物1中の透明樹脂(a)の硬化後の屈折率と前記ガラスフィラー(b)の屈折率との差が0.01以下である請求項記載の透明積層体。 Transparent laminate according to claim 1, wherein the difference between the refractive index is 0.01 or less in refractive index between the glass filler after curing (b) of the transparent resin of the transparent composite composition of 1 (a). 前記透明複合体組成物1中のガラスフィラー(b)の屈折率が1.45〜1.55である請求項1又は2記載の透明積層体。 The transparent laminated body according to claim 1 or 2 , wherein the refractive index of the glass filler (b) in the transparent composite composition 1 is 1.45 to 1.55. 前記透明複合体組成物1中のガラスフィラー(b)がガラス繊維布である請求項1〜の何れかに記載の透明積層体。 The transparent laminate according to any one of claims 1 to 3 , wherein the glass filler (b) in the transparent composite composition 1 is a glass fiber cloth. 前記樹脂組成物2がアクリレートモノマーから成る紫外線硬化性樹脂組成物かもしくはエポキシ系の紫外線硬化性樹脂である請求項1〜の何れかに記載の透明積層体。 Transparent laminate according to claim 1-4 wherein the resin composition 2 is an ultraviolet curable resin of the ultraviolet curable resin composition to or epoxy consists acrylate monomers. 前記樹脂組成物2が脂環式エポキシを含む請求項1〜の何れかに記載の透明積層体。 The transparent laminate according to any one of claims 1 to 5 , wherein the resin composition 2 contains an alicyclic epoxy. 前記無機物質層3がSi、Ta、Nb、Al、In、W、Sn、Zn、Ti、Cu、Ce、Ca、Na、B、Pb、Mg、P、Ba、Ge、Li、KおよびZrから選ばれる1種以上を含む酸化物または窒化物または酸化窒化物を主成分とする請求項1〜の何れかに記載の透明積層体。 The inorganic material layer 3 is made of Si, Ta, Nb, Al, In, W, Sn, Zn, Ti, Cu, Ce, Ca, Na, B, Pb, Mg, P, Ba, Ge, Li, K, and Zr. The transparent laminated body in any one of Claims 1-6 which has the oxide or nitride or oxynitride containing 1 or more types chosen as a main component. 請求項1〜何れかに記載の透明積層体の無機物質層3のさらに外側に樹脂組成物21を積層させた透明積層体。 Transparent laminate further the resin composition 21 is laminated on the outside of the claims 1 to 7 transparent laminate according to any inorganic material layer 3. 請求項に記載の透明積層体の樹脂組成物21のさらに外側に無機物質層31を堆積させた透明積層体。 A transparent laminate in which an inorganic substance layer 31 is deposited further on the outer side of the resin composition 21 of the transparent laminate according to claim 8 . 前記樹脂組成物21がアクリレートモノマーから成る紫外線硬化性樹脂組成物かもしくはエポキシ系の紫外線硬化性樹脂である請求項又は記載の透明積層体。 The transparent laminate according to claim 8 or 9, wherein the resin composition 21 is an ultraviolet curable resin composition comprising an acrylate monomer or an epoxy ultraviolet curable resin. 前記樹脂組成物21が脂環式エポキシを含む請求項又は記載の透明積層体。 The transparent laminated body of Claim 8 or 9 in which the said resin composition 21 contains an alicyclic epoxy. 前記無機物質層31がSi、Ta、Nb、Al、In、W、Sn、Zn、Ti、Cu、Ce、Ca、Na、B、Pb、Mg、P、Ba、Ge、Li、KおよびZrから選ばれる1種以上を含む酸化物または窒化物または酸化窒化物を主成分とする請求項記載の透明積層体。 The inorganic material layer 31 is made of Si, Ta, Nb, Al, In, W, Sn, Zn, Ti, Cu, Ce, Ca, Na, B, Pb, Mg, P, Ba, Ge, Li, K, and Zr. The transparent laminated body of Claim 9 which has the oxide or nitride or oxynitride containing 1 or more types selected as a main component. 波長550nmでの光線透過率が50%以上であることを特徴とする請求項1〜12の何れかに記載の透明積層体。 The transparent laminate according to any one of claims 1 to 12 , wherein the light transmittance at a wavelength of 550 nm is 50% or more. 請求項1〜13何れかに記載の透明積層体を用いた表示素子用プラスチック基板。 A plastic substrate for a display device using the transparent laminate according to any one of claims 1 to 13. 請求項1〜14何れかに記載の透明積層体を用いたアクティブマトリックス表示素子用基板。 Substrates for active matrix display device using the transparent laminate according to any one of claims 1-14.
JP2003376514A 2003-11-06 2003-11-06 Transparent laminate and plastic substrate for display element using the same Expired - Fee Related JP4292952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376514A JP4292952B2 (en) 2003-11-06 2003-11-06 Transparent laminate and plastic substrate for display element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376514A JP4292952B2 (en) 2003-11-06 2003-11-06 Transparent laminate and plastic substrate for display element using the same

Publications (2)

Publication Number Publication Date
JP2005138389A JP2005138389A (en) 2005-06-02
JP4292952B2 true JP4292952B2 (en) 2009-07-08

Family

ID=34687520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376514A Expired - Fee Related JP4292952B2 (en) 2003-11-06 2003-11-06 Transparent laminate and plastic substrate for display element using the same

Country Status (1)

Country Link
JP (1) JP4292952B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569336B2 (en) * 2005-03-22 2010-10-27 住友ベークライト株式会社 Transparent barrier sheet
JP4701846B2 (en) * 2005-06-10 2011-06-15 東亞合成株式会社 Curable composition
KR101171192B1 (en) 2005-10-21 2012-08-06 삼성전자주식회사 Tft substrate and making method of the same
JP2007168150A (en) * 2005-12-20 2007-07-05 Sumitomo Bakelite Co Ltd Transparent composite sheet
JP4957003B2 (en) * 2006-01-31 2012-06-20 住友ベークライト株式会社 Transparent resin laminated sheet
JP4957002B2 (en) * 2006-01-31 2012-06-20 住友ベークライト株式会社 Transparent resin laminated sheet
JP2007293048A (en) * 2006-04-25 2007-11-08 Matsushita Electric Works Ltd Sheet for optical filter, sheet for electromagnetic wave shielding optical filter, manufacturing method of them, and optical filter
JP4930140B2 (en) * 2006-07-26 2012-05-16 住友ベークライト株式会社 Transparent laminate
EP2077288B1 (en) * 2006-10-11 2013-11-06 Sumitomo Bakelite Co., Ltd. Transparent composite sheet
JP5135829B2 (en) * 2007-03-02 2013-02-06 住友ベークライト株式会社 Composite material substrate with transparent electrode
JP2008226629A (en) * 2007-03-13 2008-09-25 Sumitomo Bakelite Co Ltd Optical laminated sheet
EP1975308A1 (en) 2007-03-30 2008-10-01 Koninklijke Philips Electronics N.V. Method for determining the liquid level in a boiler
JP5423013B2 (en) * 2009-01-29 2014-02-19 住友ベークライト株式会社 Plastic sheet
JP5330966B2 (en) * 2009-05-14 2013-10-30 日東電工株式会社 Transparent substrate, display element using the transparent substrate, solar cell, and lighting element
JP5551909B2 (en) * 2009-09-25 2014-07-16 積水化学工業株式会社 Transparent sheet and method for producing transparent sheet
JP5416546B2 (en) 2009-10-23 2014-02-12 日東電工株式会社 Transparent substrate
JP2012051379A (en) * 2011-11-25 2012-03-15 Sumitomo Bakelite Co Ltd Transparent composite sheet

Also Published As

Publication number Publication date
JP2005138389A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4569336B2 (en) Transparent barrier sheet
JP4292952B2 (en) Transparent laminate and plastic substrate for display element using the same
JP4117792B2 (en) Sheet of transparent composite composition
JP4622348B2 (en) Transparent composite composition
JP4285242B2 (en) Transparent composite composition
US8409714B2 (en) Primer composition for optical articles and optical articles
EP1524301B1 (en) Transparent composite composition
JP2009529436A (en) Polymer film containing stabilized infrared absorber
JP5196705B2 (en) Optical sheet
JP7263356B2 (en) HARD COAT FILM, ARTICLE INCLUDED WITH HARD COAT FILM, AND IMAGE DISPLAY DEVICE
JP4174355B2 (en) Transparent composite composition
JP2004231934A (en) Transparent composite material composition
JP2004307845A (en) Transparent composite composition
JP2006176586A (en) Transparent composite composition and optical sheet and plastic substrate for display device
JP4180450B2 (en) Transparent composite sheet
JP4930140B2 (en) Transparent laminate
JP4424044B2 (en) Transparent composite sheet and display element using the same
TW201800262A (en) Polyester film and method of producing the same, hard coat film and method of producing the same, image display device and touch panel
JP2004168945A (en) Transparent composite composition
JP4232528B2 (en) Laminated glass
JP4613492B2 (en) Optical sheet
JP5423013B2 (en) Plastic sheet
JP4174338B2 (en) Transparent composite composition
JP2004277462A (en) Transparent composite composition
JP5397319B2 (en) Optical sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees