JP4288638B2 - Lumped constant type nonreciprocal circuit device - Google Patents

Lumped constant type nonreciprocal circuit device Download PDF

Info

Publication number
JP4288638B2
JP4288638B2 JP2000072320A JP2000072320A JP4288638B2 JP 4288638 B2 JP4288638 B2 JP 4288638B2 JP 2000072320 A JP2000072320 A JP 2000072320A JP 2000072320 A JP2000072320 A JP 2000072320A JP 4288638 B2 JP4288638 B2 JP 4288638B2
Authority
JP
Japan
Prior art keywords
magnet
rare earth
permanent magnet
ferrite
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000072320A
Other languages
Japanese (ja)
Other versions
JP2001267810A (en
Inventor
伸二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000072320A priority Critical patent/JP4288638B2/en
Publication of JP2001267810A publication Critical patent/JP2001267810A/en
Application granted granted Critical
Publication of JP4288638B2 publication Critical patent/JP4288638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波信号に対して非可逆伝送特性を有する非可逆回路素子に関し、具体的には携帯電話などの移動体通信システムの中で使用され、一般にアイソレータやサーキューレータと呼ばれる非可逆回路素子に関するものである。
【0002】
【従来の技術】
従来、マイクロ波帯、UHF帯で使用される携帯電話、自動車電話等の送受信回路部品の一つとしてアイソレータ,サーキュレータ等の非可逆回路素子がある。一般にアイソレータやサーキュレータは、アンプの破損を防止する目的で使用され、信号の伝送方向の挿入損失は小さく、かつ逆方向への逆方向損失は大きくなるような機能を持たせたものである。以下、本願明細書では非可逆回路素子のうちアイソレータを例にとって説明する。
【0003】
図2にアイソレータの一例を分解斜視図で示す。このアイソレータは、上ケース1、磁石2、組立体20、平板コンデンサ8、9、10、ダミー抵抗11、樹脂ケース7、下ケース12から構成されている。組立体20は、円板状のシールド板から放射状に3つの中心導体4、5、6が突出した構造の導電板を用意し、その導電板の円板状部にフェライト円板(フェリ磁性体)3を配置する。そして、3つの中心導体4、5、6を折り曲げて重ねる。このとき、各中心導体4、5、6は絶縁されて重ねられ、構成される。
【0004】
この樹脂ケース7は、中央に、組立体用の円形状の凹部13aを有し、その周囲に容量素子用の凹部13b、13c、13dを有する。この容量素子用の凹部の底部及び組立体用の凹部13aには、接続電極が形成されている。そして、この接続電極は、一体の0.1mm程度の導体板で構成されており、底面側では露出し、かつ側面部の外部端子を構成している。この樹脂ケース7の容量素子用の凹部にそれぞれ容量素子8、9、10が挿入される。この容量素子は、その上下面に電極が形成された平板コンデンサであり、下面の電極と凹部の底部に形成された接続電極と半田接続される。また、抵抗素子11が配置され、抵抗素子11の一方の電極は、接続電極に半田接続される。
次いで、樹脂ケース7の組立体用の円形状の凹部13aに、上記した組立体20を配置する。中心導体5の一端は、容量素子9の上面の電極と抵抗素子11の一方の端子電極に接続される。また、中心導体4の一端は、容量素子8の上面の電極に接続される。また、中心導体6の一端は、容量素子10の上面の電極に接続される。そして、下ケース12上に樹脂ケース7が配置される。そして、磁性体3に直流磁界を印加する永久磁石2を上ケース1に位置決めし、上ケース1と下ケース12を嵌合させて、アイソレータを構成している。
【0005】
【発明が解決しようとする課題】
近年、IC、トランジスター等の半導体素子、積層チップコンデンサー、積層チップインダクタ、チップ抵抗等の受動部品の小型化にともない、これらを表面実装したマイクロ波装置の小型化・薄型化が急速に進行している。このような動きの中でマイクロ波装置を構成する上できわめて重要な非可逆回路素子である集中定数型サ−キュレ−タ・アイソレータも小型化・薄型化が求められている。
これらアイソレータ、サーキュレータ等の非可逆回路素子を小型化する方法としては、高性能な磁石を用いて、必要な磁力を維持しつつ、磁石を小型化する方法が考えられる。従来、フェリ磁性体3として用いるガーネットフェライトの飽和磁化の温度特性をは−0.4〜−0.2%/℃と大きいので、残留磁束密度Brの温度特性が大きいSrフェライト磁石を前記永久磁石2として用いて、非可逆回路素子として温度係数を小さく構成するのが一般的であるが、、前記Srフェライト磁石の磁気特性は、たかだか残留磁束密度Brが0.45T程度、(BH)max.は40KJ/m程度のため、小型化にはおのずと限界がある。
前記Srフェライト磁石よりも強力な磁力を有する磁石としてはRCo系、RCo17系、R−Fe−B系、R−Fe−N系(RはYを含む希土類元素のうちの一種又は2種以上)磁石等があるが、これらの磁石はSrフェライト磁石よりも温度特性がフラットであるため、前記フェリ磁性体の温度特性を解消することが出来ず、アイソレータ、サーキュレータ素子全体としての温度特性を満足することが困難であった。
そこで本発明は、温度特性を実用上問題のない程度に維持しつつ小型化した非可逆回路素子を提供することである。
【0006】
【課題を解決するための手段】
本発明は、複数の中心導体を配置したフェリ磁性体と、当該フェリ磁性体の中心導体側に重ねて配置された直流磁界を印加する永久磁石を備えた非可逆回路素子であって、
前記永久磁石として温度係数の異なる2種以上の板状の永久磁石を重ねて用い、永久磁石の少なくとも一つがSrフェライト磁石であり、他の一つが希土類磁石であって、前記永久磁石のSrフェライト磁石をフェリ磁性体に設けられた中心導体と対向させ、希土類磁石を上ケース側とした集中定数型非可逆回路素子である。
前記2種以上の永久磁石の少なくとも一つが、RCo系、RCo17系、R−Fe−B系、R−Fe−N系(RはYを含む希土類元素のうちの一種又は2種以上)のいずれかの希土類磁石であるのが好ましい。
また、板状のSrフェライト磁石と希土類磁石とを耐熱性接着剤で貼り合わせて一体の永久磁石とするのも好ましい。
【0007】
【発明の実施の形態】
本発明に係る一実施例の非可逆回路素子を図1の分解斜視図を用いて説明する。この非可逆回路素子は、従来の非可逆回路素子と同様の部分が多く、以下異なる部分を説明する。本発明の非可逆回路素子は、フェリ磁性体に直流磁界を印加する永久磁石を温度係数の異なる2種以上の永久磁石2a,2bを用いて構成している。ここで温度係数の異なる2種以上の永久磁石とは、表1に示すSrフェライト磁石と希土類磁石から適宜選択すればよい。永久磁石の形状は、加工の容易さから板状であることが好ましく、例えばNd−Fe−B系磁石であれば、素原料粉末として乾粉又は乾粉と有機溶媒や鉱物油あるいは合成油との混合物を作製し、金型キャビティー内に給粉し、磁界中で板状に成形し、得られた成形体を必要に応じて乾燥し、焼結、熱処理して得ることが出来る。またSrフェライト磁石は素原料粉末として乾粉又は乾粉と水との混合物を作製し、磁界中で板状に成形し、得られた成形体を必要に応じて乾燥し、焼結して得ることが出来る。
【0008】
【表1】

Figure 0004288638
【0009】
この様にして得たSrフェライト磁石2bとNd−Fe−B系磁石2aとを耐熱性接着剤を用いて貼合わせて一体の永久磁石とした。この永久磁石をフェリ磁性体に直流磁界を印加するように、上下ヨーク1、12間に配置し本発明の非可逆回路素子を構成した。この様に構成すれば、Srフェライト磁石単体で得ていた磁力を、従来よりも総厚を薄くし構成た場合であっても容易に得ることが出来、また残留磁束密度Brの温度特性も希土類磁石のみで構成する場合よりも大きく出来、この結果、温度特性を実用上問題のない程度に維持しつつ小型化した非可逆回路素子を得ることが出来た。
【0010】
【発明の効果】
以上説明したように、本発明によれば温度特性を実用上問題のない程度に維持しつつ小型化した非可逆回路素子を得ることが出来る。
【図面の簡単な説明】
【図1】本発明の一実施例に係る非可逆回路素子の分解斜視図である。
【図2】従来の非可逆回路素子の分解斜視図である。
【符号の説明】
1 上ケース
2、2a、2b 永久磁石
3 フェリ磁性体
12 下ヨーク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an irreversible circuit element having irreversible transmission characteristics with respect to a high-frequency signal. Specifically, the irreversible circuit is used in a mobile communication system such as a mobile phone and is generally called an isolator or a circulator. It relates to an element.
[0002]
[Prior art]
Conventionally, there are non-reciprocal circuit elements such as isolators and circulators as one of transmission / reception circuit components such as mobile phones and automobile phones used in the microwave band and UHF band. In general, an isolator or a circulator is used for the purpose of preventing the amplifier from being damaged, and has a function of reducing the insertion loss in the signal transmission direction and increasing the reverse loss in the reverse direction. Hereinafter, the present specification will be described taking an isolator as an example of the non-reciprocal circuit device.
[0003]
FIG. 2 is an exploded perspective view showing an example of an isolator. This isolator includes an upper case 1, a magnet 2, an assembly 20, plate capacitors 8, 9, 10, a dummy resistor 11, a resin case 7, and a lower case 12. The assembly 20 prepares a conductive plate having a structure in which three central conductors 4, 5 and 6 project radially from a disk-shaped shield plate, and a ferrite disk (ferrimagnetic material) is formed on the disk-shaped portion of the conductive plate. ) 3 is arranged. Then, the three central conductors 4, 5, 6 are folded and overlapped. At this time, each of the central conductors 4, 5, 6 is insulated and overlapped.
[0004]
The resin case 7 has a circular recess 13a for an assembly at the center, and recesses 13b, 13c, and 13d for capacitive elements around the resin case 7. Connection electrodes are formed on the bottom of the concave portion for the capacitive element and the concave portion 13a for the assembly. The connection electrode is composed of an integral conductor plate of about 0.1 mm, exposed on the bottom surface side, and constitutes an external terminal on the side surface. Capacitance elements 8, 9, and 10 are inserted into the capacitor element recesses of the resin case 7, respectively. This capacitive element is a plate capacitor having electrodes formed on the upper and lower surfaces thereof, and is solder-connected to the electrode on the lower surface and the connection electrode formed on the bottom of the recess. Further, the resistance element 11 is disposed, and one electrode of the resistance element 11 is solder-connected to the connection electrode.
Next, the assembly 20 described above is disposed in the circular recess 13 a for the assembly of the resin case 7. One end of the center conductor 5 is connected to the electrode on the upper surface of the capacitive element 9 and one terminal electrode of the resistance element 11. One end of the center conductor 4 is connected to the electrode on the upper surface of the capacitive element 8. One end of the center conductor 6 is connected to an electrode on the upper surface of the capacitive element 10. Then, the resin case 7 is disposed on the lower case 12. And the permanent magnet 2 which applies a direct-current magnetic field to the magnetic body 3 is positioned in the upper case 1, and the upper case 1 and the lower case 12 are fitted, and the isolator is comprised.
[0005]
[Problems to be solved by the invention]
In recent years, along with the miniaturization of passive components such as semiconductor elements such as ICs and transistors, multilayer chip capacitors, multilayer chip inductors, chip resistors, etc., the miniaturization and thinning of microwave devices that have been surface-mounted have rapidly progressed. Yes. In such a movement, a lumped constant type circulator / isolator, which is a nonreciprocal circuit element that is extremely important in configuring a microwave device, is also required to be reduced in size and thickness.
As a method for reducing the size of these nonreciprocal circuit elements such as isolators and circulators, it is conceivable to use a high-performance magnet to reduce the size of the magnet while maintaining the necessary magnetic force. Conventionally, since the temperature characteristic of saturation magnetization of garnet ferrite used as the ferrimagnetic material 3 is as large as −0.4 to −0.2% / ° C., an Sr ferrite magnet having a large residual magnetic flux density Br temperature characteristic is used as the permanent magnet. In general, the non-reciprocal circuit element is configured to have a small temperature coefficient. However, the magnetic properties of the Sr ferrite magnet are as follows: the residual magnetic flux density Br is about 0.45 T, and (BH) max. Is about 40 KJ / m 3 , so there is a natural limit to downsizing.
As the magnet having a stronger magnetic force than the Sr ferrite magnet, RCo 5 type, R 2 Co 17 type, R—Fe—B type, R—Fe—N type (R is one of rare earth elements including Y or There are two or more types of magnets, etc., but since these magnets have flatter temperature characteristics than Sr ferrite magnets, the temperature characteristics of the ferrimagnetic material cannot be eliminated, and the temperature of the isolator and the circulator element as a whole. It was difficult to satisfy the characteristics.
Accordingly, the present invention is to provide a non-reciprocal circuit device that is miniaturized while maintaining temperature characteristics to such an extent that there is no practical problem.
[0006]
[Means for Solving the Problems]
The present invention is a non-reciprocal circuit device comprising a ferrimagnetic body in which a plurality of central conductors are arranged, and a permanent magnet that applies a DC magnetic field that is arranged on the central conductor side of the ferrimagnetic bodies,
A laminate of the two or more plate-like permanent magnets having different temperature coefficient as a permanent magnet, at least one is Sr ferrite magnets of the permanent magnet, and the other one is a rare earth magnet, Sr ferrite of the permanent magnet This is a lumped-constant nonreciprocal circuit device in which a magnet is opposed to a central conductor provided on a ferrimagnetic body and a rare earth magnet is used as an upper case side .
At least one of the two or more kinds of permanent magnets is RCo 5 series, R 2 Co 17 series, R—Fe—B series, R—Fe—N series (R is one or two of rare earth elements including Y) Any one of the rare earth magnets described above is preferable.
It is also preferable that a plate-like Sr ferrite magnet and a rare earth magnet are bonded together with a heat resistant adhesive to form an integral permanent magnet.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
A nonreciprocal circuit device according to an embodiment of the present invention will be described with reference to an exploded perspective view of FIG. This nonreciprocal circuit element has many parts similar to those of the conventional nonreciprocal circuit element, and different parts will be described below. In the nonreciprocal circuit device of the present invention, a permanent magnet that applies a DC magnetic field to a ferrimagnetic material is configured using two or more types of permanent magnets 2a and 2b having different temperature coefficients. Here, the two or more kinds of permanent magnets having different temperature coefficients may be appropriately selected from Sr ferrite magnets and rare earth magnets shown in Table 1. The shape of the permanent magnet is preferably a plate from the viewpoint of ease of processing. For example, if it is a Nd-Fe-B magnet, dry powder or dry powder as a raw material powder and a mixture of organic solvent, mineral oil or synthetic oil Can be obtained by powdering into a mold cavity, molding into a plate shape in a magnetic field, drying the resulting molded body as necessary, sintering, and heat treatment. The Sr ferrite magnet can be obtained by preparing a dry powder or a mixture of dry powder and water as a raw material powder, forming it into a plate shape in a magnetic field, and drying and sintering the resulting molded body as necessary. I can do it.
[0008]
[Table 1]
Figure 0004288638
[0009]
The Sr ferrite magnet 2b and the Nd—Fe—B magnet 2a thus obtained were bonded together using a heat resistant adhesive to form an integral permanent magnet. The permanent magnet is disposed between the upper and lower yokes 1 and 12 so as to apply a DC magnetic field to the ferrimagnetic material, thereby constituting the nonreciprocal circuit device of the present invention. With this configuration, the magnetic force obtained with a single Sr ferrite magnet can be easily obtained even when the total thickness is made thinner than before, and the temperature characteristics of the residual magnetic flux density Br are also rare earths. As a result, it was possible to obtain a non-reciprocal circuit device that was reduced in size while maintaining the temperature characteristics to such an extent that there was no practical problem.
[0010]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a nonreciprocal circuit device that is miniaturized while maintaining temperature characteristics at a level that does not cause any practical problems.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a non-reciprocal circuit device according to an embodiment of the present invention.
FIG. 2 is an exploded perspective view of a conventional non-reciprocal circuit device.
[Explanation of symbols]
1 Upper case 2, 2a, 2b Permanent magnet 3 Ferrimagnetic material 12 Lower yoke

Claims (3)

複数の中心導体を配置したフェリ磁性体と、当該フェリ磁性体の中心導体側に重ねて配置された直流磁界を印加する永久磁石を備えた非可逆回路素子であって、
前記永久磁石として温度係数の異なる2種以上の板状の永久磁石を重ねて用い、永久磁石の少なくとも一つがSrフェライト磁石であり、他の一つが希土類磁石であって、前記永久磁石のSrフェライト磁石をフェリ磁性体に設けられた中心導体と対向させ、希土類磁石を上ケース側としたことを特徴とした集中定数型非可逆回路素子。
A non-reciprocal circuit device comprising a ferrimagnetic body in which a plurality of central conductors are arranged, and a permanent magnet that applies a DC magnetic field that is arranged on the central conductor side of the ferrimagnetic bodies,
A laminate of the two or more plate-like permanent magnets having different temperature coefficient as a permanent magnet, at least one is Sr ferrite magnets of the permanent magnet, and the other one is a rare earth magnet, Sr ferrite of the permanent magnet the magnet is the center conductor and a counter provided in the ferrimagnetic body, a lumped constant type non-reciprocal circuit element, characterized in that the upper case side a rare earth magnet.
前記2種以上の永久磁石の少なくとも一つが、RCo系、RCo17系、R−Fe−B系、R−Fe−N系(RはYを含む希土類元素のうちの一種又は2種以上)のいずれかの希土類磁石であることを特徴とする請求項1に記載の集中定数型非可逆回路。At least one of the two or more kinds of permanent magnets is RCo 5 series, R 2 Co 17 series, R—Fe—B series, R—Fe—N series (R is one or two of rare earth elements including Y) 2. The lumped constant type nonreciprocal circuit according to claim 1, wherein the lumped constant type nonreciprocal circuit is any one of the above rare earth magnets. 板状のSrフェライト磁石と希土類磁石とを耐熱性接着剤で貼り合わせて一体の永久磁石としたことを特徴とする請求項1又は2に記載の集中定数型非可逆回路。  The lumped-constant nonreciprocal circuit according to claim 1 or 2, wherein a plate-like Sr ferrite magnet and a rare earth magnet are bonded together with a heat-resistant adhesive to form an integral permanent magnet.
JP2000072320A 2000-03-15 2000-03-15 Lumped constant type nonreciprocal circuit device Expired - Lifetime JP4288638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072320A JP4288638B2 (en) 2000-03-15 2000-03-15 Lumped constant type nonreciprocal circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072320A JP4288638B2 (en) 2000-03-15 2000-03-15 Lumped constant type nonreciprocal circuit device

Publications (2)

Publication Number Publication Date
JP2001267810A JP2001267810A (en) 2001-09-28
JP4288638B2 true JP4288638B2 (en) 2009-07-01

Family

ID=18590750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072320A Expired - Lifetime JP4288638B2 (en) 2000-03-15 2000-03-15 Lumped constant type nonreciprocal circuit device

Country Status (1)

Country Link
JP (1) JP4288638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046809B (en) * 2015-12-08 2019-01-01 三菱电机株式会社 control system and control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929256B2 (en) 2002-09-03 2005-08-16 Konica Corporation Post processing device with saddle stitching
CN107431261A (en) * 2015-03-27 2017-12-01 株式会社村田制作所 Non-reciprocal circuit element, high-frequency circuit and communicator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046809B (en) * 2015-12-08 2019-01-01 三菱电机株式会社 control system and control device

Also Published As

Publication number Publication date
JP2001267810A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JPH11234003A (en) Irreversible circuit element
JP4288638B2 (en) Lumped constant type nonreciprocal circuit device
JP2009049879A (en) Two-port type irreversible circuit element
JP4947289B2 (en) Non-reciprocal circuit element
JP5158166B2 (en) Composite electronic module and method for manufacturing the composite electronic module
JP2018082229A (en) Irreversible circuit element and communication device using the same
EP1246292A3 (en) Two-port isolator and method for evaluating it
JP6705472B2 (en) Non-reciprocal circuit device and communication device using the same
JP4286785B2 (en) Non-reciprocal circuit element
JP2005184088A (en) Non-reciprocative circuit element and communication equipment
JP4423619B2 (en) Non-reciprocal circuit element
JP4831234B2 (en) Non-reciprocal circuit element
JPH1197911A (en) Concentrated constant type non-reciprocal circuit element
WO2012035724A1 (en) Complex electronic module
JPH09307315A (en) Irreversible circuit component
JP5233664B2 (en) Non-reciprocal circuit element components
JP3365057B2 (en) Non-reciprocal circuit device
JPWO2016158044A1 (en) Non-reciprocal circuit element, high-frequency circuit, and communication device
JP4650962B2 (en) Lumped constant type nonreciprocal circuit device
JP4650996B2 (en) Lumped constant nonreciprocal circuit device and mobile communication device using the same
JPH11308013A (en) Concentrated constant type non-reciprocal circuit element
JP2003318608A (en) Irreversible circuit element
JP4650995B2 (en) Lumped constant type nonreciprocal circuit device
JP3856230B2 (en) Non-reciprocal circuit element
JP6260246B2 (en) Module with non-reciprocal circuit element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4288638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

EXPY Cancellation because of completion of term