JP4289088B2 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP4289088B2
JP4289088B2 JP2003304585A JP2003304585A JP4289088B2 JP 4289088 B2 JP4289088 B2 JP 4289088B2 JP 2003304585 A JP2003304585 A JP 2003304585A JP 2003304585 A JP2003304585 A JP 2003304585A JP 4289088 B2 JP4289088 B2 JP 4289088B2
Authority
JP
Japan
Prior art keywords
emitting element
path
light emitting
outflow
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003304585A
Other languages
Japanese (ja)
Other versions
JP2005079150A (en
Inventor
豊 土屋
朋 池邊
秀也 ▲関▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003304585A priority Critical patent/JP4289088B2/en
Publication of JP2005079150A publication Critical patent/JP2005079150A/en
Application granted granted Critical
Publication of JP4289088B2 publication Critical patent/JP4289088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、発光素子が、冷却流体によって直接または間接的に冷却される光源装置と、この光源装置が搭載されるプロジェクタに関する。   The present invention relates to a light source device in which a light emitting element is directly or indirectly cooled by a cooling fluid, and a projector on which the light source device is mounted.

近年、発光ダイオード(LED)等の固体光源を照明に用いるプロジェクタ等の電子機器の小型化、高輝度化が促進され、装置内の熱密度が従来に比べて上昇してきたために、電子機器、特に発熱源である光源装置の冷却性能の一層の向上が必要とされてきている。
また、LEDチップは透光性樹脂によって被覆されているが、透光性樹脂は一般的に熱伝導率が低い。従って、LEDチップで発生した熱は、LEDチップが固着される発光素子基板やリード線を通じて放熱されるが、光源装置の高輝度化や高出力化が進むにつれ、充分な放熱性が得られなくなってきている。
In recent years, electronic devices such as projectors that use solid-state light sources such as light-emitting diodes (LEDs) for illumination have been promoted in downsizing and high brightness, and the heat density in the device has increased compared to conventional devices. There is a need to further improve the cooling performance of the light source device, which is a heat source.
Moreover, although LED chip is coat | covered with translucent resin, translucent resin generally has low heat conductivity. Therefore, the heat generated in the LED chip is radiated through the light emitting element substrate and the lead wire to which the LED chip is fixed. However, as the brightness of the light source device increases and the output increases, sufficient heat dissipation cannot be obtained. It is coming.

従来、発光素子であるLEDチップを冷却流体で直接冷却する光源装置が提案されている。この際、密閉された冷却流体の自然対流で冷却する構造、ヒートパイプの原理で冷却する構造、冷却気体を流動させて冷却させる構造等が知られている(例えば、特許文献1参照)。   Conventionally, a light source device that directly cools an LED chip as a light emitting element with a cooling fluid has been proposed. At this time, a structure for cooling by natural convection of a sealed cooling fluid, a structure for cooling by the principle of a heat pipe, a structure for cooling by flowing a cooling gas, and the like are known (for example, see Patent Document 1).

また、LEDチップまたはLEDチップが固着された基板を密閉された容器内の冷却液体で冷却する構造や容器外から透光性の絶縁流体を流動させて冷却する構造で、LEDチップで過熱された冷却液体が流動される流路と、冷却された冷却液体が流動される流路が分離されている光源装置が知られている(例えば、特許文献2参照)。   In addition, the LED chip or the substrate to which the LED chip is fixed is cooled with a cooling liquid in a sealed container or a structure in which a translucent insulating fluid is flowed from the outside of the container to cool the LED chip, and the LED chip is overheated. There is known a light source device in which a flow path in which a cooling liquid flows and a flow path in which a cooled cooling liquid flows are separated (see, for example, Patent Document 2).

また、LEDチップが基板に固着され、密閉された容器内の冷却液体で冷却される構造であって、冷却液体に接触する基板または容器にフィンが設けられている光源装置も知られている(例えば、特許文献3参照)。   There is also known a light source device in which an LED chip is fixed to a substrate and cooled by a cooling liquid in a sealed container, and fins are provided on the substrate or the container in contact with the cooling liquid ( For example, see Patent Document 3).

あるいは、放熱板及びLEDチップが搭載される基板に冷却液体の循環路を設け、冷却液体が循環路及びカバー内に封入され、循環路及びカバー内において自然対流する構造が知られている(例えば、特許文献4参照)。
特開平11−163410号公報(第3頁、第4頁、第1図〜第4図) 特開2001−36148号広報(第1頁、第9頁〜第10頁、第1図、第32図) 特開2001−36153号広報(第3頁、第1図、第3図) 特開昭61−168372号広報(第3頁、第1図)
Alternatively, a structure is known in which a cooling liquid circulation path is provided on a substrate on which a heat sink and an LED chip are mounted, the cooling liquid is enclosed in the circulation path and the cover, and natural convection is performed in the circulation path and the cover (for example, , See Patent Document 4).
Japanese Patent Laid-Open No. 11-163410 (page 3, page 4, FIGS. 1 to 4) Japanese Laid-Open Patent Publication No. 2001-36148 (page 1, pages 9 to 10, FIG. 1, FIG. 32) Japanese Laid-Open Patent Publication No. 2001-36153 (Page 3, Figures 1 and 3) Japanese Laid-Open Patent Publication No. 61-168372 (Page 3, Fig. 1)

このような特許文献1では、密閉された液体で冷却する構造であるため、液体は自然対流で容器内を循環されるだけのため、冷却スピードが遅いという課題がある。また、ヒートパイプの原理で冷却する構造では、液体内に気泡が発生し易く、気泡は冷却効果を減ずるという課題がある。
また、冷却気体を流動させLEDチップを直接冷却する構造では、気体は金属に比べ熱伝導率が低いため充分な冷却効果が得られないという課題もある。
Since Patent Document 1 has a structure in which the liquid is cooled with a sealed liquid, there is a problem that the cooling speed is slow because the liquid is only circulated in the container by natural convection. Moreover, in the structure which cools by the principle of a heat pipe, there exists a subject that a bubble tends to generate | occur | produce in a liquid and a bubble reduces the cooling effect.
Further, in the structure in which the cooling gas is flowed to directly cool the LED chip, there is a problem that a sufficient cooling effect cannot be obtained because the gas has a lower thermal conductivity than the metal.

特許文献2では、冷却液体を容器外から流入させ、容器内を流動して容器外に流出させているので、冷却液体を自然対流によって冷却するよりも冷却効果はあるが、冷却液体の流入流路と流出流路とが、LEDチップに対して制御されていないので、冷却液体の循環性が悪く冷却効率が低いという課題がある。
また、冷却液体の循環性が悪いために、プロジェクタ等に使用される高輝度、高出力の発光素子を冷却するためには、冷却液体の流量を多くしなければならず、このことは、冷却機構の大型化や複雑化が要求され、其の結果、光源装置がコスト高になるという課題がある。
また、冷却液体の流量を増加させると容器内の圧力を増すことになり、LEDチップ自身やLEDチップを接続する電極部(ワイヤーボンディング部)に応力が発生し、光源装置の信頼性を減ずるというような課題もある。
In Patent Document 2, since the cooling liquid is introduced from the outside of the container and flows inside the container and flows out of the container, the cooling liquid is more effective than cooling by natural convection. Since the path and the outflow channel are not controlled with respect to the LED chip, there is a problem that the circulation of the cooling liquid is poor and the cooling efficiency is low.
In addition, since the circulation of the cooling liquid is poor, in order to cool the high-luminance, high-power light-emitting elements used for projectors and the like, the flow rate of the cooling liquid must be increased. There is a problem that the mechanism needs to be large and complicated, and as a result, the cost of the light source device becomes high.
Further, when the flow rate of the cooling liquid is increased, the pressure in the container is increased, and stress is generated in the LED chip itself and the electrode part (wire bonding part) connecting the LED chip, which reduces the reliability of the light source device. There are also problems like this.

また、特許文献3では、LEDチップが固着される基板、または容器に放熱フィンが設けられているが、冷却液体は密閉されており、自然対流されるだけであるので、充分な冷却性能が得られないというような課題がある。また、このような構造では、構造的強度からLEDチップと放熱フィンとの距離を大きくしなければならないので、充分な冷却性能が得られないという課題もある。   Further, in Patent Document 3, a heat sink fin is provided on a substrate or a container to which an LED chip is fixed. However, since the cooling liquid is hermetically sealed and only naturally convected, sufficient cooling performance is obtained. There is a problem that cannot be done. Moreover, in such a structure, since the distance between the LED chip and the heat radiating fin has to be increased from the structural strength, there is a problem that sufficient cooling performance cannot be obtained.

また、特許文献4では、放熱板及びLEDチップが搭載される基板に冷却液体の循環路を設け、冷却液体が循環路及びカバー内に封入され、循環路及びカバー内において自然対流されていることと、冷却液体の流路が放熱板内に限られているために冷却効率が悪いという課題がある。   Further, in Patent Document 4, a cooling liquid circulation path is provided on the substrate on which the heat sink and the LED chip are mounted, and the cooling liquid is enclosed in the circulation path and the cover, and is naturally convected in the circulation path and the cover. And there is a problem that the cooling efficiency is poor because the flow path of the cooling liquid is limited within the heat sink.

本発明の目的は、発光素子を直接、間接的に冷却流体を強制流動させることによって、
冷却効果を高めた光源装置と、この光源装置が搭載されたプロジェクタを提供することにある。
The object of the present invention is to force the cooling fluid to flow directly or indirectly through the light emitting element.
It is an object of the present invention to provide a light source device with improved cooling effect and a projector equipped with the light source device.

本発明の光源装置は、発光素子が冷却流体によって冷却される光源装置であって、前記発光素子が固着される発光素子基台と、前記発光素子基台に前記冷却流体の流入路と、流出路と、が備えられ、前記流入路と前記流出路とが、前記発光素子が固着される前記発光素子基台の面に対して略平行に設けられていることを特徴とする。
ここで、発光素子としては、発光ダイオード(LED)を採用することができ、平面形状は、略正方形または円形に形成されている。冷却流体としては、窒素ガス(N)、アルゴンガス(Ar)などの気体や、純水、フッ素系炭化水素あるいはシリコンオイル等の液体を採用することができる。
また、発光素子基台、冷却構造体の材料としては、冷却流体よりも熱伝導率が高いアルミニウム合金や銅系の金属を採用することができる。
The light source device of the present invention is a light source device in which a light emitting element is cooled by a cooling fluid, a light emitting element base to which the light emitting element is fixed, an inflow path of the cooling fluid to the light emitting element base, and an outflow The inflow path and the outflow path are provided substantially parallel to the surface of the light emitting element base to which the light emitting element is fixed.
Here, a light emitting diode (LED) can be adopted as the light emitting element, and the planar shape is formed in a substantially square or circular shape. As the cooling fluid, a gas such as nitrogen gas (N 2 ) or argon gas (Ar), or a liquid such as pure water, fluorine-based hydrocarbon, or silicon oil can be used.
In addition, as a material for the light emitting element base and the cooling structure, an aluminum alloy or a copper-based metal having a higher thermal conductivity than the cooling fluid can be employed.

この発明によれば、発光素子は冷却流体によって直接または間接的に冷却することができるが、冷却流体の流入路と流出路とが、発光素子の発光素子基台に固着されている面に対して略平行に設けられているので、光源装置内で冷却流体の流路が制御されているため、冷却液体が円滑に流動され冷却効果を高めることができる。   According to the present invention, the light emitting element can be cooled directly or indirectly by the cooling fluid, but the inflow path and the outflow path of the cooling fluid are fixed to the surface fixed to the light emitting element base of the light emitting element. Therefore, since the flow path of the cooling fluid is controlled in the light source device, the cooling liquid flows smoothly and the cooling effect can be enhanced.

また、冷却液体が流動されることによって、発光素子を直接、または間接的に効率よく冷却することができる。例えば、発光素子が発生する熱は、冷却流体よりも熱伝導率が高い金属で形成された発光素子基台に早く伝導する。この際、発光素子基台も冷却されるので、冷却効果を高めることができる。このことにより、同じ冷却効果を得るためには、冷却流体の流量を減ずることができるので、光源装置の冷却構造を簡素化でき、また小型化することができる。
このように、冷却流体の流量を減ずることができることから、冷却流体の圧力を減ずることができる。このことにより、例えば、発光素子自身や発光素子と外部制御回路を電気的に接続する接続部にかかる応力を減ずることができるので、長期間にわたって光源装置の性能を維持することができる。
In addition, by flowing the cooling liquid, the light emitting element can be efficiently cooled directly or indirectly. For example, heat generated by the light emitting element is quickly conducted to the light emitting element base made of a metal having a higher thermal conductivity than the cooling fluid. At this time, since the light emitting element base is also cooled, the cooling effect can be enhanced. Thus, in order to obtain the same cooling effect, the flow rate of the cooling fluid can be reduced, so that the cooling structure of the light source device can be simplified and the size can be reduced.
Thus, since the flow rate of the cooling fluid can be reduced, the pressure of the cooling fluid can be reduced. As a result, for example, the stress applied to the light emitting element itself or the connection portion that electrically connects the light emitting element and the external control circuit can be reduced, so that the performance of the light source device can be maintained over a long period of time.

本発明では、前記発光素子が前記冷却流体に浸漬され、前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に2対備えられ、且つ、それぞれが略平行に配置され、前記流入路と前記流出路とが隣り合わせに備えられ、前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることが好ましい。   In the present invention, the light-emitting element is immersed in the cooling fluid, and two pairs of the inflow path and the outflow path are provided at positions facing each other across the light-emitting element in a planar direction, and each is substantially parallel. And the inflow path and the outflow path are provided adjacent to each other, and the perpendicular distance from the outflow path with respect to the light emitting element is provided at a position separated from the perpendicular distance from the inflow path. It is preferable.

この発明によれば、冷却流体の流入路と流出路が、発光素子を挟んで対向して設けられているので、冷却流体は発光素子を冷却しながら円滑に流動排出される。また、流入路と流出路とは、隣り合って配置されており、冷却流体は、発光素子の周囲を流動して流入路と隣り合う流出路から排出されるので、光源装置内で冷却流体の循環が円滑に行われる。
さらに、流出路は、流入路よりも発光素子から離れた距離に配置されているので、例えば、発光素子基台の冷却流体が流動される部分の平面を視認した形状が円形である場合、流出路の流出口内側の交錯部は,他の交錯部よりも鋭角な角部が形成されることになるので、冷却流体は、この角部によって、そのまま流出路から排出される流れと、発光素子の周囲に沿って回転流動する流れに分流される。
According to the present invention, since the inflow path and the outflow path of the cooling fluid are provided to face each other with the light emitting element interposed therebetween, the cooling fluid flows and is discharged smoothly while cooling the light emitting element. The inflow path and the outflow path are arranged adjacent to each other, and the cooling fluid flows around the light emitting element and is discharged from the outflow path adjacent to the inflow path. Circulation is performed smoothly.
Furthermore, since the outflow path is arranged at a distance away from the light emitting element than the inflow path, for example, when the shape of the light-emitting element base in which the cooling fluid flows is circular, The intersection part inside the outflow outlet of the passage forms a sharper corner than the other intersection, so that the cooling fluid is directly discharged from the outflow passage by this corner, and the light emitting element Is divided into a flow that rotates and flows along the circumference of the.

このように冷却流体の流動方向を制御することによって、冷却流体が発光素子に沿って円滑に流動されるので、発光素子の冷却を効率的に行うことができる。また、このことにより、発光素子の温度分布が均一になるので、熱応力が生じにくくなり、発光素子に歪が生じたり、破壊されたり摺ることを防止でき、熱応力による発光素子の劣化を防止することができる。
また、冷却流体は、例えば、外部のポンプ等で流動されるが、冷却流体が円滑に流動されることで、同じ冷却効果を得るためには少ない流量でよく、そのことでポンプを含め光源装置を小型化することができる。
By controlling the flow direction of the cooling fluid in this way, the cooling fluid flows smoothly along the light emitting element, so that the light emitting element can be efficiently cooled. This also makes the temperature distribution of the light-emitting element uniform, making it difficult for thermal stress to occur, preventing the light-emitting element from being distorted, broken, and sliding, and preventing deterioration of the light-emitting element due to thermal stress. can do.
In addition, the cooling fluid is flowed by, for example, an external pump, etc., but the cooling fluid can be smoothly flowed so that the flow rate is small in order to obtain the same cooling effect. Can be miniaturized.

本発明では、前記発光素子が前記冷却流体に浸漬され、前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に1対備えられ、且つ、それぞれが平行に配置され、前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることが望ましい。   In the present invention, the light emitting element is immersed in the cooling fluid, and a pair of the inflow path and the outflow path are provided at positions facing each other across the light emitting element in the planar direction, and each is arranged in parallel. In addition, it is preferable that the light emitting element is provided at a position where a perpendicular direction distance from the outflow path is separated from a perpendicular direction distance from the inflow path.

この発明によれば、前述の流入路と流出路とが2対設けられた構造に比べ、光源装置の冷却効果はわずかに減ずるものの、流入路と流出路が1対であるため、構造を簡素化し、小型化することができる。   According to the present invention, although the cooling effect of the light source device is slightly reduced as compared with the structure in which two pairs of the inflow path and the outflow path are provided, the structure is simplified because the inflow path and the outflow path are a pair. And can be miniaturized.

本発明では、前記発光素子が前記冷却流体に浸漬され、前記流入路と、前記流出路が、それぞれ対向して備えられ、前記発光素子が、対向する前記流入路を結んだ直線と、対向する前記流出路を結んだ直線と、が交錯する位置に備えられていることが好ましい。   In the present invention, the light emitting element is immersed in the cooling fluid, the inflow path and the outflow path are provided to face each other, and the light emitting element faces a straight line connecting the facing inflow paths. It is preferable to be provided at a position where the straight line connecting the outflow paths intersects.

この発明によれば、冷却流体は、発光素子に向かって流入され、発光素子に接触した後、発光素子で直角方向に分流され、発光素子に沿って流動し流出路から排出されるので、冷却流体は、発光素子に沿って円滑に流動されるため、前述した冷却効果と均一な温度分布を得ることができる。また、前述の流出路と流入路とを平行に設ける構造よりも、流入路、流出路とを、十字状に配置することで、隣り合う流入路、流出路の距離を大きく設定することができ、製造しやすいという効果や小型化しやすいという効果もある。   According to the present invention, the cooling fluid flows in toward the light emitting element, contacts the light emitting element, then is diverted in a right angle direction by the light emitting element, flows along the light emitting element, and is discharged from the outflow path. Since the fluid smoothly flows along the light emitting element, the above-described cooling effect and uniform temperature distribution can be obtained. In addition, by arranging the inflow path and the outflow path in a cross shape rather than the structure in which the outflow path and the inflow path are provided in parallel, the distance between the adjacent inflow path and the outflow path can be set larger. There are also effects that it is easy to manufacture and that it is easy to downsize.

本発明では、前記流入路と前記流出路とが、断面方向に複数備えられていることが考えられる。
このような発明では、前述した流入路と流出路とが、断面方向にも複数設けられているので、冷却流体は、平面方向だけに流入路、流出路が設けられている構造に比べ、流量を増加することができるので、より一層冷却効果と温度の均一化を高めることができる。
In this invention, it is possible that the said inflow path and the said outflow path are provided with two or more by the cross-sectional direction.
In such an invention, a plurality of the inflow passages and outflow passages described above are also provided in the cross-sectional direction, so that the cooling fluid has a flow rate compared to a structure in which the inflow passages and the outflow passages are provided only in the plane direction. Therefore, the cooling effect and temperature uniformity can be further enhanced.

また、本発明は、前記発光素子が固着される前記発光素子基台の面に、前記冷却流体の流導路が形成されていることが好ましい。
この発明によれば、発光素子基台に冷却流体を円滑に、しかも流動方向を誘導するための、例えば、発光素子に向かって斜め放射状や円弧状の溝、または突起が形成されているので、冷却流体の流動方向を自在に制御することができる。このことにより、冷却流体の流動性、循環性が高められ、一層、冷却効果を高めることができる。
In the present invention, it is preferable that a flow path for the cooling fluid is formed on a surface of the light emitting element base to which the light emitting element is fixed.
According to the present invention, for example, oblique radial or arc-shaped grooves or protrusions are formed toward the light emitting element in order to smoothly guide the flow direction of the cooling fluid on the light emitting element base. The flow direction of the cooling fluid can be freely controlled. As a result, the fluidity and circulation of the cooling fluid are enhanced, and the cooling effect can be further enhanced.

本発明は、前記発光素子基台の周縁部に前記冷却流体の流路が備えられ、この流路に流通する前記流入路と前記流出路とが備えられていることを特徴とする。   The present invention is characterized in that a flow path for the cooling fluid is provided in a peripheral portion of the light emitting element base, and the inflow path and the outflow path that flow through the flow path are provided.

本発明によれば、発光素子から熱が伝導されている発光素子基台を冷却することができるので、前述の発光素子を直接冷却する構造に比べ、冷却効果はわずかに減ずるが、発光素子が、直接冷却流体に接触しないために、冷却流体の圧力が発光素子にかからないこと、不純物の侵入等に係わる発光素子の機械的、化学的、光学的な特性の変化や経時変化を減ずることができる。
また、例えば、流路をリング状に形成した場合、冷却流体が、発光素子基台の周囲のこの流路に沿って回転するように流動されるので、円滑に冷却流体を流動することができる。このことにより、同じ冷却効果を得るために少ない流量でよく、外部のポンプを含め光源装置を小型化することができる。
According to the present invention, since the light emitting element base in which heat is conducted from the light emitting element can be cooled, the cooling effect is slightly reduced as compared with the structure in which the light emitting element is directly cooled. Because it is not in direct contact with the cooling fluid, the pressure of the cooling fluid is not applied to the light emitting element, and the change in mechanical, chemical and optical characteristics of the light emitting element related to the intrusion of impurities and the change with time can be reduced. .
Further, for example, when the flow path is formed in a ring shape, the cooling fluid flows so as to rotate along this flow path around the light emitting element base, so that the cooling fluid can flow smoothly. . Accordingly, a small flow rate is required to obtain the same cooling effect, and the light source device including the external pump can be downsized.

本発明では、前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に2対備えられ、且つ、それぞれが略平行に配置され、前記流入路と前記流出路とが隣り合わせに備えられ、前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることが好ましい。   In the present invention, two pairs of the inflow path and the outflow path are provided at positions facing each other across the light emitting element in the planar direction, and each is disposed substantially in parallel, and the inflow path and the outflow path are Are arranged adjacent to each other, and the light emitting element is preferably provided at a position where a perpendicular direction distance from the outflow path is further away than a perpendicular direction distance from the inflow path.

この発明によれば、冷却流体の流入路と流出路が、発光素子を挟んで対向して設けられた流路に流通しているので、冷却流体は円滑に流動し、排出される。また、流入路と流出路とは、隣り合って配置されており、冷却流体は、発光素子固着される周囲の発光素子基台の流路を流動して流入路と隣り合う流出路から排出されるので、光源装置内で冷却流体の循環が円滑に行われる。
さらに、流出路は、流入路よりも発光素子から離れた距離に配置されているので、例えば、発光素子基台の冷却流体が流動される部分の平面を視認した形状が円形である場合、流出路の流出口内側の交錯部は,他の交錯部よりも鋭角な角部が形成されることになるので、冷却流体は、この角部によって、そのまま流出路から排出される流れと、発光素子基台の周囲に沿って流動する流れに分流される。
According to this invention, since the inflow path and the outflow path of the cooling fluid are circulated in the flow paths provided opposite to each other with the light emitting element interposed therebetween, the cooling fluid smoothly flows and is discharged. The inflow path and the outflow path are arranged adjacent to each other, and the cooling fluid flows through the flow path of the surrounding light emitting element base to which the light emitting element is fixed, and is discharged from the outflow path adjacent to the inflow path. Therefore, the cooling fluid is smoothly circulated in the light source device.
Furthermore, since the outflow path is arranged at a distance away from the light emitting element than the inflow path, for example, when the shape of the light-emitting element base in which the cooling fluid flows is circular, The intersection part inside the outflow outlet of the passage forms a sharper corner than the other intersection, so that the cooling fluid is directly discharged from the outflow passage by this corner, and the light emitting element It is divided into a flow that flows along the periphery of the base.

このように冷却流体の流動方向を制御することによって、発光素子が固着されるの発光素子基台が冷却されるので、発光素子に熱応力が生じにくくなり、熱応力による発光素子の破壊を防止することができる。
また、冷却流体は、例えば、外部のポンプ等で流動されるが、冷却流体が円滑に流動されることで、同じ冷却効果を得るためには少ない流量でよく、そのことでポンプを含め光源装置を小型化することができる。
By controlling the flow direction of the cooling fluid in this way, the light emitting element base is cooled because the light emitting element is fixed, so that thermal stress is less likely to occur in the light emitting element, and destruction of the light emitting element due to thermal stress is prevented. can do.
In addition, the cooling fluid is flowed by, for example, an external pump, etc., but the cooling fluid can be smoothly flowed so that the flow rate is small in order to obtain the same cooling effect. Can be miniaturized.

本発明では、前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に1対備えられ、且つ、それぞれが平行に配置され、前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることを特徴とする光源装置。   In the present invention, a pair of the inflow path and the outflow path are provided at positions facing each other across the light emitting element in a planar direction, and each of the inflow path and the outflow path is arranged in parallel, A light source device, wherein a distance in a perpendicular direction from a path is provided at a position separated from a distance in a perpendicular direction from the inflow path.

この発明によれば、前述の流入路と流出路とが2対設けられた構造に比べ、光源装置の冷却効果はわずかに減ずるものの、流入路と流出路が1対だけ備えられているため、構造を簡素化し、小型化することができる。   According to the present invention, although the cooling effect of the light source device is slightly reduced as compared with the structure in which two pairs of the inflow path and the outflow path are provided, only one pair of the inflow path and the outflow path is provided. The structure can be simplified and the size can be reduced.

また、本発明では、前記流入路と前記流出路が、それぞれ対向して備えられ、前記光源装置が、対向する前記流入路を結んだ直線と、対向する前記流出路を結んだ直線と、が交錯する位置に備えられていることが好ましい。   In the present invention, the inflow path and the outflow path are provided to face each other, and the light source device includes a straight line connecting the opposing inflow paths and a straight line connecting the opposing outflow paths. It is preferable that they are provided at the crossing positions.

この発明によれば、冷却流体は、発光素子基台に向かって流入され、発光素子基台によって2方向に分流され、発光素子基台に沿って流動し流出路から排出されるので、前述した冷却効果と、均一な温度分布を得ることができる。また、前述の流出路と流入路とを平行に設ける構造よりも、流入路、流出路とを、十字状に配置することで、隣り合う流入路、流出路の距離を大きく設定することができ、製造しやすいという効果や小型化しやすいという効果もある。   According to the present invention, the cooling fluid flows in toward the light emitting element base, is divided in two directions by the light emitting element base, flows along the light emitting element base, and is discharged from the outflow path. A cooling effect and a uniform temperature distribution can be obtained. In addition, by arranging the inflow path and the outflow path in a cross shape rather than the structure in which the outflow path and the inflow path are provided in parallel, the distance between the adjacent inflow path and the outflow path can be set larger. There are also effects that it is easy to manufacture and that it is easy to downsize.

また、この発明では、前記流入路と前記流出路とが、断面方向に複数備えられていることが望ましい。
このような発明では、前述した流入路と流出路とが、断面方向にも複数設けられているので、冷却流体は、平面方向だけに流入路、流出路が設けられている構造に比べ、流量を増加することができるので、より一層冷却効果と温度の均一化を高めることができる。
In the present invention, it is desirable that a plurality of the inflow paths and the outflow paths are provided in the cross-sectional direction.
In such an invention, a plurality of the inflow passages and outflow passages described above are also provided in the cross-sectional direction, so that the cooling fluid has a flow rate compared to a structure in which the inflow passages and the outflow passages are provided only in the plane direction. Therefore, the cooling effect and temperature uniformity can be further enhanced.

本発明のプロジェクタは前述した光源装置が搭載されたことを特徴とする。
このようなプロジェクタは、光源装置の冷却効率が高いので輝度を高めることができ、また、構造も簡素であるため、高輝度でありながら小型化することができる。また、発光素子の温度の均一化ができるため、熱応力による発光素子の劣化を防止することができ、長期間にわたって良好な性能を維持することができる。
The projector according to the present invention includes the above-described light source device.
Such a projector can increase the luminance because the cooling efficiency of the light source device is high, and since the structure is simple, the projector can be downsized while having high luminance. Further, since the temperature of the light emitting element can be made uniform, deterioration of the light emitting element due to thermal stress can be prevented, and good performance can be maintained over a long period of time.

以下、本発明の実施形態を図面に基づいて説明する。
図1〜図12は本発明の光源装置の実施例を示し、図13は、本発明のプロジェクタの実施例が示されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIGS. 1-12 shows the Example of the light source device of this invention, FIG. 13 shows the Example of the projector of this invention.

図1〜図3は、実施例1の光源装置10が示されている。
図1は、実施例1の光源装置を示す平面図で、図2に記載のレンズキャップ200及び固定リング300を省略している。図2は実施例1の断面図が示されている。図3は、実施例1の発光素子基台120の詳細を示す平面図である。図1、図2において、光源装置10は、発光素子基台120と、発光素子基台120に固着される発光素子としてのLEDチップ100と、固定リング300とレンズキャップ200とから構成されている。
1 to 3 show a light source device 10 according to a first embodiment.
FIG. 1 is a plan view illustrating the light source device according to the first embodiment, in which the lens cap 200 and the fixing ring 300 illustrated in FIG. 2 are omitted. FIG. 2 is a sectional view of the first embodiment. FIG. 3 is a plan view showing details of the light emitting element base 120 of the first embodiment. 1 and 2, the light source device 10 includes a light emitting element base 120, an LED chip 100 as a light emitting element fixed to the light emitting element base 120, a fixing ring 300, and a lens cap 200. .

LEDチップ100は、平面形状が略正方形をしており、上面にp電極101、下面にn電極102が備えられおり、n電極102が発光素子基台120に形成された凹部の底部122の略中央部に銀ペーストなどの導電性材料で固着され、p電極は、ワイヤー110でリード基板500に接続されている。   The LED chip 100 has a substantially square planar shape, and is provided with a p-electrode 101 on the top surface and an n-electrode 102 on the bottom surface, and the bottom surface 122 of the recess formed on the light-emitting element base 120. The central portion is fixed with a conductive material such as silver paste, and the p-electrode is connected to the lead substrate 500 with a wire 110.

発光素子基台120は、外形が直方体で、中央に、開口部が広く、底部が狭い凹部が形成されている。発光素子基台120は、外縁から凹部に貫通する冷却流体400が流通する流入路124,126と、流出路125,127が穿設されている。流入路124,126、流出路125,127は、一部が後述するLEDチップ100の上面を望んだ断面高さに設けられ、平面位置は、LEDチップ100の一辺に沿った方向に向かって形成されている。   The light emitting element base 120 has a rectangular parallelepiped shape, and has a concave portion with a wide opening and a narrow bottom at the center. The light emitting element base 120 is provided with inflow paths 124 and 126 through which the cooling fluid 400 penetrating from the outer edge to the recess flows and outflow paths 125 and 127. The inflow passages 124 and 126 and the outflow passages 125 and 127 are partially provided at a cross-sectional height where the upper surface of the LED chip 100 described later is desired, and the planar position is formed in a direction along one side of the LED chip 100. Has been.

図2において、流入路124,126、流出路125,127は、それぞれ平行に形成され、流出路125,127は、長手方向からのLEDチップ100に対して直角方向距離Hが、流入路124,126の長手方向からのLEDチップ100に対しての直角方向距離hよりも離れた位置に設けられている。流出路125,127が、凹部の斜面部121との交錯部125Aと127Aは、平面を視認して他方の交錯部125B,127Bよりも鋭角に形成されている。   In FIG. 2, the inflow paths 124 and 126 and the outflow paths 125 and 127 are formed in parallel, and the outflow paths 125 and 127 have a distance H in the direction perpendicular to the LED chip 100 from the longitudinal direction. The distance from the longitudinal direction 126 to the LED chip 100 is set at a position away from the perpendicular distance h. Intersections 125A and 127A of the outflow passages 125 and 127 and the inclined surface portion 121 of the recess are formed at an acute angle with respect to the other intersections 125B and 127B when the plane is viewed.

図3において、発光素子基台120の底部122は、LEDチップ100に向かって、風車状の冷却流体400の流導路128が形成されている。流導路128は、底部122に溝状に形成されるか、または突起状に形成される。この流導路128は、風車状でも、直線放射状でもよく、底部122の外周近傍から、LEDチップ100の周囲近傍までの範囲に形成されるが、LEDチップ100の周囲は、冷却流体100が、LEDチップ100に沿って回転するように流動できる範囲の空間を備えることが好ましい。   In FIG. 3, the flow path 128 of the windmill-like cooling fluid 400 is formed on the bottom 122 of the light emitting element base 120 toward the LED chip 100. The flow channel 128 is formed in a groove shape or a protrusion shape in the bottom portion 122. The flow guide path 128 may be a windmill shape or a linear radial shape, and is formed in a range from the vicinity of the outer periphery of the bottom portion 122 to the vicinity of the periphery of the LED chip 100, but the cooling fluid 100 is surrounded by the periphery of the LED chip 100. It is preferable to provide a space that can flow so as to rotate along the LED chip 100.

発光素子基台120は、熱伝導率が高いアルミニウム合金や銅合金などが使用できるが、以降、比重も小さく軽量化ができるアルミニウム合金を使用した場合を実施例として説明する。この発光素子基台120は、斜面部121及び底部122の表面にLEDチップ100から射出される可視光を効率良く反射するために、鏡面仕上げ、細かい凹凸仕上げ(乱反射仕上げ)や光の反射層を形成するめっきなどが施されている。また、図示しないが、発光素子基台120は、外部制御回路に接続されている。
発光素子基台120の上面には、リード基板500がインサートされた固定リング300が、密着固定されている。
As the light emitting element base 120, an aluminum alloy or a copper alloy having a high thermal conductivity can be used. Hereinafter, a case where an aluminum alloy having a small specific gravity and a light weight is used will be described as an example. The light emitting element base 120 is provided with a mirror finish, a fine uneven finish (irregular reflection finish) or a light reflection layer in order to efficiently reflect the visible light emitted from the LED chip 100 onto the surfaces of the slope portion 121 and the bottom portion 122. The plating to form is given. Although not shown, the light emitting element base 120 is connected to an external control circuit.
On the upper surface of the light emitting element base 120, a fixing ring 300 in which a lead substrate 500 is inserted is tightly fixed.

リード基板500は、金属で形成された短冊状の薄板であり、流入路126と流出路127の中間に配置されており、その両端は、固定リング300から延出されており、内側の一端は、LEDチップ100のp電極101とワイヤー110で接続され、多端は、図示しないが、外部制御回路に接続されている。
固定リング300の上面123には、レンズキャップ200が密着固定され、これらレンズキャップ200と、固定リング300と、発光素子基台120の凹部とで冷却流体400が流動される空間が形成される。
LEDチップ100は、外部制御回路からの発光信号により発光される。
The lead substrate 500 is a strip-shaped thin plate made of metal, and is arranged in the middle of the inflow path 126 and the outflow path 127. Both ends of the lead board 500 are extended from the fixing ring 300, and one end on the inner side is The LED chip 100 is connected to the p-electrode 101 by a wire 110, and the other end is connected to an external control circuit (not shown).
The lens cap 200 is tightly fixed to the upper surface 123 of the fixing ring 300, and a space in which the cooling fluid 400 flows is formed by the lens cap 200, the fixing ring 300, and the concave portion of the light emitting element base 120.
The LED chip 100 emits light according to a light emission signal from an external control circuit.

次に、図1、図3により冷却流体400の流動について説明する。流入路124,126は、図示しないが、光源装置10の外部に備えられたポンプに接続され、流出路125,127は、冷却流体が貯蔵されるタンクに接続され、光源装置10の外部の流通過程で冷却流体400は冷却され、流入路124,126から、光源装置10内に流入される。
流入路124,126から流入された冷却流体400は、発光素子基台120の凹部内を矢印A方向に流動し、流入路126と流出路127、流入路124と流出路125とは、平面方向に位置がずれているために、流出路125,127と斜面部121との交錯部125A,127Aで分流され、一部が流出路125,127から外部に排出され、一部が矢印B方向に流動し、流出路125,127から排出され、前述の循環が行われる。
Next, the flow of the cooling fluid 400 will be described with reference to FIGS. Although not shown, the inflow passages 124 and 126 are connected to a pump provided outside the light source device 10, and the outflow passages 125 and 127 are connected to a tank in which cooling fluid is stored, and flow outside the light source device 10. In the process, the cooling fluid 400 is cooled and flows into the light source device 10 from the inflow paths 124 and 126.
The cooling fluid 400 that has flowed in from the inflow paths 124 and 126 flows in the concave portion of the light emitting element base 120 in the direction of arrow A, and the inflow path 126 and the outflow path 127, and the inflow path 124 and the outflow path 125 are planar. Therefore, the flow is diverted at the intersections 125A and 127A between the outflow passages 125 and 127 and the slope portion 121, a part is discharged to the outside from the outflow passages 125 and 127, and a part is in the arrow B direction. It flows and is discharged from the outflow passages 125 and 127, and the above-mentioned circulation is performed.

図3で説明したように、流導路128が形成されている場合は、前述した(図1、参照)矢印A及びBのように流動するとともに、矢印C方向にLEDチップ100に向かって流動され、LEDチップ100の周囲を回る矢印Dのような流動が行われる。   As described in FIG. 3, when the flow guide path 128 is formed, it flows as indicated by the arrows A and B described above (see FIG. 1) and flows toward the LED chip 100 in the direction of the arrow C. Then, a flow as indicated by an arrow D around the LED chip 100 is performed.

従って、本実施例1によれば、冷却流体400の流入路124と流出路125、流入路126と流出路127とが、発光素子を挟んで対向して設けられているが、LEDチップ100からの距離が流出路125,127の方が外側にあるため、流出路125,127の角部125A,127Aで分流されて、冷却流体400がLEDチップの周囲を回転するように流動されるので、冷却流体は発光素子を冷却しながら円滑に流動排出される。
また、流入路125と流出路126、流入路124と流出路127とは、隣り合って配置されており、冷却流体400は、LEDチップ100の周囲を流動して冷却し、流入路と隣り合う流出路から排出されるので、光源装置10内で冷却流体の循環が円滑に行われる。
Therefore, according to the first embodiment, the inflow path 124 and the outflow path 125 of the cooling fluid 400 and the inflow path 126 and the outflow path 127 are provided to face each other with the light emitting element interposed therebetween. Since the outflow passages 125 and 127 are on the outer side, the flow is diverted at the corners 125A and 127A of the outflow passages 125 and 127 so that the cooling fluid 400 flows around the LED chip. The cooling fluid flows and is discharged smoothly while cooling the light emitting element.
In addition, the inflow path 125 and the outflow path 126, and the inflow path 124 and the outflow path 127 are arranged adjacent to each other, and the cooling fluid 400 flows around the LED chip 100 to cool, and is adjacent to the inflow path. Since it is discharged from the outflow path, the cooling fluid is smoothly circulated in the light source device 10.

このように冷却流体の流動方向を制御することによって、冷却流体が発光素子に沿って円滑に流動されるので、発光素子の冷却を効率的に行うことができる。また、このことにより、発光素子の温度分布が均一になるので、熱応力が生じにくくなり、熱応力による発光素子の劣化を防止することができる。
また、冷却流体は、例えば、外部のポンプ等で流動されるが、冷却流体が円滑に流動されることで、同じ冷却効果を得るためには少ない流量でよく、そのことでポンプの動力を小さくすることがで、ポンプを含め光源装置10を小型化することができる。
By controlling the flow direction of the cooling fluid in this way, the cooling fluid flows smoothly along the light emitting element, so that the light emitting element can be efficiently cooled. This also makes the temperature distribution of the light emitting element uniform, so that thermal stress is less likely to occur, and deterioration of the light emitting element due to thermal stress can be prevented.
In addition, the cooling fluid is flowed by, for example, an external pump, etc., but the cooling fluid can be smoothly flowed so that the flow rate is small to obtain the same cooling effect, thereby reducing the pump power. Thus, the light source device 10 including the pump can be reduced in size.

次に実施例2について、図4を用いて説明する。
図4は、流入路と流出路が1対備えられた光源装置10を示す平面図で、この流入路、流出路以外は、断面関係を含めて実施例1と同じであるので、相違個所のみについて説明する。図4において、発光素子基台120には、流入路126と流出路127が設けられている。発光素子基台120は、平面外形が略正方形で、中央に開口部が広く底部が狭い凹部が形成されている。発光素子基台120は、外縁から凹部に貫通する冷却流体400が流通する流入路126と、流出路127が穿設され、流入路126、流出路127は、一部が後述するLEDチップ100の上面を望んだ断面高さに設けられ、平面位置は、LEDチップ100の一辺に沿った方向に向かって形成されている。
Next, Example 2 will be described with reference to FIG.
FIG. 4 is a plan view showing the light source device 10 provided with a pair of inflow path and outflow path. Except for the inflow path and the outflow path, the configuration including the cross-sectional relationship is the same as that of the first embodiment. Will be described. In FIG. 4, the light emitting element base 120 is provided with an inflow path 126 and an outflow path 127. The light-emitting element base 120 has a substantially square planar outer shape, and has a recess having a wide opening and a narrow bottom at the center. The light emitting element base 120 has an inflow path 126 through which a cooling fluid 400 that penetrates from the outer edge to the recess and an outflow path 127 are formed, and the inflow path 126 and the outflow path 127 are partly described later of the LED chip 100. The upper surface is provided at a desired cross-sectional height, and the planar position is formed in a direction along one side of the LED chip 100.

流入路126、流出路127は、それぞれ平行に形成され、流出路127は、長手方向からのLEDチップ100に対して直角方向距離Hが、流入路126の長手方向からのLEDチップ100に対しての直角方向距離hよりも離れた位置に設けられている。流出路127が、凹部の斜面部121との交錯部127Aは、平面を視認して他方の交錯部127Bよりも鋭角に形成されている。
また、底部122の表面には、実施例1で記載された流導路128が形成されている(図3、参照)
The inflow path 126 and the outflow path 127 are formed in parallel with each other, and the outflow path 127 has a perpendicular distance H with respect to the LED chip 100 from the longitudinal direction with respect to the LED chip 100 from the longitudinal direction of the inflow path 126. Is provided at a position away from the distance h in the perpendicular direction. The crossing portion 127A of the outflow passage 127 and the inclined surface portion 121 of the concave portion is formed at an acute angle with respect to the other crossing portion 127B as viewed from the plane.
Further, the flow channel 128 described in the first embodiment is formed on the surface of the bottom 122 (see FIG. 3).

冷却流体400は、流入路126から流入され、矢印A方向に流動され、角部127Aで分流され、流出路127が排出される流路と、矢印B方向にLEDチップ100に沿って回転するように流動する流路ができる。また、流導路128に沿って流動する矢印C方向及び矢印D方向の流路もできる(図3、参照)   The cooling fluid 400 flows in from the inflow path 126, flows in the direction of arrow A, is shunted by the corner portion 127 </ b> A, and is rotated along the LED chip 100 in the direction of arrow B and the flow path in which the outflow path 127 is discharged. A flow path is created. Moreover, the flow path of the arrow C direction and the arrow D direction which flow along the flow path 128 is also made (refer FIG. 3).

従って、本実施例2によれば、実施例1で記載されたの流入路と流出路とが2対設けられた構造に比べ、光源装置10の冷却効果はわずかに減ずるものの、ほぼ同等な効果を得ることができる。
また、流入路126と流出路127が各1つだけ設けられるため、光源装置10の構造を簡素化し、小型化することができる。
Therefore, according to the second embodiment, the cooling effect of the light source device 10 is slightly reduced as compared with the structure in which two pairs of the inflow path and the outflow path described in the first embodiment are provided, but almost the same effect. Can be obtained.
Further, since only one inflow path 126 and one outflow path 127 are provided, the structure of the light source device 10 can be simplified and reduced in size.

次に、実施例3について、図5を用いて説明する。実施例3は、実施例1の技術思想を基礎にして、流入路、流出路をLEDチップ100に対向させた構造である。断面関係は、図2と同じであるので省略する。
図5は、本発明の実施例3を示す平面図である。図5において、LEDチップ100は、平面形状が略正方形をしており、上面にp電極101、下面にn電極102が備えられおり、n電極102が発光素子基台120に形成された凹部の底部122の略中央部に銀ペーストなどの導電性材料で固着され、p電極は、ワイヤー110でリード基板500に接続されている。
Next, Example 3 will be described with reference to FIG. The third embodiment has a structure in which the inflow path and the outflow path are opposed to the LED chip 100 based on the technical idea of the first embodiment. The cross-sectional relationship is the same as in FIG.
FIG. 5 is a plan view showing Embodiment 3 of the present invention. In FIG. 5, the LED chip 100 has a substantially square planar shape, is provided with a p-electrode 101 on the upper surface and an n-electrode 102 on the lower surface, and the n-electrode 102 is a recess formed in the light emitting element base 120. The p-electrode is connected to the lead substrate 500 with a wire 110 and is fixed to a substantially central portion of the bottom portion 122 with a conductive material such as silver paste.

発光素子基台120は、平面外形が略正方形で、中央に開口部が広く底部が狭い凹部が形成されている。発光素子基台120は、外縁から凹部に貫通する冷却流体400が流通する流入路124,126と、流出路125,127が穿設されている。流入路124,126、流出路125,127は、LEDチップ100の上面を望んだ断面高さに設けられ、平面位置は、LEDチップ100の角部に向かって、流入路124と126、流出路125と127とが相互に対向するように形成されている。
底部122の表面には、実施例1と同様に、溝状や突起状の冷却流体400の流導路が設けられることが好ましいが、この際、この流導路は、図中矢印E方向に沿って形成される。
The light-emitting element base 120 has a substantially square planar outer shape, and has a recess having a wide opening and a narrow bottom at the center. The light emitting element base 120 is provided with inflow paths 124 and 126 through which the cooling fluid 400 penetrating from the outer edge to the recess flows and outflow paths 125 and 127. The inflow passages 124 and 126 and the outflow passages 125 and 127 are provided at a cross-sectional height where the upper surface of the LED chip 100 is desired, and the planar positions are the inflow passages 124 and 126 and the outflow passage toward the corner of the LED chip 100. 125 and 127 are formed to face each other.
The surface of the bottom 122 is preferably provided with a grooved or projecting cooling fluid 400 flow path as in the first embodiment. At this time, the flow path is in the direction of arrow E in the figure. Formed along.

本実施例においても、光源装置10の外部には、冷却流体400を貯蔵するタンクや流動するためのポンプが備えられているが、実施例1に記載されている構成と同じため、説明は省略する。
流入路124,126から流入された冷却流体400は、LEDチップ100の角部に向かって流動し、この角部で2方向に分流され(図中、矢印E)、LEDチップ100の辺に沿って流動され、流出路125,127に排出される。
Also in the present embodiment, a tank for storing the cooling fluid 400 and a pump for flowing are provided outside the light source device 10, but the description is omitted because it is the same as the configuration described in the first embodiment. To do.
The cooling fluid 400 that has flowed in from the inflow paths 124 and 126 flows toward the corner of the LED chip 100 and is divided into two directions at this corner (arrow E in the figure), along the side of the LED chip 100. And is discharged to the outflow passages 125 and 127.

従って、本実施例3によれば、冷却流体400は、LEDチップ100の角部に向かって流入され、この角部で2方向に分流され、LEDチップ100の辺に沿って流動し流出路から排出されるので、前述した実施例1と同様な冷却効果と、均一な温度分布を得ることができる。また、実施例1の流出路124,126と流入路125,127とを平行に設ける構造よりも、流入路124,126、流出路125,127とを、十字状に配置することで、隣り合う流入路124と流出路125,127、及び流入路124と流出路125,127との距離を大きく設定することができ、製造しやすいという効果や小型化しやすいという効果もある。   Therefore, according to the third embodiment, the cooling fluid 400 flows in toward the corner portion of the LED chip 100, is divided into two directions at the corner portion, flows along the side of the LED chip 100, and flows from the outflow path. Since it is discharged, the same cooling effect and uniform temperature distribution as in the first embodiment can be obtained. Further, the inflow paths 124 and 126 and the outflow paths 125 and 127 are adjacent to each other by arranging them in a cross shape rather than the structure in which the outflow paths 124 and 126 and the inflow paths 125 and 127 of Example 1 are provided in parallel. The distance between the inflow passage 124 and the outflow passages 125 and 127, and the distance between the inflow passage 124 and the outflow passages 125 and 127 can be set large, and there is an effect that it is easy to manufacture and that it is easy to downsize.

なお、図示しないが、実施例3の構成から、流出路と流入路を1対だけ備えた構造も考えられる。この場合、例えば、流入路126と対向した位置に流出路127を設けることができる(図5に示した、流入路124の位置に流出路127を設ける)。   Although not shown, a structure including only one pair of the outflow path and the inflow path can be considered from the configuration of the third embodiment. In this case, for example, the outflow path 127 can be provided at a position facing the inflow path 126 (the outflow path 127 is provided at the position of the inflow path 124 shown in FIG. 5).

このような構造では、実施例3で示した流入路と流出路が2対設けられた場合に比べて、光源装置10の冷却効果はやや減ずるものの、ほぼ同等な効果を得ることができる。
また、流入路126と流出路127が1つだけ設けられるため、光源装置10の構造を簡素化し、小型化することができる。
In such a structure, the cooling effect of the light source device 10 is slightly reduced as compared with the case where two pairs of the inflow path and the outflow path shown in the third embodiment are provided, but almost the same effect can be obtained.
Further, since only one inflow path 126 and one outflow path 127 are provided, the structure of the light source device 10 can be simplified and reduced in size.

次に、実施例4について、図6を用いて説明する。実施例4は、実施例1ないし実施例3で示した流入路124,126と流出路125,127とが、断面方向に複数備えられた光源装置10を示す。流入路及び流出路の断面方向のレイアウト以外は、実施例1と同じため説明は省略する。図6において、発光素子基台120に設けられた流入路124,126の上部には流入路131,133が設けられている。また、流出路125,127の上部にも流出路132,134が設けられている。   Next, Example 4 will be described with reference to FIG. The fourth embodiment shows the light source device 10 provided with a plurality of inflow paths 124 and 126 and outflow paths 125 and 127 shown in the first to third embodiments in the cross-sectional direction. Except for the layout in the cross-sectional direction of the inflow path and the outflow path, the description is omitted because it is the same as the first embodiment. In FIG. 6, inflow paths 131 and 133 are provided above the inflow paths 124 and 126 provided in the light emitting element base 120. Outflow passages 132 and 134 are also provided above the outflow passages 125 and 127.

ここで、流入路131,133、流出路132,134とは、平面位置は実施例1(図1、参照)とほぼ同じ位置で、冷却流体400の流入流出方向も同じとされているが、流入路131,133、流出路132,134とを、流入路124,126、流出路125,127に対して平面方向に90度回転した位置に配置してもよく、実施例3(図5、参照)に示す流入路124,126と流出路125,127とに対して、流入路131,133、流出路132,134とを平面方向に90度回転して配置してもよい。
また、図3で示したような、冷却流体400の流導路128を設けることもできる。
Here, the inflow paths 131 and 133 and the outflow paths 132 and 134 have substantially the same planar positions as those in the first embodiment (see FIG. 1), and the inflow and outflow directions of the cooling fluid 400 are the same. The inflow channels 131 and 133 and the outflow channels 132 and 134 may be disposed at positions rotated 90 degrees in the plane direction with respect to the inflow channels 124 and 126 and the outflow channels 125 and 127. The inflow channels 131 and 133 and the outflow channels 132 and 134 may be rotated 90 degrees in the plane direction with respect to the inflow channels 124 and 126 and the outflow channels 125 and 127 shown in FIG.
Also, a flow path 128 for the cooling fluid 400 as shown in FIG. 3 may be provided.

さらには、前述したように、流入路131,133を下段にある流入路124,126と、流出路132,134と下段にある流出路125,127とが平面方向で重なるように配置される場合には、それぞれ流入と流出を入換えることができる。すなわち、流入路131,133を流出路に、流出路132,134を流入路にすることができる。   Furthermore, as described above, the inflow channels 131 and 133 are arranged so that the inflow channels 124 and 126 in the lower stage and the outflow channels 132 and 134 and the outflow paths 125 and 127 in the lower stage overlap in the planar direction. Each can be switched between inflow and outflow. That is, the inflow paths 131 and 133 can be used as outflow paths, and the outflow paths 132 and 134 can be used as inflow paths.

従って、本実施例4によれば、流入路124,126と流出路125,127に加え、流入路131,133、流出路132,134が、断面方向に段差を設けて備えられているので、冷却流体400は、1平面方向だけに流入路、流出路が設けられている構造に比べ、流量を増加することができるので、より一層冷却効果と温度の均一化を高めることができる。
また、実施例2と、実施例3の変形例のように、流入路、流出路が1対設けられている場合においても、上段の流入路、流出路と、下段の流入路、流出路との平面方向角度を任意にずらすことができる。
Therefore, according to the fourth embodiment, in addition to the inflow channels 124 and 126 and the outflow channels 125 and 127, the inflow channels 131 and 133 and the outflow channels 132 and 134 are provided with steps in the cross-sectional direction. Since the cooling fluid 400 can increase the flow rate as compared with the structure in which the inflow path and the outflow path are provided only in one plane direction, the cooling effect and temperature uniformity can be further enhanced.
Moreover, even when a pair of inflow passages and outflow passages are provided as in the modification example of Embodiment 2 and Embodiment 3, the upper inflow passage and outflow passage, the lower inflow passage and outflow passage, The plane direction angle can be arbitrarily shifted.

なお、実施例1〜実施例4では、発光素子基台120は、外形が直方体とされているが、外周が円形の円柱状の形状とすることもできる。   In addition, in Example 1- Example 4, although the external shape of the light emitting element base 120 is a rectangular parallelepiped, it can also be made into the columnar shape whose outer periphery is circular.

次に、実施例5について、図7、図8を用いて説明する。
図7は、本発明の実施例5の光源装置10を示す平面図で固定リング300、レンズキャップ200を省略している。図8は、実施例5の光源装置10を示す断面図である。図7、図8において、LEDチップ100は、平面形状が略正方形をしており、上面にp電極101、n電極102が備えられおり、下面が発光素子基台120に形成された凹部の底部122の略中央部に接着材等で固着されている。p電極101、n電極102は、ワイヤー110でリード基板501、502にそれぞれ接続されている。
Next, Example 5 will be described with reference to FIGS.
FIG. 7 is a plan view showing the light source device 10 according to the fifth embodiment of the present invention, in which the fixing ring 300 and the lens cap 200 are omitted. FIG. 8 is a cross-sectional view illustrating the light source device 10 according to the fifth embodiment. 7 and 8, the LED chip 100 has a substantially square planar shape, is provided with a p-electrode 101 and an n-electrode 102 on the upper surface, and a bottom surface of a recess formed on the light-emitting element base 120 on the lower surface. It is fixed to the substantially central portion of 122 with an adhesive or the like. The p electrode 101 and the n electrode 102 are connected to lead substrates 501 and 502 by wires 110, respectively.

発光素子基台120は、外形が円柱状をしており、中央に開口部が広く底部が狭い凹部が形成され、外縁部には、リング状の冷却流体400の流路129が形成されている。流路129は、底部が発光素子基台120の底部122の面より深く形成され、上部が開口されている。この流路129と発光素子基台120とを外周部から貫通される流入路124,126と流出路125,127が穿設されている。   The light emitting element base 120 has a cylindrical outer shape, a recess having a wide opening at the center and a narrow bottom is formed, and a flow path 129 of a ring-shaped cooling fluid 400 is formed at the outer edge. . The channel 129 has a bottom formed deeper than the surface of the bottom 122 of the light emitting element base 120 and an upper portion opened. Inflow passages 124 and 126 and outflow passages 125 and 127 penetrating the flow passage 129 and the light emitting element base 120 from the outer peripheral portion are formed.

流入路124,126、流出路125,127は、それぞれ平行に形成され、流出路125,127は、長手方向からのLEDチップ100に対して直角方向距離Hが、流入路124,126の長手方向からのLEDチップ100に対しての直角方向距離hよりも離れた位置に設けられている。流出路125,127が、流路129と交錯した交錯部125Aと127Aは、平面を視認して他方の交錯部125B,127Bよりも鋭角に形成されている。
流路129の上部開口部は、固定リング300によって発光素子基台120に接着等の手段で固着され、密閉封止される。
The inflow channels 124 and 126 and the outflow channels 125 and 127 are formed in parallel, and the outflow channels 125 and 127 have a perpendicular distance H from the longitudinal direction with respect to the LED chip 100, and the longitudinal directions of the inflow channels 124 and 126. The LED chip 100 is provided at a position away from the distance h in the direction perpendicular to the LED chip 100. The crossing portions 125A and 127A in which the outflow passages 125 and 127 cross the flow passage 129 are formed at an acute angle with respect to the other crossing portions 125B and 127B when the plane is viewed.
The upper opening of the channel 129 is fixed to the light emitting element base 120 by means of adhesion or the like by the fixing ring 300 and hermetically sealed.

図8において、固定リング300は、断面方向に2段の段部を設けたリング状に形成され、外周は、発光素子基台120の外周と略同じ形状とされ、合成樹脂によって成形されている。この固定リング300には、リード基板501,502がインサート成形されて密着固定されており、その両端が露出され、リード基板501の内側端部はLEDチップ100のp電極101とワイヤー110で接続され、外側端部は、図示しない外部制御回路に接続されている。また、リード基板502の内側端部はLEDチップ100のn電極102とワイヤー101で接続され、外側端部は、図示しない外部制御回路に接続されている。   In FIG. 8, the fixing ring 300 is formed in a ring shape having two steps in the cross-sectional direction, and the outer periphery is substantially the same shape as the outer periphery of the light emitting element base 120 and is formed of a synthetic resin. . Lead substrates 501 and 502 are insert-molded and fixedly fixed to the fixing ring 300. Both ends of the lead substrates 501 and 502 are exposed, and the inner ends of the lead substrate 501 are connected to the p-electrode 101 of the LED chip 100 and the wires 110. The outer end is connected to an external control circuit (not shown). Further, the inner end portion of the lead substrate 502 is connected to the n-electrode 102 of the LED chip 100 by the wire 101, and the outer end portion is connected to an external control circuit (not shown).

固定リング300の上面には、レンズキャップ200が密着固定されており、これら発光素子基台120と、固定リング300と、レンズキャップ200とでLEDチップ100が収納される空間が形成されている。
LEDチップ100は、外部制御回路からの発光信号を得て発光される。
A lens cap 200 is closely fixed to the upper surface of the fixing ring 300, and a space for housing the LED chip 100 is formed by the light emitting element base 120, the fixing ring 300, and the lens cap 200.
The LED chip 100 emits light upon obtaining a light emission signal from an external control circuit.

発光素子基台120は、熱伝導率が高いアルミニウム合金や銅合金などが使用できるが、比重も小さく軽量化ができるアルミニウム合金が採用されることが好ましい。この発光素子基台120は、斜面部121及び底部122の表面にLEDチップ100から射出される可視光を効率良く反射するために、鏡面仕上げ、細かい凹凸仕上げ(乱反射仕上げ)や光の反射層を形成するめっきなどが施されている。   The light emitting element base 120 may be made of an aluminum alloy or copper alloy having a high thermal conductivity, but an aluminum alloy that has a small specific gravity and can be reduced in weight is preferably employed. The light emitting element base 120 is provided with a mirror finish, a fine uneven finish (irregular reflection finish) or a light reflection layer in order to efficiently reflect the visible light emitted from the LED chip 100 onto the surfaces of the slope portion 121 and the bottom portion 122. The plating to form is given.

また、冷却流体400は、図示しないが、光源装置10の外部に備えられたポンプに接続され、流出路125,127は、冷却流体が貯蔵されるタンクに接続され、光源装置10の外部の流通過程で冷却流体400は冷却され、流入路124,126から、光源装置10内に流入される。   Further, although not shown, the cooling fluid 400 is connected to a pump provided outside the light source device 10, and the outflow paths 125 and 127 are connected to a tank in which the cooling fluid is stored, and flow outside the light source device 10. In the process, the cooling fluid 400 is cooled and flows into the light source device 10 from the inflow paths 124 and 126.

流入路124,126から流入された冷却流体400は、図7で示す矢印のように流路129の壁に沿って流動し、流出路125,127の角部125A,127Aで排出方向と流路129に沿う方向とに分流される。このようにして、冷却流体400は流路内を円滑に流動されるのである。   The cooling fluid 400 that has flowed in from the inflow paths 124 and 126 flows along the walls of the flow path 129 as indicated by arrows in FIG. 7, and the discharge direction and flow paths at the corners 125A and 127A of the outflow paths 125 and 127. 129 and the direction along 129. In this way, the cooling fluid 400 flows smoothly in the flow path.

従って、本実施例5によれば、前述の実施例1〜実施例4に記載のLEDチップ100を直接冷却流体400で冷却する構造に比べ、わずかに冷却効率は減ずるが、液体または気体等の冷却流体400よりも熱伝導率が高い発光素子基台120に伝達された熱を冷却流体を強制的に流動させることで、冷却効果を充分得ることができる。
また、流出路125,127は、流入路124,126よりもLEDチップ100に対して外側にあるため、流路129との交錯部125A、127Aは、他方の交錯部125B、127Bよりも鋭角になるため、この角部125A,127Aで冷却流体が分流され、流路129内を壁に沿って円滑に流動されるため、前述のポンプの動力を小さくすることができ、また、流路129の幅を小さくできるので、ポンプを含め光源装置を小型化することができる。
Therefore, according to the fifth embodiment, the cooling efficiency is slightly reduced as compared with the structure in which the LED chip 100 described in the first to fourth embodiments is directly cooled by the cooling fluid 400, but the liquid or gas or the like is reduced. A cooling effect can be sufficiently obtained by forcing the cooling fluid to flow the heat transmitted to the light emitting element base 120 having higher thermal conductivity than the cooling fluid 400.
In addition, since the outflow paths 125 and 127 are outside the LED chip 100 with respect to the inflow paths 124 and 126, the intersecting portions 125A and 127A with the flow path 129 are at an acute angle than the other intersecting portions 125B and 127B. Therefore, the cooling fluid is divided by the corner portions 125A and 127A and smoothly flows along the wall in the flow path 129, so that the power of the pump can be reduced. Since the width can be reduced, the light source device including the pump can be downsized.

さらには、冷却流体400がLEDチップ100に直接接触しないので、冷却流体400による、LEDチップの磨耗や、不純物の侵入によるLEDチップ100の特性の変化、冷却流体内に生ずることが考えられる気泡等の影響を減ずることができ、良好な性能を長期間にわたって維持することができる。   Furthermore, since the cooling fluid 400 does not directly contact the LED chip 100, the LED chip 100 is worn by the cooling fluid 400, the characteristics of the LED chip 100 change due to the intrusion of impurities, bubbles that are considered to be generated in the cooling fluid, and the like. Thus, good performance can be maintained over a long period of time.

なお、図示しないが、実施例5では流入路と流出路が2対備えられていたが、流入路と流出路を1対備えた光源装置も考えられる。すなわち、図7で示した流入路126と流出路127を削除し、流入路124と流出路125とで構成された光源装置10である。この際、流入路126と流出路127だけの構成にすることもでき、効果も同じである。
この場合、流入路と流出路を2対備える構造に対して、冷却効率は、若干減ずるが、構造を簡素にでき、小型化することができるという効果がある。
Although not shown in the figure, in Example 5, two pairs of inflow passages and outflow passages are provided, but a light source device having one pair of inflow passages and outflow passages is also conceivable. That is, the light source device 10 is configured by the inflow path 124 and the outflow path 125 by deleting the inflow path 126 and the outflow path 127 shown in FIG. At this time, it is possible to have only the inflow path 126 and the outflow path 127, and the effect is the same.
In this case, the cooling efficiency is slightly reduced as compared with the structure having two pairs of the inflow path and the outflow path, but the structure can be simplified and the size can be reduced.

次に、実施例6について、図9を用いて説明する。実施例6は、実施例5に比べ、LEDチップ100に対して、流入路、流出路の方向を変えた構造であり、他の部分は実施例5と同じであるため説明を省略する。
図9は、実施例6の光源装置10を示す平面図であり、固定リング300,レンズキャップ200を省略してある。
Next, Example 6 will be described with reference to FIG. The sixth embodiment has a structure in which the direction of the inflow path and the outflow path is changed with respect to the LED chip 100 as compared with the fifth embodiment, and the other parts are the same as those of the fifth embodiment, and thus the description thereof is omitted.
FIG. 9 is a plan view illustrating the light source device 10 according to the sixth embodiment, in which the fixing ring 300 and the lens cap 200 are omitted.

図9において、流入路124と126、流出路125と127は、LEDチップ100を挟んで、それぞれが相互に対向するように配置されている。流入路124,126と流出路125,127とは、互いに90度ずれた位置に形成される。すなわち、流入路と流出路の延長線が直交する関係にある。
冷却流体400は、流入路124,126から流路129に流入した場所で、図中矢印A方向とB方向に分流され、90度回転した位置にある流出路125,127から排出される。流出路125,127の流路129との交錯部は面取りが施されているので、流路129の壁に沿って流動してきた冷却流体400が、流出路125,127に流出し易い形状とされている。
In FIG. 9, inflow paths 124 and 126 and outflow paths 125 and 127 are arranged so as to face each other with the LED chip 100 interposed therebetween. The inflow channels 124 and 126 and the outflow channels 125 and 127 are formed at positions shifted from each other by 90 degrees. That is, the extension lines of the inflow path and the outflow path are orthogonal to each other.
The cooling fluid 400 is diverted in the directions indicated by the arrows A and B in the drawing at locations where the cooling fluid 400 flows into the flow path 129 from the inflow paths 124 and 126, and is discharged from the outflow paths 125 and 127 at positions rotated by 90 degrees. Since the intersection of the outflow passages 125 and 127 with the flow path 129 is chamfered, the cooling fluid 400 that has flowed along the walls of the flow path 129 is shaped to easily flow out into the outflow paths 125 and 127. ing.

従って、本実施例6では、流入路124,126から流入した冷却流体は、分流され流路129の壁に沿って流動し、流出路125,127から排出されるので、冷却流体400は、流路内を円滑に流動されるので、実施例5と同様な効果を得ることができる。
また、流入路124,126と流出路125,127とは、発光素子基台の外縁部側面及び流路129に対して直角に形成され、流入路124,126、流出路125,127との距離が離れているので、加工し易いためコストを低減することもできる。
Therefore, in the sixth embodiment, the cooling fluid that has flowed in from the inflow paths 124 and 126 is divided and flows along the wall of the flow path 129, and is discharged from the outflow paths 125 and 127. Since it is smoothly flowed in the road, the same effect as in the fifth embodiment can be obtained.
The inflow paths 124 and 126 and the outflow paths 125 and 127 are formed at right angles to the outer edge side surface of the light emitting element base and the flow path 129, and the distance between the inflow paths 124 and 126 and the outflow paths 125 and 127. Since they are separated, the cost can be reduced because they are easily processed.

なお、前述した実施例6では、流入路と流出路とが2対備えられているが、図示しないが、流入路と流出路とが1対で構成することもできる。すなわち、図9に示した流出路125,127を削除し、流入路126を流出路にする構造である。従って、流入路124の延長線上に流出路126を設けたもので、冷却流体400は、流入路124から流入され、2方向に分流され、流路129内の壁に沿って約180度回転流動され、流出路から排出される。
このような構造では、流入路と流出路を2対備える構造に対して、冷却効率は若干減ずるが、構造を簡素にでき、小型化することができるという効果がある。
In addition, in Example 6 mentioned above, although two pairs of an inflow path and an outflow path are provided, although not shown in figure, an inflow path and an outflow path can also be comprised by 1 pair. That is, the outflow passages 125 and 127 shown in FIG. 9 are deleted and the inflow passage 126 is used as the outflow passage. Accordingly, the outflow path 126 is provided on the extension line of the inflow path 124, and the cooling fluid 400 flows in from the inflow path 124, is divided in two directions, and rotates about 180 degrees along the wall in the flow path 129. And discharged from the outflow channel.
In such a structure, the cooling efficiency is slightly reduced as compared with the structure having two pairs of the inflow path and the outflow path, but the structure can be simplified and the size can be reduced.

続いて、本発明の実施例7について、図10を用いて説明する。実施例7は、実施例5及び実施例6に記載した流入路と流出路に加え、断面方向に段差を設けて複数の流入路と流出路を備えた構造であり、他の構造は、実施例5及び実施例6と同じため省略する。
図10は、実施例7の光源装置10を示す断面図である。図10において、発光素子基台120は、外縁部側面から流路129に貫通する流入路124,126及び流出路125,127を備え、その断面方向下部に、流入路132,134及び流出路131,133が備えられている。
流入路132,134及び流出路131,133は、流入路124,126、流出路125,127の平面視で重なるように配置されている。
Next, Example 7 of the present invention will be described with reference to FIG. Example 7 is a structure provided with a plurality of inflow paths and outflow paths by providing a step in the cross-sectional direction in addition to the inflow path and outflow path described in Example 5 and Example 6, and other structures are implemented. Since it is the same as Example 5 and Example 6, it abbreviate | omits.
FIG. 10 is a cross-sectional view illustrating the light source device 10 according to the seventh embodiment. In FIG. 10, the light emitting element base 120 includes inflow paths 124 and 126 and outflow paths 125 and 127 penetrating from the side surface of the outer edge portion to the flow path 129, and the inflow paths 132 and 134 and the outflow path 131 are provided in the lower part in the cross-sectional direction. , 133 are provided.
The inflow channels 132 and 134 and the outflow channels 131 and 133 are arranged so as to overlap with each other in plan view of the inflow channels 124 and 126 and the outflow channels 125 and 127.

従って、本実施例7によれば、流入路と流出路とが4対で構成されているので、実施例5及び実施例6の効果に加え、冷却流体400の流量を増やすことができるので、冷却効果を一層高めることができる。   Therefore, according to the seventh embodiment, since the inflow passage and the outflow passage are configured in four pairs, in addition to the effects of the fifth and sixth embodiments, the flow rate of the cooling fluid 400 can be increased. The cooling effect can be further enhanced.

なお、本実施例7は、前述の実施例5及び実施例6の変形例にも応用できることは勿論、図示しないが、上下の流入路と流出路の流路を変えることができる。例えば、実施例5において(図7、参照)、流入路124,126と流出路125,127に対して、下部に備えた流入路132,133を冷却流体400の流出路とし、流出路131,133を流入路とすることができる。   In addition, although this Example 7 is applicable also to the modification of above-mentioned Example 5 and Example 6, although not shown in figure, the flow path of an upper and lower inflow path and an outflow path can be changed. For example, in the fifth embodiment (see FIG. 7), the inflow paths 132 and 133 provided in the lower part of the inflow paths 124 and 126 and the outflow paths 125 and 127 are used as the outflow paths of the cooling fluid 400, and the outflow paths 131 and 133 can be an inflow path.

このことによって、流路129内では、上層と下層に異なる冷却流体400の流層ができることになる。従って、この流層の界面では、冷却流体400が撹拌された状態になるため、流動性はやや減ずるが、温度の均一性を高めることができる。   As a result, different flow layers of the cooling fluid 400 are formed in the upper layer and the lower layer in the flow path 129. Accordingly, since the cooling fluid 400 is stirred at the interface of the fluidized bed, the fluidity is slightly reduced, but the temperature uniformity can be improved.

また、上部の流入路、流出路と、下部に備えらた流入路、流出路とを平面方向に45度ないし90度位相をずらして形成することもできる。
このような組み合わせは、光源装置10のサイズや後述するこの光源装置10を搭載したプロジェクタの性能等から自在に選択して組み合わせることができる。
Further, the upper inflow channel and the outflow channel and the lower inflow channel and the outflow channel can be formed by shifting the phase by 45 degrees to 90 degrees in the plane direction.
Such a combination can be freely selected and combined based on the size of the light source device 10 and the performance of a projector equipped with the light source device 10 described later.

続いて、本発明の実施例8について、図11を用いて説明する。
図11は、実施例8を示す断面図である。図11において、発光素子基台120は、実施例5及び実施例6に示した流入路124,126、流出路125,127に加え、発光素子基台120の凹部の低部122の下方に、発光素子基台120の外周から横断して貫通する冷却流体400の流路135が穿設されている。
この流路135の大きさは、特に限定されるものではないが、LEDチップ100の平面サイズより大きく、好ましくは、発光素子基台120の低部122の平面サイズと同等にされる。
Next, an eighth embodiment of the present invention will be described with reference to FIG.
FIG. 11 is a cross-sectional view showing the eighth embodiment. In FIG. 11, in addition to the inflow paths 124 and 126 and the outflow paths 125 and 127 shown in the fifth and sixth embodiments, the light emitting element base 120 is provided below the lower portion 122 of the concave portion of the light emitting element base 120. A flow path 135 of the cooling fluid 400 penetrating from the outer periphery of the light emitting element base 120 is formed.
The size of the flow path 135 is not particularly limited, but is larger than the planar size of the LED chip 100, and preferably equal to the planar size of the lower portion 122 of the light emitting element base 120.

なお、実施例8は、実施例1ないし実施例7にも応用することができ、発熱源であるLEDチップ100の下部近傍においてLEDチップ100を間接的に冷却することができるので、実施例1ないし実施例7に記載した効果に加え、より一層の冷却効果が得られる。   The eighth embodiment can also be applied to the first to seventh embodiments, and the LED chip 100 can be indirectly cooled in the vicinity of the lower portion of the LED chip 100 that is a heat generation source. In addition to the effects described in Example 7, a further cooling effect can be obtained.

次に、本発明の実施例9について、図12を用いて説明する。実施例9は、前述した実施例5ないし実施例8の流路129内に冷却フィン136を設けた構造である。
図12は、実施例9を示す断面図である。図12において、発光素子基台120に設けられたリング状の流路129のLEDチップ100に近い壁部に断面が凸凹の冷却フィン136が備えられている。この冷却フィン136は、流路129の底部に設けられてもよい。また、発光素子基台120の外周部に冷却フィンを設けることもできる。
Next, Embodiment 9 of the present invention will be described with reference to FIG. The ninth embodiment has a structure in which the cooling fin 136 is provided in the flow path 129 of the above-described fifth to eighth embodiments.
FIG. 12 is a cross-sectional view showing the ninth embodiment. In FIG. 12, cooling fins 136 having an uneven cross section are provided on a wall portion of the ring-shaped flow path 129 provided on the light emitting element base 120 near the LED chip 100. The cooling fin 136 may be provided at the bottom of the flow path 129. In addition, cooling fins can be provided on the outer periphery of the light emitting element base 120.

従って、流路129内の壁部に冷却フィンを備え、冷却流体400を流動させることで、放熱効果が高まり、実施例5ないし実施例8に記載された効果に加え、より一層冷却効果を得ることができる。   Therefore, by providing cooling fins on the walls in the flow path 129 and causing the cooling fluid 400 to flow, the heat dissipation effect is enhanced, and in addition to the effects described in the fifth to eighth embodiments, a further cooling effect is obtained. be able to.

次に、前述した実施例1ないし実施例9に記載の光源装置10が搭載されたプロジェクタについて図13を用いて説明する。
図13は、本発明のプロジェクタ1000の構成を示す概略構成図である。図13において、本発明に係るプロジェクタ1000は、赤色光(R),緑色光(G),青色光(B)をそれぞれ射出する3個の光源装置10R,10G,10Bのそれぞれに対向するように配置されたライトバルブ800R,800G,800Bと、これら3個のライトバルブ800R,800G,800Bから射出された各変調光を合成して射出するダイクロイックプリズム700(色合成光学系)、このダイクロイックプリズム700から出射された合成光を拡大投写する投写レンズ600(投写光学系)とを有している。
Next, a projector equipped with the light source device 10 described in the first to ninth embodiments will be described with reference to FIG.
FIG. 13 is a schematic configuration diagram showing the configuration of the projector 1000 of the present invention. In FIG. 13, the projector 1000 according to the present invention faces each of the three light source devices 10R, 10G, and 10B that emit red light (R), green light (G), and blue light (B), respectively. The arranged light valves 800R, 800G, and 800B, the dichroic prism 700 (color combining optical system) that synthesizes and emits the modulated lights emitted from the three light valves 800R, 800G, and 800B, and the dichroic prism 700 A projection lens 600 (projection optical system) that magnifies and projects the combined light emitted from the projector.

なお、光源装置10R,10G,10Bは、前述した本発明の実施例1〜実施例9に記載の冷却手段を備えている。図示しないが、これら光源装置10R,10G,10Bは、外部に冷却流体400を貯蔵するタンクと、冷却流体を流動するポンプを備えている。   The light source devices 10R, 10G, and 10B are provided with the cooling means described in the first to ninth embodiments of the present invention. Although not shown, these light source devices 10R, 10G, and 10B include a tank that stores the cooling fluid 400 outside and a pump that flows the cooling fluid.

従って、本発明を適用したプロジェクタ1000では、光源装置10R,10G,10Bから射出された色光R,G,Bはそれぞれ対応するライトバルブ800R,800G,800Bに入射した後、各ライトバルブ800R,800G,800Bで光変調された後、ダイクロイックプリズム700に向けて射出される。そして、ライトバルブ800R,800G,800Bにより各々変調された3原色に対応する光成分R,G,Bは、ダイクロイックプリズム700により合成された後、投射レンズ600を介してスクリーン900にカラー画像として拡大投写される。   Therefore, in the projector 1000 to which the present invention is applied, the color lights R, G, and B emitted from the light source devices 10R, 10G, and 10B are incident on the corresponding light valves 800R, 800G, and 800B, and then the light valves 800R and 800G. , 800B and then emitted toward the dichroic prism 700. The light components R, G, and B corresponding to the three primary colors modulated by the light valves 800R, 800G, and 800B are combined by the dichroic prism 700, and then enlarged as a color image on the screen 900 via the projection lens 600. Projected.

従って、本発明の実施例10によれば、光源装置10は、LEDチップ100の冷却効率が高いので、輝度を高めることができ、また、構造も簡素であるため、この光源装置10が搭載されたプロジェクタ1000も、高輝度で小型化でき、また長期間にわたって良好な性能を維持することができる。   Therefore, according to the tenth embodiment of the present invention, since the light source device 10 has high cooling efficiency of the LED chip 100, the luminance can be increased and the structure is simple, so the light source device 10 is mounted. The projector 1000 can also be downsized with high brightness and can maintain good performance over a long period of time.

なお、本発明は前述の実施例に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、実施例1〜実施例9では、LEDチップ100は、平面形状が略正方形としているが、平面形状が円形でも同じ効果が得られる。また、実施例1〜実施例5では、LEDチップは、p電極101は上面側に、n電極102は下面側に設けられ、実施例5〜実施例9では、上面側にp電極101とn電極102とが並んで設けられているが、LEDチップ100は、どちらの構造を採用しても得られる効果は変わらない。
また、本発明では、LEDチップ100の下面にp電極101とn電極102が備えられた場合も、発光素子基台120のLEDチップ100の固着面122に絶縁層を形成し、絶縁層の上面にp電極101とn電極102に対応した電極を形成するような構造にも応用することができる。
In addition, this invention is not limited to the above-mentioned Example, The deformation | transformation in the range which can achieve the objective of this invention, improvement, etc. are included in this invention.
For example, in Example 1 to Example 9, the LED chip 100 has a substantially square planar shape, but the same effect can be obtained even if the planar shape is circular. In Examples 1 to 5, the LED chip is provided with the p-electrode 101 on the upper surface side and the n-electrode 102 on the lower surface side, and in Examples 5 to 9, the p-electrode 101 and the n electrode are provided on the upper surface side. Although the electrodes 102 are provided side by side, the LED chip 100 does not change the effect obtained by adopting either structure.
In the present invention, even when the p electrode 101 and the n electrode 102 are provided on the lower surface of the LED chip 100, an insulating layer is formed on the fixing surface 122 of the LED chip 100 of the light emitting element base 120, and the upper surface of the insulating layer is formed. The present invention can also be applied to a structure in which electrodes corresponding to the p-electrode 101 and the n-electrode 102 are formed.

また、実施例1〜実施例9では、LEDチップ100は、光源装置10内に1個用いているが、複数のLEDチップ100を設置することができる。
さらに、本発明のプロジェクタ1000は、実施例10では、各色光に対して1個の光源装置10R,10G,10Bを設置しているが、各色光に対して複数の光源装置を設置しても良い。
In the first to ninth embodiments, one LED chip 100 is used in the light source device 10, but a plurality of LED chips 100 can be installed.
Further, in the projector 1000 of the present invention, one light source device 10R, 10G, 10B is installed for each color light in the tenth embodiment, but a plurality of light source devices may be installed for each color light. good.

従って、本発明によれば、LEDチップ100を直接、または間接的に冷却流体400を強制流動させることによって冷却効果を高めた光源装置10と、この光源装置10が搭載されて、高輝度で良好な性能を長期間にわたって維持するプロジェクタ1000を提供することができる。   Therefore, according to the present invention, the light source device 10 in which the cooling effect is enhanced by forcibly flowing the cooling fluid 400 directly or indirectly through the LED chip 100, and the light source device 10 is mounted, and the brightness is high and good. Thus, it is possible to provide a projector 1000 that can maintain a satisfactory performance over a long period of time.

本発明の実施例1にかかる光源装置を示す平面図。The top view which shows the light source device concerning Example 1 of this invention. 本発明の実施例1にかかる光源装置を示す断面図。Sectional drawing which shows the light source device concerning Example 1 of this invention. 本発明の実施例1にかかる光源装置を示す要部平面図。The principal part top view which shows the light source device concerning Example 1 of this invention. 本発明の実施例2にかかる光源装置を示す平面図。The top view which shows the light source device concerning Example 2 of this invention. 本発明の実施例3にかかる光源装置を示す平面図。The top view which shows the light source device concerning Example 3 of this invention. 本発明の実施例4にかかる光源装置を示す断面図。Sectional drawing which shows the light source device concerning Example 4 of this invention. 本発明の実施例5にかかる光源装置を示す平面図。The top view which shows the light source device concerning Example 5 of this invention. 本発明の実施例5にかかる光源装置を示す断面図。Sectional drawing which shows the light source device concerning Example 5 of this invention. 本発明の実施例6にかかる光源装置を示す平面図。The top view which shows the light source device concerning Example 6 of this invention. 本発明の実施例7にかかる光源装置を示す断面図。Sectional drawing which shows the light source device concerning Example 7 of this invention. 本発明の実施例8にかかる光源装置を示す断面図。Sectional drawing which shows the light source device concerning Example 8 of this invention. 本発明の実施例9にかかる光源装置を示す断面図。Sectional drawing which shows the light source device concerning Example 9 of this invention. 本発明の実施例10にかかるプロジェクタを示す構成図。FIG. 10 is a configuration diagram illustrating a projector according to a tenth embodiment of the invention.

符号の説明Explanation of symbols

10…光源装置、100…LEDチップ、120…発光素子基台、124,126,132,134…流入路、125,127,131,133…流出路、400…冷却流体、1000…プロジェクタ。



DESCRIPTION OF SYMBOLS 10 ... Light source device, 100 ... LED chip, 120 ... Light emitting element base, 124, 126, 132, 134 ... Inflow path, 125, 127, 131, 133 ... Outflow path, 400 ... Cooling fluid, 1000 ... Projector.



Claims (8)

発光素子が冷却流体によって冷却される光源装置であって、
前記発光素子が固着される発光素子基台と、
前記発光素子基台に前記冷却流体の流入路と、流出路と、が備えられ、
前記流入路と前記流出路とが、前記発光素子が固着される前記発光素子基台の面に対して、略平行に設けられており、
前記流入路と前記流出路が、それぞれ対向して備えられ、
前記光源装置が、対向する前記流入路を結んだ直線と、対向する前記流出路を結んだ直線と、が交錯する位置に備えられていることを特徴とする光源装置。
A light source device in which a light emitting element is cooled by a cooling fluid,
A light emitting element base to which the light emitting element is fixed;
The light emitting element base is provided with an inflow path of the cooling fluid and an outflow path,
The inflow path and the outflow path are provided substantially parallel to the surface of the light emitting element base to which the light emitting element is fixed,
The inflow path and the outflow path are provided to face each other,
The light source device is provided at a position where a straight line connecting the opposing inflow passages and a straight line connecting the opposing outflow passages intersect each other.
発光素子が冷却流体によって冷却される光源装置であって、
前記発光素子が固着される発光素子基台と、
前記発光素子基台に前記冷却流体の流入路と、流出路と、が備えられ、
前記流入路と前記流出路とが、前記発光素子が固着される前記発光素子基台の面に対して、略平行に設けられており、
前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に備えられ、且つ、それぞれが平行に配置され、
前記発光素子に対して、平面方向に前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることを特徴とする光源装置。
A light source device in which a light emitting element is cooled by a cooling fluid,
A light emitting element base to which the light emitting element is fixed;
The light emitting element base is provided with an inflow path of the cooling fluid and an outflow path,
The inflow path and the outflow path are provided substantially parallel to the surface of the light emitting element base to which the light emitting element is fixed,
The inflow path and the outflow path are provided at positions facing each other across the light emitting element in a planar direction, and each is disposed in parallel.
The light source device, wherein the light emitting device is provided with a perpendicular distance from the outflow path in a plane direction with respect to the light emitting element at a position separated from the perpendicular distance from the inflow path.
請求項2に記載の光源装置において、
前記流入路と前記流出路とが、1対備えられていることを特徴とする光源装置。
The light source device according to claim 2,
A pair of the inflow path and the outflow path is provided.
請求項2に記載の光源装置において、
前記流入路と前記流出路とが、2対備えられ、
前記流入路と前記流出路とが隣り合わせに備えられていることを特徴とする光源装置。
The light source device according to claim 2,
Two pairs of the inflow path and the outflow path are provided,
The light source device, wherein the inflow path and the outflow path are provided adjacent to each other.
請求項1ないし請求項4のいずれかに記載の光源装置において、
前記発光素子基台の周縁部に前記冷却流体の流路が備えられ、
この流路に流通する前記流入路と前記流出路とが備えられていることを特徴とする光源装置。
The light source device according to any one of claims 1 to 4,
The cooling fluid flow path is provided at the peripheral edge of the light emitting element base,
A light source device comprising the inflow path and the outflow path that circulate in the flow path.
請求項1ないし請求項4のいずれかに記載の光源装置において、
前記発光素子が前記冷却流体に浸漬されていることを特徴とする光源装置。
The light source device according to any one of claims 1 to 4,
The light source device, wherein the light emitting element is immersed in the cooling fluid.
請求項6に記載の光源装置において、
前記発光素子が固着される前記発光素子基台の面に、前記冷却流体の流導路が形成されていることを特徴とする光源装置。
The light source device according to claim 6,
A light source device, wherein a flow path for the cooling fluid is formed on a surface of the light emitting element base to which the light emitting element is fixed.
請求項1ないし請求項7のいずれかに記載の光源装置において、
前記流入路と前記流出路とが、平面方向に略垂直な断面方向に複数備えられていることを特徴とする光源装置。
The light source device according to any one of claims 1 to 7,
A light source device comprising a plurality of inflow paths and outflow paths in a cross-sectional direction substantially perpendicular to a planar direction.
JP2003304585A 2003-08-28 2003-08-28 Light source device Expired - Fee Related JP4289088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304585A JP4289088B2 (en) 2003-08-28 2003-08-28 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304585A JP4289088B2 (en) 2003-08-28 2003-08-28 Light source device

Publications (2)

Publication Number Publication Date
JP2005079150A JP2005079150A (en) 2005-03-24
JP4289088B2 true JP4289088B2 (en) 2009-07-01

Family

ID=34408232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304585A Expired - Fee Related JP4289088B2 (en) 2003-08-28 2003-08-28 Light source device

Country Status (1)

Country Link
JP (1) JP4289088B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304418B2 (en) * 2003-10-24 2007-12-04 Seiko Epson Corporation Light source apparatus with light-emitting chip which generates light and heat
WO2007126074A1 (en) * 2006-04-28 2007-11-08 Shimane Prefectural Government Semiconductor light emitting module, device, and its manufacturing method
JP2010087224A (en) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Led display device and method of manufacturing barrier for led display device
KR101010866B1 (en) * 2010-02-26 2011-01-25 유버 주식회사 Uv led module cooling device
KR101510456B1 (en) 2014-12-16 2015-04-10 정태규 A light emitting diode module device having a heat radiating structure
JP6798137B2 (en) * 2016-04-28 2020-12-09 岩崎電気株式会社 Light source unit

Also Published As

Publication number Publication date
JP2005079150A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP4274178B2 (en) projector
JP4983347B2 (en) Light emitting device and light source device
JP3753137B2 (en) Light source device and projector
KR100776853B1 (en) Light source apparatus and projector
JP2005079149A (en) Light source unit and projector
JP2007103748A (en) Heat exchanger, liquid-cooling system, light source equipment, projector, electronic device unit, and electronic equipment
JP2006287180A (en) Micro channel structure and its manufacturing method, light source equipment, and projector
JP2007133300A (en) Semiconductor light source device and projection type video display device using same
JP4289088B2 (en) Light source device
JP4654664B2 (en) Light source device and projection display device
JP2006047914A (en) Projector
JP2009026846A (en) Led package, and display device
JP2006066328A (en) Light source module and planar lighting device using the light source module
JP2005300663A (en) Light source device and projector using the same
JP4269790B2 (en) Light emitting device, lighting device, projection display device
JP6246414B2 (en) Semiconductor laser light source device, semiconductor laser light source system, and video display device
JP2007103702A (en) Heat exchanger, manufacturing method thereof, liquid-cooling system, light source equipment, projector, electronic device unit, and electronic equipment
JP2005100810A (en) Light source and projector
JP6593901B2 (en) Light source device, projection display device, and method for cooling semiconductor light emitting element
JPWO2020021851A1 (en) Directivity LED light source device, manufacturing method of LED light source device and projector
JP4345507B2 (en) Light source device and projector
JP2005085810A (en) Optical source unit and projector
JP4124129B2 (en) Light source device and projector
JP2005079066A (en) Light source device and projection type display device
JP2006173392A (en) Light emitting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4289088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees