JP4232528B2 - Laminated glass - Google Patents

Laminated glass Download PDF

Info

Publication number
JP4232528B2
JP4232528B2 JP2003134111A JP2003134111A JP4232528B2 JP 4232528 B2 JP4232528 B2 JP 4232528B2 JP 2003134111 A JP2003134111 A JP 2003134111A JP 2003134111 A JP2003134111 A JP 2003134111A JP 4232528 B2 JP4232528 B2 JP 4232528B2
Authority
JP
Japan
Prior art keywords
glass
resin
base material
laminated glass
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003134111A
Other languages
Japanese (ja)
Other versions
JP2004338965A (en
Inventor
義之 山森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003134111A priority Critical patent/JP4232528B2/en
Publication of JP2004338965A publication Critical patent/JP2004338965A/en
Application granted granted Critical
Publication of JP4232528B2 publication Critical patent/JP4232528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自動車のフロントガラスやサイドガラス、建築物の窓ガラス等に用いられる耐衝撃性、耐貫通性、防犯性等に優れ、しかも薄肉、軽量な合わせガラスに関する。
【0002】
【従来の技術】
従来、上記目的には一般に、2枚のガラス板の間に有機樹脂膜(中間膜)を挟持させた構造の合わせガラスが使用されている。(例えば特許文献1参照。)この有機樹脂膜には、耐衝撃性に優れるポリカーボネート(PC)、ポリエチレンテレフタレート(PET)やポリビニルブチラール(PVB)樹脂膜が用いられており、この有機樹脂膜の存在により、合わせガラスの耐貫通性等が高められている。しかしながら十分な耐貫通性を持たせるには厚みの厚い樹脂膜が必要となり、コストも高く、また従来のサッシに適用するのが難しい等の問題を有していた。
【0003】
【特許文献1】
特開2002−321948号公報
【0004】
【発明が解決しようとする課題】
本発明は、従来の有機樹脂膜を利用した合わせガラスの上記問題点を解消し、厚みが薄く、かつ安価な耐貫通性に優れる合わせガラスを提供するものである。
【0005】
【課題を解決するための手段】
すなわち本発明は、
(1)樹脂および繊維布からなる複合基材層の片面もしくは両面にガラス板が構成されている合わせガラスであって、前記複合基材層の厚みが20〜200μmであり、前記複合基材層に用いられる樹脂の硬化後の屈折率と前記繊維布の屈折率との差が0.01以下であり、前記複合基材層に用いられる繊維布がガラスクロスであり、前記複合基材層に用いられる樹脂がエポキシ樹脂又は(メタ)アクリレート樹脂であり、前記複合基材層における繊維布の含有量が30〜70重量%である合わせガラス、
(2)前記複合基材層の全光線透過率が70%以上である(1)記載の合わせガラス、
(3)前記繊維布の屈折率が1.45〜1.55であることを特徴とする(1)又は(2)記載の合わせガラス、
である。
【0006】
本発明において、繊維布としては、ガラスクロス、ガラスペーパー(不織布)等のガラス繊維基材が好ましいが、この他、合成繊維等からなる織布や不織布、金属繊維、カーボン繊維、鉱物繊維等からなる織布、不織布、マット類等が挙げることができる。本発明で用いる繊維布の屈折率は特に制限されないが、1.45〜1.55であることが好ましく、より好ましくは1.50〜1.54である。特にガラス繊維の屈折率が1.50〜1.54である場合は、ガラスのアッベ数に近い樹脂が選択でき好ましい。樹脂とガラスとのアッベ数が近いと広い波長領域において両者の屈折率が一致し、広い波長領域で高い光線透過率が得られる。繊維布の屈折率が1.55以上では、同じ屈折率でアッベ数が45以上の樹脂を選択するのが困難であり、1.45以下では特殊な組成のガラス繊維となり、コスト的に不利である。特に、1.50〜1.54の範囲であれば、SガラスやNEガラスなどの一般的なガラス繊維が適用でき、かつ同じ屈折率でアッベ数が45以上の樹脂の選択も可能である。ガラスクロスやガラスペーパーに用いられるガラスの種類としては、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、石英ガラスなどがあげられ、中でもアッベ数が45以上の樹脂と屈折率を一致させることができ、かつ入手が容易なSガラス、Tガラス、NEガラスが好ましい。またガラスクロスやガラスペーパーを用いる場合、フィラメントの織り方に限定はなく、平織り、ななこ織り、朱子織り、綾織りなどが適用でき、中でも平織りが好ましい。ガラスクロスの厚みは、通常、30〜200μmであるのが好ましく、より好ましくは40〜150μmである。ガラスクロスやガラス不織布などのガラス繊維布は1枚だけでもよく、複数枚を重ねて用いてもよい。本発明に用いられる繊維布は、樹脂成分との濡れ性を改善する目的で各種のシランカップリング剤、ボランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等の表面処理剤で処理されても良く、これに限定されるものではない。
【0007】
本発明で用いるガラス板は、複合基材層により強化され優れた耐貫通特性を示すため通常の生板ガラスを用いても十分な強度を示すが、更に耐衝撃性を向上させる目的で強化ガラスや網入り磨き板ガラス等を用いることもできる。板ガラスの厚みは特に限定されないが、1.8mm以上、6mm以下が好ましく、一般的な合わせガラスに使用されるフロート板ガラス規格品を使用することができる。
【0008】
本発明で複合基材層に用いる樹脂は特に限定されないが透明性を有する繊維布に屈折率が近い硬化性樹脂が好ましくエポキシ樹脂、(メタ)アクリレート樹脂を主成分とした樹脂組成物を挙げることができるが、必要に応じて他の樹脂とこれらを混合しても構わない。また硬化剤、硬化促進剤を配合することができる。さらに樹脂中に充填材、着色剤、補強材を配合することができる。無機充填材としては、ガラスビーズ、ガラスフレーク、ガラスパウダー、ミルドガラス、ガラスフリット、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、タルク、ウォラストナイト、アルミナ、未焼成クレー、焼成クレー、硫酸バリウム等を挙げることができる。前記繊維布へ樹脂を含浸させるときの樹脂の形態としては、通常液状、とりわけ溶剤に溶解したワニスであるが、粉末状の樹脂、あるいは固形樹脂を加熱溶融した状態であってもよい。複合基材層における繊維布の含有量は、1〜90重量%、好ましくは10〜80重量%、より好ましくは30〜70重量%である。繊維布の含有量が1重量%以下では、複合化による強度向上効果が認められず、90重量%以上では成形が困難となる。
【0009】
複合基材層に用いられる樹脂の硬化後の屈折率と繊維布の屈折率との差は、優れた透明性を実現するため0.01以下であることが好ましく、0.005以下がより好ましい。屈折率差が0.01より大きい場合には、得られる合わせガラスの透明性が劣る傾向がある。全光線透過率は70%以上が好ましい。70%以下であると着色が認められる傾向にあり、優れた透明性が求められる場合には好ましくない。また、複合基材層の厚みは20〜600μmが好ましい。20μmより薄いと合わせガラスにしたときに十分に強度が発揮できないことがある。また600μmより厚いと合わせガラスとしたときの透明性が劣る傾向がある。
【0010】
本発明における樹脂および繊維布からなる複合基材層の片面もしくは両面にガラス板が構成されている合わせガラスの成形方法には制限がなく、例えば、▲1▼樹脂として樹脂溶液を用いる場合には、樹脂溶液中に繊維布を浸漬させ、繊維布中に樹脂溶液を含浸させた後に溶剤を揮発させたものをガラス板2枚の間に挟み込み加熱、加圧あるいは活性エネルギー線を照射することにより硬化させる方法、▲2▼樹脂として無溶剤の溶液を用いる場合には、必要により加熱し液状化させた樹脂中に繊維布を浸漬させ、繊維布中に樹脂溶液を含浸させたものをガラス板2枚の間に挟み込み加熱・加圧あるいは活性エネルギー線を照射することにより硬化させる方法などが挙げられる。このとき片側のガラス板に離型処理を施したものを用いれば、硬化させた複合基材層から剥離することにより片面のみにガラス板が構成された合わせガラスを得ることもできる。また、加熱、加圧あるいは活性エネルギー線を照射し樹脂を硬化させるときに真空雰囲気中で行うと、気泡の混入もなく好ましい。使用する活性エネルギー線としては、紫外線が好ましい。紫外線の光源としては、例えば、メタルハライドタイプ、高圧水銀灯ランプ等が挙げられる
【0011】
【実施例】
以下、本発明の内容を実施例により詳細に説明するが、本発明は、その要旨を越えない限り以下の例に限定されるものではない。
【0012】
(実施例1)
80μmのNEガラス系ガラスクロス(日東紡製NEA−2319E、屈折率1.510)を焼きだしして有機物を除去した後、γ−グリシドキシプロピルトリメトキシシラン(エポキシシラン)で処理した。このクロスにトリグリシジルイソシアヌレート(日産化学工業製TEPIC)100重量部、メチルヘキサヒドロ無水フタル酸(新日本理化製リカシッドMH−700)147重量部、テトラフェニルホスホニウムブロマイド(北興化学工業製TPP−PB)2重量部を110℃で溶融混合したエポキシ系樹脂組成物を含浸し、脱泡した。この樹脂を含浸したクロス2枚を積層して、市販の、加熱処理等の強化処理が施されていない板厚2.7mmフロートガラス板(FL3)2枚の間に挟み込み、オーブン中で100℃*2時間+120℃*2時間+150℃*2時間+175℃*2時間加熱して、5.6mmの合わせガラスを得た。合わせガラスに用いられている複合基材層中のガラスクロス含有率は50重量%であった。
【0013】
(実施例2)
100μmのSガラス系ガラスクロス(ユニチカクロス製#2117、屈折率1.530) を焼きだしして有機物を除去した後、アクリロイロキシプロピルトリエトキシシラン(アクリルシラン)で処理した。このクロスにジシクロペンタジエニルジアクリレート(式1)(東亞合成(株)製M−203、架橋後の屈折率1.527)92重量部、ビス[4−(アクリロイロキシエトキシ)フェニル]スルフィド(式3)(東亞合成(株)試作品TO−2066、架橋後の屈折率1.606)8重量部、及び光重合開始剤0.5重量部からなるアクリレート系樹脂組成物(架橋後の屈折率1.533)を含浸、脱泡した後、この樹脂を含浸したクロス1枚を実施例1と同様のガラス板間に挟み込んで、両面から約10J/cm2のUV光を照射して硬化させた。さらに真空オーブン中で、250℃で3時間加熱し、厚みが5.5mmの合わせガラスを得た。合わせガラスに用いられている複合基材層中のガラスクロス含有率は50重量%であった。
【0014】
(実施例3)
80μmのNEガラス系ガラスクロス(日東紡製NEA−2319E、屈折率1.510)を焼きだしして有機物を除去した後、γ−グリシドキシプロピルトリメトキシシラン(エポキシシラン)で処理した。次に脂環式多官能エポキシ樹脂(商品名EHPE−3150、ダイセル化学(株)製)100重量部、メチルヘキサヒドロフタル酸(商品名MH−700)82.3重量部、1−ベンジル−2−フェニルイミダゾール1重量部をメチルエチルケトンに常温で溶解し、高速攪拌機を用いて10分攪拌しエポキシ系樹脂ワニスを得た。得られた樹脂ワニスをガラスクロスに含浸後、50℃で60分乾燥させ溶剤を除去した後にこの樹脂を含浸したクロス1枚を実施例1と同様のガラス板の間に挟み込み真空プレスを用いて真空下、1MPaで加圧しながら室温から180℃まで3℃/分で昇温させ180℃/2時間処理することにより厚みが5.6mmの合わせガラスを得た。合わせガラスに用いられている複合基材層中のガラスクロス含有率は50重量%であった。
【0015】
(実施例4)
用いるガラス板のうち1枚を離型処理したものを用いた以外は実施例3と同様の原材料、条件にて合わせガラスを得たのちに、離型処理したガラスのみを剥離し、複合基材層の片側のみにガラス板が構成されている厚みが2.9mmの合わせガラスを得た。
【0016】
(比較例1)
実施例1〜4で用いたのと同様のフロートガラス板(FL3)のみ。
(比較例2)
実施例1〜4で用いたガラス板の間に厚み0.8mmのPVB中間層を設けた合わせガラス。
(比較例3)
実施例1〜4で用いたガラス板の間に厚み2.3mmのPVB中間層を設けた合わせガラス。
【0017】
以上のようにして作製した合わせガラスについて、下記に示す評価方法により、各種特性を測定した。
a)全光線透過率
分光光度計U3200(日立製作所製)で光線透過率を測定した。
b)屈折率
アタゴ社製アッベ屈折率計DR−M2を用いて、25℃で波長589nmの屈折率を測定した。
c)打ち破り強度
得られた合わせガラスを500mm×500mmに切り出し、窓枠に取り付けた後クレセント付近をバールで打ち破る(100mmの穴があく)のに要した相対時間(厚み2.7mmのフロートガラスを打ち破る時間を1としたとき)
【0018】
【表1】

Figure 0004232528
【0019】
【表2】
Figure 0004232528
【0020】
実施例で得られた合わせガラスは薄い複合基材層と構成されているにもかかわらず透明性を損なわずに厚みの厚い中間樹脂層を持つ合わせガラス以上の強度を示す、優れたものであった。
【0021】
【発明の効果】
本発明は、合わせガラスの強化層に屈折率を合わせ込んだ繊維布/樹脂からなる複合基材を利用することにより、透明性を維持しながら耐衝撃性、耐貫通性、防犯性に優れる合わせガラスである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated glass that is excellent in impact resistance, penetration resistance, crime prevention, and the like used for windshields and side glasses of automobiles, window glass of buildings, and the like, and is thin and lightweight.
[0002]
[Prior art]
Conventionally, a laminated glass having a structure in which an organic resin film (intermediate film) is sandwiched between two glass plates is generally used for the above purpose. (For example, refer to Patent Document 1.) For this organic resin film, polycarbonate (PC), polyethylene terephthalate (PET), and polyvinyl butyral (PVB) resin films having excellent impact resistance are used. As a result, the penetration resistance of the laminated glass is enhanced. However, in order to provide sufficient penetration resistance, a thick resin film is required, which is expensive and difficult to apply to a conventional sash.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-321948
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of a laminated glass using a conventional organic resin film, and provides a laminated glass having a thin thickness and excellent in penetration resistance.
[0005]
[Means for Solving the Problems]
That is, the present invention
(1) Laminated glass in which a glass plate is formed on one or both sides of a composite base material layer made of a resin and a fiber cloth , wherein the composite base material layer has a thickness of 20 to 200 μm, and the composite base material layer The difference between the refractive index of the resin used for curing and the refractive index of the fiber cloth is 0.01 or less, the fiber cloth used for the composite base material layer is a glass cloth, and the composite base material layer Laminated glass in which the resin used is an epoxy resin or a (meth) acrylate resin, and the content of the fiber cloth in the composite base material layer is 30 to 70% by weight,
(2) The laminated glass according to (1), wherein the total light transmittance of the composite base material layer is 70% or more,
(3) The laminated glass according to (1) or (2), wherein the fiber cloth has a refractive index of 1.45 to 1.55,
It is.
[0006]
In the present invention, the fiber cloth is preferably a glass fiber base material such as glass cloth or glass paper (nonwoven fabric), but in addition, a woven fabric or nonwoven fabric made of synthetic fibers or the like, metal fibers, carbon fibers, mineral fibers, or the like. And woven fabrics, nonwoven fabrics, mats, and the like. The refractive index of the fiber cloth used in the present invention is not particularly limited, but is preferably 1.45 to 1.55, more preferably 1.50 to 1.54. In particular, when the refractive index of the glass fiber is 1.50 to 1.54, a resin close to the Abbe number of the glass can be selected, which is preferable. When the Abbe numbers of the resin and glass are close, the refractive indexes of the two coincide in a wide wavelength region, and a high light transmittance is obtained in a wide wavelength region. If the refractive index of the fiber cloth is 1.55 or more, it is difficult to select a resin having the same refractive index and an Abbe number of 45 or more, and if it is 1.45 or less, it becomes a glass fiber having a special composition, which is disadvantageous in terms of cost. is there. In particular, in the range of 1.50 to 1.54, general glass fibers such as S glass and NE glass can be applied, and a resin having the same refractive index and an Abbe number of 45 or more can be selected. Examples of the glass used for glass cloth and glass paper include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, and quartz glass. Among them, a resin having an Abbe number of 45 or more. S glass, T glass, and NE glass, which can match the refractive index and are easily available, are preferred. When glass cloth or glass paper is used, there is no limitation on the filament weaving method, and plain weaving, Nanako weaving, satin weaving, twill weaving, etc. can be applied, and plain weaving is preferred. The thickness of the glass cloth is usually preferably 30 to 200 μm, more preferably 40 to 150 μm. Only one sheet of glass fiber cloth such as glass cloth or glass nonwoven fabric may be used, or a plurality of sheets may be used in layers. The fiber fabric used in the present invention is treated with various surface treatment agents such as various silane coupling agents, borane coupling agents, titanate coupling agents, aluminum coupling agents for the purpose of improving the wettability with the resin component. However, the present invention is not limited to this.
[0007]
The glass plate used in the present invention is strengthened by the composite base material layer and exhibits excellent penetration resistance, so that it exhibits sufficient strength even when ordinary raw glass is used, but for the purpose of further improving impact resistance, It is also possible to use a screened polished plate glass or the like. Although the thickness of plate glass is not specifically limited, 1.8 mm or more and 6 mm or less are preferable, and the float plate glass standard goods used for general laminated glass can be used.
[0008]
The resin used for the composite substrate layer in the present invention is not particularly limited, but a curable resin having a refractive index close to that of a transparent fiber cloth is preferable, and examples thereof include a resin composition mainly composed of an epoxy resin and a (meth) acrylate resin. However, these may be mixed with other resins as necessary. Moreover, a hardening | curing agent and a hardening accelerator can be mix | blended. Furthermore, a filler, a colorant, and a reinforcing material can be blended in the resin. Inorganic fillers include glass beads, glass flakes, glass powder, milled glass, glass frit, silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, wollastonite, alumina, unfired clay, fired clay, sulfuric acid Barium etc. can be mentioned. The form of the resin when the fiber cloth is impregnated with the resin is usually a varnish dissolved in a liquid, particularly a solvent, but may be a powdered resin or a state in which a solid resin is heated and melted. Content of the fiber cloth in a composite base material layer is 1 to 90 weight%, Preferably it is 10 to 80 weight%, More preferably, it is 30 to 70 weight%. When the content of the fiber cloth is 1% by weight or less, the effect of improving the strength due to the composite is not recognized, and when it is 90% by weight or more, molding becomes difficult.
[0009]
The difference between the refractive index after curing of the resin used for the composite base material layer and the refractive index of the fiber cloth is preferably 0.01 or less, more preferably 0.005 or less in order to achieve excellent transparency. . When the refractive index difference is larger than 0.01, the transparency of the obtained laminated glass tends to be inferior. The total light transmittance is preferably 70% or more. When it is 70% or less, coloring tends to be observed, which is not preferable when excellent transparency is required. Further, the thickness of the composite base material layer is preferably 20 to 600 μm. If it is thinner than 20 μm, sufficient strength may not be exhibited when a laminated glass is used. On the other hand, if it is thicker than 600 μm, the transparency of the laminated glass tends to be inferior.
[0010]
There is no limitation on the method of molding laminated glass in which a glass plate is formed on one side or both sides of the composite base material layer made of resin and fiber cloth in the present invention. For example, (1) when a resin solution is used as the resin By immersing the fiber cloth in the resin solution, impregnating the resin solution in the fiber cloth and then volatilizing the solvent, the glass cloth is sandwiched between two glass plates and heated, pressurized or irradiated with active energy rays. Method of curing, (2) When a solvent-free solution is used as a resin, a glass cloth is obtained by immersing the fiber cloth in a resin liquefied by heating if necessary, and impregnating the resin cloth into the fiber cloth. Examples of the method include a method of curing by sandwiching between two sheets, heating and pressing, or irradiation with active energy rays. At this time, if a glass plate on one side is subjected to a release treatment, a laminated glass having a glass plate formed only on one side can be obtained by peeling from the cured composite base material layer. Further, when the resin is cured by heating, pressurizing, or irradiating active energy rays, it is preferable to carry out in a vacuum atmosphere without air bubbles being mixed. The active energy ray used is preferably ultraviolet rays. Examples of the ultraviolet light source include a metal halide type, a high-pressure mercury lamp, and the like.
【Example】
Hereinafter, the contents of the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[0012]
(Example 1)
An 80 μm NE glass-based glass cloth (NEA-2319E manufactured by Nittobo Co., Ltd., refractive index: 1.510) was baked to remove organic substances, and then treated with γ-glycidoxypropyltrimethoxysilane (epoxysilane). To this cloth, triglycidyl isocyanurate (TEPIC manufactured by Nissan Chemical Industries, Ltd.) 100 parts by weight, methylhexahydrophthalic anhydride (Ricacid MH-700 manufactured by Nippon Chemical Co., Ltd.) 147 parts by weight, tetraphenylphosphonium bromide (TPP-PB manufactured by Hokuko Chemical Industries) ) 2 parts by weight of an epoxy resin composition melt-mixed at 110 ° C. was impregnated and defoamed. Two sheets of cloth impregnated with this resin are laminated and sandwiched between two sheets of a commercially available 2.7 mm thick float glass plate (FL3) that has not been subjected to tempering treatment, such as heat treatment, and is heated at 100 ° C. in an oven. * 2 hours + 120.degree. C. * 2 hours + 150.degree. C. * 2 hours + 175.degree. C. * 2 hours to obtain a 5.6 mm laminated glass. The glass cloth content in the composite base material layer used for the laminated glass was 50% by weight.
[0013]
(Example 2)
A 100 μm S glass-based glass cloth (# 2117 manufactured by Unitika cloth, refractive index 1.530) was baked to remove organic substances, and then treated with acryloyloxypropyltriethoxysilane (acrylic silane). To this cloth, dicyclopentadienyl diacrylate (formula 1) (Toagosei Co., Ltd. M-203, refractive index 1.527 after crosslinking) 92 parts by weight, bis [4- (acryloyloxyethoxy) phenyl] An acrylate resin composition (after crosslinking) comprising 8 parts by weight of sulfide (Formula 3) (Toyo Gosei Co., Ltd., prototype TO-2066, refractive index after crosslinking 1.606) and 0.5 part by weight of a photopolymerization initiator. The refractive index of 1.533) is impregnated and defoamed, and then one cloth impregnated with this resin is sandwiched between the same glass plates as in Example 1 and irradiated with UV light of about 10 J / cm 2 from both sides. And cured. Furthermore, it was heated at 250 ° C. for 3 hours in a vacuum oven to obtain a laminated glass having a thickness of 5.5 mm. The glass cloth content in the composite base material layer used for the laminated glass was 50% by weight.
[0014]
Example 3
An 80 μm NE glass-based glass cloth (NEA-2319E manufactured by Nittobo Co., Ltd., refractive index: 1.510) was baked to remove organic substances, and then treated with γ-glycidoxypropyltrimethoxysilane (epoxysilane). Next, 100 parts by weight of an alicyclic polyfunctional epoxy resin (trade name EHPE-3150, manufactured by Daicel Chemical Industries), 82.3 parts by weight of methylhexahydrophthalic acid (trade name MH-700), 1-benzyl-2 -1 part by weight of phenylimidazole was dissolved in methyl ethyl ketone at room temperature and stirred for 10 minutes using a high-speed stirrer to obtain an epoxy resin varnish. The obtained resin varnish was impregnated into a glass cloth, dried at 50 ° C. for 60 minutes to remove the solvent, and then the cloth impregnated with this resin was sandwiched between the same glass plates as in Example 1 using a vacuum press. Laminating glass with a thickness of 5.6 mm was obtained by increasing the temperature from room temperature to 180 ° C. at a rate of 3 ° C./min while applying pressure at 1 MPa, and treating at 180 ° C./2 hours. The glass cloth content in the composite base material layer used for the laminated glass was 50% by weight.
[0015]
(Example 4)
After obtaining a laminated glass with the same raw materials and conditions as in Example 3 except that one of the glass plates to be used was subjected to a release treatment, only the release-treated glass was peeled off to obtain a composite substrate. A laminated glass having a thickness of 2.9 mm in which a glass plate is formed only on one side of the layer was obtained.
[0016]
(Comparative Example 1)
Only the same float glass plate (FL3) as used in Examples 1-4.
(Comparative Example 2)
The laminated glass which provided the PVB intermediate | middle layer of thickness 0.8mm between the glass plates used in Examples 1-4.
(Comparative Example 3)
The laminated glass which provided the PVB intermediate | middle layer of thickness 2.3mm between the glass plates used in Examples 1-4.
[0017]
About the laminated glass produced as mentioned above, various characteristics were measured with the evaluation method shown below.
a) Total light transmittance The light transmittance was measured with a spectrophotometer U3200 (manufactured by Hitachi, Ltd.).
b) Refractive index The refractive index of wavelength 589nm was measured at 25 degreeC using the Abbe refractometer DR-M2 by an Atago company.
c) Breaking strength The obtained laminated glass was cut into a size of 500 mm × 500 mm, attached to a window frame, and then the relative time (2.7 mm thick float glass) required to break the crescent area with a bar (making a 100 mm hole). (When time to break down is 1)
[0018]
[Table 1]
Figure 0004232528
[0019]
[Table 2]
Figure 0004232528
[0020]
The laminated glass obtained in the examples is superior in that it exhibits a strength higher than that of laminated glass having a thick intermediate resin layer without losing transparency despite being composed of a thin composite substrate layer. It was.
[0021]
【The invention's effect】
The present invention uses a composite substrate made of a fiber cloth / resin in which a refractive index is matched to a reinforced layer of a laminated glass, and is excellent in impact resistance, penetration resistance and crime prevention while maintaining transparency. It is glass.

Claims (3)

樹脂および繊維布からなる複合基材層の片面もしくは両面にガラス板が構成されている合わせガラスであって、前記複合基材層の厚みが20〜200μmであり、前記複合基材層に用いられる樹脂の硬化後の屈折率と前記繊維布の屈折率との差が0.01以下であり、前記複合基材層に用いられる繊維布がガラスクロスであり、前記複合基材層に用いられる樹脂がエポキシ樹脂又は(メタ)アクリレート樹脂であり、前記複合基材層における繊維布の含有量が30〜70重量%である合わせガラスA laminated glass in which a glass plate is formed on one or both sides of a composite base material layer made of a resin and a fiber cloth , wherein the composite base material layer has a thickness of 20 to 200 μm and is used for the composite base material layer The difference between the refractive index after curing of the resin and the refractive index of the fiber cloth is 0.01 or less, the fiber cloth used for the composite base material layer is a glass cloth, and the resin used for the composite base material layer Is an epoxy resin or a (meth) acrylate resin, and a laminated glass in which the content of the fiber cloth in the composite base material layer is 30 to 70% by weight . 前記複合基材層の全光線透過率が70%以上である請求項1記載の合わせガラス。  The laminated glass according to claim 1, wherein the composite substrate layer has a total light transmittance of 70% or more. 前記繊維布の屈折率が1.45〜1.55であることを特徴とする請求項1又は2記載の合わせガラス。  The laminated glass according to claim 1 or 2, wherein the fiber cloth has a refractive index of 1.45 to 1.55.
JP2003134111A 2003-05-13 2003-05-13 Laminated glass Expired - Fee Related JP4232528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134111A JP4232528B2 (en) 2003-05-13 2003-05-13 Laminated glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134111A JP4232528B2 (en) 2003-05-13 2003-05-13 Laminated glass

Publications (2)

Publication Number Publication Date
JP2004338965A JP2004338965A (en) 2004-12-02
JP4232528B2 true JP4232528B2 (en) 2009-03-04

Family

ID=33524764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134111A Expired - Fee Related JP4232528B2 (en) 2003-05-13 2003-05-13 Laminated glass

Country Status (1)

Country Link
JP (1) JP4232528B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957003B2 (en) * 2006-01-31 2012-06-20 住友ベークライト株式会社 Transparent resin laminated sheet
JP2007203473A (en) * 2006-01-31 2007-08-16 Sumitomo Bakelite Co Ltd Composite sheet
JP4957002B2 (en) * 2006-01-31 2012-06-20 住友ベークライト株式会社 Transparent resin laminated sheet
JP2008222465A (en) * 2007-03-09 2008-09-25 Swancor Ind Co Ltd Glass reinforcement structure
JP4863171B2 (en) * 2009-03-31 2012-01-25 Toto株式会社 Solid oxide fuel cell
JP2020104457A (en) * 2018-12-28 2020-07-09 アイシン精機株式会社 Laminated glass and method for manufacturing laminated glass
US20220203656A1 (en) * 2019-04-16 2022-06-30 Saint-Gobain Glass France Textile elements in vehicle composite glass

Also Published As

Publication number Publication date
JP2004338965A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4957002B2 (en) Transparent resin laminated sheet
JP4569336B2 (en) Transparent barrier sheet
KR101727906B1 (en) Glazing sheet using vehicle
KR20070007045A (en) Weatherable multilayer article assemblies and method for their preparation
WO2004000945A1 (en) Transparent composite composition
JP2009529436A (en) Polymer film containing stabilized infrared absorber
JP2007203473A (en) Composite sheet
JP4232528B2 (en) Laminated glass
JP5196705B2 (en) Optical sheet
JP2005138389A (en) Transparent laminate and plastic substrate for display element using it
JP3728441B2 (en) Transparent composite composition
JP2006040864A (en) Light diffusion plate for projecting backlight and back light system
JP4930140B2 (en) Transparent laminate
JP2011104929A (en) Transparent substrate/glass sheet/transparent substrate composite film and application of the same
JP4232539B2 (en) Laminated glass
JP4180450B2 (en) Transparent composite sheet
JP2008287933A (en) Light guide plate, manufacturing method, and backlight for liquid crystal display
JP4957003B2 (en) Transparent resin laminated sheet
JP4424044B2 (en) Transparent composite sheet and display element using the same
JP2020040869A (en) Resin composition for laminated glass interlayer, laminated glass interlayer, film material for laminated glass interlayer, laminated glass, and laminated glass manufacturing method, image display device, resin composition for impact-resistant member, impact-resistant film and film material for impact-resistant film
JP4232537B2 (en) Laminated glass manufacturing method
JP4174338B2 (en) Transparent composite composition
JP2017068059A (en) Method for manufacturing light-transmitting hard coat laminate
JP2010012754A (en) Transparent substrate
JP2005170991A (en) Transparent composite adhesive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees