JP4269790B2 - Light emitting device, lighting device, projection display device - Google Patents

Light emitting device, lighting device, projection display device Download PDF

Info

Publication number
JP4269790B2
JP4269790B2 JP2003166350A JP2003166350A JP4269790B2 JP 4269790 B2 JP4269790 B2 JP 4269790B2 JP 2003166350 A JP2003166350 A JP 2003166350A JP 2003166350 A JP2003166350 A JP 2003166350A JP 4269790 B2 JP4269790 B2 JP 4269790B2
Authority
JP
Japan
Prior art keywords
electrode
light
bonding wire
light emitting
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003166350A
Other languages
Japanese (ja)
Other versions
JP2005005437A (en
Inventor
秀也 ▲関▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003166350A priority Critical patent/JP4269790B2/en
Publication of JP2005005437A publication Critical patent/JP2005005437A/en
Application granted granted Critical
Publication of JP4269790B2 publication Critical patent/JP4269790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子及びこれを備えた照明装置、投射型表示装置に関するものである。
【0002】
【従来の技術】
従来のプロジェクタ(投射型表示装置)では、その光源として、古くはハロゲンランプ、近年は高輝度高効率である高圧水銀ランプ(UHP)が多く用いられてきた。放電型のランプであるUHPを用いた光源は高圧の電源回路を要し、大型で重く、プロジェクタの小型軽量化の妨げになっていた。また、ハロゲンランプよりは寿命が長いものの依然短寿命である他、光源の制御(高速の点灯、消灯、変調)が略不可能で、また立ち上げに数分という長い時間を要していた。
【0003】
そこで最近、新しい光源としてLED発光素子が注目されている。LEDは超小型・超軽量、長寿命である。また、駆動電流の制御によって、点灯・消灯、出射光量の調整が自由にできる。この点でプロジェクタの光源としても有望であり、既に小型・携帯用の小画面プロジェクタへの応用開発が始まっている(例えば、特許文献1)。
【0004】
【特許文献1】
特開2000−112031号公報
【0005】
【発明が解決しようとする課題】
しかしながら、現在のところLEDを光源とするプロジェクタにおいて十分な輝度を得ることは難しい。これは、LEDは効率の点でまだUHPの1/2〜1/3程度であり、定格いっぱいの電流を注入しても得られる光量が小さいからである。めざましい技術革新によって上記効率は年々着実に向上しつつあり、数年後には現在のUHP並みのレベルに達する可能性もあるが、少なくとも近い将来、製品化可能なLED光源プロジェクタにおいては、状況は変わらないであろう。なお、光量を稼ぐのにLEDをアレイ化する方法があるが、これは発光点が大きくなることによる光学系としての照明光率の低下を招くので、あまり効果は得られない。
【0006】
そこで、残された方法として考えられるのは、LEDの発光量を増やすことである。しかしながら、これは上記の通りLEDの定格の制約があり、最大光量は定格と効率で自動的に決まっている。LEDの定格電流を決めているのは主に発熱量である。
【0007】
従来のLEDの構造の例を図3に示す。LEDは2極の素子であり、図3のように、電極102a,p層102b,発光層102c,n層102d,電極102eを順に積層したチップ102が基板101(高出力LEDでは、前記基板は多くの場合放熱器を兼ねている)に実装されている。また、電極102a,102eと、外部接続端子であるリードフレーム104,103とを接続するために、電極102a,102eからそれぞれボンディングワイヤ106,105が引き出されている。そして、これらのチップ102やワイヤ105,106等を内包するようにレンズ体107が設けられている。
【0008】
ここで、図3の構成では2極ともボンディングワイヤ105,106を用いているが、前記放熱器は多くの場合導体であることを用いて、基板101(=放熱器)そのものを一方の極の端子とする場合もある。その場合、ボンディングワイヤは1本(即ち、ワイヤ105のみ)となる。
【0009】
従来のLEDでは、図3のようにチップ102の片側(即ち、基板101との接続面である第1の電極102a側)から放熱する構成となっており、十分な放熱効果が得られていなかった。よって発熱によるチップ102へのダメージのため、定格電流を大きくできず、最大光出力も小さくなっていた。
本発明は、上述の課題に鑑み創案されたもので、放熱効率を高めた発光素子、及びこれを備えた照明装置、投射型表示装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上述のように従来の構成では発光体の放熱が一面側のみで行なわれ、もう一方の面での放熱は十分になされていなかった。そこで、本発明者はこの他方の面での放熱効率を高めるべく、ボンディングワイヤを積極的に放熱に関与させる構造を創案した。
すなわち、上記目的を達成するために、本発明の発光素子は、放熱体の上に第1の電極と発光層と第2の電極とを順に積層してなり、上記第2の電極が、熱伝導率が400/W・m−1・K−1以上であるボンディングワイヤを介して外部接続端子に導電接続されたことを特徴とする。
【0011】
ここで、現状の技術ではLEDの外部量子効率は20〜30lm/Wであり、一般に注入電力の数%しか光エネルギーとして取出すことができない。即ち、注入電力の殆どが熱になると考えてよい。また、LEDの効率は温度上昇により低下するが、最も低下率の高い赤が30%低下するのを使用上の限度とすると、ジャンクション温度の温度上昇は60℃以内としなければならない。2wのLEDを使用し、前記の通りその殆どが熱になるとすれば、放熱路のトータルの熱抵抗は30℃/W以下である必要がある。
【0012】
多くの熱はチップの前記基板側から伝達することが可能であるが、例えばその50%に相当する量、即ち1w相当の熱をボンディングワイヤから伝達できれば大きな放熱効率の向上となる。この場合、ボンディングワイヤを通る放熱路のトータルの熱抵抗は60℃/W以下ならばよい。ボンディングワイヤ以降のパッケージ等の熱抵抗を50℃/W程度に設計するのは可能であり、この場合ボンディングワイヤ分の熱抵抗は10℃/Wとすればよくなる。ボンディングワイヤの太さとして許される断面積を2.5mm(これを複数本に分けた場合はその総面積)、長さを10mmとする。熱伝導率が400/W・m−1・K−1であれば、熱抵抗は(熱伝導率*断面積/長さ)の逆数であるから、その値は10℃/wとなる。よって、ボンディングワイヤの熱伝導率が400/W・m−1・K−1ならば、光量の低下を30%以下に抑えることができる。
【0013】
したがって、本構成によれば、第2の電極に対して熱抵抗の小さいボンディングワイヤが熱的に接続されているため、放熱体と反対側の面において大きな放熱効果を期待できる。
【0014】
ところで、ボンディングワイヤの熱抵抗を下げるためには、ワイヤを太く(即ち、断面積を大きく)する必要がある。この場合、ワイヤが発光面(第2の電極)を広く覆ってしまうと発光輝度が大幅に低下するため、ワイヤの平面形状は極力小さくすることが好ましい。具体的には、ボンディングワイヤを偏平形状とし、偏平面が主たる発光面である第2の電極の電極面に対して略垂直となる状態で、ボンディングワイヤと第2の電極とを接続することで、輝度低下を最小限に抑えながらワイヤの導電性及び放熱性を共に高めることができる。
【0015】
また、上記ボンディングワイヤを複数のワイヤとして構成してもよい。上述のようにワイヤを太くしていくと電極との接合が困難となる。このため、ボンディングワイヤを。単独で設ける代わりに、第2の電極に対して複数のワイヤに分割して設けることで、接合を容易にできる。またこの場合、個々のワイヤをコンパクトにできるため、発光素子全体としての構成を小型化できる利点もある。
【0016】
なお、ボンディングワイヤの材料としては、例えば従来用いられている金の他に、これよりも導電性の若干劣る銀,銅,アルミニウム、及びこれらの合金等を用いることができる。また、上述の材料にシリコン等を添加したものを用いてもよい。本発明では、第2の電極と外部接続端子とを複数のワイヤで接続するため、ワイヤに導電性が若干劣る材料を用いても発光特性が損なわれることはない。
【0017】
また、本発明の発光素子は、放熱体の上に第1の電極と発光層と第2の電極とを順に積層してなり、上記第2の電極が熱伝導性の複数のボンディングワイヤを介して外部接続端子に導電接続されたことを特徴とする。本構成によれば、第2の電極に対して熱抵抗の小さい複数のボンディングワイヤが電気的及び熱的に接続されるため、放熱体と反対側の面において少なくとも従来より大きな放熱効果を期待できる。
【0018】
この際、ボンディングワイヤに熱抵抗の小さい(例えば、熱伝導率が400/W・m−1・K−1以上)材料を用いることで、放熱を確実にすることができる。上記材料としては、例えば従来用いられている金の他に、これよりも導電性の若干劣る銀,銅,アルミニウム、及びこれらの合金等を用いることができる。また、上述の材料にシリコン等を添加したものを用いてもよい。本発明では、第2の電極と外部接続端子とを複数のワイヤで接続するため、ワイヤに導電性が若干劣る材料を用いても発光特性が損なわれることはない。
【0019】
なお、ボンディングワイヤの熱抵抗を小さくするにはワイヤを太くする必要があるが、単にワイヤを太くすると発光面が広く遮蔽されて発光輝度が低下するため、ワイヤの平面形状は極力小さくすることが好ましい。具体的には、ワイヤを偏平形状とし、このワイヤの偏平面が第2の電極に略垂直となる状態で第2の電極に接合することで、輝度低下を最小限に抑えながらワイヤの導電性及び放熱性を共に高めることができる。
【0020】
また、本発明の照明装置は上述の発光素子を備えたことを特徴とする。本照明装置では、発光素子の放熱性が高いため、大電流駆動が可能となり、照明の明るさを向上できる。
また、本発明の投射型表示装置は、上述の照明装置と、この照明装置から出射された光を変調する光変調装置と、変調された光を投射する投射手段とを備えたことを特徴とする。これにより、高輝度な投射型表示装置を実現できる。
【0021】
【発明の実施の形態】
以下、図1,図2を参照しながら本発明の一実施形態に係る投射型表示装置について説明する。図1は本実施形態の投射型表示装置の全体構成を示す概略図、図2は本投射型表示装置に備えられた発光素子の一構成例を示す図である。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の膜厚や寸法の比率などは適宜異ならせてある。
【0022】
図1に示すように、本実施形態の投射型表示装置は3板式の液晶プロジェクタであり、色合成手段としてのダイクロイッククロスプリズム40の3つの光入射面40R,40G,40Bには、それぞれ光変調装置としての液晶装置30R,30G,30Bが対向して配置され、各液晶装置30R,30G,30Bの背面側(クロスダイクロイックプリズム40と反対側)にはそれぞれR(赤),G(緑),B(青)の色光を出射可能な照明装置10R,10G,10Bが配置されている。
【0023】
照明装置10(10R,10G,10B)は、例えば発光ダイオード(LED)からなる複数の発光素子1(1R、1G,1B)を備えている。図2(a)は発光素子1の要部構成を示す断面図であり、図2(b)はその電極構造のみを模式的に示す平面図である。
発光素子1は2極の素子であり、図2に示すように、第1の電極12a,n層12b,発光層12c,p層12d,第2の電極12eを順に積層したLEDチップ(発光体)12が放熱ブロック(放熱体)11の上に実装されている。そして、チップ12の各電極12a,12eをリードフレーム(外部接続端子)13,14に接続するために、発光体12からは極の数より多いボンディングワイヤが引き出されている。
【0024】
すなわち、第2の電極12eからは複数(本実施形態では例えば2本)のボンディングワイヤ15a,15bが引き出され、それぞれリードフレーム13に電気的及び熱的に接続されている。これらのワイヤ15a,15bには、この電極面での放熱性を高めるために、例えば銅等の熱伝導率が400/W・m−1・K−1以上の材料が用いられ、更に、ワイヤ太さが従来よりも太く構成されている。つまり、従来のワイヤの断面積が25μm程度であるのに対して、本実施形態ではワイヤの断面積を例えば52.5mm以上としている。これにより、放熱ブロック11と反対側の電極面において、放熱ブロック11側と同程度の放熱効果が得られるようになっている。
【0025】
なお、ワイヤ15a,15bの断面積を大きくした場合、ワイヤ15a,15bが主たる発光面である第2の電極を広く覆ってしまうと、発光輝度が大幅に低下してしまう。このため、本実施形態ではワイヤ15a,15bを偏平な薄板状に加工し、その平面形状が極力小さくなるようにしている。具体的には、各ワイヤ15a,15bにおいて略矩形の断面の縦横の寸法比を1:2.5とし、平面視したときのワイヤの幅W1を1mm程度とし、これに垂直なワイヤの幅W2を2.5mm程度としている。
また、前記ボンディングワイヤによりLEDから出射した光線が遮られた場合でも、ボンディングワイヤで反射しさらにLED内の部材で反射する等により、何らかの経路を経て光の取出しができるようにするため、ワイヤ15a,15bの偏平面151には研磨処理及びメッキ処理等の平坦化処理が施されている。
【0026】
そして、銀ペースト、あるいは直接接合等の方法により、この偏平面151が発光面に対して略垂直となる状態で、ワイヤ15a,15bと第2の電極11eとを接続している。
【0027】
一方、LEDチップ12の第1の電極12a側では放熱ブロック11を介してチップ12の熱が放熱されるため、ワイヤを放熱に関与させる必要性が小さい。このため、本実施形態では、第1の電極12aとリードフレーム14とは、従来と同様に、細線(断面積が例えば25μm程度)のボンディングワイヤ15cで接続されている。
【0028】
放熱ブロック11には、チップ12の実装面(チップ12と放熱ブロック11との接続面)を囲む位置に壁部11aが設けられている。壁部11aは、先端部側が基端部側よりも細いテーパ状の形状を有しており、そのチップ12に対向する側面11bがチップ12に対して外側に傾いた傾斜面となっている。この傾斜面11bには、アルミニウムや銀等の高反射率の金属膜或いは金属粉からなる光反射面が形成されており、チップ12から等方的に出射された光を実装面に対して略垂直な方向に反射して、照明に寄与させるようになっている。
【0029】
放熱ブロック11,リードフレーム13,14は樹脂フレーム19と一体に形成されており、この樹脂フレーム19の上にはチップ12やワイヤ15a〜15cを内包するようにレンズ体17が設けられている。そして、レンズ体17とフレーム19との間にはシリコン・ジェル等の熱伝導性の高い流体16が充填され、放熱効率を一層高めるようになっている。
【0030】
照明装置10R,10G,10Bとこれに対応する液晶装置30R,30G,30Bとの間には、照明光の照度分布を液晶装置30R,30G,30Bにおいて均一化させるための照度均一化手段として、照明装置側から第1のフライアイレンズ21、第2のフライアイレンズ22が順次設置されている。第1のフライアイレンズ21は複数の2次光源像を形成し、第2のフライアイレンズ22は被照明領域である液晶装置の設置位置においてそれらを重畳する重畳レンズとしての機能を有する。これにより、発光素子1から出射された光は、その光の密度分布に関係なく液晶装置全面に均一な密度で照射される。
【0031】
ダイクロイッククロスプリズム40は、4つの直角プリズムが貼り合わされた構造を有し、その貼り合わせ面40a,40bには誘電体多層膜からなる光反射膜(図示略)が十字状に形成されている。具体的には、貼り合わせ面40aには、液晶装置30Rで形成された赤色の画像光を反射し、それぞれ液晶装置30G,30Bで形成された緑色及び青色の画像光を透過する光反射膜が設けられ、貼り合わせ面40bには、液晶装置30Bで形成された青色の画像光を反射し、それぞれ液晶装置30R,30Gで形成された赤色及び緑色の画像光を透過する光反射膜が設けられている。そして、ダイクロイッククロスプリズム40の光出射面40Eに導光された各色の画像光は投射レンズ(投射手段)50によってスクリーン60に投射されるようになっている。
【0032】
したがって、本実施形態によれば、放熱ブロック11と反対側の電極面に接続されるワイヤを複数本とし、各ワイヤ15a,15bを熱抵抗の小さい材料によって構成しているため、チップ12を放熱ブロック側だけでなく、これと反対側の面からも十分に放熱させることができる。このため、従来のものに比べてチップ12の放熱効率が高まり、大電流駆動による高輝度な照明が可能となる。
また、本実施形態ではワイヤ15a,15bを偏平形状とし、ワイヤを、その偏平面が発光面に対して略垂直となるようにして電極11eに接合しているため、ワイヤの太さによる輝度低下を最小限に抑えながら、ワイヤ15a,15bの導電性及び放熱性を共に高めることができる。
【0033】
なお、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、上記実施形態ではボンディングワイヤ15a,15bの材料を銅としたが、これ以外にも、上記材料として金,銀,アルミニウム等を用いることができる。銅やアルミニウム等は、従来用いられている金よりも導電性の点で劣るものの、本発明では電極12eとリードフレーム13とを従来よりも太い複数のボンディングワイヤで接続するため、素子1の発光特性が損なわれることはない。
【0034】
また、上記実施形態では第2の電極12eとリードフレーム13とを電気的及び熱的に接続するワイヤを2本としたが、これを3本以上とすることも可能である。
また、第1の電極12aとリードフレーム14とをボンディングワイヤ15cで接続する代わりに、チップ12をリードフレーム14の上に直接実装してもよい。この場合、ワイヤ15cは不要となる。
【0035】
また、上述した投射型表示装置の構成はほんの一例であり、このような3板式のものに限らず、光変調装置を1つとした単板式の構成を採用することも可能である。この場合、照明装置はR,G,Bの各色に対応して3つ設けてもよいし、1つの照明装置にR,G,Bの3種類の発光素子を設け、これを光変調装置の背面側に対置させてもよい。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る投射型表示装置の概略構成図である。
【図2】 同、投射型表示装置に備えられる発光素子の概略構成を示す図であり、(a)は全体構成を示す断面図、(b)はその電極構造のみを模式的に示す平面図である。
【図3】 従来の発光素子の構成を示す断面図である。
【符号の説明】
1,1R,1G,1B…発光素子、10R,10G,10B…照明装置、11…放熱ブロック(放熱体)、12…LEDチップ(発光体)、12a…第1の電極、12e…第2の電極、13,14…リードフレーム(外部接続端子)、15a,15b…ボンディングワイヤ、30R,30G,30B…液晶装置(光変調装置)、50…投射レンズ(投射手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting element, an illumination device including the light emitting device, and a projection display device.
[0002]
[Prior art]
In conventional projectors (projection display devices), a halogen lamp has been used as a light source in the past, and a high-pressure mercury lamp (UHP) having high luminance and high efficiency has been used in recent years. A light source using UHP, which is a discharge lamp, requires a high-voltage power circuit, is large and heavy, and hinders the reduction in size and weight of the projector. Further, although it has a longer life than a halogen lamp, it still has a short life, and it is almost impossible to control the light source (fast lighting, extinguishing, modulation), and it takes a long time to start up.
[0003]
Therefore, recently, an LED light emitting element has attracted attention as a new light source. LEDs are ultra-compact, ultra-light, and have a long life. In addition, by controlling the drive current, it is possible to freely turn on / off and adjust the amount of emitted light. In this respect, it is also promising as a light source for a projector, and application development to a small-sized and portable small-screen projector has already begun (for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-112031
[Problems to be solved by the invention]
However, at present, it is difficult to obtain sufficient luminance in a projector using an LED as a light source. This is because the LED is still about 1/2 to 1/3 of UHP in terms of efficiency, and the amount of light that can be obtained even when a full current is injected is small. The above efficiency is steadily improving year by year due to remarkable technological innovation, and may reach the level of the current UHP in several years, but the situation will change at least for LED light source projectors that can be commercialized in the near future. There will be no. In order to increase the amount of light, there is a method of arraying LEDs. However, since this causes a reduction in the illumination light rate as an optical system due to an increase in the light emitting point, the effect is not so much obtained.
[0006]
Therefore, a possible remaining method is to increase the light emission amount of the LED. However, as described above, there is a limitation on the rating of the LED, and the maximum light amount is automatically determined by the rating and efficiency. It is mainly the calorific value that determines the rated current of the LED.
[0007]
An example of the structure of a conventional LED is shown in FIG. The LED is a two-pole element, and as shown in FIG. 3, a chip 102 in which an electrode 102a, a p-layer 102b, a light-emitting layer 102c, an n-layer 102d, and an electrode 102e are sequentially laminated is a substrate 101 (in a high-power LED, the substrate is In many cases, it is also used as a radiator. Bonding wires 106 and 105 are drawn from the electrodes 102a and 102e, respectively, in order to connect the electrodes 102a and 102e to the lead frames 104 and 103 which are external connection terminals. A lens body 107 is provided so as to enclose these chips 102, wires 105, 106, and the like.
[0008]
Here, in the configuration of FIG. 3, bonding wires 105 and 106 are used for both the two poles. However, since the radiator is often a conductor, the substrate 101 (= radiator) itself is connected to one pole. Sometimes used as a terminal. In that case, there is one bonding wire (that is, only the wire 105).
[0009]
As shown in FIG. 3, the conventional LED is configured to radiate heat from one side of the chip 102 (that is, the first electrode 102a side that is a connection surface with the substrate 101), and a sufficient heat radiating effect is not obtained. It was. Therefore, the rated current cannot be increased and the maximum light output is reduced due to damage to the chip 102 due to heat generation.
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a light emitting element with improved heat dissipation efficiency, a lighting device including the light emitting element, and a projection display device.
[0010]
[Means for Solving the Problems]
As described above, in the conventional configuration, the heat radiation of the light emitter is performed only on one surface side, and the heat radiation on the other surface is not sufficiently performed. Therefore, the present inventor has invented a structure in which the bonding wire is actively involved in heat dissipation in order to increase the heat dissipation efficiency on the other side.
That is, in order to achieve the above object, the light-emitting element of the present invention is formed by sequentially laminating a first electrode, a light-emitting layer, and a second electrode on a radiator, and the second electrode It is characterized in that it is conductively connected to an external connection terminal through a bonding wire having a conductivity of 400 / W · m −1 · K −1 or more.
[0011]
Here, with the current technology, the external quantum efficiency of the LED is 20 to 30 lm / W, and generally only a few percent of the injected power can be extracted as light energy. That is, it can be considered that most of the injected power becomes heat. Moreover, although the efficiency of LED falls with a temperature rise, if the use limit is that the red with the highest decline rate falls 30%, the temperature rise of junction temperature must be within 60 degreeC. If 2w LEDs are used and most of them become heat as described above, the total thermal resistance of the heat dissipation path needs to be 30 ° C./W or less.
[0012]
Much heat can be transferred from the substrate side of the chip. For example, if heat corresponding to 50% of the chip, that is, heat equivalent to 1 w can be transferred from the bonding wire, the heat dissipation efficiency is greatly improved. In this case, the total thermal resistance of the heat dissipation path passing through the bonding wire may be 60 ° C./W or less. It is possible to design the thermal resistance of the package and the like after the bonding wire to about 50 ° C./W. In this case, the thermal resistance for the bonding wire may be 10 ° C./W. The cross-sectional area allowed as the thickness of the bonding wire is 2.5 mm 2 (the total area when it is divided into a plurality of pieces) and the length is 10 mm. If the thermal conductivity is 400 / W · m −1 · K −1 , the thermal resistance is the reciprocal of (thermal conductivity * cross-sectional area / length), so the value is 10 ° C./w. Therefore, if the thermal conductivity of the bonding wire is 400 / W · m −1 · K −1 , the reduction in the amount of light can be suppressed to 30% or less.
[0013]
Therefore, according to this configuration, since the bonding wire having a low thermal resistance is thermally connected to the second electrode, a large heat radiation effect can be expected on the surface opposite to the heat radiator.
[0014]
By the way, in order to lower the thermal resistance of the bonding wire, it is necessary to make the wire thick (that is, to increase the cross-sectional area). In this case, if the wire covers the light emitting surface (second electrode) widely, the light emission luminance is greatly reduced. Therefore, the planar shape of the wire is preferably made as small as possible. Specifically, the bonding wire is formed into a flat shape, and the bonding wire and the second electrode are connected in a state where the flat surface is substantially perpendicular to the electrode surface of the second electrode, which is the main light emitting surface. Both the conductivity and heat dissipation of the wire can be improved while minimizing the decrease in luminance.
[0015]
The bonding wire may be configured as a plurality of wires. As described above, when the wire is thickened, it becomes difficult to join the electrode. For this reason, use bonding wires. Joining can be facilitated by dividing the second electrode into a plurality of wires instead of providing it alone. Further, in this case, since individual wires can be made compact, there is an advantage that the configuration of the entire light emitting element can be reduced.
[0016]
As a material for the bonding wire, for example, silver, copper, aluminum, alloys thereof, and the like, which are slightly inferior in conductivity, can be used in addition to conventionally used gold. Further, a material obtained by adding silicon or the like to the above material may be used. In the present invention, since the second electrode and the external connection terminal are connected by a plurality of wires, even if a material having slightly inferior conductivity is used for the wires, the light emission characteristics are not impaired.
[0017]
In the light-emitting element of the present invention, a first electrode, a light-emitting layer, and a second electrode are sequentially laminated on a heat radiator, and the second electrode is interposed via a plurality of thermally conductive bonding wires. The conductive connection is made to the external connection terminal. According to this configuration, since a plurality of bonding wires having a low thermal resistance are electrically and thermally connected to the second electrode, at least a larger heat dissipation effect than the conventional one can be expected on the surface opposite to the heat radiator. .
[0018]
At this time, heat radiation can be ensured by using a material having a low thermal resistance (for example, a thermal conductivity of 400 / W · m −1 · K −1 or more) for the bonding wire. As the above material, for example, silver, copper, aluminum, alloys thereof, and the like, which are slightly inferior in conductivity, can be used in addition to conventionally used gold. Further, a material obtained by adding silicon or the like to the above material may be used. In the present invention, since the second electrode and the external connection terminal are connected by a plurality of wires, even if a material having slightly inferior conductivity is used for the wires, the light emission characteristics are not impaired.
[0019]
In order to reduce the thermal resistance of the bonding wire, it is necessary to make the wire thicker. However, if the wire is made thicker, the light emitting surface is shielded widely and the light emission luminance decreases, so the planar shape of the wire can be made as small as possible. preferable. Specifically, the wire has a flat shape and is bonded to the second electrode in a state where the flat surface of the wire is substantially perpendicular to the second electrode. And heat dissipation can be improved.
[0020]
In addition, the lighting device of the present invention includes the above-described light emitting element. In the present lighting device, since the heat dissipation of the light emitting element is high, a large current drive is possible, and the brightness of the illumination can be improved.
According to another aspect of the present invention, there is provided a projection type display device comprising: the above-described illumination device; a light modulation device that modulates light emitted from the illumination device; and a projection unit that projects the modulated light. To do. Thereby, a projection display apparatus with high brightness can be realized.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a projection display apparatus according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing the overall configuration of a projection display device according to the present embodiment, and FIG. 2 is a diagram showing a configuration example of a light emitting element provided in the projection display device. In all the drawings below, the film thicknesses and dimensional ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.
[0022]
As shown in FIG. 1, the projection type display device of the present embodiment is a three-plate type liquid crystal projector, and each of the three light incident surfaces 40R, 40G, and 40B of a dichroic cross prism 40 serving as a color synthesizing unit has light modulation. Liquid crystal devices 30R, 30G, and 30B as devices are arranged to face each other, and R (red), G (green), and rear surfaces of the liquid crystal devices 30R, 30G, and 30B (on the side opposite to the cross dichroic prism 40), respectively. Illumination devices 10R, 10G, and 10B capable of emitting B (blue) color light are arranged.
[0023]
The illumination device 10 (10R, 10G, 10B) includes a plurality of light emitting elements 1 (1R, 1G, 1B) made of, for example, light emitting diodes (LEDs). FIG. 2A is a cross-sectional view showing a main configuration of the light-emitting element 1, and FIG. 2B is a plan view schematically showing only the electrode structure.
The light-emitting element 1 is a two-pole element, and as shown in FIG. 2, an LED chip (light-emitting body) in which a first electrode 12a, an n-layer 12b, a light-emitting layer 12c, a p-layer 12d, and a second electrode 12e are sequentially stacked. ) 12 is mounted on the heat dissipation block (heat dissipation body) 11. In order to connect the electrodes 12a and 12e of the chip 12 to the lead frames (external connection terminals) 13 and 14, more bonding wires are drawn from the light emitter 12 than the number of poles.
[0024]
That is, a plurality of (for example, two in this embodiment) bonding wires 15a and 15b are drawn out from the second electrode 12e and are electrically and thermally connected to the lead frame 13, respectively. These wires 15a and 15b are made of a material having a thermal conductivity of 400 / W · m −1 · K −1 or more, such as copper, for example, in order to enhance heat dissipation on the electrode surface. The thickness is thicker than before. That is, while the cross-sectional area of the conventional wire is about 25 μm 2 , the cross-sectional area of the wire is, for example, 52.5 mm 2 or more in this embodiment. Thereby, in the electrode surface on the opposite side to the heat radiation block 11, the heat radiation effect comparable as the heat radiation block 11 side is acquired.
[0025]
When the cross-sectional areas of the wires 15a and 15b are increased, if the wires 15a and 15b cover the second electrode, which is the main light-emitting surface, widely, the light emission luminance is significantly reduced. For this reason, in this embodiment, the wires 15a and 15b are processed into a flat thin plate shape so that the planar shape becomes as small as possible. Specifically, in each of the wires 15a and 15b, the vertical / horizontal dimension ratio of the substantially rectangular cross section is set to 1: 2.5, the width W1 of the wire when viewed in plan is set to about 1 mm, and the width W2 of the wire perpendicular thereto. Is about 2.5 mm.
Further, even when the light beam emitted from the LED is blocked by the bonding wire, the wire 15a can be taken out through a certain path by being reflected by the bonding wire and further reflected by a member in the LED. 15b is subjected to a flattening process such as a polishing process and a plating process.
[0026]
Then, the wires 15a and 15b and the second electrode 11e are connected by silver paste or a method such as direct bonding in a state where the flat surface 151 is substantially perpendicular to the light emitting surface.
[0027]
On the other hand, on the first electrode 12a side of the LED chip 12, the heat of the chip 12 is dissipated through the heat dissipating block 11, so that it is less necessary to make the wire involved in heat dissipation. For this reason, in the present embodiment, the first electrode 12a and the lead frame 14 are connected to each other by a thin wire (cross-sectional area of about 25 μm 2, for example) bonding wire 15c as in the conventional case.
[0028]
The heat dissipation block 11 is provided with a wall portion 11a at a position surrounding the mounting surface of the chip 12 (the connection surface between the chip 12 and the heat dissipation block 11). The wall portion 11 a has a tapered shape whose tip end side is thinner than the base end portion side, and a side surface 11 b facing the tip 12 is an inclined surface inclined outward with respect to the tip 12. The inclined surface 11b is formed with a light reflecting surface made of a highly reflective metal film such as aluminum or silver or metal powder, and the light emitted isotropically from the chip 12 is substantially omitted from the mounting surface. It reflects in the vertical direction and contributes to illumination.
[0029]
The heat dissipating block 11 and the lead frames 13 and 14 are formed integrally with the resin frame 19, and a lens body 17 is provided on the resin frame 19 so as to enclose the chip 12 and the wires 15a to 15c. A space 16 between the lens body 17 and the frame 19 is filled with a fluid 16 having a high thermal conductivity such as silicon gel, so that the heat radiation efficiency is further improved.
[0030]
As illuminance equalizing means for making the illuminance distribution of illumination light uniform in the liquid crystal devices 30R, 30G, 30B between the illuminating devices 10R, 10G, 10B and the corresponding liquid crystal devices 30R, 30G, 30B, A first fly-eye lens 21 and a second fly-eye lens 22 are sequentially installed from the lighting device side. The first fly-eye lens 21 forms a plurality of secondary light source images, and the second fly-eye lens 22 has a function as a superimposing lens that superimposes them at the installation position of the liquid crystal device that is an illuminated area. Thereby, the light emitted from the light emitting element 1 is irradiated on the entire surface of the liquid crystal device with a uniform density regardless of the density distribution of the light.
[0031]
The dichroic cross prism 40 has a structure in which four right-angle prisms are bonded together, and light reflection films (not shown) made of a dielectric multilayer film are formed in a cross shape on the bonded surfaces 40a and 40b. Specifically, a light reflecting film that reflects red image light formed by the liquid crystal device 30R and transmits green and blue image light formed by the liquid crystal devices 30G and 30B, respectively, is formed on the bonding surface 40a. A light reflecting film that reflects the blue image light formed by the liquid crystal device 30B and transmits the red and green image light formed by the liquid crystal devices 30R and 30G, respectively, is provided on the bonding surface 40b. ing. The image light of each color guided to the light exit surface 40E of the dichroic cross prism 40 is projected onto the screen 60 by a projection lens (projection means) 50.
[0032]
Therefore, according to the present embodiment, since a plurality of wires are connected to the electrode surface opposite to the heat dissipation block 11 and each wire 15a, 15b is made of a material having a low thermal resistance, the chip 12 is radiated. It is possible to sufficiently dissipate heat not only from the block side but also from the opposite surface. For this reason, the heat dissipation efficiency of the chip 12 is increased as compared with the conventional one, and illumination with high brightness by large current driving is possible.
Further, in the present embodiment, the wires 15a and 15b have a flat shape, and the wires are joined to the electrode 11e so that the flat surfaces are substantially perpendicular to the light emitting surface. Both the conductivity and heat dissipation of the wires 15a and 15b can be improved while minimizing the above.
[0033]
In addition, this invention is not limited to the above-mentioned embodiment, It can implement in various deformation | transformation in the range which does not deviate from the meaning of this invention.
For example, in the above embodiment, the material of the bonding wires 15a and 15b is copper, but other than this, gold, silver, aluminum or the like can be used as the material. Although copper, aluminum, and the like are inferior in conductivity to gold used in the past, in the present invention, the electrode 12e and the lead frame 13 are connected by a plurality of thicker bonding wires than in the prior art. The properties are not impaired.
[0034]
In the above embodiment, the number of wires for electrically and thermally connecting the second electrode 12e and the lead frame 13 is two. However, the number of wires may be three or more.
Further, the chip 12 may be directly mounted on the lead frame 14 instead of connecting the first electrode 12a and the lead frame 14 with the bonding wire 15c. In this case, the wire 15c is unnecessary.
[0035]
The above-described configuration of the projection display device is only an example, and is not limited to such a three-plate type, and a single-plate type configuration with one light modulation device may be employed. In this case, three lighting devices may be provided corresponding to each color of R, G, and B, or three types of light emitting elements of R, G, and B are provided in one lighting device, and this is used for the light modulation device. You may make it face on the back side.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a projection display device according to an embodiment of the present invention.
2A and 2B are diagrams showing a schematic configuration of a light emitting element provided in the projection display device, wherein FIG. 2A is a cross-sectional view showing an overall configuration, and FIG. 2B is a plan view schematically showing only an electrode structure thereof. It is.
FIG. 3 is a cross-sectional view illustrating a configuration of a conventional light emitting device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,1R, 1G, 1B ... Light emitting element, 10R, 10G, 10B ... Illuminating device, 11 ... Radiation block (heat radiating body), 12 ... LED chip (light emitting body), 12a ... 1st electrode, 12e ... 2nd Electrodes 13, 14 ... lead frames (external connection terminals), 15a, 15b ... bonding wires, 30R, 30G, 30B ... liquid crystal devices (light modulation devices), 50 ... projection lenses (projection means)

Claims (8)

放熱体の上に第1の電極と発光層と第2の電極とを順に積層してなり、
上記第2の電極が、熱伝導率が400/W・m−1・K−1以上であるボンディングワイヤを介して外部接続端子に導電接続され、
上記ボンディングワイヤが偏平形状を有し、この偏平面が上記第2の電極面と略垂直となる状態で、ボンディングワイヤと第2の電極とが接続されたことを特徴とする、発光素子。
A first electrode, a light emitting layer, and a second electrode are sequentially laminated on the radiator,
The second electrode is conductively connected to the external connection terminal through a bonding wire having a thermal conductivity of 400 / W · m −1 · K −1 or more,
A light-emitting element, wherein the bonding wire has a flat shape, and the bonding wire and the second electrode are connected in a state where the flat surface is substantially perpendicular to the second electrode surface.
上記ボンディングワイヤが複数のワイヤからなることを特徴とする、請求項1記載の発光素子。  The light emitting device according to claim 1, wherein the bonding wire includes a plurality of wires. 放熱体の上に第1の電極と発光層と第2の電極とを順に積層してなり、
上記第2の電極が、熱伝導性の複数のボンディングワイヤを介して外部接続端子に導電接続され、
上記ボンディングワイヤが偏平形状を有し、この偏平面が上記第2の電極面と略垂直となる状態で、ボンディングワイヤと第2の電極とが接続されたことを特徴とする、発光素子。
A first electrode, a light emitting layer, and a second electrode are sequentially laminated on the radiator,
The second electrode is conductively connected to the external connection terminal via a plurality of thermally conductive bonding wires,
A light-emitting element, wherein the bonding wire has a flat shape, and the bonding wire and the second electrode are connected in a state where the flat surface is substantially perpendicular to the second electrode surface.
放熱体の上に第1の電極と発光層と第2の電極とを順に積層してなり、
上記第2の電極が、熱伝導性のボンディングワイヤを介して外部接続端子に導電接続され、
上記ボンディングワイヤが偏平形状を有し、この偏平面が上記第2の電極面と略垂直となる状態で、ボンディングワイヤと第2の電極とが接続されたことを特徴とする、発光素子。
A first electrode, a light emitting layer, and a second electrode are sequentially laminated on the radiator,
The second electrode is conductively connected to the external connection terminal via a thermally conductive bonding wire,
A light-emitting element, wherein the bonding wire has a flat shape, and the bonding wire and the second electrode are connected in a state where the flat surface is substantially perpendicular to the second electrode surface.
上記ボンディングワイヤが銀,銅の少なくともいずれかを含む材料からなることを特徴とする、請求項1〜4のいずれかの項に記載の発光素子。  The light emitting device according to any one of claims 1 to 4, wherein the bonding wire is made of a material containing at least one of silver and copper. 上記第1の電極と外部接続端子とを接続するボンディングワイヤの断面積が、上記第2電極と外部接続端子とを接続するボンディングワイヤの断面積よりも小さいことを特徴とする、請求項1〜のいずれかの項に記載の発光素子。The cross-sectional area of the bonding wire that connects the first electrode and the external connection terminal is smaller than the cross-sectional area of the bonding wire that connects the second electrode and the external connection terminal. 6. The light emitting device according to any one of items 5 . 請求項1〜のいずれかの項に記載の発光素子を備えたことを特徴とする、照明装置。An illumination device comprising the light emitting element according to any one of claims 1 to 6 . 請求項記載の照明装置と、
上記照明装置から出射された光を変調する光変調装置と、
変調された光を投射する投射手段とを備えたことを特徴とする、投射型表示装置。
The lighting device according to claim 7 ;
A light modulation device for modulating light emitted from the illumination device;
A projection type display device comprising: projection means for projecting modulated light.
JP2003166350A 2003-06-11 2003-06-11 Light emitting device, lighting device, projection display device Expired - Lifetime JP4269790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166350A JP4269790B2 (en) 2003-06-11 2003-06-11 Light emitting device, lighting device, projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166350A JP4269790B2 (en) 2003-06-11 2003-06-11 Light emitting device, lighting device, projection display device

Publications (2)

Publication Number Publication Date
JP2005005437A JP2005005437A (en) 2005-01-06
JP4269790B2 true JP4269790B2 (en) 2009-05-27

Family

ID=34092544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166350A Expired - Lifetime JP4269790B2 (en) 2003-06-11 2003-06-11 Light emitting device, lighting device, projection display device

Country Status (1)

Country Link
JP (1) JP4269790B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625091B2 (en) 2004-09-06 2009-12-01 Nikon Corporation Illuminating device and projector device
JP2006253197A (en) * 2005-03-08 2006-09-21 Nikon Corp Optical irradiation module
WO2006095949A1 (en) * 2005-03-11 2006-09-14 Seoul Semiconductor Co., Ltd. Led package having an array of light emitting cells coupled in series
KR100703094B1 (en) * 2005-10-12 2007-04-06 삼성전기주식회사 Led back light unit
JP2007123777A (en) 2005-10-31 2007-05-17 Sharp Corp Semiconductor light-emitting apparatus
BRPI0714026A2 (en) * 2006-07-06 2012-12-18 Tir Technology Lp lighting device packaging
KR100774218B1 (en) * 2006-09-28 2007-11-08 엘지전자 주식회사 Lens, a method for manufacturing it and light emitting device package
KR101505428B1 (en) * 2008-05-28 2015-03-31 서울반도체 주식회사 Backlighting unit employing polarized light source
WO2010053133A1 (en) * 2008-11-07 2010-05-14 凸版印刷株式会社 Leadframe, method for manufacturing the leadframe, and semiconductor light emitting device using the leadframe
JP2018074015A (en) * 2016-10-31 2018-05-10 交和電気産業株式会社 Lighting device module

Also Published As

Publication number Publication date
JP2005005437A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US8070302B2 (en) Laminate type light-emitting diode device, and reflection type light-emitting diode unit
JP3753137B2 (en) Light source device and projector
US20040264192A1 (en) Light source apparatus, method of manufacture therefor, and projection-type display apparatus
KR100776853B1 (en) Light source apparatus and projector
JP2018525836A (en) Special integrated light source using laser diode
CN104460203A (en) Luminescent light emitting device having luminescent material plate that is caused to be luminous by excitation light source and projector including same luminescent light emitting device
TW200527725A (en) Light source device, method for manufacturing light source device, and projector
JP4269790B2 (en) Light emitting device, lighting device, projection display device
US8159123B2 (en) Light emitting device, light-emitting module, lighting apparatus, and image projection apparatus
JP3987485B2 (en) Light source device and projector
JP2005100810A (en) Light source and projector
JP4042668B2 (en) Solid-state light emitting device, manufacturing method thereof, and projector
JP6205579B2 (en) Light source device and projection display device
JP2007103702A (en) Heat exchanger, manufacturing method thereof, liquid-cooling system, light source equipment, projector, electronic device unit, and electronic equipment
JP4124129B2 (en) Light source device and projector
JP2005085810A (en) Optical source unit and projector
JP4345507B2 (en) Light source device and projector
CN113671779B (en) Light source device and projection device
JP4363129B2 (en) Light source device and projection display device
JP2006086172A (en) Light source device, its cooling method and image display device
JP2005129799A (en) Light source device and projector
JP2005292265A (en) Electric apparatus and heat dissipation unit
JP2005129411A (en) Light source device and projector
US11688834B2 (en) Wavelength conversion member and light-emitting device for efficient wavelength conversion
JP2005077505A (en) Light source device and projection type display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4