JP4292923B2 - Exhaust gas purification method and exhaust gas purification system for internal combustion engine - Google Patents

Exhaust gas purification method and exhaust gas purification system for internal combustion engine Download PDF

Info

Publication number
JP4292923B2
JP4292923B2 JP2003316579A JP2003316579A JP4292923B2 JP 4292923 B2 JP4292923 B2 JP 4292923B2 JP 2003316579 A JP2003316579 A JP 2003316579A JP 2003316579 A JP2003316579 A JP 2003316579A JP 4292923 B2 JP4292923 B2 JP 4292923B2
Authority
JP
Japan
Prior art keywords
temperature
type dpf
exhaust gas
continuous regeneration
dpf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003316579A
Other languages
Japanese (ja)
Other versions
JP2005083263A (en
Inventor
正志 我部
欣久 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2003316579A priority Critical patent/JP4292923B2/en
Publication of JP2005083263A publication Critical patent/JP2005083263A/en
Application granted granted Critical
Publication of JP4292923B2 publication Critical patent/JP4292923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、グロープラグ付きのディーゼルエンジンにおいて、連続再生型ディーゼルパティキュレートフィルタ(DPF)を備えて、エンジンの排気ガスを浄化する内燃機関の排気ガス浄化方法及び排気ガス浄化システムに関する。   The present invention relates to an exhaust gas purification method and an exhaust gas purification system for an internal combustion engine that includes a continuous regeneration type diesel particulate filter (DPF) in a diesel engine with a glow plug and purifies the exhaust gas of the engine.

ディーゼルエンジンから排出される微粒子状物質(PM:パティキュレート・マター:以下PMとする)の排出量は、NOx,COそしてHC等と共に年々規制が強化されてきており、規制の強化に伴いエンジンの改良のみでは、対応できなくなってきている。そこで、エンジンから排出されるPMをディーゼルパティキュレートフィルタ(DPF:Diesel Particulate Filter :以下DPFとする)と呼ばれるフィルタで捕集して、外部へ排出されるPMの量を低減する技術が開発されている。   The amount of particulate matter discharged from diesel engines (PM: particulate matter: hereinafter referred to as PM) is being regulated year by year along with NOx, CO and HC. Improvement alone has made it impossible to respond. Therefore, a technology has been developed that collects PM discharged from the engine with a filter called a diesel particulate filter (DPF) and reduces the amount of PM discharged to the outside. Yes.

直接、このPMを捕集するDPFにはセラミック製のモノリスハニカム型ウオールフロータイプのフィルタや、セラミックや金属を繊維状にした繊維型タイプのフィルタ等があり、これらのDPFを用いた排気ガス浄化システムは、他の排気ガス浄化システムと同様に、エンジンの排気通路の途中に設置され、エンジンで発生する排気ガスを浄化して排出している。   The DPF that directly collects PM includes ceramic monolith honeycomb wall flow type filters and fiber type filters made of ceramic or metal fibers. Exhaust gas purification using these DPFs Similar to other exhaust gas purification systems, the system is installed in the middle of the exhaust passage of the engine to purify and discharge exhaust gas generated in the engine.

DPFはフィルタがPMを捕集すると捕集量に比例して排圧が上昇するので、捕集されたPMを燃焼させるなどして除去し、DPFを再生する必要があり、この再生方法は色々な方法が提案されており、電気ヒーター加熱タイプ、バーナー加熱タイプ、逆洗タイプ等がある。   When the filter collects PM, the exhaust pressure rises in proportion to the amount of collected DPF. Therefore, it is necessary to regenerate the DPF by removing the collected PM by burning or the like. Various methods have been proposed, such as an electric heater heating type, a burner heating type, and a backwash type.

しかしながら、これらの再生方法をとる場合には、外部からエネルギーの供給を受けてPMの燃焼を行うので、燃費の悪化を招き、また、再生時の制御が難しく、PM捕集、PM燃焼(DPF再生)を交互に行うような二系統のDPFシステムが必要になる等、システムが大きく複雑になるという問題がある。   However, when these regeneration methods are used, PM is burned by receiving energy supply from the outside, which leads to deterioration of fuel consumption, and control during regeneration is difficult, and PM collection, PM combustion (DPF) There is a problem that the system becomes large and complicated, such as requiring a two-system DPF system that alternately performs (regeneration).

この問題を解決するために、酸化触媒を利用しPMの酸化温度を下げ、外部からエネルギーを受けることなく、エンジンからの排気熱でPMを酸化してDPFを再生する技術が提案されている。この場合には、DPF再生が基本的には連続的になるため連続再生型DPFシステムと呼ばれているが、これらのシステムは、より簡素化された一系統のDPFシステムとなり、再生制御も簡素化されるという利点がある。   In order to solve this problem, a technique has been proposed in which the oxidation temperature of PM is lowered using an oxidation catalyst, and PM is oxidized by exhaust heat from the engine to regenerate DPF without receiving energy from the outside. In this case, since DPF regeneration is basically continuous, it is called a continuous regeneration type DPF system. However, these systems become a simpler one-system DPF system, and regeneration control is also simplified. There is an advantage that

図5に一例として示すNO2 再生型DPFシステム1Xは、NO2 (二酸化窒素)によりPMを酸化し、DPFを再生するシステムであり、通常のウオールフローフィルタ3Abの上流に酸化触媒3Aaを配置し、排気ガス中のNO(一酸化窒素)を酸化する。従って、酸化触媒3Aa後流の排気ガス中のNOxは殆どがNO2 になる。このNO2 で、下流側のフィルタ3Abに捕集されたPMを酸化してCO2 (二酸化炭素)とし、PMを除去している。このNO2 は、O2 よりエネルギー障壁が小さいため、PM酸化温度(DPF再生温度)を低下させ、外部からエネルギーの供給なしに排気ガス中の熱エネルギーで連続的にPM燃焼が生じる。 An NO 2 regeneration type DPF system 1X shown as an example in FIG. 5 is a system that oxidizes PM with NO 2 (nitrogen dioxide) to regenerate DPF, and an oxidation catalyst 3Aa is disposed upstream of a normal wall flow filter 3Ab. Then, NO (nitrogen monoxide) in the exhaust gas is oxidized. Therefore, NOx in the exhaust gas of the oxidation catalyst 3Aa slipstream almost becomes NO 2. With this NO 2 , the PM collected by the downstream filter 3Ab is oxidized to CO 2 (carbon dioxide) to remove the PM. Since NO 2 has a smaller energy barrier than O 2 , the PM oxidation temperature (DPF regeneration temperature) is lowered, and PM combustion occurs continuously with the thermal energy in the exhaust gas without supplying energy from the outside.

なお、図5のEはディーゼルエンジン、2は排気通路、4は燃料ポンプシステム、5は電子制御ボックス、7はバッテリー、8は消音器、9は燃料タンクである。   In FIG. 5, E is a diesel engine, 2 is an exhaust passage, 4 is a fuel pump system, 5 is an electronic control box, 7 is a battery, 8 is a silencer, and 9 is a fuel tank.

また、図6に、図5のNO2 再生型DPFシステムの改良システム1Yを示す。この改良システム1Yは、酸化触媒32Aの多孔質触媒コート層31をウオールフローフィルタ3Bの多孔質壁面30に塗布し、NOの酸化とこれにより発生したNO2 によるPMの酸化を、ウオールフローフィルタ3Bの壁表面上で行うように構成し、システムを簡素化している。 FIG. 6 shows an improved system 1Y of the NO 2 regeneration type DPF system shown in FIG. In this improved system 1Y, the porous catalyst coat layer 31 of the oxidation catalyst 32A is applied to the porous wall surface 30 of the wall flow filter 3B, and oxidation of NO and oxidation of PM by NO 2 generated thereby are performed, and the wall flow filter 3B. The system is simplified to be configured to do on the wall surface.

そして、図7に、ウオールフローフィルタ3Cの多孔質壁面30に、酸化触媒32Aと酸化物等のPM酸化触媒32Bとの多孔質触媒コート層31を塗布し、フィルタ3Cに蓄積したPMを低温で燃焼し、連続再生するシステム1Zを示す。   And in FIG. 7, the porous catalyst coat layer 31 of the oxidation catalyst 32A and the PM oxidation catalyst 32B such as an oxide is applied to the porous wall surface 30 of the wall flow filter 3C, and the PM accumulated in the filter 3C is reduced at a low temperature. 1 shows a system 1Z that burns and continuously regenerates.

そして、これらの触媒付きDPFシステムは、触媒及びNO2 によるPMの酸化反応によって通常のフィルタよりもPM酸化開始排気温度(PM強制燃焼温度)を下げてPMの連続再生を実現するシステムである。 These catalyst-attached DPF systems are systems that realize continuous regeneration of PM by lowering the PM oxidation start exhaust temperature (PM forced combustion temperature) than the normal filter by the oxidation reaction of PM by the catalyst and NO 2 .

しかしながら、PM酸化開始排気温度を下げても、まだ、350℃程度の排気ガス温度は必要であり、アイドルや低負荷のエンジン運転条件では、排気ガス温度が不足し、PMの酸化及びDPFの再生が生じない。   However, even if the PM oxidation start exhaust temperature is lowered, an exhaust gas temperature of about 350 ° C. is still necessary. Under idle and low load engine operating conditions, the exhaust gas temperature is insufficient, and PM oxidation and DPF regeneration are performed. Does not occur.

従って、このようなアイドルや低負荷のエンジン運転条件を継続するとPMが蓄積してもPM酸化状態にならないため、排圧が上昇し、燃費の悪化を招き、また、エンジン停止等のトラブルが生じるおそれがある。   Therefore, if such idle or low-load engine operating conditions are continued, the PM oxidation state does not occur even if PM accumulates, so that the exhaust pressure increases, fuel consumption deteriorates, and troubles such as engine stop occur. There is a fear.

そこで、これらの連続再生型DPFシステムでは、エンジン運転条件からフィルタへのPM蓄積量を算出したり、又は、PM蓄積量に対応したフィルタ圧損からPM蓄積量を推定したりして、DPF再生必要条件を設定し、このDPF再生必要条件を満たした時に、蓄積したPMを強制的に燃焼させて除去するDPF再生制御を行っている。   Therefore, in these continuous regeneration type DPF systems, it is necessary to regenerate the DPF by calculating the PM accumulation amount in the filter from the engine operating conditions or estimating the PM accumulation amount from the filter pressure loss corresponding to the PM accumulation amount. Conditions are set and DPF regeneration control is performed to forcibly burn and remove the accumulated PM when this DPF regeneration requirement is satisfied.

このDPF再生制御は、コモンレール等の電子制御式燃料噴射システムにおいて、多段噴射(スプリット噴射)とし、早期噴射と遅延噴射を組み合わせて、早期噴射でピストンのサイクル中の負の仕事を増加させることにより、低負荷条件でもエンジンの発生トルク量を変えることなく、PMを酸化するのに必要な排気ガス中のNOxを増加させると共に、遅延噴射により排気ガスの温度をPM強制燃焼温度以上に上昇させる燃料噴射制御方法や連続再生型DPFの再生制御方法が提案され、運転条件によっては効果が確認されている(例えば、特許文献1参照。)。   This DPF regeneration control is a multi-stage injection (split injection) in an electronically controlled fuel injection system such as a common rail, and combines early injection and delayed injection to increase negative work in the piston cycle by early injection. Fuel that increases NOx in exhaust gas required to oxidize PM without changing the amount of torque generated in the engine even under low load conditions, and raises the temperature of exhaust gas above the PM forced combustion temperature by delayed injection An injection control method and a regeneration control method for a continuous regeneration type DPF have been proposed, and the effect has been confirmed depending on operating conditions (for example, see Patent Document 1).

この燃料噴射制御方法による排気ガス中のNOx増加と、排気ガスの昇温、及び、負の仕事の発生は、多段噴射の極端に早期に噴射された1段目の燃料噴射が噴射と同時期に着火し、筒内(シリンダ内)が上死点前に高圧、高温になることにより実現される。   The increase in NOx in the exhaust gas, the temperature rise of the exhaust gas, and the occurrence of negative work by this fuel injection control method are the same as the injection of the first fuel injection injected extremely early in the multi-stage injection. This is realized by igniting and causing the cylinder (inside the cylinder) to become high pressure and high temperature before top dead center.

しかしながら、冷間時や、極端に低負荷な条件下においては、極端に噴射時期を早めた早期噴射にすると、筒内温度が噴射した燃料の着火温度に達していないため、早期噴射で噴射された燃料が着火せず、筒内が上死点前に高圧、高温にならず、NOx増加、排気ガス昇温、負の仕事の発生に対して十分な効果を得られないという問題がある。   However, when it is cold or under extremely low load conditions, if the early injection is performed with an extremely early injection timing, the in-cylinder temperature does not reach the ignition temperature of the injected fuel, so the fuel is injected with early injection. There is a problem that the fuel does not ignite, the inside of the cylinder does not become high pressure and high temperature before top dead center, and sufficient effects cannot be obtained for NOx increase, exhaust gas temperature rise, and negative work generation.

一方、これらの連続再生型DPFを備えるディーゼルエンジンは、通電により高温となるグロープラグ(予熱栓、加熱栓)を備えていることが多い。ディーゼルエンジンは、混合気を高圧縮することにより自然発火させているが、冬期等の外気温が低い時期になると混合気も低温になるため自然発火が難しくなり、エンジン始動が困難となるため、始動時のみ、このグロープラグにより、筒内、特に燃焼室を予熱して暖めておき、エンジン始動時の燃料が自然発火し易くなるようにしている。そして,エンジンが始動して、暖機するとグロープラグによる予熱を終了している。
特開2002−276443号公報
On the other hand, diesel engines equipped with these continuously regenerating DPFs are often equipped with glow plugs (preheating plugs, heating plugs) that become hot when energized. Diesel engines are spontaneously ignited by highly compressing the air-fuel mixture, but when the outside air temperature is low, such as in winter, the air-fuel mixture becomes cold, making it difficult to spontaneously ignite, making it difficult to start the engine. Only at the start, the glow plug preheats the inside of the cylinder, particularly the combustion chamber, so that the fuel at the start of the engine is easily ignited. When the engine is started and warmed up, the preheating by the glow plug is finished.
JP 2002-276443 A

本発明は、既に備えているグロープラグを利用し、あるいは、新たにグロープラグを設けて、上述の問題を解決するすべくなされたものであり、その目的は、排気ガス低温時の再生制御で早期噴射と遅延噴射で構成される多段噴射を行う連続再生型DPFにおいて、少なくとも多段噴射の早期噴射の実行時にオンされた状態にして筒内を加熱するグローアシスト加熱を併用することにより、出力トルクの変動を防止しながら、排気ガス中のNOxの増加と、排気ガス温度の大幅な上昇を行って、効率よくDPF再生を行うことができる排気ガス浄化方法及び排気ガス浄化システムを提供することにある。   The present invention has been made to solve the above-mentioned problems by using a glow plug already provided or newly providing a glow plug, and its purpose is to control regeneration at a low temperature of exhaust gas. In continuous regeneration type DPF that performs multi-stage injection composed of early injection and delayed injection, output torque is increased by using glow assist heating that is turned on at the time of execution of at least early injection of multi-stage injection to heat the inside of the cylinder The present invention provides an exhaust gas purification method and an exhaust gas purification system that can efficiently perform DPF regeneration by increasing NOx in exhaust gas and significantly increasing exhaust gas temperature while preventing fluctuations in the exhaust gas. is there.

以上のような目的を達成するための排気ガス浄化システムは、内燃機関の排気通路に連続再生型DPFを備え、該連続再生型DPFの再生制御運転が要求された時であって、前記連続再生型DPFの入口の排気温度が、前記連続再生型DPFに捕集されたPMが燃焼を開始するPM強制燃焼温度より低い時に、通常運転における燃料噴射の適正燃料噴射時期よりも早い時期に燃料噴射する早期噴射と遅い時期に燃料噴射する遅延噴射を実行する、多段噴射を伴う再生制御運転を行う内燃機関の排気ガス浄化システムにおいて、前記連続再生型DPFの再生制御運転が要求されたときに、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度よりも低いときには、前記多段噴射に加え、エンジンに具備したグロープラグをオンされた状態にして筒内を加熱する第1の制御を行い、該第1の制御を、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度以上になり、かつ前記再生制御運転の要求がなくなるまで行い、前記連続再生型DPFの再生制御運転が要求されたときに、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度以上のときは、前記グロープラグをオフされた状態にしてPMの酸化除去に適した温度制御を前記再生制御運転の要求がなくなるまで行う第2の制御を行う方法として構成される。 An exhaust gas purification system for achieving the above object comprises a continuous regeneration type DPF in an exhaust passage of an internal combustion engine, and when the regeneration control operation of the continuous regeneration type DPF is required, the continuous regeneration type When the exhaust temperature at the inlet of the mold DPF is lower than the PM forced combustion temperature at which the PM collected in the continuous regeneration DPF starts combustion, fuel injection is performed earlier than the proper fuel injection timing of fuel injection in normal operation In an exhaust gas purification system for an internal combustion engine that performs regeneration control operation with multi-stage injection that performs early injection and delay injection that injects fuel at a later time, when the regeneration control operation of the continuous regeneration type DPF is requested, wherein when the exhaust gas temperature at the inlet of the continuous regeneration type DPF is lower than the PM forced combustion temperature, in addition to the multi-stage injection, which is turned on glow plug provided in the engine Performing a first control for heating the cylinder in the state, the control of the first, the continuous regeneration inlet of the exhaust gas temperature of the DPF becomes more the PM forced combustion temperature, and the playback control operation request is state have rows until no, when the reproduction control operation of the continuous regeneration type DPF is requested, the exhaust gas temperature at the inlet of the continuous regeneration type DPF is when more than the PM forced combustion temperature, which is off the glow plug Thus, it is configured as a method of performing the second control in which the temperature control suitable for the PM oxidation removal is performed until the request for the regeneration control operation disappears .

また、排気ガス浄化システムは、内燃機関の排気通路に連続再生型DPFを備え、該連続再生型DPFの再生制御運転が要求された時であって、前記連続再生型DPFの入口の排気温度が、前記連続再生型DPFに捕集されたPMが燃焼を開始するPM強制燃焼温度より低い時に、通常運転における燃料噴射の適正燃料噴射時期よりも早い時期に燃料噴射する早期噴射と遅い時期に燃料噴射する遅延噴射を実行する、多段噴射を伴う再生制御装置を備えた内燃機関の排気ガス浄化システムにおいて、前記連続再生型DPFの再生制御運転が要求されたときに、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度よりも低いときには、前記多段噴射に加え、エンジンに具備したグロープラグをオンされた状態にして筒内を加熱する第1の制御を行い、該第1の制御を、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度以上になり、かつ前記再生制御運転の要求がなくなるまで行い、前記連続再生型DPFの再生制御運転が要求されたときに、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度以上のときは、前記グロープラグをオフされた状態にしてPMの酸化除去に適した温度制御を前記再生制御運転の要求がなくなるまで行う第2の制御をするように構成される。 The exhaust gas purification system includes a continuous regeneration type DPF in the exhaust passage of the internal combustion engine, and when the regeneration control operation of the continuous regeneration type DPF is required, the exhaust temperature at the inlet of the continuous regeneration type DPF is When the PM collected in the continuous regeneration type DPF is lower than the PM forced combustion temperature at which combustion starts, the fuel is injected at an early timing and at a later timing than the proper fuel injection timing of fuel injection in normal operation. In an exhaust gas purification system for an internal combustion engine having a regeneration control device with multi-stage injection for performing delayed injection to be injected, when the regeneration control operation of the continuously regenerating DPF is requested, the inlet of the continuously regenerating DPF when exhaust gas temperature is lower than the PM forced combustion temperature, in addition to the multiple injection to heat the in-cylinder in the state of being turned on a glow plug provided in the engine Performs first control, the control of the first, the exhaust temperature at the inlet of the continuous regeneration type DPF becomes higher the PM forced combustion temperature, and have rows until the request is eliminated in the playback control operation, the continuous regeneration type When the regeneration control operation of the DPF is required, if the exhaust temperature at the inlet of the continuous regeneration DPF is equal to or higher than the PM forced combustion temperature, the glow plug is turned off and suitable for the oxidation removal of PM. The second control is performed so that the temperature control is performed until the regeneration control operation is no longer required .

上記の構成によれば、再生制御運転において、多段噴射(スプリット噴射)の少なくとも早期噴射の実行時にオンされた状態にして筒内をグローアシスト加熱することにより、早期噴射における筒内及び噴射された燃料噴霧の加熱により、負の仕事が発生すると同時に、NOxの発生量が増加する。そして、早期噴射で負の仕事が発生するので、アウトプット出力の増加を伴うことなく、遅延噴射の噴射量を増加して、排気ガスの温度を大幅に上昇できる。   According to the above configuration, in the regeneration control operation, the in-cylinder and the in-cylinder in the early injection are injected by performing glow assist heating in the cylinder while being turned on at the time of execution of at least the early injection of the multistage injection (split injection). Due to the heating of the fuel spray, negative work is generated and at the same time the amount of NOx generated increases. And since negative work occurs in early injection, the amount of delayed injection can be increased and the temperature of exhaust gas can be significantly increased without increasing the output output.

従って、アイドルや低負荷域等における内燃機関の運転条件でも、効率よく排気ガスを昇温し、排出NOx量を増加してDPF再生を行うことができるようになる。また、何時でもDPF再生を行えるようになるので、PMの過剰蓄積による排圧の上昇を抑制し、この高排圧に起因するエンジンストールを回避できる。また、効率良く排気ガスを昇温できるので、燃費を向上できる。   Therefore, even under the operating conditions of the internal combustion engine in an idling or low load range, it is possible to efficiently raise the temperature of the exhaust gas and increase the amount of exhausted NOx to perform DPF regeneration. In addition, since DPF regeneration can be performed at any time, an increase in exhaust pressure due to excessive accumulation of PM can be suppressed, and engine stall due to this high exhaust pressure can be avoided. Further, the temperature of the exhaust gas can be increased efficiently, so that fuel efficiency can be improved.

そして、排気ガスが低温のためにDPF再生ができずにPMが過剰に蓄積する現象を回避できるので、このPM過剰蓄積の後におけるPM着火時にPMが暴走燃焼してフィルタを溶損するような事故を防止できる。   And, since the exhaust gas is low temperature, DPF regeneration cannot be performed and the phenomenon of excessive accumulation of PM can be avoided. Therefore, an accident in which PM runs away during PM ignition after this excessive accumulation of PM and the filter is damaged. Can be prevented.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記連続再生型DPFとしては、PMを捕集するフィルタに酸化触媒を担持させた連続再生型DPF、PMを捕集するフィルタの上流側に酸化触媒を設けた連続再生型DPF、PMを捕集するフィルタに酸化触媒を担持させると共に該フィルタの上流側に酸化触媒を設けた連続再生型DPF等を採用することができる。   In the exhaust gas purification system for an internal combustion engine, the continuous regeneration type DPF includes a continuous regeneration type DPF in which an oxidation catalyst is supported on a filter that collects PM, and an upstream side of the filter that collects PM. A continuous regeneration type DPF provided with a catalyst, a continuous regeneration type DPF in which an oxidation catalyst is carried on a filter that collects PM, and an oxidation catalyst is provided on the upstream side of the filter can be employed.

本発明の内燃機関の排気ガス浄化方法及び排気ガス浄化システムによれば、酸化触媒と触媒付きDPFを備えた連続再生型DPFにおいて、従来技術では排気ガス温度が不足してDPFPM強制再生燃焼が行えなかったアイドル、低負荷域等におけるエンジンの運転条件でも、効率よく排気ガスを昇温し、排出NOx量を増加してDPF再生を行うことができるようになる。また、効率良く排気ガスを上昇できるので、燃費を向上できる。   According to the exhaust gas purification method and exhaust gas purification system of an internal combustion engine of the present invention, in a continuous regeneration type DPF having an oxidation catalyst and a DPF with a catalyst, the exhaust gas temperature is insufficient in the conventional technology, and DPFPM forced regeneration combustion can be performed. DPF regeneration can be performed by efficiently raising the temperature of the exhaust gas and increasing the amount of exhausted NOx even under the operating conditions of the engine in the idle, low load region, etc. that did not exist. Moreover, since exhaust gas can be raised efficiently, fuel consumption can be improved.

そして、アイドルや低負荷域のエンジン運転域でもDPF再生を行え、これにより、何時でもDPF再生を行えるようになるので、PMの過剰蓄積による排圧の上昇を抑制し、この高排圧に起因するエンジンストールを回避できる。また、DPF再生不能のためにPMが過剰に蓄積する現象を回避できるので、このPM過剰蓄積の後におけるPM着火時にPMが暴走燃焼してフィルタを溶損するような事故を防止できる。   And because DPF regeneration can be performed at any time even in the idling or low-load engine operating range, it becomes possible to perform DPF regeneration at any time, which suppresses an increase in exhaust pressure due to excessive accumulation of PM, resulting from this high exhaust pressure To avoid engine stall. In addition, since the phenomenon of excessive PM accumulation due to the inability to regenerate the DPF can be avoided, it is possible to prevent accidents in which the PM runs away and burns out when the PM is ignited after this excessive PM accumulation.

以下、本発明に係る実施の形態の排気ガス浄化方法及び排気ガス浄化システムについて、上流側の酸化触媒と下流側の触媒付きフィルタの組合せで構成される連続再生型DPF(ディーゼルパティキュレートフィルタ)を例にして図面を参照しながら説明する。   Hereinafter, regarding an exhaust gas purification method and an exhaust gas purification system according to an embodiment of the present invention, a continuous regeneration type DPF (diesel particulate filter) composed of a combination of an upstream oxidation catalyst and a downstream filter with a catalyst is provided. An example will be described with reference to the drawings.

図1及び図2に、この実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1では、ディーゼルエンジンEの排気マニホールド11に接続する排気通路2に、上流側に酸化触媒3Aaを下流側に触媒付きフィルタ3Abを有して構成される連続再生型DPF3が設けられている。   1 and 2 show the configuration of the exhaust gas purification system 1 of this embodiment. In this exhaust gas purification system 1, a continuous regeneration type DPF 3 configured by having an oxidation catalyst 3 </ b> Aa on the upstream side and a filter with a catalyst 3 </ b> Ab on the downstream side is provided in the exhaust passage 2 connected to the exhaust manifold 11 of the diesel engine E. It has been.

この酸化触媒3Aaは、多孔質のセラミックのハニカム構造等の担持体に、白金(Pt)等の酸化触媒を担持させて形成され、触媒付きフィルタ3Abは、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウオールフロータイプのフィルタで形成される。このフィルタの部分に白金や酸化セリウム等の触媒を担持する。この触媒付きフィルタ3Abでは、排気ガスG中のPM(微粒子状物質)は多孔質のセラミックの壁で捕集(トラップ)される。   This oxidation catalyst 3Aa is formed by carrying an oxidation catalyst such as platinum (Pt) on a carrier such as a porous ceramic honeycomb structure, and the filter with catalyst 3Ab is formed at the inlet of the channel of the porous ceramic honeycomb. And a monolith honeycomb wall flow type filter in which the outlets are alternately sealed. A catalyst such as platinum or cerium oxide is supported on the filter. In this filter with catalyst 3Ab, PM (particulate matter) in the exhaust gas G is collected (trapped) by a porous ceramic wall.

そして、触媒付きフィルタ3AbのPMの堆積量を推定するために、連続再生型DPF装置3の前後に接続された導通管に差圧センサ21が設けられる。また、触媒付きフィルタ3Abの再生制御用に、連続再生型DPF装置3の入口近傍に、排気温度センサ22が設けられる。   In order to estimate the amount of PM deposited on the catalyst-attached filter 3Ab, a differential pressure sensor 21 is provided on the conducting pipe connected before and after the continuous regeneration type DPF device 3. An exhaust temperature sensor 22 is provided in the vicinity of the inlet of the continuous regeneration type DPF device 3 for regeneration control of the filter with catalyst 3Ab.

これらのセンサの出力値は、エンジンEの運転の全般的な制御を行うと共に、触媒付きフィルタ3Abの再生制御も行う制御装置(電子制御ボックス:ECU:エンジンコントロールユニット)5に入力され、この制御装置5から出力される制御信号により、エンジンEの燃料噴射弁15や、吸気通路6に設けられ、吸気マニホールドへの吸気量を調整する吸気弁11等が制御される。   The output values of these sensors are input to a control device (electronic control box: ECU: engine control unit) 5 that performs overall control of the operation of the engine E and also performs regeneration control of the filter 3Ab with catalyst. The control signal output from the device 5 controls the fuel injection valve 15 of the engine E, the intake valve 11 provided in the intake passage 6 and adjusting the intake amount to the intake manifold.

この燃料噴射弁15は燃料ポンプ(図示しない)で昇圧された高圧の燃料を一時的に貯えるコモンレール(図示しない)に接続されており、制御装置5には、エンジンの運転のために、PTOのスイッチのON/OFF,ニュートラルスイッチのON/OFF,車両速度,冷却水温度,エンジン回転数,アクセル開度等の情報も入力される。   The fuel injection valve 15 is connected to a common rail (not shown) that temporarily stores high-pressure fuel that has been boosted by a fuel pump (not shown). Information such as ON / OFF of the switch, ON / OFF of the neutral switch, vehicle speed, cooling water temperature, engine speed, accelerator opening, etc. is also input.

そして、吸入空気Aは、吸気通路6でターボチャージャ17のコンプレッサ17aとインタークーラ12を経由して、吸気弁11で吸気量を調整された後、シリンダ13内の燃焼室14に入る。この燃焼室14には、燃料噴射弁15とグロープラグ16が設けられている。この燃料噴射弁15から燃料噴射により、燃料と吸入空気Aとが混合し、ピストン18の圧縮により、自然発火して燃焼し、排気ガスGを発生する。この排気ガスGは、排気通路2のターボチャージャ17のタービン17bを経由して、連続再生型DPF3に入り、浄化された排気ガスGcになって、消音器8を経由して大気中に放出される。   Then, the intake air A passes through the compressor 17 a of the turbocharger 17 and the intercooler 12 in the intake passage 6, adjusts the intake amount by the intake valve 11, and then enters the combustion chamber 14 in the cylinder 13. The combustion chamber 14 is provided with a fuel injection valve 15 and a glow plug 16. By fuel injection from the fuel injection valve 15, the fuel and the intake air A are mixed, and by compression of the piston 18, it spontaneously ignites and burns to generate exhaust gas G. The exhaust gas G enters the continuous regeneration type DPF 3 via the turbine 17 b of the turbocharger 17 in the exhaust passage 2, becomes purified exhaust gas Gc, and is released into the atmosphere via the silencer 8. The

この排気ガス浄化システム1において、差圧センサ21の差圧が上昇し、連続再生型DPF装置3の触媒付きフィルタ3AbのPM蓄積量が再生が必要な設定量を超えたが、エンジン運転条件がアイドルや低負荷等でPMの酸化及びDPF再生に必要な排気温度に達していない場合に、排気ガス昇温制御を行って、連続再生型DPF装置3を再生する。   In this exhaust gas purification system 1, the differential pressure of the differential pressure sensor 21 increases, and the PM accumulation amount of the filter 3Ab with catalyst of the continuous regeneration type DPF device 3 exceeds the set amount that needs to be regenerated. When the exhaust temperature required for PM oxidation and DPF regeneration is not reached due to idling or low load, exhaust gas temperature rise control is performed to regenerate the continuous regeneration type DPF device 3.

この排気ガス浄化システム1における再生制御は、差圧センサ21,排気温度センサ22の検出値ΔP,T1を、制御装置5に入力し、燃料噴射弁15とグロープラグ16や吸気弁11等を制御して行う。   In the regeneration control in the exhaust gas purification system 1, detection values ΔP and T1 of the differential pressure sensor 21 and the exhaust temperature sensor 22 are input to the control device 5 to control the fuel injection valve 15, the glow plug 16, the intake valve 11, and the like. And do it.

そして、本発明においては、連続再生型DPF装置3の再生制御において、差圧センサ21の差圧ΔPが上昇し、再生開始制御が必要となったが、エンジン運転条件がアイドルや低負荷域等の運転状態で排気ガスの温度がDPF再生に必要な温度に達していない場合、又は、排気ガス中のNOx量がDPF再生に必要な量に達していない場合に、グローアシスト加熱併用再生制御運転を行って、排気ガスを昇温し、また、排気ガス中のNOx量を増加して、DPF再生を行う。   In the present invention, in the regeneration control of the continuous regeneration type DPF device 3, the differential pressure ΔP of the differential pressure sensor 21 is increased and the regeneration start control is required, but the engine operating conditions are idle, a low load region, etc. When the temperature of the exhaust gas does not reach the temperature required for DPF regeneration in the operating state, or when the amount of NOx in the exhaust gas does not reach the amount required for DPF regeneration, the regeneration control operation combined with glow assist heating To raise the temperature of the exhaust gas and increase the amount of NOx in the exhaust gas to perform DPF regeneration.

このグローアシスト加熱併用再生制御運転は、多段噴射(早期噴射+遅延噴射)を実行するときにグロープラグ16もオンされる再生制御運転である。この多段噴射(スプリット噴射)における作動指圧線図を図3に示す。なお、図3では2段の多段噴射であるが、より多段の方が好ましい。   This regeneration control operation combined with glow assist heating is a regeneration control operation in which the glow plug 16 is also turned on when multistage injection (early injection + delayed injection) is executed. FIG. 3 shows an operating acupressure diagram in this multi-stage injection (split injection). In FIG. 3, two-stage multi-stage injection is used, but more stages are more preferable.

このグローアシスト加熱を併用した多段噴射では、図3に示すように、燃料噴射の1段目の早期噴射の噴射時期t1を通常運転における燃料噴射の適正燃料噴射時期tnより極端に早い時期とすると共に、少なくともグロープラグ16を早期噴射時期にオンされた状態でグローアシスト加熱を行い(A)、これにより、筒内(シリンダ内)及び噴射された燃料噴霧を加熱し、負の仕事(Wm)を発生させると同時に、NOxの発生量を増やす。この時、筒内の作動ガスの温度も増加する(B)。   In the multi-stage injection combined with the glow assist heating, as shown in FIG. 3, the injection timing t1 of the first stage of fuel injection is extremely earlier than the proper fuel injection timing tn of fuel injection in normal operation. At the same time, glow assist heating is performed with at least the glow plug 16 turned on at the early injection timing (A), thereby heating the cylinder (inside the cylinder) and the injected fuel spray, and negative work (Wm). At the same time as generating NOx. At this time, the temperature of the working gas in the cylinder also increases (B).

このグロープラグ16は、多段噴射している間はずっとオンでもよいが、要するに早期噴射の燃料を噴射と同時に着火できれば良く、オンの期間も、グロープラグ16の応答速度を考慮した早期噴射時期前後のみでも良い。   The glow plug 16 may be kept on during the multi-stage injection, but it suffices if the early injection fuel can be ignited at the same time as the injection, and the on period is also around the early injection timing in consideration of the response speed of the glow plug 16. Only it is good.

次に、2段目の遅延噴射の燃料噴射を行うが、この噴射では1段目の負の仕事(Wm)に打ち勝って正の仕事(Wp)が取り出せる量の燃料を噴射する。この時、排気ガスを昇温させるために、この2段目の噴射時期t2を通常運転における燃料噴射の適正燃料噴射時期tnより遅延させる、即ち、リタード側とする。   Next, fuel injection of the second-stage delayed injection is performed. In this injection, an amount of fuel that can overcome the negative work (Wm) of the first stage and extract positive work (Wp) is injected. At this time, in order to raise the temperature of the exhaust gas, the second stage injection timing t2 is delayed from the proper fuel injection timing tn of the fuel injection in the normal operation, that is, the retard side.

これらの噴射制御では、1段目の燃料噴射の時期t1をグローアシスト加熱によって極端に進角できるようになるので、排出NOx量を増加できる。また、1段目の燃料噴射で筒内温度が非常に高くなっているため、2段目の噴射時期のリタード量を増加でき、排気ガスの温度を大きく上昇させることができる。しかも、1段目の燃料噴射によって負の仕事(Wm)が行われるため、アウトプット出力(Wo=Wp−Wm)を増すことなく、2段目の噴射量を増加できるので、アイドルや低負荷域の運転状態でも排気ガスを大幅に昇温できる。   In these injection controls, the timing t1 of the first-stage fuel injection can be extremely advanced by glow assist heating, so that the amount of exhausted NOx can be increased. Further, since the in-cylinder temperature is very high in the first stage fuel injection, the retard amount at the second stage injection timing can be increased, and the temperature of the exhaust gas can be greatly increased. Moreover, since negative work (Wm) is performed by the first-stage fuel injection, the second-stage injection amount can be increased without increasing the output output (Wo = Wp-Wm). The exhaust gas temperature can be raised significantly even in the operation state of the region.

従って、アイドルや低負荷域の運転条件下でも、DPF再生が必要な時には、DPF再生に必要な排気ガスの温度とNOx量を確保できる。その上、アウトプット出力(発生出力)の制御は1段目の噴射量と2段目の噴射量の割合を制御することにより可能となるので、この割合の制御により、通常運転と再生制御運転との切替時における出力トルクの変動を防止できる。   Therefore, the exhaust gas temperature and the NOx amount necessary for DPF regeneration can be ensured when DPF regeneration is required even under idling or low load operating conditions. In addition, since the output output (generated output) can be controlled by controlling the ratio of the first stage injection amount and the second stage injection amount, the normal operation and the regeneration control operation are controlled by this ratio control. The fluctuation of output torque at the time of switching to can be prevented.

次に、このグローアシスト加熱併用再生制御運転を行う排気ガス浄化方法について説明する。この排気ガス浄化方法は、図4に例示するような制御フローに従って行われる。   Next, an exhaust gas purification method for performing this glow assist heating combined regeneration control operation will be described. This exhaust gas purification method is performed according to the control flow illustrated in FIG.

この図4の制御フローは、エンジンEを含む車両全体を制御するメイン制御フローに組み込まれた再生制御フローとして例示する制御スローであり、エンジンEのスタートスイッチオンと共にスタートするメイン制御フローから繰り返し呼ばれて実行を繰り返す。   The control flow in FIG. 4 is a control throw illustrated as a regeneration control flow incorporated in the main control flow for controlling the entire vehicle including the engine E, and is repeatedly called from the main control flow that starts when the start switch of the engine E is turned on. And repeat execution.

図4の制御フローがメイン制御フローから呼ばれてスタートすると、ステップS10で、通常噴射制御運転を所定の時間(再生開始か否かの判定を行う時間間隔に関係する時間)の間行う。この通常噴射制御運転は、DPFの再生に関係なく、エンジンに要求される回転数と負荷に対して通常の燃料噴射が行われ、グロープラグ16も冷間期の暖機始動時等の予熱以外ではオフで運転される。   When the control flow of FIG. 4 is called from the main control flow and starts, in step S10, the normal injection control operation is performed for a predetermined time (time related to the time interval for determining whether or not to start regeneration). In this normal injection control operation, regardless of the regeneration of the DPF, normal fuel injection is performed with respect to the engine speed and load required for the engine, and the glow plug 16 is also other than preheating such as when warming up in the cold period. Then it is driven off.

次のステップS11で、触媒付きDPF3AbのPM捕集状態が再生制御が必要な再生開始の状態になったか否かを、差圧センサ21で検出される差圧ΔPが所定の再生開始用差圧判定値ΔP0以上になったか否かで判定する。   In the next step S11, whether or not the PM collection state of the catalyst-attached DPF 3Ab is in a regeneration start state requiring regeneration control, the differential pressure ΔP detected by the differential pressure sensor 21 is a predetermined regeneration start differential pressure. The determination is made based on whether or not the determination value ΔP0 is reached.

なお、この再生開始の判定は、エンジンの運転状態から予め入力されたPM蓄積量マップデータを参照しながら、触媒付きDPF3AbのPM蓄積量を算出すると共に、このPM蓄積量の総和であるPM累積量を計算して、このPM累積量が所定の限界蓄積量より大きくなった時に再生開始の状態になったとしてもよい。   This regeneration start is determined by calculating the PM accumulation amount of the DPF 3 Ab with catalyst while referring to the PM accumulation amount map data input in advance from the engine operating state, and the PM accumulation which is the sum of the PM accumulation amounts. The amount may be calculated, and the regeneration may be started when the PM accumulation amount becomes larger than a predetermined limit accumulation amount.

この再生開始の判定で、差圧ΔPが再生開始用差圧判定値ΔP0より小さい間は、再生開始ではないとして、ステップS10に戻り、通常噴射制御運転を繰り返す。そして、この再生開始の判定で、差圧ΔPが再生開始用差圧判定値ΔP0以上となり、再生開始となった場合はステップS12に行く。   As long as the differential pressure ΔP is smaller than the regeneration start differential pressure determination value ΔP0 in this regeneration start determination, it is determined that the regeneration is not started, and the routine returns to step S10 to repeat the normal injection control operation. In this regeneration start determination, the differential pressure ΔP becomes equal to or greater than the regeneration start differential pressure determination value ΔP0, and if the regeneration is started, the process goes to step S12.

ステップS12では、排気温度センサ22で検出された排気温度(DPF入口排気温度)T1がPM強制燃焼温度Tpmよりも小さいか否かを判定する。このPM強制燃焼温度Tpmとは、排気温度T1がこの温度Tpm以上であれば、触媒付きDPF3Abに捕集されたPMが排気ガス中のNOxやO2 によって強制的に燃焼除去される温度であり、PM酸化開始排気温度と同じである。 In step S12, it is determined whether or not the exhaust temperature (DPF inlet exhaust temperature) T1 detected by the exhaust temperature sensor 22 is smaller than the PM forced combustion temperature Tpm. The PM forced combustion temperature Tpm is a temperature at which PM trapped in the DPF 3Ab with catalyst is forcibly burned and removed by NOx or O 2 in the exhaust gas if the exhaust temperature T1 is equal to or higher than the temperature Tpm. , PM oxidation start exhaust gas temperature is the same.

この判定で、排気温度T1がPM強制燃焼温度Tpm以上の場合は、ステップS16のグロープラグオフの通常PM再生制御運転を所定の時間(DPFの再生終了か否かの判定を行う時間間隔に関係する時間)の間行い、ステップS17のDPFの再生終了か否かの判定に行き、DPFの前後差圧ΔPが再生終了用差圧判定値ΔP10より小さくなったか否か判定する。   In this determination, when the exhaust gas temperature T1 is equal to or higher than the PM forced combustion temperature Tpm, the glow plug-off normal PM regeneration control operation in step S16 is related to a predetermined time (determining whether or not the regeneration of the DPF is completed). To determine whether or not the regeneration of the DPF has ended in step S17, and determines whether or not the differential pressure ΔP before and after the DPF has become smaller than the regeneration end differential pressure determination value ΔP10.

DPFの前後差圧ΔPが再生終了用差圧判定値ΔP1より小さくなければ、ステップS16に戻り、通常PM再生制御運転を繰り返し行い、触媒付きDPF3Abに蓄積されたPMを燃焼除去する。そして、ステップS17の判定でDPFの前後差圧ΔPが再生終了用差圧判定値ΔP1より小さくなれば、再生が終了したとしてリターンに行く。   If the front-rear differential pressure ΔP of the DPF is not smaller than the regeneration end differential pressure determination value ΔP1, the process returns to step S16, and the normal PM regeneration control operation is repeated, and the PM accumulated in the DPF 3Ab with catalyst is burned and removed. If the differential pressure ΔP before and after the DPF becomes smaller than the regeneration end differential pressure determination value ΔP1 in the determination in step S17, the process returns to the end of the regeneration.

この通常PM再生制御運転では、エンジンEの燃料噴射のメイン噴射(主噴射)のタイミングを遅延操作(リタード)したり、ポスト噴射(後噴射)を行ったり、吸気絞りを行ったりして、排気ガスの温度を上昇させ、PMの酸化除去に適した温度や環境になるようにし、連続再生型DPF3に捕集されたPMを酸化除去する。   In this normal PM regeneration control operation, the timing of the main injection (main injection) of the fuel injection of the engine E is delayed (retarded), post-injection (post-injection), intake throttling, etc. The temperature of the gas is raised so that the temperature and environment are suitable for the oxidation removal of PM, and the PM collected by the continuous regeneration type DPF 3 is oxidized and removed.

例えば、吸気絞り、EGR、VNT等の空気系の装置で、排気ガス中のNOx濃度を増加させ、ポスト噴射を行うことで目標温度を500℃程度にして設定時間の間その状態を保持し、その後同様な制御を行いながら、目標温度を600℃程度にして設定時間の間その状態を保持することで、PMを燃焼させて再生を行う。   For example, with an air system such as an intake throttle, EGR, VNT, etc., the NOx concentration in the exhaust gas is increased and post injection is performed, so that the target temperature is set to about 500 ° C. and the state is maintained for a set time, Thereafter, while performing similar control, the target temperature is set to about 600 ° C. and the state is maintained for a set time, whereby PM is burned and regeneration is performed.

また、ステップS12の判定で、排気温度T1がPM強制燃焼温度Tpmよりも小さい場合は、大きくなるまでステップS13のグローアシスト加熱併用再生制御運転を所定の時間(排気温度T1のチェックを行う時間間隔に関係する時間)の間行い、再度、ステップS14の排気温度のチェックを行う。この排気温度のチェックで、排気温度T1がPM強制燃焼温度Tpmより大きくなったらステップS15に行き、小さい間はステップS13に戻る。   If it is determined in step S12 that the exhaust gas temperature T1 is lower than the PM forced combustion temperature Tpm, the glow-assisted heating combined regeneration control operation in step S13 is performed for a predetermined time (a time interval for checking the exhaust gas temperature T1) until it becomes higher. The exhaust temperature is checked again in step S14. If the exhaust gas temperature T1 becomes higher than the PM forced combustion temperature Tpm in the exhaust gas temperature check, the process goes to step S15, and if it is smaller, the process returns to step S13.

このステップS13のグローアシスト加熱併用再生制御運転は、上記したように、グロープラグ16を少なくとも早期噴射の実行時にオンされた状態にして筒内を加熱するグローアシスト加熱を併用した多段噴射(早期噴射+遅延噴射)の再生制御運転であり、グローアシスト加熱により、早期噴射実行時において筒内及び噴射された燃料噴霧を加熱し、負の仕事(Wm)を発生させると同時に、NOxの発生量を増やし、次の遅延噴射で排気ガスの温度を上昇させる。この時に早期噴射で負の仕事(Wm)が発生するので、アウトプット出力(Wo=Wp−Wm)を増すことなく、2段目の噴射量を増加できるので、排気ガスの温度を大幅に上昇できる。   In the glow assist heating combined regeneration control operation of step S13, as described above, multistage injection (early injection) that uses glow assist heating that heats the inside of the cylinder with the glow plug 16 turned on at the time of execution of early injection as described above. + Delayed injection) regeneration control operation, and by glow assist heating, in-cylinder and the injected fuel spray are heated at the time of early injection execution to generate negative work (Wm) and at the same time reduce the amount of NOx generated Increase the exhaust gas temperature at the next delayed injection. At this time, since negative work (Wm) is generated by early injection, the second stage injection amount can be increased without increasing the output output (Wo = Wp-Wm), so the exhaust gas temperature is significantly increased. it can.

このステップS13のグローアシスト加熱併用再生制御運転により、連続再生型DPF3に流入する排気ガスの温度をPM強制燃焼温度Tpmよりも上げて、また、NOx量をDPF再生に必要な量に増加してDPF再生を行う。   By the glow assist heating combined regeneration control operation in step S13, the temperature of the exhaust gas flowing into the continuous regeneration type DPF 3 is raised above the PM forced combustion temperature Tpm, and the NOx amount is increased to an amount necessary for DPF regeneration. DPF regeneration is performed.

次に、ステップS15では、DPFの再生終了か否かの判定を、DPFの前後差圧ΔPが再生終了用差圧判定値ΔP1より小さくなったか否かで行う。そして、DPFの前後差圧ΔPが再生終了用差圧判定値ΔP1より小さくなければ、ステップS13に戻り、小さくなるまでステップS13のグローアシスト加熱併用再生制御運転を繰り返し行い、触媒付きDPF3Abに蓄積されたPMが燃焼除去されて、ステップS15の判定でDPFの前後差圧ΔPが再生終了用差圧判定値ΔP1より小さくなれば再生が終了したとして、リターンに行く。   Next, in step S15, it is determined whether or not the regeneration of the DPF has ended by whether or not the differential pressure ΔP before and after the DPF has become smaller than the regeneration end differential pressure determination value ΔP1. If the front-rear differential pressure ΔP of the DPF is not smaller than the regeneration end differential pressure determination value ΔP1, the process returns to step S13, and the glow-assisted heating combined regeneration control operation of step S13 is repeated until it becomes smaller and accumulated in the DPF 3Ab with catalyst. If the PM is burned and removed, and if the differential pressure ΔP before and after the DPF becomes smaller than the regeneration end differential pressure determination value ΔP1 in the determination in step S15, it is determined that the regeneration is completed and the process returns.

そして、図4のDPFの再生制御フローが終了して、メイン制御フローに戻り、再度呼ばれて、エンジンが停止されるまで、繰り返される。そして、特に図示していないが、エンジンキーがオフにされると、制御フローの実行途中でも割り込みが生じ、メインの制御フローに戻る。   Then, the regeneration control flow of the DPF in FIG. 4 is completed, the process returns to the main control flow, is called again, and is repeated until the engine is stopped. Although not particularly illustrated, when the engine key is turned off, an interrupt occurs even during the execution of the control flow, and the process returns to the main control flow.

上記の構成の排気ガス浄化システム1によれば、DPFの再生制御において、排気温度センサ22で検出されたDPF入口排気温度T1がPM強制燃焼Tpm以下の時に、グロープラグ16を少なくとも早期噴射実行時にオンされた状態にして筒内を加熱して多段噴射を行うグローアシスト加熱併用再生制御運転を行って、アイドルや低負荷域においても、効率よく排気ガスの温度を昇温でき、また、排出NOx量を増加できる。   According to the exhaust gas purification system 1 configured as described above, in the regeneration control of the DPF, when the DPF inlet exhaust temperature T1 detected by the exhaust temperature sensor 22 is equal to or lower than the PM forced combustion Tpm, the glow plug 16 is at least executed at the early injection time. Glow-assist heating combined regeneration control operation that heats the inside of the cylinder and performs multi-stage injection in the on state can efficiently raise the temperature of the exhaust gas even in the idling or low load range, and exhaust NOx Can increase the amount.

なお、上記の説明では、連続再生型DPFとして、PMを捕集するフィルタに酸化触媒を担持させると共に該フィルタの上流側に酸化触媒を設けた連続再生型DPFを例示したが、本発明はこれに限定されず、PMを捕集するフィルタに酸化触媒を担持させた連続再生型DPFやPMを捕集するフィルタの上流側に酸化触媒を設けた連続再生型DPFにも応用することができる。   In the above description, the continuous regeneration type DPF is exemplified as a continuous regeneration type DPF in which an oxidation catalyst is supported on a filter that collects PM and an oxidation catalyst is provided on the upstream side of the filter. However, the present invention can be applied to a continuous regeneration type DPF in which an oxidation catalyst is supported on a filter that collects PM, and a continuous regeneration type DPF in which an oxidation catalyst is provided on the upstream side of a filter that collects PM.

本発明に係る実施の形態の排気ガス浄化システムのシステム構成図である。1 is a system configuration diagram of an exhaust gas purification system according to an embodiment of the present invention. 本発明に係る排気ガス浄化システムのエンジン部分の構成を示す図である。It is a figure which shows the structure of the engine part of the exhaust-gas purification system which concerns on this invention. 本発明に係るグローアシスト加熱併用再生制御運転における作動指圧線図を示す図である。It is a figure which shows the operation shiatsu diagram in the glow-assist-heat combined regeneration control operation which concerns on this invention. 本発明に係る再生制御の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the reproduction | regeneration control which concerns on this invention. 従来技術の排気ガス浄化システムの一例を示すシステム構成図である。It is a system block diagram which shows an example of the exhaust gas purification system of a prior art. 従来技術の排気ガス浄化システムの他の一例を示すシステム構成図である。It is a system block diagram which shows another example of the exhaust-gas purification system of a prior art. 従来技術の排気ガス浄化システムの他の一例を示すシステム構成図である。It is a system block diagram which shows another example of the exhaust-gas purification system of a prior art.

符号の説明Explanation of symbols

1 排気ガス浄化システム
2 排気通路
3 連続再生型パティキュレートフィルタ
3Aa 酸化触媒
3Ab 触媒付きフィルタ
13 シリンダ
15 燃料噴射弁
16 グロープラグ
E ディーゼルエンジン
G 排気ガス
T1 フィルタ入口排気温度
Tpm PM強制燃焼温度
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification system 2 Exhaust passage 3 Continuous regeneration type particulate filter 3Aa Oxidation catalyst 3Ab Catalyzed filter 13 Cylinder 15 Fuel injection valve 16 Glow plug E Diesel engine G Exhaust gas T1 Filter inlet exhaust temperature Tpm PM forced combustion temperature

Claims (3)

内燃機関の排気通路に連続再生型DPFを備え、該連続再生型DPFの再生制御運転が要求された時であって、前記連続再生型DPFの入口の排気温度が、前記連続再生型DPFに捕集されたPMが燃焼を開始するPM強制燃焼温度より低い時に、通常運転における燃料噴射の適正燃料噴射時期よりも早い時期に燃料噴射する早期噴射と遅い時期に燃料噴射する遅延噴射を実行する、多段噴射を伴う再生制御運転を行う内燃機関の排気ガス浄化システムにおいて、
前記連続再生型DPFの再生制御運転が要求されたときに、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度よりも低いときには、前記多段噴射に加え、エンジンに具備したグロープラグをオンされた状態にして筒内を加熱する第1の制御を行い、該第1の制御を、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度以上になり、かつ前記再生制御運転の要求がなくなるまで行い、
前記連続再生型DPFの再生制御運転が要求されたときに、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度以上のときは、前記グロープラグをオフされた状態にしてPMの酸化除去に適した温度制御を前記再生制御運転の要求がなくなるまで行う第2の制御を行うことを特徴とする内燃機関の排気ガス浄化方法。
A continuous regeneration type DPF is provided in the exhaust passage of the internal combustion engine, and when the regeneration control operation of the continuous regeneration type DPF is required, the exhaust temperature at the inlet of the continuous regeneration type DPF is captured by the continuous regeneration type DPF. When the collected PM is lower than the PM forced combustion temperature at which combustion starts, an early injection for injecting fuel at an earlier time than an appropriate fuel injection timing for fuel injection in normal operation and a delayed injection for injecting fuel at a later time are executed. In an exhaust gas purification system for an internal combustion engine that performs regeneration control operation involving multi-stage injection,
When the regeneration control operation of the continuous regeneration type DPF is requested, when the exhaust temperature at the inlet of the continuous regeneration type DPF is lower than the PM forced combustion temperature, a glow plug provided in the engine is added to the multistage injection. Turn on state performs first control for heating the cylinder, the control of the first exhaust temperature at the inlet of the continuous regeneration type DPF becomes higher the PM forced combustion temperature, and the playback control operation There line until the request is no longer of,
When the regeneration control operation of the continuous regeneration type DPF is requested, if the exhaust temperature at the inlet of the continuous regeneration type DPF is equal to or higher than the PM forced combustion temperature, the glow plug is turned off to oxidize the PM. An exhaust gas purification method for an internal combustion engine, characterized in that second control is performed in which temperature control suitable for removal is performed until the demand for the regeneration control operation disappears .
内燃機関の排気通路に連続再生型DPFを備え、該連続再生型DPFの再生制御運転が要求された時であって、前記連続再生型DPFの入口の排気温度が、前記連続再生型DPFに捕集されたPMが燃焼を開始するPM強制燃焼温度より低い時に、通常運転における燃料噴射の適正燃料噴射時期よりも早い時期に燃料噴射する早期噴射と遅い時期に燃料噴射する遅延噴射を実行する、多段噴射を伴う再生制御装置を備えた内燃機関の排気ガス浄化システムにおいて、
前記連続再生型DPFの再生制御運転が要求されたときに、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度よりも低いときには、前記多段噴射に加え、エンジンに具備したグロープラグをオンされた状態にして筒内を加熱する第1の制御を行い、該第1の制御を、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度以上になり、かつ前記再生制御運転の要求がなくなるまで行い、
前記連続再生型DPFの再生制御運転が要求されたときに、前記連続再生型DPFの入口の排気温度が前記PM強制燃焼温度以上のときは、前記グロープラグをオフされた状態にしてPMの酸化除去に適した温度制御を前記再生制御運転の要求がなくなるまで行う第
2の制御を行う制御をすることを特徴とする内燃機関の排気ガス浄化システム。
A continuous regeneration type DPF is provided in the exhaust passage of the internal combustion engine, and when the regeneration control operation of the continuous regeneration type DPF is required, the exhaust temperature at the inlet of the continuous regeneration type DPF is captured by the continuous regeneration type DPF. When the collected PM is lower than the PM forced combustion temperature at which combustion starts, an early injection for injecting fuel at an earlier time than an appropriate fuel injection timing for fuel injection in normal operation and a delayed injection for injecting fuel at a later time are executed. In an exhaust gas purification system for an internal combustion engine equipped with a regeneration control device with multi-stage injection,
When the regeneration control operation of the continuous regeneration type DPF is requested, when the exhaust temperature at the inlet of the continuous regeneration type DPF is lower than the PM forced combustion temperature, a glow plug provided in the engine is added to the multistage injection. Turn on state performs first control for heating the cylinder, the control of the first exhaust temperature at the inlet of the continuous regeneration type DPF becomes higher the PM forced combustion temperature, and the playback control operation There line until the request is no longer of,
When the regeneration control operation of the continuous regeneration type DPF is requested, if the exhaust temperature at the inlet of the continuous regeneration type DPF is equal to or higher than the PM forced combustion temperature, the glow plug is turned off to oxidize the PM. The temperature control suitable for the removal is performed until the request for the regeneration control operation is eliminated.
2. An exhaust gas purification system for an internal combustion engine , wherein control for performing control 2 is performed .
前記連続再生型DPFは、PMを捕集するフィルタに酸化触媒を担持させた連続再生型DPF、PMを捕集するフィルタの上流側に酸化触媒を設けた連続再生型DPF、PMを捕集するフィルタに酸化触媒を担持させると共に該フィルタの上流側に酸化触媒を設けた連続再生型DPFのいずれかであることを特徴とする請求項2記載の内燃機関の排気ガス浄化システム。   The continuous regeneration type DPF collects a continuous regeneration type DPF in which an oxidation catalyst is supported on a filter that collects PM, and a continuous regeneration type DPF in which an oxidation catalyst is provided upstream of the filter that collects PM, PM. 3. The exhaust gas purification system for an internal combustion engine according to claim 2, wherein the filter is one of a continuous regeneration type DPF in which an oxidation catalyst is supported on a filter and an oxidation catalyst is provided upstream of the filter.
JP2003316579A 2003-09-09 2003-09-09 Exhaust gas purification method and exhaust gas purification system for internal combustion engine Expired - Fee Related JP4292923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316579A JP4292923B2 (en) 2003-09-09 2003-09-09 Exhaust gas purification method and exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316579A JP4292923B2 (en) 2003-09-09 2003-09-09 Exhaust gas purification method and exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005083263A JP2005083263A (en) 2005-03-31
JP4292923B2 true JP4292923B2 (en) 2009-07-08

Family

ID=34416436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316579A Expired - Fee Related JP4292923B2 (en) 2003-09-09 2003-09-09 Exhaust gas purification method and exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4292923B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296291B2 (en) * 2005-12-08 2013-09-25 いすゞ自動車株式会社 Exhaust gas purification system
JP2011220234A (en) * 2010-04-09 2011-11-04 Ihi Corp Engine system

Also Published As

Publication number Publication date
JP2005083263A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP4345359B2 (en) Exhaust gas purification system
JP4333289B2 (en) Exhaust gas purification system
US20040144069A1 (en) Exhaust gas purifying system
KR100504422B1 (en) Exhaust emission control device for engine
JP3988776B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3992057B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3956992B1 (en) Exhaust gas purification method and exhaust gas purification system
JPWO2002066813A1 (en) Fuel injection control method for diesel engine and regeneration control method for exhaust gas aftertreatment device
WO2014057820A1 (en) Exhaust gas purification system and exhaust gas purification method
US8146351B2 (en) Regeneration systems and methods for particulate filters using virtual brick temperature sensors
US7115237B2 (en) Exhaust gas purifying method and exhaust gas purifying system
JP2007040221A (en) Exhaust emission control device
JP3572439B2 (en) Diesel engine exhaust purification system
JP2004150416A (en) Regeneration method for particulate filter
JP3914751B2 (en) Exhaust purification method
JP4292923B2 (en) Exhaust gas purification method and exhaust gas purification system for internal combustion engine
KR20160050201A (en) Apparatus and method for regenerating diesel particular matter filter
JP4285162B2 (en) Exhaust gas purification system
JP2006274983A (en) Exhaust emission control device
JP4293892B2 (en) Exhaust purification equipment
JP7372899B2 (en) diesel engine
JP7366877B2 (en) diesel engine
JP4554894B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4998109B2 (en) Exhaust gas purification system and exhaust gas purification method
WO2020255537A1 (en) Diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees