JP4291975B2 - Method for producing microbial preparation and microbial preparation - Google Patents

Method for producing microbial preparation and microbial preparation Download PDF

Info

Publication number
JP4291975B2
JP4291975B2 JP2002082979A JP2002082979A JP4291975B2 JP 4291975 B2 JP4291975 B2 JP 4291975B2 JP 2002082979 A JP2002082979 A JP 2002082979A JP 2002082979 A JP2002082979 A JP 2002082979A JP 4291975 B2 JP4291975 B2 JP 4291975B2
Authority
JP
Japan
Prior art keywords
concentration
culture tank
culture
mlss
microbial preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002082979A
Other languages
Japanese (ja)
Other versions
JP2003274937A (en
Inventor
洋介 中村
正廣 青井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002082979A priority Critical patent/JP4291975B2/en
Publication of JP2003274937A publication Critical patent/JP2003274937A/en
Application granted granted Critical
Publication of JP4291975B2 publication Critical patent/JP4291975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微生物製剤の製造方法および微生物製剤に関する。
【0002】
【従来の技術】
活性汚泥法などによる廃水等の生物学的処理装置においてしばしば発生する様々なトラブルを解消するために、特定の機能を有する微生物培養物からなる資材、いわゆる微生物製剤が種々開発され利用されている。たとえば、有機物処理能力の強化、油分など難処理性の成分の処理促進、窒素除去に関する硝化機能の促進などの目的で使用される微生物製剤がこれに該当する。また、発酵処理装置を用いて有機性廃棄物を分解処理しコンポストや堆肥化を行って農地還元する技術においても、発酵促進のため微生物製剤が使用されることがある。さらには、近年、重油や化学物質、重金属等に汚染された土壌や地下水等の浄化を促進するためにそれらに対する分解機能を有する微生物を優占種とする微生物製剤の開発が進められ、実用化されつつある。
【0003】
このように、微生物製剤は、環境浄化に関連する分野を主体に近い将来幅広くかつ急速に普及することが予想される。したがって、微生物製剤をできるだけ安い費用で、簡便な操作で、大量かつ連続的に生産する手段の開発が待望される。これまでに実用化された微生物製剤の多くは、目的の微生物を培養タンクで回分、半回分あるいはケモスタット等の連続培養を行った後遠心分離やろ過によって菌体を回収し、これを液状のまま若しくは乾燥して粉末化するという製造方法が採用されてきた。
しかしながら、このような製造方法では菌体の収量に対して大容量の培養容器や分離濃縮設備が必要になり、コストが高くなるという問題があった。
【0004】
上記のような課題を解決する一案として、特開平5-308957号公報には、微生物をゲル内に包括固定化し、これを廃水、下水、合成培養液または天然培養液中で培養した後、固定化微生物を破砕して高濃度に微生物を含む乳化液とする微生物製剤の製造方法が開示されている。
【0005】
しかしながら、このような手法によってもなお、ゲル破砕のためにホモジナイザのような高速回転機が必要であり、ある程度の製造規模になるとコストが嵩む要因となり得る。さらに、同公報によれば、微生物製剤には有機物の高分子からなるゲルの成分が同伴される。このため、ゲル成分の濃度が高くなり、たとえば15重量%にも達すると、これが微生物製剤としての主な施用地点である活性汚泥や土壌において有機物として汚染源となってしまうことも懸念される。
【0006】
【発明が解決しようとする課題】
本発明は、簡単な操作で安価に製造することができ、かつ自然環境に悪影響を与えない微生物製剤の製造方法および微生物製剤を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、所定の無機微粒子固体を用いて微生物を凝集造粒させて培養し、菌培養槽内のバイオマス濃度が所定の範囲を超えたときに、培養液を菌培養槽外に取り出して微生物製剤を得るとともに、菌培養槽内の全浮遊固形物濃度が所定の範囲内の値になるように無機微粒子固体を追加して培養を続行する場合には、簡単にかつ安価に微生物製剤を製造でき、自然環境にも悪影響を与えない微生物製剤の製造方法および微生物製剤を提供することができるという新たな事実を見出し、本発明を完成するに至った。
【0008】
すなわち、本発明の微生物製剤の製造方法および微生物製剤は以下の構成からなる。
(1)中心粒子径が100μm以下の無機微粒子固体を用いて微生物を凝集造粒させた後、目的とする微生物に特異的な増殖のための基質(培養基)を加えて培養を行うことによって得られる、前記無機微粒子固体と、目的とする微生物菌体を主成分とするバイオマス(以下、ほぼ同義と見なして、バイオマスをMixed liquor Volatile Suspended Solidの頭文字をとって「MLVSS」という)との混合物からなる微生物製剤の製造方法であって、
菌培養槽内の全浮遊固形物(以下、Mixed liquor Suspended Solidの頭文字をとって「MLSS」という)の均一性が保たれるようにあらかじめ決定した培養液中のMLSS濃度の範囲において培養を行い、
MLSS濃度に対するMLVSS濃度の比が、MLSS濃度と、単位MLSSに対する単位時間あたりの基質処理能力との間に相関があると認められる範囲の上限値に到達するか又はこの上限値を超えたときに、
培養液の一部を微生物製剤として前記菌培養槽から取り出すことを特徴とする微生物製剤の製造方法。
【0009】
(2)上記(1)記載の微生物製剤の製造方法において、前記微生物製剤を菌培養槽外に取り出した後に、中心粒子径が100μm以下の無機微粒子固体と、水または基質を含有する水とを菌培養槽内に添加し、MLSS濃度及びMLVSS濃度が上記(1)記載の各範囲内になるように調整し、再び培養を続行することを特徴とする微生物製剤の製造方法。
【0010】
(3)前記無機微粒子固体が石炭焼却灰である上記(1)または(2)記載の微生物製剤の製造方法。
(4)前記微生物が硝化細菌である上記(1)〜(3)のいずれかに記載の微生物製剤の製造方法。
(5)目的とする微生物に特異的な増殖のための基質が、下水または廃水である上記(1)〜(4)のいずれかに記載の微生物製剤の製造方法。
(6)前記菌培養槽外に取り出した培養液を濃縮乃至乾燥させる上記(1)〜(5)のいずれかに記載の微生物製剤の製造方法。
【0011】
(7)中心粒子径が100μm以下の無機微粒子固体に微生物を凝集造粒させ、目的とする微生物に特異的な増殖のための基質を加えて培養を行うことによって得られる、前記無機微粒子固体と、目的とする微生物菌体を主成分とするバイオマスとの混合物からなる微生物製剤であって、
全浮遊固形物濃度に対するバイオマス濃度の比が、全浮遊固形物濃度と、単位全浮遊固形物に対する単位時間あたりの基質処理能力との間に相関があると認められる範囲を超えている培養液またはその濃縮物乃至乾燥物からなる微生物製剤。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明において、無機微粒子固体とは、その材質が金属及びその無機塩類や酸化物あるいは炭素を含有するものであっても化学的に無機物に分類されるものか、または有機態炭素の含有量が1%程度未満の純物質乃至混合物をいう。具体的には、アルミナ(酸化アルミニウム)、ヒドロキシアパタイト(カルシウムリン酸ヒドロキシド)などの工業製品(規格外品や副産物、廃品を含む)や活性汚泥等有機性廃棄物の焼却灰及び火力発電やコークス炉の燃えかすである石炭焼却灰などがあげられる。比重は特に制限されないが、およそ1.2〜3.5が好ましい。
【0013】
無機微粒子固体の中心粒子径は100μm以下であるのが好ましく、この画分の無機微粒子固体を微生物の懸濁液、例えば多様な機能を有する微生物の集合体である活性汚泥などに混合すると両者の凝集造粒化が生じ、有効な微生物固定化担体となり得る。
【0014】
無機微粒子固体として、とりわけ石炭焼却灰は、特開平9-131178号公報に記載されるが如く、非常に安い費用で、簡単な操作で、しかも微生物の活性発現が短期間で生じるので最も好ましい。なかでもフライアッシュと呼ばれる画分のものは、火力発電所や製鉄所のコークス炉ボイラーの排ガスに含まれる石炭の燃え殻のうちの細粒画分を電気集塵機等で捕捉したもので、篩い分け等の措置を経ずとも中心粒子径が100μm以下となるので特に適している。
【0015】
フライアッシュは、原料炭の産地や年代、集塵機の性能等の相違によって主成分の元素組成や中心粒径、比重に多少のばらつきがある(田野崎隆雄ら,秩父小野田研究報告第46巻第1冊第129号104頁〜125頁,1995年)が、本発明の実施の目的で使用するにはそのような差異は何ら問題にならない。なお、石炭灰の燃え殻のうちボイラー下に落下後捕集される粗粒画分をクリンカアッシュといい、フライアッシュと同等の元素組成を有する。クリンカアッシュを粉砕すればフライアッシュとほぼ同等のものを得ることが可能であり、本発明にも使用できる。
【0016】
本発明において、目的とする微生物とは、それを優占的に培養して、大量に調製し、これを微生物製剤化して、ある施用点において不足する生物学的な機能や酵素活性を補填あるいは賦活させるために用いられる特定の機能を有するものを指す。具体的には、たとえば、廃水の生物学的処理装置において窒素除去に重要な役割を果たすにもかかわらず容易に失活乃至は死滅してしまうという特質を有する硝化細菌、土壌や地下水の汚染原因となるトリクロロエチレン等の有機塩素系化合物の分解浄化菌、有機性廃棄物の発酵分解あるいはコンポスト化を促進する各種微生物などがあげられる。これらはむろん純菌でも構わないが、例えば自然環境中で利用するといった目的のためには、他の微生物が混在するなかで優占種、すなわち主成分となっている程度のものでも差し支えない。
【0017】
本発明においては、既に記述した通り、懸濁液中に無機微粒子固体と微生物とは凝集造粒体の形態で存在するが、ここに目的の微生物に特異的な基質を加えて培養を行うことにより、目的の微生物のみを増殖または優占種とすることができる。培養方法としては、回分、半回分、連続のいずれの方式も適用できるが、とくに硝化細菌のように増殖が遅く菌体収率の低い微生物を効率的に調製するためには、特開平9-187272号公報に記載されるように、微生物を培養する容器(以下、菌培養槽という)へ供給するアンモニア(培養基)量を培養時間の経過に伴い対数増加させる連続培養方式が有効である。培養基としては、天然乃至人工の培養基はもちろんのこと、下水や廃水であっても使用可能である。
【0018】
本発明において、菌培養槽の仕様についてはとくに限定されるものではなく、従来用いられてきた培養タンクや活性汚泥処理槽等をそのまま利用できる。目的とする微生物が好気性微生物である場合、これを低廉な運転経費と容易な運転管理で高濃度に集積して効率よく培養するといった目的のためには、例えば図1に示されるような培養槽を採用して好気性微生物を培養するのが好ましい。
【0019】
すなわち、図1に示す培養槽は円筒形の気泡塔反応器で構成される。この反応器は、外塔2内に筒形の隔壁1及びドラフトチューブ3を組み込んだ三重構造になっており、隔壁1の内側が反応部分7、隔壁1と外塔2に挟まれた領域が沈降部分6である。外塔2の底部はテーパー状のスロープ4となっており、ここを伝って下降してきた固形物が底部の酸素供給口5(吸気口)から流入した空気または高酸素分圧ガスによる上昇流によってドラフトチューブ3内を上昇し、反応部分7の上方で流入水と接触、混合され、ドラフトチューブ3の外側を下降して底部のスロープ4に到達するという循環流を形成する。
【0020】
沈降部分6では固形物と清澄水が重力により分離され、固形物はスロープ4を伝って反応部分7に戻り、清澄水は排出口8から処理水として排出される。反応部分6の水面上方から流入する流入水として、合成培地または化成肥料製造工場廃水を供給し、培養を行う。流入水の供給は連続的および断続的のいずれでも良い。
【0021】
図1に示す培養槽では、培養槽内に無機微粒子固体(微生物固定化担体)を流動させ、これに好気性微生物を集積させ培養する。培養にあたっては、培養槽に原水を供給し、酸素供給口5から空気または高酸素分圧ガスを供給し、反応部分7内で無機微粒子固体を含む培養液を循環させながら、無機微粒子固体を流動させ、無機微粒子固体上に微生物を集積させる。このようにして、低廉な運転経費と容易な運転管理で好気性微生物を高濃度に集積して効率よく培養することができ、また槽内へ供給された酸素の利用効率が高いため、高負荷運転が可能になる。
【0022】
また、図1に示す培養槽に代えて、図2に示すような培養装置を使用して好気性微生物を培養しても、同様の効果が得られる。すなわち、図2に示すように、培養槽10には原水導入管18、処理液排出管17および処理液排出口19が設けられており、培養槽10内には、仕切板12により区画された上向流路20および下降流路21と、前記上向流路20および下降流路21の上下に設けられた連通流路22,23が形成され、さらに前記下降流路21の下部には傾斜底壁14が、下降流路21の上部には前記傾斜底壁14と反対方向に傾斜した整流板13がそれぞれ設けられる。前記上向流路20および下降流路21には酸素供給手段として空気曝気手段15および高酸素分圧ガスの散気手段16が設けられている。処理液排出口19は溢流堰であってもよく、この溢流堰から溢流した処理水は処理水排出管17を経て槽外に排出する。前記仕切板12は、前記培養槽10内に培養液の循環流路を形成する。
【0023】
前記原水供給管18の設置位置は、培養液が処理液排出管17にショートパスして流出しないように、例えば上向流路20上部または培養槽10内の中段もしくは下段に設置される。また、前記処理液排出口19の設置位置は、仕切板12からこれに対向する槽10の壁面で、前記整流板13の下端よりも上部に取り付けられるのが好ましく、これにより、前記高酸素分圧ガスの散気手段16から供給された高酸素分圧ガスの気泡が、排出液中に同伴して処理液排出口19から処理液排出管17を経て培養槽外へ流出するのを整流槽13によって阻止できる。
【0024】
前記傾斜底壁14は、前記下降流路21内の仕切板12と対向する槽10の壁面から前記上向流路20に向かって次第に液深が深くなるよう傾斜している。これにより、培養槽10の底に微生物固定化担体または微生物の集積体が堆積して微生物の培養効率が低下するのを防ぎ、循環流もスムーズに形成される。
【0025】
前記整流板13は、前記下降流路21の上部に仕切板12からこれに対向する槽1の壁面に向かって下向きに傾斜(すなわち前記傾斜底壁14とは反対方向に傾斜)して設けられている。これにより、上向流路20下部に設けられた酸素供給手段15から供給された空気のエアリフト効果により、培養液の上向流が形成され、次いで連通流路22を経由し、前記整流板13に衝突して培養槽10内に好適な循環流が形成されると共に、高酸素分圧ガスの散気手段16から供給された酸素気泡が前記処理水排出口19から槽外に流出するのを防いでいる。また、前記整流板13は、循環液が処理液排出管17から流出しないように、培養槽10の液表面上から上部が突出して設置されている。なお、整流板13は全体が傾斜している必要はなく、少なくとも下部が傾斜していればよい。
【0026】
本発明においては、無機微粒子固体と微生物との凝集造粒体に目的の微生物に特異的な基質を加えて培養を行うと、目的の微生物のみが増殖または優占種となって次第に菌培養槽内のMLVSS濃度が増加する。一方、菌培養槽内の無機微粒子固体濃度は、増加しないか、連続培養方式による場合は菌培養槽外に漏出することによって減少することがある。したがって、通常、菌培養槽内におけるMLSS濃度に対するMLVSS濃度の比は培養時間の経過に伴って増大する。MLSS濃度に対するMLVSS濃度の比が過剰に大きくなると、微生物の凝集造粒性が劣化したり、生物膜の圧密化により基質が目的の微生物に十分行き渡らない等の障害が発生し得る。また、仮にこのような障害が発生せずとも、必要以上の微生物の培養を維持するために多大のエネルギーが消費されるのは好ましいことではない。ところが、微生物製剤という観点からは、一般に微生物以外の夾雑物、すなわち無機微粒子固体の量は少ない方が好ましい。もちろん微生物製剤として製品化する際に夾雑物を分離除去してしまうことは不可能ではないが、コスト上そのような分離精製工程を付加することは好ましくない。
【0027】
このため、本発明では、あらかじめ菌培養槽内のMLSS濃度の好適範囲と、この範囲における菌培養槽内のMLSS濃度に対するMLVSS濃度の比の好適範囲を決定しておき、MLVSS濃度がその上限値を超えたときに、培養液を菌培養槽外に取り出し、これを微生物製剤とする。すなわち、増えすぎたバイオマスを無機微粒子固体との凝集造粒体の形態で菌培養槽から取り出したものが本発明の微生物製剤である。
かかる本発明の微生物製剤は、MLSS濃度に対するMLVSS濃度の比が培養槽内の比よりも高く、無機微粒子固体の量が少ないために、微生物製剤として製品化するのに好適である。
【0028】
本発明においてあらかじめ設定する菌培養槽中のMLSS濃度の好適範囲は、菌培養槽内のMLSSの均一性が保たれる範囲、すなわちMLSSが菌培養槽外に流出することなく菌培養槽内の任意の個所に付着または堆積せずに均一に流動しうる範囲を言う。
【0029】
また、MLSS濃度に対するMLVSS濃度の比の好適範囲は、MLSS濃度と、単位MLSSに対する単位時間あたりの基質処理能力との間に相関があると認められる範囲、すなわち培養槽内のMLSS濃度に対応した基質処理性能が発揮され、必要以上に増殖し基質処理に寄与しない、いわば無駄な微生物をなるべく培養槽内に保持することのないような範囲を言う。相関があると判断する基準については、例えばMLSS濃度と、単位MLSS・時間あたりの基質処理能力との複数の実測結果をグラフ化し、両者の相関係数を求めて、例えば相関係数0.7以上を相関ありとするなどして、定めることができる。
【0030】
菌培養槽内のMLSS濃度やMLVSS濃度がこれら好適範囲内にあれば、菌培養槽内の物質循環や流動性が保持され、かつエネルギーコストや培養基のコスト等を適正に維持しつつ微生物製剤の生産を行うことができる。
【0031】
本発明方法によって菌培養槽外に培養液を微生物製剤として抜き出すと、菌培養槽内のMLSS濃度に対するMLVSS濃度の比は変わらないが、MLSS濃度値自体は減少する。かかる状況下で新たに基質を供給すると、MLVSS濃度のみが増大することになるので、生物膜の圧密化が生じ、前記のような基質処理に寄与しない、無駄な微生物を菌培養槽内に保持しやすくなる。
そこで、バイオマスに同伴して菌培養槽外に取り出されたことにより菌培養槽内の残存量が減少した無機微粒子固体を、あらかじめ設定した培養液中のMLSS濃度に対するMLVSS濃度の比の上限値以下になるように追加して培養を継続すれば、無機微粒子固体が生物膜に適度に混和し、生物膜の圧密化を防止するので、MLVSS濃度が再度上限値もしくはそれを上回るまで良好な培養状態を維持することができる。
【0032】
以後、培養を続行することで微生物製剤を継続的に製造することができる。当然ながら、菌培養槽内のMLSS濃度、MLVSS濃度及び両者の比を常時モニタリングしておき、これらを前述の好適範囲に保持しながら、培養液の抜き出しと無機微粒子固体の添加を連続的に行う、一種のケモスタット培養の如き微生物製剤の連続製造方法とすることも本発明方法の範囲に含まれる。
【0033】
本発明においては、系外に取り出した培養液はそれ自体が微生物製剤であるが、他の多くの既存微生物製剤と同様に水分を除去して濃縮乃至乾燥させても差し支えない。本発明の特徴として微生物を凝集造粒化しているので、遠心分離やろ過などのエネルギー消費の比較的大きい処理に拠らずとも重力沈降することによって上澄み液を分離、廃棄して濃縮した微生物製剤を得ることができる。また、本発明微生物製剤の保存や貯蔵に際しては、それが好気性微生物であれば特開2000-354484号公報に記載されているように、事前に高酸素分圧ガスで処理することが好ましい。
【0034】
【実施例】
次に硝化細菌を目的の微生物とする本発明の実施例を示すが、本発明は以下の実施例に限定されるものではない。
なお、MLSS濃度及びMLVSS濃度は、(社)日本下水道協会編,下水試験方法1997年版(上巻),269頁〜271頁に準拠して測定した。
【0035】
<無機微粒子固体による微生物の凝集・造粒化と培養>
微生物を凝集造粒化するための無機微粒子固体として、火力発電所の石炭焼却灰のうちフライアッシュを使用した。その元素組成等は特開平9-131178号公報に記載された通りであり、シリカ、アルミナ、酸化鉄などの金属酸化物を主成分とし、中心粒径9.12μm、比重2.29であった。フライアッシュと硝化細菌の植種源として化学工場の活性汚泥を使用して微生物の凝集造粒化と連続培養を行った。
【0036】
すなわち、石炭焼却灰110gを、0.2%カチオン性高分子凝集剤溶液(住友化学工業株式会社製「スミフロック」FC-185N 0.352gを水176mLに溶解したもの)に加え、よく撹拌した後、0.1%アニオン性高分子凝集剤溶液(住友化学工業株式会社製「スミフロック」FA-30 0.132gを水132mLに溶解したもの)を追加してさらに30分以上撹拌した。これに化学工場の活性汚泥をMLSSとして11g混和し、合成培地(硫酸アンモニウム0.71g/L(終濃度、以下同じ)、リン酸二ナトリウム0.57g/L、塩化カリウム0.11g/L、硫酸マグネシウム七水和物0.085g/L、硫酸鉄(II)七水和物0.0085g/L、塩化カルシウム二水和物0.005g/L、硫酸マンガン四水和物0.002g/L、モリブデン酸ナトリウム二水和物0.05mg/L、硫酸亜鉛七水和物0.1mg/L、硫酸銅五水和物0.1mg/L、塩化コバルト六水和物0.001mg/L)及び水を加えて3.4Lとしたものを、図1に示す円筒形の気泡塔反応器に入れた。この反応器の主要構造部はすべてアクリル樹脂製で、内径100mmの外塔2に内径80mmの隔壁1及び内径30mmのドラフトチューブ3を組み込んだ三重構造になっている。この培養槽では、外塔2底部のテーパー状スロープ4を伝って下降してきた固形物が酸素供給口5から流入した空気または高酸素分圧ガスによる上昇流によってドラフトチューブ3内を上昇し、反応部分7の上方で流入水と接触、混合され、ドラフトチューブ3の外側を下降して底部のスロープ4に到達するという循環流を形成する。沈降部分6で固形物と清澄水が重力により分離され、固形物はスロープ4を伝って反応部分7に戻り、清澄水は排出口8から処理水として排出される。酸素供給口5からの外塔2の高さは約470mmで、同じくドラフトチューブ3の高さは約370mmである。反応部分7の実効容積は約2.2L、沈降部分のそれは約1.2Lである。
反応器に入れた微生物懸濁液のpHをpHコントローラにより約7.5に自動調節しながら反応器底部より一晩空気を供給して回分培養を行った。培養温度は常温(約25℃)とした。翌日、反応器に隔壁1およびドラフトチューブ3を挿入し、反応部有効容積2.2Lの三相流動床型の気泡塔反応器とした。このときのフライアッシュ及び活性汚泥の菌培養槽における濃度は、それぞれ5%[w/v]、および0.5%[w/v]、すなわち50000mg/L及び5000mg-MLSS/Lとなる。これに合成培地を、時間の経過とともにアンモニア濃度を対数的に増加しながら、また、リン濃度が窒素濃度の1割となるように調整しながら、pH約7.5、常温条件で連続培養を行った。
【0037】
反応部分6の水面上方の空間から流入水として硫酸アンモニウムを含有する合成培地(アンモニア態窒素として約150mg/L〜約2000mg/L含有)または化成肥料製造工場廃水(アンモニア態窒素として約100mg/L〜約1500mg/L含有)を適宜アンモニア態窒素濃度及び流速(以下、これらをまとめてアンモニア負荷という)を変化させながら連続供給し、硝化細菌に特異的な培養を行った。菌培養槽内のpHを7.5に維持するために、10%炭酸ナトリウム水溶液をpHコントローラ(タクミナ製作所製)によって自動滴下した。硝化細菌増殖の即時的確認手段として菌培養槽の単位容積あたりの窒素処理能力を随時測定した。
【0038】
<培養液中のMLSS濃度の好適範囲の決定>
アンモニア負荷を変化させながら連続培養行いつつ、菌培養槽のMLSS濃度と均一性との関係を調べた。固形物の均一性の良し悪しの判断基準として、菌培養槽の沈降部分6及び排出口8への固形物の流出、隔壁1内面への固形物の付着、菌培養槽底部への固形物の一部または全部堆積といった障害の発生の程度に基づいて4段階の判定を行った。表1は、菌培養槽のMLSS濃度に対するMLVSS濃度の比が約25%〜約30%の一定条件下における観察結果をまとめたものである。観察所見の判定結果は、◎(非常に良好)、○(良好)、△(やや不良)、×(不良)の記号で表した。表1によれば、菌培養槽内の流動性を安定に維持できるMLSS濃度範囲は約15000mg/L〜約40000mg/Lと考えられ、これを培養液中のMLSS濃度の好適範囲と決定した。
【0039】
【表1】

Figure 0004291975
【0040】
<培養液中のMLSS濃度に対するMLVSS濃度の好適範囲の決定>
培養液中の任意のMLSS濃度に対するMLVSS濃度比(MLVSS/MLSS)範囲におけるMLSS濃度(χ軸)と菌培養槽の単位MLSSに対する単位時間あたりの窒素処理能力(単位容積あたりの窒素処理能力をMLSS濃度で除したもの;y軸)との関係を求めた。その結果を図3及び図4に示す。
培養液中のMLSS濃度の好適範囲として決定した約15000mg/L〜約40000mg/LにあてはまらないMLSS濃度のデータであっても、例外的に菌培養槽内の流動性が確保できたと観察されたものは敢えて考慮に入れている。図3はMLVSS/MLSSが20〜30%の場合で、両軸には良い相関が見られる。一方、図4はMLVSS/MLSSが30〜40%の場合で、図3に比較して相関性が低い。図4の場合のように、MLSS濃度の変動に窒素処理能力が対応しないことは、バイオマスの過剰によって基質が微生物に十分に行き渡らなかったり、基質処理に寄与しない、無駄な微生物が菌培養槽内に留まっている可能性を示している。
様々なMLVSS/MLSS範囲においてMLSS濃度と菌培養槽の単位MLSSに対する単位時間あたりの窒素処理能力との相関係数(r自乗値)を測定した。その結果を図5に示す。図5によれば、比較的高い相関係数(0.7以上)が得られるのはMLVSS/MLSSが約35%までであった。以上より、培養液中のMLSS濃度に対するMLVSS濃度の好適範囲を約35%以下と決定した。
【0041】
<微生物製剤の製造>
MLSS濃度14960mg/L、MLVSS/MLSS比が59%となった硝化細菌の培養液について、前記全浮遊固形物濃度に対するバイオマス濃度の好適範囲上限値である約35%を上回ったため培養液総容量の約33%を菌培養槽外に取り出した。この結果、菌培養槽の容積に対するMLSS濃度は約10000mg/L、MLSS濃度に対するMLVSS濃度の比は59%のままなのでMLVSS濃度は約6000mg/Lとなった。
培養液を取り出した後、石炭焼却灰フライアッシュを菌培養槽に添加して、MLVSS/MLSS比を前記MLSS濃度に対するMLVSS濃度の好適範囲である約22%(菌培養槽の容積に対するMLSS濃度27000mg/L、MLVSS濃度6000mg/L)として、培養を継続し、以後、これに準じて固形物すなわち微生物製剤の菌培養槽外への取り出しと石炭焼却灰フライアッシュの添加を適宜行いながら約100日間にわたり微生物製剤の生産を行った。
なお、石炭焼却灰フライアッシュの菌培養槽内への定着性を高める目的で、これを菌培養槽に添加する前に0.2w/v%濃度のカチオン性高分子凝集剤(住友化学工業製スミフロックFC-185N)溶液、次いで0.1w/v%濃度のカチオン性高分子凝集剤(住友化学工業製スミフロックFA-30)溶液内に分散させてから使用した。
菌培養槽から取り出した硝化細菌を主成分とする微生物製剤は、約481.5kg-窒素/L・hrの窒素処理能力を有していた。さらに、本微生物製剤を30分以上自然沈降させ、上澄み液をオーバーフローさせることによって得た濃縮微生物製剤は、約1000mg-窒素/L・hrの窒素処理能力を有していた。ちなみに、一般の下水処理場の窒素処理能力は、この100分の1〜1000分の1程度である。
【0042】
【発明の効果】
本発明により、無機微粒子固体を用いて微生物を凝集造粒化させてから培養し、菌培養槽内のバイオマス濃度があらかじめ決定した好適範囲を超えた培養液を菌培養槽外に取り出して微生物製剤を得、さらに菌培養槽内のMLSS濃度があらかじめ決定した好適範囲内の値になるように無機微粒子固体を追加して培養を続行するという簡単かつ安価な操作によって、すぐに使用でき、かつ自然環境に悪影響を与えない微生物製剤を提供することができる。
【図面の簡単な説明】
【図1】菌培養槽として使用される気泡塔反応器の概略縦断面図である。
【図2】菌培養槽として使用される他の気泡塔反応器の概略縦断面図である。
【図3】菌培養槽内のMLSS濃度に対するMLVSS濃度が20〜30%の範囲におけるMLSS濃度(χ軸)と菌培養槽の単位MLSS、時間あたりの窒素処理能力(y軸)との関係を示すグラフである。
【図4】菌培養槽内のMLSS濃度に対するMLVSS濃度が30〜40%の範囲におけるMLSS濃度(χ軸)と菌培養槽の単位MLSS、時間あたりの窒素処理能力(y軸)との関係を示すグラフである。
【図5】菌培養槽内のMLSS濃度に対するMLVSS濃度の様々の範囲(χ軸)に対してMLSS濃度と菌培養槽の単位MLSSと時間あたりの窒素処理能力との相関係数r自乗値(y軸)を示すグラフである。
【符号の説明】
1:隔壁、2:外塔、3:ドラフトチューブ、4:スロープ、5:酸素供給口、6:沈降部、7:反応部、8:排出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a microbial preparation and a microbial preparation.
[0002]
[Prior art]
In order to eliminate various troubles that often occur in biological treatment equipment such as wastewater by the activated sludge method, various materials, that is, so-called microbial preparations having a specific function, have been developed and used. For example, this applies to microbial preparations used for the purpose of enhancing the organic matter treatment capacity, promoting the treatment of difficult-to-treat components such as oil, and promoting the nitrification function for nitrogen removal. Also, in the technology of decomposing organic waste using a fermentation treatment apparatus, composting or composting, and returning to farmland, a microbial preparation may be used to promote fermentation. Furthermore, in recent years, in order to promote the purification of soil and groundwater contaminated with heavy oil, chemical substances, heavy metals, etc., the development of microbial preparations with microorganisms having a function of decomposing them as the dominant species has been promoted and put to practical use. It is being done.
[0003]
Thus, it is expected that microbial preparations will be widely and rapidly spread in the near future mainly in fields related to environmental purification. Therefore, development of a means for continuously producing large quantities of microorganism preparations at a lowest possible cost with a simple operation is awaited. Many of the microbial preparations that have been put to practical use so far are obtained by culturing the target microorganism in a culture tank in batch, semi-batch, or chemostat, etc., and then collecting the cells by centrifugation or filtration. Or the manufacturing method of drying and pulverizing has been employ | adopted.
However, such a production method has a problem in that it requires a large-capacity culture vessel and separation / concentration equipment with respect to the yield of bacterial cells, which increases the cost.
[0004]
As a proposal to solve the above-mentioned problems, Japanese Patent Application Laid-Open No. 5-308957 discloses that microorganisms are entrapped and immobilized in a gel, and this is cultured in waste water, sewage, a synthetic culture solution or a natural culture solution, There is disclosed a method for producing a microbial preparation by crushing immobilized microorganisms to obtain an emulsion containing microorganisms at a high concentration.
[0005]
However, even with such a technique, a high-speed rotating machine such as a homogenizer is still necessary for gel crushing, and it may be a factor that increases costs when the production scale reaches a certain level. Further, according to the publication, the microbial preparation is accompanied by a gel component composed of an organic polymer. For this reason, when the density | concentration of a gel component becomes high, for example, reaches to 15 weight%, there also exists a concern that this may become a pollution source as an organic substance in the activated sludge and soil which are the main application points as a microorganism preparation.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a microbial preparation and a microbial preparation that can be produced at low cost by simple operations and do not adversely affect the natural environment.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have cultivated and granulated microorganisms using a predetermined inorganic fine particle solid, and the biomass concentration in the fungus culture tank exceeded a predetermined range. Occasionally, the culture solution is taken out of the fungus culture tank to obtain a microbial preparation, and the cultivation is continued by adding inorganic fine particle solids so that the total suspended solid concentration in the fungus culture tank is within a predetermined range. In this case, the present inventors have found a new fact that a microorganism preparation can be produced easily and inexpensively, and a microorganism preparation production method and microorganism preparation that do not adversely affect the natural environment can be provided, thereby completing the present invention. It came to.
[0008]
That is, the method for producing a microorganism preparation and the microorganism preparation of the present invention have the following constitution.
(1) It is obtained by aggregating and granulating microorganisms using an inorganic fine particle solid having a central particle diameter of 100 μm or less, and then culturing by adding a substrate (culture medium) specific to the target microorganism. And a mixture of the above-mentioned inorganic fine particle solid and a biomass mainly composed of a target microbial cell (hereinafter referred to as “MLVSS”, where the biomass is an acronym of “Mixed liquor Volatile Suspended Solid”) A method for producing a microbial preparation comprising:
Cultivate in the range of MLSS concentration in the culture solution determined in advance so that the uniformity of all suspended solids in the fungal culture tank (hereinafter referred to as “MLSS” by the acronym of Mixed liquor Suspended Solid) is maintained. Done
When the ratio of MLVSS concentration to MLSS concentration reaches or exceeds the upper limit of the range where it is recognized that there is a correlation between MLSS concentration and substrate processing capacity per unit time for unit MLSS ,
A method for producing a microbial preparation, wherein a part of the culture solution is taken out from the fungus culture tank as a microbial preparation.
[0009]
(2) In the method for producing a microbial preparation according to the above (1), after the microbial preparation is taken out of the bacterial culture tank, an inorganic fine particle solid having a central particle size of 100 μm or less and water containing water or a substrate are contained. A method for producing a microorganism preparation, which is added to a fungus culture tank, adjusted so that the MLSS concentration and MLVSS concentration are within the respective ranges described in (1) above, and the cultivation is continued again.
[0010]
(3) The method for producing a microbial preparation according to the above (1) or (2), wherein the inorganic fine particle solid is coal incineration ash.
(4) The method for producing a microbial preparation according to any one of (1) to (3), wherein the microorganism is a nitrifying bacterium.
(5) The method for producing a microbial preparation according to any one of (1) to (4) above, wherein the substrate for specific growth of the target microorganism is sewage or wastewater.
(6) The method for producing a microorganism preparation according to any one of (1) to (5) above, wherein the culture solution taken out of the fungus culture tank is concentrated or dried.
[0011]
(7) The inorganic fine particle solid obtained by aggregating and granulating microorganisms on an inorganic fine particle solid having a center particle size of 100 μm or less, and adding a substrate for growth specific to the target microorganism and culturing; , A microbial preparation comprising a mixture of biomass mainly composed of the target microbial cells,
A culture solution in which the ratio of biomass concentration to total suspended solids exceeds the range where it is recognized that there is a correlation between the total suspended solids concentration and the substrate processing capacity per unit time for all suspended solids or A microbial preparation comprising the concentrate or dried product.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, the inorganic fine particle solid is a material that contains a metal and its inorganic salts, oxides, or carbon, but is chemically classified as an inorganic substance, or has an organic carbon content. A pure substance or mixture of less than about 1%. Specifically, incineration ash and thermal power generation of organic waste such as industrial products such as alumina (aluminum oxide) and hydroxyapatite (calcium phosphate hydroxide) (including non-standard products, by-products and waste products) and activated sludge Examples include coal incineration ash, which is a compost for coke ovens. The specific gravity is not particularly limited, but is preferably about 1.2 to 3.5.
[0013]
The center particle diameter of the inorganic fine particle solid is preferably 100 μm or less. When the inorganic fine particle solid of this fraction is mixed with a suspension of microorganisms, for example, activated sludge which is an aggregate of microorganisms having various functions, both of them are mixed. Aggregation and granulation occur, and can be an effective microorganism-immobilized carrier.
[0014]
As an inorganic fine particle solid, especially coal incineration ash is most preferable, as described in Japanese Patent Application Laid-Open No. 9-131178, because the expression of the activity of microorganisms occurs in a short period of time at a very low cost with a simple operation. In particular, the fraction called fly ash is obtained by capturing a fine-grained fraction of coal husk contained in the exhaust gas of coke oven boilers at thermal power plants and steelworks with an electrostatic precipitator, etc. This is particularly suitable because the central particle diameter is 100 μm or less without the above measures.
[0015]
Fly ash has some variations in the elemental composition, central particle size, and specific gravity of the main component depending on the origin and age of coking coal, the performance of the dust collector, etc. (Tanozaki Takao et al., Chichibu Onoda Research Report Vol. 46, Volume 1 No. 129, pages 104-125, 1995), such differences are not a problem for use in the practice of the present invention. In addition, the coarse-grained fraction collected after falling under a boiler among coal ash burning husks is called clinker ash, and has an elemental composition equivalent to fly ash. If clinker ash is pulverized, it is possible to obtain almost the same as fly ash, which can also be used in the present invention.
[0016]
In the present invention, the target microorganism is predominately cultured, prepared in a large amount, and formulated into a microbial preparation to compensate for a lack of biological function or enzyme activity at a certain application point. The thing which has the specific function used in order to activate is pointed out. Specifically, for example, nitrifying bacteria having characteristics of being easily deactivated or killed in spite of playing an important role in nitrogen removal in biological treatment equipment of wastewater, causes of contamination of soil and groundwater Examples of the microorganisms that decompose and purify organochlorine compounds such as trichlorethylene, and various microorganisms that promote fermentation decomposition or composting of organic waste. These may of course be pure bacteria, but for the purpose of use in a natural environment, for example, it may be a dominant species, that is, the main component in the presence of other microorganisms.
[0017]
In the present invention, as already described, the inorganic fine particle solid and the microorganism are present in the form of agglomerated granules in the suspension, and the culture is performed by adding a substrate specific to the target microorganism. Thus, only the target microorganism can be propagated or become the dominant species. As a culture method, any of batch, semi-batch, and continuous methods can be applied. However, in order to efficiently prepare a microorganism having a slow growth and a low cell yield, such as nitrifying bacteria, it is particularly preferable to use As described in Japanese Patent No. 187272, a continuous culture method is effective in which the amount of ammonia (culture medium) supplied to a container for culturing microorganisms (hereinafter referred to as a fungus culture tank) is increased logarithmically with the passage of culture time. As a culture medium, natural or artificial culture medium as well as sewage and wastewater can be used.
[0018]
In the present invention, the specification of the bacteria culture tank is not particularly limited, and conventionally used culture tanks, activated sludge treatment tanks, and the like can be used as they are. When the target microorganism is an aerobic microorganism, the culture as shown in FIG. 1 is performed for the purpose of efficiently cultivating the microorganism by accumulating it at a high concentration with low operation costs and easy operation management. It is preferable to employ a tank to culture aerobic microorganisms.
[0019]
That is, the culture tank shown in FIG. 1 is composed of a cylindrical bubble column reactor. This reactor has a triple structure in which a cylindrical partition wall 1 and a draft tube 3 are incorporated in the outer column 2, and the region inside the partition wall 1 is sandwiched between the reaction portion 7, the partition wall 1 and the outer column 2. It is a sedimentation part 6. The bottom of the outer tower 2 has a tapered slope 4, and solids descending along the slope are caused by the upward flow of air or high oxygen partial pressure gas flowing in from the oxygen supply port 5 (intake port) at the bottom. The inside of the draft tube 3 rises, contacts and mixes with the inflowing water above the reaction portion 7, and forms a circulation flow that descends outside the draft tube 3 and reaches the bottom slope 4.
[0020]
In the sedimentation part 6, solids and clarified water are separated by gravity, the solids travel along the slope 4 and return to the reaction part 7, and the clarified water is discharged from the outlet 8 as treated water. A synthetic medium or a chemical fertilizer manufacturing factory waste water is supplied as inflow water flowing from above the water surface of the reaction portion 6 to perform culture. The supply of influent water may be either continuous or intermittent.
[0021]
In the culture tank shown in FIG. 1, an inorganic fine particle solid (microorganism immobilization support) is flowed in the culture tank, and aerobic microorganisms are accumulated and cultured in this. In culturing, raw water is supplied to the culture tank, air or high oxygen partial pressure gas is supplied from the oxygen supply port 5, and the inorganic fine particle solid flows while circulating the culture liquid containing the inorganic fine particle solid in the reaction portion 7. And accumulate microorganisms on the inorganic fine particle solid. In this way, aerobic microorganisms can be accumulated at a high concentration and efficiently cultured with low operating costs and easy operation management, and the utilization efficiency of oxygen supplied into the tank is high. Driving becomes possible.
[0022]
Further, the same effect can be obtained by culturing aerobic microorganisms using a culture apparatus as shown in FIG. 2 instead of the culture tank shown in FIG. That is, as shown in FIG. 2, the culture tank 10 is provided with a raw water introduction pipe 18, a treatment liquid discharge pipe 17, and a treatment liquid discharge port 19, and the culture tank 10 is partitioned by a partition plate 12. An upward flow path 20 and a downward flow path 21, and communication flow paths 22 and 23 provided above and below the upward flow path 20 and the downward flow path 21 are formed, and a lower portion of the downward flow path 21 is inclined. The bottom wall 14 is provided at the upper part of the descending flow path 21 with a rectifying plate 13 inclined in the direction opposite to the inclined bottom wall 14. The upward flow path 20 and the downward flow path 21 are provided with air aeration means 15 and high oxygen partial pressure gas diffusion means 16 as oxygen supply means. The treatment liquid discharge port 19 may be an overflow weir, and the treated water overflowing from this overflow weir is discharged out of the tank through the treated water discharge pipe 17. The partition plate 12 forms a circulation channel for the culture solution in the culture tank 10.
[0023]
The raw water supply pipe 18 is installed at, for example, the upper part of the upward flow path 20 or the middle stage or the lower stage in the culture tank 10 so that the culture liquid does not flow through the treatment liquid discharge pipe 17 through a short path. Further, the processing liquid discharge port 19 is preferably installed on the wall surface of the tank 10 facing the partition plate 12 from above the lower end of the rectifying plate 13, so that the high oxygen content is set. The rectifying tank is such that bubbles of the high oxygen partial pressure gas supplied from the pressure gas diffusion means 16 flow out of the culture tank from the processing liquid discharge port 19 through the processing liquid discharge pipe 17 along with the discharge liquid. 13 can prevent it.
[0024]
The inclined bottom wall 14 is inclined so that the liquid depth gradually increases from the wall surface of the tank 10 facing the partition plate 12 in the descending flow path 21 toward the upward flow path 20. As a result, it is possible to prevent the microorganism immobilization carrier or the accumulation of microorganisms from accumulating on the bottom of the culture tank 10 to reduce the culture efficiency of the microorganisms, and to smoothly form a circulation flow.
[0025]
The rectifying plate 13 is provided on the upper part of the descending flow path 21 so as to be inclined downward (that is, inclined in the direction opposite to the inclined bottom wall 14) from the partition plate 12 toward the wall surface of the tank 1 facing the partition plate 12. ing. As a result, an upward flow of the culture solution is formed by the air lift effect of the air supplied from the oxygen supply means 15 provided in the lower part of the upward flow path 20, and then the rectifying plate 13 via the communication flow path 22. A suitable circulation flow is formed in the culture tank 10 and oxygen bubbles supplied from the high oxygen partial pressure gas diffuser 16 flow out of the treated water discharge port 19 to the outside of the tank. It is preventing. The rectifying plate 13 is installed so that the upper part protrudes from the liquid surface of the culture tank 10 so that the circulating liquid does not flow out from the treatment liquid discharge pipe 17. The rectifying plate 13 does not have to be inclined as a whole, and at least the lower portion may be inclined.
[0026]
In the present invention, when a substrate specific to the target microorganism is added to the aggregated granulated body of the inorganic fine particle solid and the microorganism and cultured, only the target microorganism grows or becomes a dominant species, and then the fungus culture tank The MLVSS concentration in the inside increases. On the other hand, the inorganic fine particle solid concentration in the fungus culture tank may not increase or may decrease by leaking out of the fungus culture tank in the case of the continuous culture method. Therefore, the ratio of the MLVSS concentration to the MLSS concentration in the fungus culture tank usually increases with the passage of the culture time. When the ratio of the MLVSS concentration to the MLSS concentration becomes excessively large, problems such as deterioration of the agglomeration and granulating properties of microorganisms and the substrate not sufficiently reaching the target microorganisms due to the consolidation of the biofilm may occur. Even if such a failure does not occur, it is not preferable that a great deal of energy is consumed in order to maintain culture of microorganisms more than necessary. However, from the viewpoint of a microbial preparation, it is generally preferable that the amount of impurities other than microorganisms, that is, the amount of inorganic fine particle solids is small. Of course, it is not impossible to separate and remove contaminants when commercialized as a microbial preparation, but it is not preferable to add such a separation and purification step in terms of cost.
[0027]
Therefore, in the present invention, a suitable range of the MLSS concentration in the fungus culture tank and a suitable range of the ratio of the MLVSS concentration to the MLSS concentration in the fungus culture tank in this range are determined in advance, and the MLVSS concentration is the upper limit value. Is exceeded, the culture solution is taken out of the fungus culture tank and used as a microorganism preparation. In other words, the microorganism preparation of the present invention is obtained by removing excessive biomass from the fungus culture tank in the form of agglomerated granules with inorganic fine particle solids.
Such a microbial preparation of the present invention is suitable for commercialization as a microbial preparation because the ratio of the MLVSS concentration to the MLSS concentration is higher than that in the culture tank and the amount of the inorganic fine particle solid is small.
[0028]
The preferred range of MLSS concentration in the bacterial culture tank set in advance in the present invention is a range in which the uniformity of MLSS in the bacterial culture tank is maintained, that is, MLSS does not flow out of the bacterial culture tank. The range that can flow uniformly without adhering or depositing at any point.
[0029]
The preferred range of the ratio of MLVSS concentration to MLSS concentration corresponds to the range where MLSS concentration is recognized as having a correlation between the MLSS concentration and the substrate treatment capacity per unit time per unit MLSS, that is, the MLSS concentration in the culture tank. This refers to a range where the substrate treatment performance is exhibited and grows more than necessary and does not contribute to the substrate treatment. Regarding the criteria for determining that there is a correlation, for example, graphing a plurality of actual measurement results of MLSS concentration and substrate processing capacity per unit MLSS / time, and obtaining a correlation coefficient between them, for example, a correlation coefficient of 0.7 or more It can be determined, for example, as having a correlation.
[0030]
If the MLSS concentration and MLVSS concentration in the fungus culture tank are within these preferable ranges, the material circulation and fluidity in the fungus culture tank can be maintained, and while maintaining the energy cost and the cost of the culture medium appropriately, Production can be done.
[0031]
When the culture solution is extracted as a microbial preparation outside the bacterial culture tank by the method of the present invention, the ratio of the MLVSS concentration to the MLSS concentration in the bacterial culture tank does not change, but the MLSS concentration value itself decreases. If a new substrate is supplied in such a situation, only the MLVSS concentration will increase, so that the biofilm will be consolidated, and waste microorganisms that do not contribute to the substrate treatment as described above will be retained in the bacterial culture tank. It becomes easy to do.
Therefore, the inorganic fine particle solids whose residual amount in the fungus culture tank has been reduced by being taken out of the fungus culture tank accompanying the biomass is less than the upper limit of the ratio of the MLVSS concentration to the MLSS concentration in the preset culture solution. If the culture is continued and added, the inorganic fine particle solids are properly mixed in the biofilm to prevent the biofilm from being consolidated, so that the culture condition is good until the MLVSS concentration reaches or exceeds the upper limit again. Can be maintained.
[0032]
Thereafter, the microbial preparation can be continuously produced by continuing the culture. Of course, the MLSS concentration, MLVSS concentration and the ratio of both in the fungus culture tank are constantly monitored, and while maintaining these within the above-mentioned preferred range, the culture solution is extracted and the inorganic particulate solid is continuously added. It is also included in the scope of the method of the present invention to be a continuous production method of a microorganism preparation such as a kind of chemostat culture.
[0033]
In the present invention, the culture solution taken out of the system is itself a microbial preparation, but it may be concentrated or dried by removing water in the same manner as many other existing microbial preparations. Since the microorganisms are agglomerated and granulated as a feature of the present invention, the microorganism preparation is concentrated by separating, discarding and concentrating the supernatant liquid by gravity sedimentation without relying on relatively high energy consumption processes such as centrifugation and filtration. Can be obtained. Further, when the microorganism preparation of the present invention is stored or stored, if it is an aerobic microorganism, it is preferably treated in advance with a high oxygen partial pressure gas as described in JP-A-2000-354484.
[0034]
【Example】
Next, examples of the present invention using nitrifying bacteria as target microorganisms will be shown, but the present invention is not limited to the following examples.
The MLSS concentration and the MLVSS concentration were measured according to the Japan Sewerage Association, edited by the Sewerage Test Method 1997 edition (first volume), pages 269-271.
[0035]
<Aggregation, granulation and culture of microorganisms by inorganic fine particle solid>
As an inorganic fine particle solid for agglomerating and granulating microorganisms, fly ash was used from coal incineration ash of a thermal power plant. Its elemental composition and the like are as described in Japanese Patent Application Laid-Open No. 9-131178, and the main component is a metal oxide such as silica, alumina, and iron oxide, the center particle size is 9.12 μm, and the specific gravity is 2.29. Agglomeration and continuous culture of microorganisms were performed using activated sludge from a chemical factory as a seed source for fly ash and nitrifying bacteria.
[0036]
That is, 110 g of coal incineration ash was added to a 0.2% cationic polymer flocculant solution (0.35 g of “Sumiflock” FC-185N manufactured by Sumitomo Chemical Co., Ltd.) dissolved in 176 mL of water, and then 0.1% An anionic polymer flocculant solution (manufactured by Sumitomo Chemical Co., Ltd., “Sumiflock” FA-30 0.132 g dissolved in 132 mL of water) was added and further stirred for 30 minutes or more. This was mixed with 11g of activated sludge from a chemical plant as MLSS, and a synthetic medium (ammonium sulfate 0.71g / L (final concentration, the same shall apply hereinafter), disodium phosphate 0.57g / L, potassium chloride 0.11g / L, magnesium sulfate hemihydrate Japanese 0.085g / L, Iron (II) sulfate heptahydrate 0.0085g / L, Calcium chloride dihydrate 0.005g / L, Manganese sulfate tetrahydrate 0.002g / L, Sodium molybdate dihydrate 0.05 mg / L, zinc sulfate heptahydrate 0.1 mg / L, copper sulfate pentahydrate 0.1 mg / L, cobalt chloride hexahydrate 0.001 mg / L) and water to 3.4 L, It put into the cylindrical bubble column reactor shown in FIG. The main structural parts of this reactor are all made of acrylic resin, and have a triple structure in which a partition 1 having an inner diameter of 80 mm and a draft tube 3 having an inner diameter of 30 mm are incorporated in an outer tower 2 having an inner diameter of 100 mm. In this culture tank, the solid matter descending along the tapered slope 4 at the bottom of the outer tower 2 rises in the draft tube 3 by the upward flow of air or high oxygen partial pressure gas flowing in from the oxygen supply port 5, and reacts. It is brought into contact with and mixed with the incoming water above the portion 7 to form a circulating flow that descends outside the draft tube 3 and reaches the slope 4 at the bottom. Solids and clarified water are separated by gravity in the sedimentation part 6, the solids return to the reaction part 7 through the slope 4, and the clarified water is discharged from the outlet 8 as treated water. The height of the outer tower 2 from the oxygen supply port 5 is about 470 mm, and the height of the draft tube 3 is also about 370 mm. The effective volume of the reaction part 7 is about 2.2L, and that of the sedimentation part is about 1.2L.
Batch culture was performed by supplying air from the bottom of the reactor overnight while automatically adjusting the pH of the microbial suspension in the reactor to about 7.5 with a pH controller. The culture temperature was room temperature (about 25 ° C.). On the next day, the partition wall 1 and the draft tube 3 were inserted into the reactor, and a three-phase fluidized bed bubble column reactor having an effective reaction section volume of 2.2 L was obtained. The concentrations of fly ash and activated sludge in the fungus culture tank at this time are 5% [w / v] and 0.5% [w / v], that is, 50000 mg / L and 5000 mg-MLSS / L, respectively. A synthetic medium was continuously cultured at room temperature under a pH of about 7.5 while adjusting the ammonia concentration logarithmically over time and adjusting the phosphorus concentration to be 10% of the nitrogen concentration. .
[0037]
Synthetic medium (containing about 150 mg / L to about 2000 mg / L as ammonia nitrogen) or chemical fertilizer manufacturing plant wastewater (about 100 mg / L as ammonia nitrogen) from the space above the water surface of reaction part 6 containing ammonium sulfate as inflow water About 1500 mg / L) was supplied continuously while appropriately changing the ammonia nitrogen concentration and flow rate (hereinafter collectively referred to as ammonia load), and culture specific to nitrifying bacteria was performed. In order to maintain the pH in the fungus culture tank at 7.5, a 10% sodium carbonate aqueous solution was automatically dropped by a pH controller (manufactured by Takumina Seisakusho). Nitrogen treatment capacity per unit volume of the fungus culture tank was measured as needed as an immediate confirmation of nitrifying bacteria growth.
[0038]
<Determination of the suitable range of MLSS concentration in the culture medium>
While continuously culturing while changing the ammonia load, the relationship between the MLSS concentration and the homogeneity of the fungus culture tank was investigated. As criteria for determining whether the solids are uniform or not, the outflow of solids to the sedimentation part 6 and the discharge port 8 of the fungus culture tank, the adhesion of solids to the inner surface of the partition wall 1, the solid matter at the bottom of the fungus culture tank A four-stage determination was made based on the degree of occurrence of a failure such as partial or complete deposition. Table 1 summarizes the observation results under a certain condition in which the ratio of the MLVSS concentration to the MLSS concentration in the fungus culture tank is about 25% to about 30%. Judgment results of observation findings were represented by symbols ◎ (very good), ○ (good), Δ (somewhat poor), and × (bad). According to Table 1, the MLSS concentration range in which the fluidity in the bacterial culture tank can be stably maintained is considered to be about 15000 mg / L to about 40,000 mg / L, and this was determined as a suitable range for the MLSS concentration in the culture solution.
[0039]
[Table 1]
Figure 0004291975
[0040]
<Determination of the preferred range of MLVSS concentration relative to MLSS concentration in the culture medium>
MLSS concentration (χ axis) in the range of MLVSS concentration ratio (MLVSS / MLSS) to any MLSS concentration in the culture solution and nitrogen treatment capacity per unit time for the unit MLSS of the fungal culture tank (nitrogen treatment capacity per unit volume MLSS The relationship with the value divided by the concentration (y-axis) was determined. The results are shown in FIGS.
Even in the case of MLSS concentration data that does not fall within the range of about 15000 mg / L to about 40000 mg / L determined as the preferred range of MLSS concentration in the culture solution, it was observed that the fluidity in the bacterial culture tank was exceptionally secured. Things are taken into consideration. FIG. 3 shows a case where MLVSS / MLSS is 20 to 30%, and a good correlation is seen between both axes. On the other hand, FIG. 4 shows a case where MLVSS / MLSS is 30 to 40%, and the correlation is low compared to FIG. As in the case of FIG. 4, the fact that the nitrogen treatment capacity does not correspond to fluctuations in the MLSS concentration means that the substrate is not sufficiently distributed to the microorganisms due to the excess of biomass, or the wasteful microorganisms that do not contribute to the substrate treatment are in the bacteria culture tank. The possibility of staying in is shown.
In various MLVSS / MLSS ranges, the correlation coefficient (r-square value) between the MLSS concentration and the nitrogen treatment capacity per unit time for the unit MLSS of the fungus culture tank was measured. The result is shown in FIG. According to FIG. 5, a relatively high correlation coefficient (0.7 or more) was obtained for MLVSS / MLSS up to about 35%. From the above, it was determined that the preferred range of MLVSS concentration relative to the MLSS concentration in the culture solution was about 35% or less.
[0041]
<Manufacture of microbial preparations>
The culture solution of nitrifying bacteria with an MLSS concentration of 14960 mg / L and an MLVSS / MLSS ratio of 59% exceeded the upper limit of about 35%, which is the preferred upper limit of the biomass concentration relative to the total suspended solids concentration. About 33% was taken out of the fungus culture tank. As a result, the MLSS concentration was about 10000 mg / L with respect to the volume of the bacterial culture tank, and the ratio of the MLVSS concentration to the MLSS concentration was still 59%, so the MLVSS concentration was about 6000 mg / L.
After removing the culture broth, coal incineration ash fly ash is added to the fungus culture tank, and the MLVSS / MLSS ratio is about 22%, which is a suitable range of MLVSS concentration relative to the MLSS concentration (MLSS concentration with respect to the volume of the fungus culture tank is 27000 mg) / L, MLVSS concentration 6000mg / L), and continued culture for about 100 days, taking out solid substances, that is, microbial products outside the cell culture tank and adding coal incineration ash fly ash accordingly. Microbial preparations were produced throughout.
In addition, in order to improve the fixability of coal incineration ash fly ash in the fungus culture tank, before adding it to the fungus culture tank, a 0.2w / v% concentration cationic polymer flocculant (Sumifloc manufactured by Sumitomo Chemical Co., Ltd.) FC-185N) solution, and then dispersed in a 0.1 w / v% cationic polymer flocculant solution (Sumiflock FA-30 manufactured by Sumitomo Chemical Co., Ltd.) before use.
The microbial preparation mainly composed of nitrifying bacteria removed from the fungus culture tank had a nitrogen treatment capacity of about 481.5 kg-nitrogen / L · hr. Furthermore, the concentrated microorganism preparation obtained by allowing the microorganism preparation to spontaneously settle for 30 minutes or more and overflowing the supernatant liquid had a nitrogen treatment capacity of about 1000 mg-nitrogen / L · hr. Incidentally, the nitrogen treatment capacity of a general sewage treatment plant is about 1 / 100th to 1 / 1000th of this.
[0042]
【The invention's effect】
According to the present invention, microorganisms are agglomerated and granulated using an inorganic fine particle solid and cultured, and a culture solution in which the biomass concentration in the fungus culture tank exceeds a pre-determined preferred range is taken out of the fungus culture tank to obtain a microorganism preparation In addition, it can be used immediately and easily by simple and inexpensive operation of adding the inorganic fine particle solid so that the MLSS concentration in the fungus culture tank becomes a value within a predetermined preferable range. A microorganism preparation that does not adversely affect the environment can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a bubble column reactor used as a fungus culture tank.
FIG. 2 is a schematic longitudinal sectional view of another bubble column reactor used as a fungus culture tank.
[Figure 3] The relationship between MLSS concentration (χ axis) in the range of MLVSS concentration to 20-30%, MLSS concentration in fungus culture tank, unit MLSS of bacteria culture tank, and nitrogen treatment capacity per hour (y axis) It is a graph to show.
[Figure 4] Figure 4 shows the relationship between MLSS concentration (χ axis) in the range of MLVSS concentration in the cell culture tank from 30 to 40%, unit MLSS of bacteria culture tank, and nitrogen treatment capacity per hour (y axis). It is a graph to show.
FIG. 5 is a correlation coefficient r-square value between MLSS concentration, unit MLSS of a bacterial culture tank, and nitrogen treatment capacity per hour for various ranges (χ axis) of MLVSS concentration with respect to MLSS concentration in the bacterial culture tank. It is a graph which shows a y-axis.
[Explanation of symbols]
1: partition wall, 2: outer tower, 3: draft tube, 4: slope, 5: oxygen supply port, 6: settling section, 7: reaction section, 8: discharge port

Claims (3)

中心粒子径が100μm以下の石炭焼却灰を用いて硝化細菌を凝集造粒させ、目的とする硝化細菌に特異的な増殖のための基質を加えて培養を行うことによって得られる、前記石炭焼却灰と、目的とする硝化細菌菌体を主成分とするバイオマスとの混合物からなる微生物製剤の製造方法であって、
菌培養槽内の全浮遊固形物の均一性が保たれるようにあらかじめ決定した培養液中の全浮遊固形物濃度の範囲において培養を行い、
全浮遊固形物濃度に対するバイオマス濃度の比が、全浮遊固形物濃度と、単位全浮遊固形物に対する単位時間あたりの基質処理能力との相関係数が0.7以上となる範囲の上限値に到達するか又はこの上限値を超えたときに、
培養液の一部を微生物製剤として前記菌培養槽から取り出し、
その後、中心粒子径が100μm以下の石炭焼却灰と、水または基質を含有する水とを菌培養槽内に添加し、全浮遊固形物濃度及びバイオマス濃度が前記各範囲内になるように調整し、再び培養を続行する、ことを特徴とする微生物製剤の製造方法。
The nitrifying bacteria are aggregated granulated median particle size using the following coal ash 100 [mu] m, obtained by performing the cultivation by adding a substrate for the specific growth nitrifying bacteria of interest, the coal ash And a method for producing a microbial preparation comprising a mixture of a target nitrifying bacterial cell as a main component,
Cultivate in the range of the total suspended solids concentration in the culture solution determined in advance so that the uniformity of all suspended solids in the fungus culture tank is maintained,
The ratio of biomass concentration to total suspended solids reaches the upper limit of the range where the correlation coefficient between the total suspended solids concentration and the substrate processing capacity per unit time for all unit suspended solids is 0.7 or more. Or when this upper limit is exceeded,
Remove a part of the culture solution from the fungus culture tank as a microorganism preparation,
Thereafter, coal incineration ash with a central particle size of 100 μm or less and water containing water or substrate are added to the fungus culture tank, and adjusted so that the total suspended solids concentration and biomass concentration are within the above ranges. The method for producing a microorganism preparation, characterized in that the culture is continued again.
目的とする硝化細菌に特異的な増殖のための基質が、下水または廃水である請求項1記載の微生物製剤の製造方法。Substrates for specific proliferation in nitrifying bacteria of interest The method for producing a microbial preparation according to claim 1, wherein the sewage or waste water. 前記菌培養槽外に取り出した培養液を濃縮乃至乾燥させる請求項1または2記載の微生物製剤の製造方法。The method for producing a microbial preparation according to claim 1 or 2, wherein the culture solution taken out of the fungus culture tank is concentrated or dried.
JP2002082979A 2002-03-25 2002-03-25 Method for producing microbial preparation and microbial preparation Expired - Fee Related JP4291975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082979A JP4291975B2 (en) 2002-03-25 2002-03-25 Method for producing microbial preparation and microbial preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082979A JP4291975B2 (en) 2002-03-25 2002-03-25 Method for producing microbial preparation and microbial preparation

Publications (2)

Publication Number Publication Date
JP2003274937A JP2003274937A (en) 2003-09-30
JP4291975B2 true JP4291975B2 (en) 2009-07-08

Family

ID=29206807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082979A Expired - Fee Related JP4291975B2 (en) 2002-03-25 2002-03-25 Method for producing microbial preparation and microbial preparation

Country Status (1)

Country Link
JP (1) JP4291975B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599630B2 (en) * 2015-04-03 2019-10-30 住友化学株式会社 Method for producing microbial preparation and microbial preparation
WO2018207825A1 (en) * 2017-05-09 2018-11-15 日産化学株式会社 Microorganism preparation injection method, microorganism preparation automatic injection device, and wastewater processing system
WO2022118987A1 (en) * 2020-12-04 2022-06-09 国立大学法人東海国立大学機構 Continuous production method of microorganisms that do not require sterilization and system therefor
JP6989987B1 (en) 2020-12-04 2022-02-03 国立大学法人東海国立大学機構 Continuous input of microbial preparations for wastewater treatment containing oils and fats

Also Published As

Publication number Publication date
JP2003274937A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
Geng et al. Enhanced aerobic sludge granulation in a Sequencing Batch Reactor (SBR) by applying mycelial pellets
Janssen et al. Performance of a sulfide‐oxidizing expanded‐bed reactor supplied with dissolved oxygen
CN102149645B (en) Sludge treatment method and apparatus thereof and application to wastewater bio-treatment
CN102603064B (en) A kind of method of Nitrogen-and Phosphorus-containing sewage synchronous denitrification dephosphorizing
US8778661B2 (en) Biological composite and method for reducing H2S
CN107265802A (en) The treatment for cow manure system and processing method of a kind of dairy cow farm
US10059610B2 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system
Jin et al. Performance of a nitrifying airlift reactor using granular sludge
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
Yan et al. Effect of Fe (II) on nitrogen removal of anammox under organic matter inhibition
Xu et al. Rapid granulation of aerobic sludge in a continuous-flow reactor with a two-zone sedimentation tank by the addition of dewatered sludge
CN105923771B (en) A kind of self-loopa biological denitrification reactor
JP6662424B2 (en) Anaerobic digestion method and apparatus for sewage sludge
Qian et al. A comparative study on denitrifying sludge granulation with different electron donors: Sulfide, thiosulfate and organics
CN109650555B (en) Method for treating phosphorus-containing wastewater by using microalgae
JP4291975B2 (en) Method for producing microbial preparation and microbial preparation
CN104609550B (en) A kind of method that immobilized sludge granule removes ammonia nitrogen in waste water
CN111892166A (en) Active biological filter material and efficient nitrogen and phosphorus removal method for sewage by using same
CN114772870B (en) Sewage treatment device and method for continuous flow particle size controllable sludge particles
CN103708688B (en) A kind of crystal micro-powder promotes the method for aerobic sludge granulation
JPH10309190A (en) Selenic acid reducing bacteria and wastewater treatment
CN209685417U (en) Novel denitrification of autotrophic organism combination unit
JPS602920B2 (en) Anaerobic sludge digestion method
CN111362426A (en) Method for in-situ purifying domestic sewage by circulating fluidization technology
JP4596533B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees