JP4287085B2 - 特に無線周波数信号受信器用の数値制御発振器 - Google Patents

特に無線周波数信号受信器用の数値制御発振器 Download PDF

Info

Publication number
JP4287085B2
JP4287085B2 JP2001382582A JP2001382582A JP4287085B2 JP 4287085 B2 JP4287085 B2 JP 4287085B2 JP 2001382582 A JP2001382582 A JP 2001382582A JP 2001382582 A JP2001382582 A JP 2001382582A JP 4287085 B2 JP4287085 B2 JP 4287085B2
Authority
JP
Japan
Prior art keywords
frequency
signal
oscillator
bits
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001382582A
Other languages
English (en)
Other versions
JP2002290154A (ja
Inventor
ピエール−アンドレ・ファリン
ジャン−ダニエル・エチエンヌ
ルード・リエム−ヴィス
エルハム・フィロウヅィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asulab AG filed Critical Asulab AG
Publication of JP2002290154A publication Critical patent/JP2002290154A/ja
Application granted granted Critical
Publication of JP4287085B2 publication Critical patent/JP4287085B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/68Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using pulse rate multipliers or dividers pulse rate multipliers or dividers per se
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/03Digital function generators working, at least partly, by table look-up
    • G06F1/0321Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
    • G06F1/0328Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers in which the phase increment is adjustable, e.g. by using an adder-accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B2001/70706Spread spectrum techniques using direct sequence modulation using a code tracking loop, e.g. a delay locked loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Circuits Of Receivers In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、GPSタイプの受信器など、特に無線周波数信号受信器用の数値制御発振器に関する。そのような発振器は、発振器の動作をクロックする第1周波数を有するクロック信号といくつかのビットによって定義された2進ワードとを1つの入力に受信し、1つの出力に、2進ワードとクロック信号の関数として定義された周波数を有する少なくとも1信号を提供することを意図する。
【0002】
【従来の技術】
所定の周波数を有する出力信号は、基本的には、矩形電圧パルスが連続する信号であり、パルスの幅と2つのパルスの間隔は、所与の時間帯で必ずしも均一ではない。この出力信号は、発振器の入力部で課された2進ワードの関数として、各クロック・ストロークごとに1または0の値を取る直列するビットの連続と見なすことが可能であることに留意されたい。当然、前記発振器は、その出力部で、直列するビットの異なる連続によって各々定義された2つ以上の出力信号を提供することが可能である。
【0003】
これらの数値制御発振器は、特に、環境にノイズが多い応用分野で使用される。ノイズが多い環境では、使用した信号は、発振器用の繊細な周波数分解能を維持しながら、非常に妨害の多い無線周波数信号から抽出しなければならない。これらの応用分野は、例えば、携帯電話、または主にGPS受信器などの無線周波数信号受信器である。
【0004】
無線周波数信号受信器の場合、一般に、受信した信号が前記無線周波数信号からメッセージを抽出するために復調される。通常、数値制御発振器は、そのような受信器の相関段の復調ループに配置されている。これらの発振器により、例えば受信無線周波数信号の搬送波周波数の複製を生成するために、所定の周波数の信号を提供すること、または、信号を補正することが可能になる。次いで、この周波数の複製は、有用な信号を抽出することができるように、受信器において形成された信号が、相関段で乗算される。
【0005】
より正確には、GPSタイプの受信器の場合、第1数値制御発振器は、受信信号の搬送波周波数の複製を生成するループに配置されている。第2数値制御発振器は、追跡する衛星の特徴的な擬似乱数コードPRNの複製を生成するループに配置されている。
【0006】
これらのGPSタイプの無線周波数受信器には、特に衛星から出た無線周波数信号用の受信アンテナと、アンテナによって提供された無線周波数信号用の受信および成形段と、受信段によって成形された中間信号を受信する相関段とが含まれる。相関段は、各々が相関器を含むいくつかのチャネルで形成されている。したがって、各相関器は、上述した2つの数値制御発振器を含む。
【0007】
また、前記受信器は、相関段に接続され、相関後、衛星によって送信されたGPS信号から抽出されたデータの関数として、X、Y、Zの位置、速度、および時間のデータを計算することを意図しているマイクロプロセッサを含む。GPS信号から抽出されたデータは、GPSメッセージと擬似距離である。通常、位置、速度、および局所的な時間などを決定するために、目に見える衛星4つが必要とされる。
【0008】
衛星は、現在地球の周りの軌道に24個あり、特に位置を計算するために使用される天体暦と暦のデータ・メッセージを搬送する無線周波数信号を送信することに留意されたい。これらの無線周波数信号は、1.57542GHzの第1搬送波周波数L1で形成されており、50HzのGPSメッセージを有する各衛星に特有である、10.23MHzのPコードと1.023MHzのC/A PRNコードで変調されている。また、前記衛星は、50HzのGPSメッセージとともに10.23MHzのPコードで変調された1.2276GHzの第2搬送波周波数L2を送信している。民間への応用では、C/Aコードを有する搬送波周波数L1のみが、GPSメッセージに従って、X、Y、Zの位置、速度、および時間を計算するために、地球上の受信器によって使用される。
【0009】
各衛星のC/A PRNコード(擬似乱数雑音)は、ゴールド・コードとも呼ばれ、衛星によって送信された信号を受信器の内部で区別することができるように、各衛星に固有の擬似乱数コードである。
【0010】
この擬似乱数PRNコードは、1023のチップで形成され、かつミリ秒ごとに反復されるデジタル信号である。また、この反復期間は、ゴールド・コードの用語である「エポック」によって定義される。チップは、ビットと同様に1または0の値を取ることに留意されたい。しかし、チップ(GPS技術で使用される用語)は、データの単位を定義するために使用されるビットとは区別されるべきである。
【0011】
ゴールド・コードは、32の衛星識別番号に対して定義され、この番号により、軌道面の1つにある軌道に配置されることになる各追加の衛星に割り当てられる特有のコードに対し、自由な選択肢が残される。一般に、GPS受信器は、これらのコードのデータをメモリに含み、ならびに、軌道における各対応する衛星の推定位置を含む。したがって、衛星のコード周波数と、推定された搬送波周波数とに関連する2進ワードを復調ループ内で使用される発振器に提供して、目に見える衛星を迅速に自動追跡することを可能にすることができる。
【0012】
例として、図1aは、無線周波数信号受信器において一般的に使用されるこのタイプの数値制御発振器を概略的に示す。発振器5は、その入力において、Nbビット位相レジスタ6に配置されている並行するNbビットを有する位相2進ワードを受信する。復調ループにおいて、主に位相オフセット2進ワードが、数値制御発振器に導入される。レジスタ6は、記憶されているNbのビットを、クロック信号CLKによってクロックされる位相アキュムレータ7に供給する。アキュムレータ7からの出力線N’bは前記アキュムレータの入力に接続されている。したがって、前記線上で平行である出力ビットまたは2進信号は、各クロック・ストロークにおいて、数Nbのビットに追加される。通常、出力ビットの数N’bは、2進ワード・ビットの数Nbに等しい。アキュムレータから出力されるLbビットが特に実時間の位相計算を実施するために、マイクロプロセッサに向けられる。Mbの2進信号は、発振器によって決定された周波数を有する出力信号として提供される。出力ビットの数Mbは、発振器に入力されるすべてのNbのビットに等しい必要はない。ほとんどの場合、ある最上位ビットのみが、出力信号を定義するために使用される。
【0013】
GPS受信器など、ほとんどの無線周波数受信器の応用分野では、消費電力を低減することが必要となる。この消費電力の低減は、そのような受信器が、電池またはアキュムレータ電源を含む小さな寸法の物に組み込まれているときに、特に必要不可欠となる。そのような物には、時計または携帯電話などがある。
【0014】
受信器の消費電力は、電池を非常に頻繁に交換すること、またはアキュムレータのエネルギーを短時間後に系統的に充電することを回避するために、これらの小さな物では大き過ぎてはならない。携帯物体のサイズに依存する電池が小さくなれば、回路に統合されているGPS受信器用に小さな電子ユニットを設計することが必要であることに留意されたい。さらに、GPSメッセージとピック・アップした各衛星の擬似距離を抽出するために、信号を前記回路で処理する方式を考慮しなければならない。
【0015】
図1aを参照して上述した標準的な数値制御発振器は、GPS受信器など、無線周波数信号受信器の相関段全体の消費電力に関する重要な部分を構成している。この発振器は、小さな周波数の分解能を有するために、十分大きくなければならない。クロック周波数CLKは、処理するためにサンプリングおよび定量化した信号に応じて、しばしば、数メガヘルツより大きいが、これは、発振器のすべての構成要素が、非常に高い周波数で動作することを意味する。したがって、これにより、そのような標準的な発振器の主な欠点である高い消費電力が生成される。
【0016】
日本特許公開第8−338865号は、GPS受信器を開示する。上述したしたタイプの数値制御発振器は、搬送波周波数複製生成ループの構成要素の数を減らすために、この受信器に装備されている。これを実施するために、加算器のいくつかの最下位ビットに最上位ビットを追加することを提案する。次いで、後の追加オペレーション用に加算器の入力に配置するために、最上位ビットをレジスタに保有する。この実施形態では、発振器の出力におけるサーチ表は、搬送波周波数複製の4分の1位相信号を生成するためにはもはや必要でない。4分の1位相信号は、XOR論理ゲートを通る発振器の2つの出力信号と、インバータを通る2つの出力信号の一方とによって供給される。使用した2つの発振器の出力信号は、出力信号の2つの最上位ビットである。発振器のループ出力構成要素の数を低減したにも関わらず、発振器自体の消費電力は大きく減少していない。したがって、この発振器は、全体としては、依然として、欠点である非常に高いクロック周波数で動作している。
【0017】
【発明が解決しようとする課題】
本発明の1つの目的は、可能な限り消費エネルギーを低減することができる特に無線周波数信号受信器用の数値制御発振器を提供し、同時に、従来の技術の発振器の欠点を克服することである。小さな周波数の分解能は、従来の技術の発振器と同等に維持されるが、対照的に、消費エネルギーは非常に低減される。
【0018】
【課題を解決するための手段】
この目的は、他の目的と共に、特に無線周波数信号受信器用である前述した数値制御発振器によって達成される。これは、数値制御発信器が、2進ワードの第1数の最上位ビットに対する第1累積段と、前記2進ワードの第2数の最下位ビットに対する第2累積段とを含み、第1累積段が、所定の周波数で出力信号を供給するために、第1周波数のクロック信号によってクロックされ、一方第2段が、第1クロック周波数のN分の1である第2周波数のクロック信号によってクロックされ、第2段からのある数の出力ビットまたは2進信号が、第1周波数のクロック信号の各Nサイクルごとに、第1段の入力において導入されることを特徴とする。
【0019】
多相数値制御発振器の1つの利点は、第1周波数のクロック信号のNサイクル中に、例えば発振器の半分のみを動作することによって、消費エネルギーを低減することにある。この多相発振器の分解能は、標準的な数値制御発振器と比較して低減されていない。この第1クロックの周波数は、数メガヘルツのオーダである。したがって、発振器の半分以上が、第1周波数におけるNクロック・ストローク中に待機状態にある場合、これにより、発振器の消費エネルギーを大きく低減することが可能になる。
【0020】
この多相発振器は、GPSタイプの無線周波数信号の場合など、ノイズが多い環境では特に有用である。
【0021】
2進ワードのある数の最上位ビットが、第1クロック周波数で動作する最上位ビット累積段に導入される。この部分は、従来の発振器の周波数分解能と同じ周波数分解能を維持するために、発振器のもっとも重要な部分である。2進ワードの最下位ビットは、第1周波数のN分の1である第2周波数で動作する最下位ビット段に導入される。最下位ビットの影響は、長期作用のみを有する。したがって、Nによって乗算されたこの累積段からの出力ビットまたは2進信号は、第1クロック周波数のNサイクル後に、最上位ビットの累積段にのみ導入される。
【0022】
Nは2のべき乗である。すなわち、Nは2mの値を有するように選択され、mは、2進数を定義する0より大きい整数であることが好ましい。Nの値は、16などの固定することが可能であり、これは、第2クロック周波数が、第1周波数の16分の1であることを意味する。多相発振器の消費エネルギーは、最上位ビットと最下位ビットの数が各累積段において均一に分配されている場合、従来の発振器の消費エネルギーのほぼ2分の1であると評価することができる。
【0023】
受信器で使用されるクロック周波数は、いくつかの部分を同一方式でクロックするために、受信無線周波数信号の周波数の関数として適合されている。これは、特に相関段において、やはり電子要素の数を低減し、したがって、受信器の消費エネルギーを低減する効果を有する。さらに、消費エネルギーの低減は、相関段に進む無線周波数信号の周波数を変換または圧縮することによって達成される。
【0024】
多相数値制御発振器の目的、利点、および特徴は、図によって示された本発明の実施形態に関する以下の記述において、より明らかになるであろう。
【0025】
【発明の実施の形態】
以下の記述では、GPSタイプの受信器など、低電力無線周波数信号受信器を使用することについてのみ、多相数値制御発振器を説明する。この受信器は、受信器の構成要素の電気電源用である電池またはアキュムレータを含む装置に配置されている。しかし、そのような多相発振器の使用は、携帯電話通信分野など、ノイズが多いまたは妨害されている環境に配置することができる他のあらゆる装置においても正当化することが可能である。
【0026】
図3に関して説明するように、2つの多相数値制御発振器は、GPS受信器の相関段の2つのループに配置されている。一方のループは、受信器によって受信された無線周波数信号の搬送波周波数複製の生成に関する。他方のループは、追跡する衛星を表す擬似乱数PRNコードの生成に関する。これらの発振器の機能は、出力に、所定の周波数を有する信号を供給することである。前記周波数は、発振器の入力に配置された2進ワード、ならびに、発振器を動作するためのクロック信号に依存する。
【0027】
図1bは、ビット並列アーキテクチャにおいて動作する多相数値制御発振器8の主要電子ユニットを示す。この発振器8は、本質的に、入力で受信されたNbのビットを有する2進ワードのOb個の最上位ビットに対する第1累積段と、前記2進ワードのPb個の最下位ビットに対する第2累積段とを含む。
【0028】
第2累積段は、2進ワードのPbの最下位ビットに対する、LSBAレジスタ(最下位ビット・アキュムレータ)と呼ばれる位相レジスタ9で形成されており、これに、ある数の出力信号または出力ビットを供給する位相アキュムレータ11が続く。レジスタ9に記憶されているPbのビットは、アキュムレータ11の入力に配置され、第2周波数CLK/Nの各クロック・ストロークにおいて、アキュムレータ11のP’bの先行出力ビットに加算される。通常、P’bの先行出力ビットの数は、レジスタ9からのPbのビットに等しい。アキュムレータに課された第2周波数の各クロック・ストロークにおいて、現在合計加算が、アキュムレータ11の出力において実施される。そのようなアキュムレータの設計は、この技術分野の当業者には、よく知られている。
【0029】
位相アキュムレータ11からのある数の出力2進ビットまたは信号Qbは、マルチプライヤまたはマルチプレクサ13において、Nによって乗算される。この乗算は、2進数(2n)にとって、出力ビットのN個の位置を最上位ビットに向けてシフトすることに相当する。Q’bの乗算されたビットは、Obの最上位ビットに追加するために、第1累積段の入力に導入される。このビット数Q’bは、第1周波数CLKにおけるクロック信号のNサイクル後にのみ値を変化する。この場合では、ビット数Q’bは、ビット数Qbに等しい。
【0030】
第1累積段は、第2段と同様に、2進ワードのObの最上位ビットに対する、レジスタMSBA(最上位ビット・アキュムレータ)と呼ばれる、位相レジスタ10で形成されている。レジスタ10には、所定の単数または複数の周波数出力信号Mbを含んでいるある数の出力2進信号またはビットを供給する位相アキュムレータ12が続く。単数または複数の信号Mbが、最上位ビットの中からアキュムレータ12の出力に選択される。レジスタ10に記憶されているObのビットは、第2累積段から出たQ’bのビットと同様に、アキュムレータ12の入力に配置される。ObのビットとQ’bのビットをアキュムレータ12からのO’bの先行する出力ビットに追加することは、第1周波数CLKの各クロック・ストローク上で実施される。通常、O’bの出力ビットは、レジスタ10から出たObのビットの数に等しい。第2累積段については、現在合計加算は、第1周波数CLKの各クロック・ストローク上でアキュムレータ12の出力において実施される。
【0031】
アキュムレータ12からのいくつかの出力ビットLbは、例えば位相または擬似距離の実時間の計算を実施するために、受信器のマイクロプロセッサに向けられる。
【0032】
第1累積段は、低電力GPS受信器における応用のために、4.36MHzなどの値を有することができる第1周波数CLKのクロック信号によってクロックされる。第2累積段は、第1クロック周波数CLKのN分の1である第2周波数CLK/Nのクロック信号によってクロックされる。
【0033】
値Nは、2の倍数として定義される。この値Nは、2mであるように選択され、mは、2進数の位置を定義するために、0より大きい整数であることが好ましい。この発振器では、第2クロック周波数は、例えば、第1クロック周波数の16分の1に固定されている。したがって、この場合では、272.5kHzの値を有することが可能である。
【0034】
第1クロック周波数CLKにおける各16のクロック・ストロークごとに、第2累積段からの出力ビットの異なるキャリー・オーバーが、第1段の単数または複数の出力信号に対し最終補正を実施するために、第1最上位ビット累積段の入力に加えられる。キャリー・オーバーを追加することによる変化は、第1段の各クロック・ストロークにおいて生じないので、エネルギーの大きな節約が達成される。
【0035】
低電力GPS受信器では、多相数値制御発振器は搬送波周波数複製生成ループ内に配置されている。前記搬送波NCO発振器の入力に供給された2進ワードは、例えば24ビットに固定されており、これは、例えば、12の最上位ビットObと12の最下位ビットPbに分割される。12のビットObは、2進ワードの位置[23:12]を占め、一方12のビットPbは、前記2進ワードの位置[11:0]を占める。図1bを参照すると、理論的には、アキュムレータ11からの出力ビットP’bの6つの最上位ビットQbまたはQ’bのみが第1累積段に使用されている。
【0036】
搬送波複製の周波数は、特にドップラー効果による周波数のオフセットを考慮して補正されなければならないので、2進ワードは、搬送波複製補正位相または位相オフセットに対応する発振器に導入される。そのような多相24ビットNCO発振器を有する周波数分解のΔfminは、以下の式によって定義される。
Δfmin=fclk-Nb
【0037】
この場合、クロック周波数fCLKは4.36MHzなので、これにより、260mHzに等しい周波数分解能が与えられる。
【0038】
他の多相数値制御発振器が、擬似乱数コードPRN生成ループに配置されている。コードNCO発振器の入力に供給された2進ワードは、例えば28ビットに固定されており、これは、例えば、14の最上位ビットObと14の最下位ビットPbに分割される。14のビットObは、2進ワードの位置[27:14]を占め、一方14のビットPbは、2進ワードの位置[13:0]を占める。図1bを参照すると、理論的には、アキュムレータ11からの出力ビットP’bの6つの最上位ビットQbまたはQ’bのみが、第1累積段に使用されている。
【0039】
クロック信号に対応する出力信号は、擬似乱数コード生成装置に提供されなければならないので、2進ワードが、PRNコード複製を生成するための位相または位相オフセットに対応する多相コードNCO発振器に導入される。無線周波数信号の位相、ならびにコードNCO発振器の2進ワードに対する搬送波周波数のオフセットを考慮しなければならない。そのような多相28ビットNCO発振器を有する周波数分解のΔfminは、16mHz程度である。
【0040】
多相搬送波NCO発振器用であるか多相コードNCO発振器用であるかに関わらず、最上位ビットと最下位ビットの間には均一な分配が存在するので、第1近似における消費エネルギーは、標準的な発振器の2分の1である。当然、さらに消費エネルギーを低減するために、最下位ビットの数を犠牲にして、最上位ビットの数をさらに低減することができる。しかし、この場合、位相エラーがわずかに増大する可能性がある。さらに、前記発振器のビット数は、以前に定義した24ビットおよび28ビットとは異なることがあり得る。
【0041】
復調ループの先行弁別器によって発振器の入力において供給された2進ワードは、各サイクルがミリ秒の期間(エポック)を有するある数の統合サイクルの後に変更される。この場合、16サイクルすなわち16ms後に、発振器に供給された2進ワードを変更することを選択している。
【0042】
図2では、多相数値制御発振器(NCO)の実施形態が、より詳細に示されている。簡単化のために、2つの2進ワード用の入力レジスタは示さず、図2に負担をかけ過ぎることを回避していることに留意されたい。この発振器は、搬送波周波数複製ループおよび擬似乱数コード複製生成ループの両方において使用することが可能である。
【0043】
NbおよびNbφと記されている2つの2進ワードが、発振器の入力に導入される。Nbビットを有する第1の2進ワードは、相関オペレーションと統合オペレーションが実施された後、搬送波またはコード・ループにおいて生成された位相オフセットまたは位相あるいは周波数の増分に関連する。Nbφを有する第2の2進ワードは、全復調オペレーション中固定されている。この第2の2進ワードは、受信器のメモリから抽出されたコードまたは周波数搬送波に関する値に関連する。さらに、この第2の2進ワードは、サーチした目に見えるものをより迅速に自動追跡することを可能にするために必要であるが、その理由は、受信無線周波数信号は、非常に妨害されているからである。
【0044】
無線周波数信号の擬似乱数コードおよび搬送波周波数はよく知られていることに留意されたい。軌道の衛星に関するいくつかのデータは、受信器のマイクロプロセッサに接続されているメモリに記憶されている。このデータは、前記衛星の位置、ゴールド・コード、および、スイッチ・オンしたときに地球上のGPS受信器が見ることができるものに関する。したがって、マイクロプロセッサは、特にドップラー効果によるオフセットの関数として補正された搬送波周波数を見出し、かつ衛星の位相コードを決定するために、追跡する衛星の軌道における位置を計算することができる。この第2の2進ワードは、復調ループの妨害された信号から有用な信号を抽出することを可能にするために、発振器のループの第1の2進ワードに追加される。
【0045】
第1の2進ワードのビット数は、第2の2進ワードのビット数に等しい。第1および第2の2進ワードの同じ数の最上位ビットObとObφが、第1最上位ビット累積段12に導入される。第1の2進ワードと第2の2進ワードの同じ数の最下位ビットPbとPbφが、第2累積段11に導入される。
【0046】
この第2累積段11は、まず、入力に第1と第2の2進ワードの最下位ビットPbとPbφを受信するキャリー保存加算器110(CSA)を含む。加算器110からのキャリー・ビットC1を有する出力ビットS1は、キャリー伝播加算器111(CPA)の入力に導入される。加算器111からの出力ビットS2は、値272.5kHzを有することが可能である第2クロック周波数CLK/Nによってクロックされるフリップ・フロップ段112の入力に配置される。フリップ・フロップ段112で作成された各クロック・ストロークCLK/Nについて、新しい2進信号S3または出力ビットが生成される。フリップ・フロップ段からのP’b個の出力ビットが、図1bに関して議論したように、加算器110の入力に導入される。この出力ビットS3の数は、ビット数P’bに等しく、したがって、第2周波数CLK/Nにおける各クロック・ストローク上で、新しい2進信号または出力ビットP’bが、加算器110において、最下位ビットPbおよびPbφに追加される。
【0047】
フリップ・フロップ段112からのある数Qbの出力ビットは、主に最上位ビットであり、マルチプライヤまたはマルチプレクサ13の入力に配置される。制御信号MX−NCOにより、Qbの出力ビットの現在合計加算を第1累積段に対して実施することが可能になる。この制御信号は、第2クロック周波数CLK/Nに等しい周波数を有する。乗算またはより正確には最上位ビットに向けたN個の位置のシフトは、乗算したビット数Q’bを第1累積段の入力に提供するために、Qbの出力ビットについて実施される。
【0048】
第1累積段12は、まず、第1および第2の2進ワードのObとObφの最上位ビットと、第2累積段11のQ’bのビットを入力に受信する第1キャリー保存加算器(CSA)120を含む。加算器120からのキャリー・ビットC4を有する出力ビットS4は、第2キャリー保存加算器121の入力に導入される。加算器121からの出力ビットS5とキャリー・ビットC5は、キャリー伝播加算器(CPA)に対応する、Brent&Kuhnタイプの加算器(BKA)122の入力に配置される。加算器122からの出力ビットS6は、値4.36MHzを有してもよい第1クロック周波数CLKによってクロックされるフリップ・フロップ段123の入力に配置される。フリップ・フロップ段123上の各クロック・ストロークCLK上で、新しい2進信号S7または出力ビットが生成される。フリップ・フロップ段123からのO’b個の出力ビットは、図1bに関して議論したように、加算器121の入力に導入される。出力ビットS7の数は、ビット数O’bに等しく、したがって、第1周波数CLKにおける各クロック・ストローク上で、新しい2進信号または出力ビットO’bが、加算器121において出力ビットS4およびキャリー・ビットC4に追加される。1つまたは2つの所定の周波数出力信号Mbは、出力ビットS7から抽出される。これらの信号Mbは、出力ビットS7の最上位ビットの中から選択される。
【0049】
アドレスCSAまたはCPAの作成に関しては、読者は、より詳細のために、キャリー保存加算器について開示している米国特許第4、110、832号、または1990年9月の「Fast carry save adder」という名称の文献の157ページから159ページ(ref90A63170)、およびIBM Technical Disclosure Bulletinの1981年3月「Adder Architecture」の4587ページから4590ページ(ref81A02029)などを参照することが可能である。Brent&Kuhn加算器については、1982年3月のIEEE Trans.on Computers、vol.31の260ページから264ページより抜粋したR.P.BrentとH.T.Kuhnによる「A Regular Layout for Parallel Adders」という名称の文献を参照することが可能である。
【0050】
多相コード発振器の場合、出力信号Mbは、擬似乱数コード生成装置用に補正されたクロック信号PRN−CLKに対応する。対照的に、多相搬送波発振器の場合、2つの出力信号Mbは、搬送波周波数複製の4分の1の位相信号を生成するために、論理ゲートに導入されるように生成される。
【0051】
低電力GPS受信器は腕時計などに装備することができる。この時計は、小さなサイズのアキュムレータまたは電池を有するが、これは、GPS受信器が動作しているとき、消費される電力が、可能な限り低くなければならないことを意味する。この理由のために、GPS受信器は、多相数値制御発振器を備えているが、その理由は、本質的な消費エネルギーは、相関段の発振器と積分器によるからである。
【0052】
図3は、低電力GPS受信器1を示す。これは、いくつかの衛星からの無線周波数信号を受信するアンテナ2と、アンテナ2によって提供された無線周波数信号に対する受信および整形段3を有する。また、受信器は、受信段3の出力において、複素形態の中間信号IFを受信する相関段4と、GPSメッセージを処理するための図示されていないマイクロプロセッサを含む。前記相関段は、12個などいくつかのチャネルで形成されているが、図3には、1つのチャネルのみが示されている。
【0053】
受信段3では、相関段において4.36MHzでサンプリングすることによって、中間複素信号IFが400KHzの周波数で提供される。したがって、この中間複素信号IFは、同相信号Iと4分の1位相信号Qで形成される。
【0054】
こられの場合の半分では、整形段において処理された信号は、パリティが異なる(+1と−1)信号を与えるので、受信器においてGPS信号を復調するオペレーションのために、このパリティを考慮に入れなければならない。
【0055】
低電力GPS受信器の場合、搬送波周波数に対する1ビットの定量化において中間信号IFを出力することが推奨される。これは、この定量化が、信号雑音比(SNR)について、3dBのオーダの追加損失を生成する場合でも同様である。
【0056】
整形段3のクロック信号生成器は、クロック信号を供給するために、例えば水晶発振器を含む。低電力GPS受信器の応用分野では、水晶発振器には、4.36MHzの第1クロック信号と第1クロック信号のN分の1の周波数である第2クロック信号を提供することができる周波数分周器が続く。この第2クロック信号CLK16は、例えば、16に等しい値Nに相当する272.5kHzに固定されている。
【0057】
これらの2つのクロック信号により、相関段のいくつかの部分、特に上述した2つの数値制御発振器をクロックすることが可能になる。
【0058】
4.36MHzの周波数は、さらに小さくすることができるが、その理由は、2つの基準がこの値を定義するからである、ということに留意されたい。第1の基準は、アンチオーバーラッピング・フィルタの帯域幅がクロック周波数を最小限の3MHzに制限する複素サンプリング・アルゴリズムに関づける。第2の基準は、PRNコード(1.023MHz)と搬送波(400kHz)のクロック周波数と非同時性でなければならないクロック周波数である。整形段RF/IFのある規準の関数として、前記第1クロック周波数は、4.36MHzに固定されている。
【0059】
復調されたメッセージのデータは、50Hzの周波数の信号であり、相関段に続くマイクロプロセッサに提供される。
【0060】
前述したように、いくつかの衛星から出たいくつかの無線周波数信号は、アンテナで受信される。C/Aコードは直交しているので、受信器のチャネルは、同時に機能して、各々それぞれの衛星を自動追跡することができる。
【0061】
相関段に提供された中間信号IFは、有用な信号より大きい一般にほぼ16dBの雑音を含むが、この理由は、受信器が復調しなければならない信号の形状を知るために必要だからである。これは、チャネルが、それぞれの目に見える衛星を自動追跡した後、マイクロプロセッサに対し、IF信号の相関とGPSメッセージの復調を保証するために役立つ。
【0062】
第1衛星サーチ相では、チャネルがサーチを開始することができるように、周波数パラメータが確立され、PRNコードがロードされる。これは、1つのチップの分解能を有する単一搬送波周波数において可能なすべての位相を調査する。衛星が見つけられたとき、回路は信号を自動追跡し、同時に内部に生成された搬送波周波数とコード周波数が適合される。信号のパワーが十分である限り、チャネルは、ビットの同期化を続行し、GPSメッセージを抽出する。
【0063】
擬似距離を決定するために、PRNコード生成装置の状態、ならびに多相NCO発振器の現在のコード位相は、同時に各チャネルに転送される。これにより、マイクロ秒未満の分解能で、受信器を衛星から分離している距離に関する情報を見つけることが可能になる。しかし、マイクロプロセッサがすべての位置、速度、および時間のデータを抽出することができるように、少なくとも4つの衛星を自動追跡することが必要である。
【0064】
受信器チャネルの相関段については、図3を参照して、以下でより詳細に説明する。この相関段は、PRNコード制御ループの部分および搬送波周波数制御ループの他の部分と共に示されている。この相関段に関するより詳細については、読者は、Philip Wardと編集者Elliott D.Kaplanによる本「Understanding GPS Principles andApplications」の第5章から抜粋した開示を参照することが可能である(Artech House Publishers、USA1996 ISBN編集番号第0−89006−793−7)。また、読者は、1996年にAmerican Institute of Aeronautics and Astronauticsによって出版されたA.J.Van Dierendonckによる「Global Positioning Systemand Applications」という本の「GPS受信器」という名称の第8章を参照することが可能である。
【0065】
相関段では、エネルギー保存のために、パンクチュアルな構成要素は、コード制御ループから除去されているが、信号対雑音比に2.5dB程度の損失が観測されている。
【0066】
図3において、2ビットを定義する斜線が交差している太い線によって表されている中間信号IFは、1ビットの同相信号で形成された複素信号(1+iQ)と1ビットの4分の1位相の信号である。前記中間信号IFは、サンプリングおよび定量化されており、まず、搬送波マルチプライヤ段20を通過する。マルチプライヤ21は、複素信号から同相信号Iを抽出するために、内部に生成された搬送波複製の余弦マイナスiかける正弦によって、信号IFを乗算する。マルチプライヤ22は、複素信号から4分の1位相信号Qを抽出するために、内部に生成された搬送波複製のマイナス正弦マイナスiかける余弦によって信号IFを乗算する。
【0067】
このオペレーション後、獲得する衛星の信号PRNコードの同等物を、望ましい衛星に対応するチャネルで生成されたPRNコードでスイッチ・オンされたチャネル内で見つけなければならない。これを実施するために、同相信号と4分の1位相信号は、マルチプライヤ23の第2段を通過して、信号IおよびQをPRNコードの早期複製および後期複製と相関させて、4つの相関信号を獲得する。相関段の各チャネルでは、パンクチュアルな複製を考慮せずに、早期複製と後期複製のみが、3つの複製の代わりに維持される。これにより、相関要素の数を最小限に抑えることが可能になる。
【0068】
マルチプライヤ24は、2ビットのレジスタ36から信号Iと早期複製信号Eを受信して、相関早期同相信号を供給する。マルチプライヤ25は、レジスタ36から信号Iと後期複製信号Lを受信して、後期同相相関信号を供給する。マルチプライヤ26は、4分の1位相信号Qと早期信号Eを受信して、相関早期4分の1位相信号を供給する。最後に、マルチプライヤ27は、信号Qと後期複製信号Lを受信して、相関後期4分の1位相信号を供給する。早期複製Eと後期複製Lの間の位相オフセットは、本発明の実施形態ではチップの2分の1であり、これは、パンクチュアルな中央構成要素Pに関する位相オフセットが、チップの1/4であることを意味する。マルチプライヤは、簡単化のために、×OR論理ゲートなどを使用して作成することが可能である。
【0069】
チップの2分の1離れている早期信号と後期信号については、低電力GPS受信器においてあらゆる不必要な消費を回避する目的で、衛星が獲得されたときに検出されたエネルギー点をピック・アップするために使用され、これにより、パンクチュアルな信号の使用が不必要になる。それにも関わらず、これらの早期構成要素と後期構成要素を使用することは、衛星を獲得するのに十分である。
【0070】
4つの相関信号は、各々、事前検出要素である積分器カウンタ28、29、30、31の1つに入る。出力値IES、ILS、QES、およびQLSは、C/A PRNコードの完全なサイクルが、前記値を見つけるために必要であったことを意味する10ビットに示されている。値IES、ILS、QES、およびQLSの完全なセットは、各ミリ秒または各エポックごとに獲得される。これらの積分器に続くループにおけるすべてのオペレーションは、1kHzの周波数の信号を有するビット並列アーキテクチャにおいて行われる。復調する有用な信号の雑音部分を除去するために、デジタル信号処理チェーンの残りに対して、8つの最上位ビットのみを使用する。
【0071】
8ビットを定義する斜線が交差している太い線によって図に表した信号IES、ILS、QES、およびQLSの値は、コード・ループ弁別器32とコード・ループ・フィルタ33内に渡される。コード・ループ弁別器は、信号IES、ILS、QES、およびQLSのエネルギーの計算オペレーションを実施する。弁別器は、当業者にはよく知られている遅延ロック・ループ(DLL)タイプの非干渉性弁別器である。これは、特に8ビットのマルチプライヤと20ビットのアキュムレータで形成されている。この弁別器上で、搬送波ループから補正が行われるが、その理由は、衛星による信号の放出中に、搬送波周波数に関してだけでなく、搬送波周波数上で変調されたPRNコードに関してもドップラー効果が感知されるからである。コード・ループ弁別器における搬送波の寄与は、1540の搬送波オフセットの増分による分割に対応する。
【0072】
弁別器のろ過した結果に応じて、位相の増分が28ビットのNCOに課される。多相NCO発振器は、クロック信号PRN−CLKの周波数を補正して、クロック信号PRNコード生成装置35をクロックし、これがC/A PRNコードの一連のビットをレジスタ36に送信して、新しい相関を生成するようにする。この28ビットNCOの周波数分解能は、16mHzのオーダである。コードのNCOでは、位相増分の第1の2進ワードの他に、PRNコードに対する理想的な周波数値、すなわち1.023MHzの周波数に対応する、第2の2進ワードも入力されている。
【0073】
望ましい衛星に同期化し、同時追跡した後、値IESとILSは、データ・メッセージを50Hzオーバー1ビット(at 50 Hz over 1 bit)でマイクロプロセッサに提供することができるように、復調要素50に導入される。メッセージの他に、マイクロプロセッサは、X、Y、およびZの位置、速度、および正確な普遍時間を計算するために、バッファ・レジスタにおいて導入された擬似距離に関するデータを特に使用することができる。
【0074】
上記で説明した要素については、この技術分野の当業者の一般的な知識の一部を形成する場合には、さらに詳細には説明しない。
【0075】
図3を参照すると、信号IFは、マルチプライヤ21において内部に生成された搬送波複製の余弦マイナスiかける正弦と、マルチプライヤ22において内部に生成された搬送波複製のマイナス正弦マイナスiかける余弦によって乗算されている。これらの正弦信号および余弦信号は、複製信号用のCOS/SIN表のユニット45から発信される。目的は、GPSメッセージを搬送波している信号から、明確に搬送波周波数を抽出することである。
【0076】
加算器37における信号IESとILSの和を使用して、信号IPSを創出し、信号QESとQLSの和を使用して、信号QPSを創出する。両方とも8ビットで表されている。これらの値は、信号のエネルギーを計算するために、搬送波ループ・フィルタ43が続いている搬送波ループ弁別器42(包絡線検出)に1kHZの周波数で導入される。弁別器は、特に8ビットのマルチプライヤと20ビットのアキュムレータを備える。周波数と位相ロック・ループのタイプである。
【0077】
搬送波追跡ループの堅牢性と精度を増大するために、周波数弁別器上で平均的なオペレーションを実施する。以前に定義したように、アキュムレータに提供された累積は、16msに相当する16サイクルの間継続する。
【0078】
弁別器の結果に応じて、フィルタ通過後、24ビットの搬送波NCO44は、搬送波周波数複製補正のために周波数の増分(bin)を受信する。この24ビットのNCOは、260mHzのオーダの周波数分解能を有する。搬送波NCOでは、周波数増分の第1の2進ワードの他に、ドップラー効果を考慮に入れた搬送波周波数値に対応する第2の2進ワードも入力されている。
【0079】
2つのコードと搬送波コードのエンスレービング手順(enslaving procedure)は、追跡中に同期化されるが、搬送波追跡ループは、衛星信号の存在確認後にのみ更新される。
【0080】
獲得と追跡のアルゴリズムは、復調のために、衛星搬送波周波数複製を必要とする。移動時に衛星からの無線周波数信号のあらゆる送信に内在する±4.5kHzの間の周波数エラーを生じる可能性があるドップラー効果の排除は、受信器に入る信号の位相または周波数を適合することによって除去される。
【0081】
内部発振器の不正確さまたは電離圏の作用による他のエラーは、ドップラー効果のみによるエラーを増大する。一般的に、最高でほぼ±7.5kHzの周波数のオフセットを予期することができる。これらのエラーは、当然、獲得および追跡段中に、コード・ループおよび搬送波ループにおいて補正することができる。
【0082】
各相関エポックにおいて、PRNコード位相は、1チップの増分によって遅延することができる。これにより、衛星の位相オフセットを見つけるために、コードを時間についてシフトすることが可能になる。衛星を見つけた後は、搬送波の制御ループにおいて生じるドップラー効果を含む搬送波周波数を補正しなければならない。受信した搬送波周波数と生成された搬送波周波数の相違は、ほぼ250Hzに限定されているので、生成された搬送波に関して異なる周波数におけるいくつかのサーチが必要である。最悪の場合、搬送波NCOの周波数を補正するために、最高で20のサーチ装置が必要である。
【0083】
また、NCOとして定義された多相数値制御発振器は、小さな周波数分解能を有するために、十分大きくなければならず、これは、著しい消費電力をもたらすことに留意されたい。多相タイプの発振器を作成することによって、発振器の2段におけるビットの寄与に応じて、消費は、少なくとも2分の1未満に低減される。
【0084】
さらに、各復調ループにおいて、最小限に抑えなければならない発振器の熱雑音と定量化雑音を考慮しなければならない。多相発振器の場合、定量化雑音は、標準的な発振器よりわずかに大きいが、この定量化雑音は、熱雑音よりはるかに小さいままである。したがって、各復調ループにおけるオペレーションは、大きな問題なく、達成することができる。
【0085】
当然請求項によって定義されている本発明の範囲から逸脱せずに、特に低電力GPS受信器用の多相数値制御発振器に関する他の実施形態を等業者が構想することができる。多相発振器の出力信号も、記述した矩形の形状ではなく、類似のタイプの信号とすることができる。同様に、発振器の入力において導入された2進ワードは、連続形態で提供することができたが、この場合、発振器の入力において、いくつかの厄介な問題が生じたであろう。
【図面の簡単な説明】
【図1a】従来の技術の数値制御発振器を示す概略図である。
【図1b】本発明による多相タイプの数値制御発振器を示す概略図である。
【図2】本発明による多相タイプの数値制御発振器の実施形態をより詳細に示す図である。
【図3】本発明による2つの多相数値制御発振器を有するチャネルの相関段を含むGPS受信器を示す概略図である。
【符号の説明】
1 低電力GPS受信器
2 アンテナ
3 受信および整形段
4 相関段
5 発振器
6 Nbビット位相レジスタ
7 Nbビット位相アキュムレータ
8 多相数値制御発信器
9、10 位相レジスタ
11 位相アキュムレータ、第2累積段
12 位相アキュムレータ、第1累積段
13 マルチプライヤまたはマルチプレクサ
20 搬送波マルチプライヤ段
21、22、23、24、25、26、27 マルチプライヤ
28、29、30、31 積分器カウンタ
32 コード・ループ弁別器
33 コード・ループ・フィルタ
35 PRNコード生成装置
36 2ビットのレジスタ
37 加算器
42 搬送波ループ弁別器
43 搬送波ループ・フィルタ
50 復調要素

Claims (6)

  1. 特に無線周波数信号受信器用の数値制御発振器(8)であって、該発振器は、1つの入力部で発振器の動作をクロックする第1周波数(CLK)を有するクロック信号と所定数のビットの第1の2進ワード(Nb)とを受信し、1つの出力部で前記第1の2進ワードと前記クロック信号との関数として決定された周波数を有する少なくとも1つの出力信号を提供し、該発信器が、前記第1の2進ワードの最上位ビット(Ob)の第1数に対する第1累積段(12)と、前記第1の2進ワードの最下位ビット(Pb)の第2数に対する第2累積段(11)とを含み、第1累積段が、所定の周波数出力信号を供給するために、第1クロック周波数(CLK)でクロックされ、一方第2累積段は、第1クロック周波数のN分の1である第2クロック周波数(CLK/N)でクロックされ、第2累積段からの出力ビット(Qb)または2進信号が、第1周波数のクロック信号のNサイクルごとに、第1累積段の入力部に導入されることを特徴とする発振器。
  2. 第2累積段(11)からの出力ビット(Qb)の数が、マルチプライヤまたはマルチプレクサ(13)でN倍され、その後、第1累積段(12)の入力に導入されることを特徴とする請求項1に記載の発振器。
  3. 2つの累積段(11、12)の各々が、ビット並列アーキテクチャで前記第1の2進ワード(Nb)を受信するために、少なくともレジスタ(9、10)を入力部に含み、第1レジスタ(10)が最上位ビット(Ob)の第1数を受信し、第2レジスタ(9)が最下位ビット(Pb)の第2数を受信し、最上位ビットと最下位ビットの合計数が第1の2進ワードのビット数と等しいかまたはそれ未満であることを特徴とする請求項1に記載の発振器。
  4. 第1累積段が少なくとも第1アキュムレータ(12)を含み、所定数の並列出力ビット(O’b)または2進信号を定義するその出力線が、第1クロック周波数(CLK)の各サイクルごとに第1の2進ワードの最上位ビット(Ob)の第1数の加算を実行するために第1アキュムレータの入力に接続され、第2累積段が少なくとも第2アキュムレータ(11)を含み、所定数の平行出力ビット(P’b)または2進信号を定義するその出力線が、第2クロック周波数(CLK/N)の各サイクルごとに第1の2進ワードの最下位ビット(Pb)の第2数の加算を実行するために第2アキュムレータの入力に接続されていることを特徴とする請求項1から3のいずれか一項に記載の発振器。
  5. 前記発振器が、無線周波数信号受信器の擬似乱数コード複製生成ループの一部を形成し、前記コードが送信衛星を表し、第1累積段の第1入力レジスタ(10)が、コード位相オフセットを定義する第1の2進ワードの最上位ビット(Ob)の第1数を記憶し、第2累積段の第2入力レジスタ(9)が、前記第1の2進ワードの最下位ビット(Pb)の第2数を記憶し、第1累積段が、1つの出力部で前記第1の2進ワード(Nb)と第1クロック周波数(CLK)の関数として擬似乱数コード生成装置(35)用のコード・クロック信号(PRN−CLK)を提供することを特徴とする請求項1に記載の発振器。
  6. 前記発振器が無線周波数信号受信器の周波数搬送波複製生成ループの一部を形成し、第1累積段の第1入力レジスタ(10)が周波数搬送波位相オフセットを定義する第1の2進ワード(Nb)の最上位ビット(Ob)の第1数を記憶し、第2累積段の第2入力レジスタ(9)が前記第1の2進ワードの最下位ビット(Pb)の第2数を記憶し、第1累積段が、1つの出力部で少なくとも2つの出力線上にて、前記第1の2進ワード(Nb)と第1クロック周波数(CLK)の関数として搬送波周波数複製生成表(45)に搬送波周波数2進信号を提供することを特徴とする請求項1に記載の発振器。
JP2001382582A 2000-12-15 2001-12-17 特に無線周波数信号受信器用の数値制御発振器 Expired - Fee Related JP4287085B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH24492000 2000-12-15
CH2449/00 2000-12-15

Publications (2)

Publication Number Publication Date
JP2002290154A JP2002290154A (ja) 2002-10-04
JP4287085B2 true JP4287085B2 (ja) 2009-07-01

Family

ID=4569311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001382582A Expired - Fee Related JP4287085B2 (ja) 2000-12-15 2001-12-17 特に無線周波数信号受信器用の数値制御発振器

Country Status (7)

Country Link
US (1) US6650150B2 (ja)
JP (1) JP4287085B2 (ja)
KR (1) KR100838945B1 (ja)
CN (1) CN100409026C (ja)
CA (1) CA2362232A1 (ja)
HK (1) HK1047976B (ja)
TW (1) TW531952B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7555033B2 (en) * 2004-06-22 2009-06-30 The Aerospace Corporation Binary offset carrier M-code envelope detector
GB0417717D0 (en) * 2004-08-10 2004-09-08 Koninkl Philips Electronics Nv Identifying a reference point in a signal
US20060034354A1 (en) * 2004-08-16 2006-02-16 Camp William O Jr Apparatus, methods and computer program products for positioning system signal processing using parallel computational techniques
KR100663938B1 (ko) * 2005-11-16 2007-01-02 엠텍비젼 주식회사 수치제어발진기 및 이의 보정 방법
US20080159198A1 (en) * 2006-12-27 2008-07-03 Mediatek Inc. Boc signal acquisition and tracking method and apparatus
US8090755B1 (en) * 2007-05-25 2012-01-03 Xilinx, Inc. Phase accumulation
DE102011003738B4 (de) 2011-02-08 2018-12-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Verringerung von Signalflankenjitter in einem Ausgangssignal eines numerisch kontrollierten Oszillators
CN107037984B (zh) * 2013-12-27 2019-10-18 威盛电子股份有限公司 数据储存装置及其数据写入方法
US11656848B2 (en) 2019-09-18 2023-05-23 Stmicroelectronics International N.V. High throughput parallel architecture for recursive sinusoid synthesizer
CA3212306A1 (en) * 2021-03-16 2022-09-22 Brent Carlson An incoherent clocking method
CN113805840B (zh) * 2021-11-18 2022-05-03 南京风兴科技有限公司 快速累加器
US12028083B2 (en) 2022-12-01 2024-07-02 Analog Devices International Unlimited Company Phase consistent numerically controlled oscillator

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241308A (en) * 1978-12-29 1980-12-23 Alfred Cellier Digital numerically controlled oscillator
US5073869A (en) 1989-08-25 1991-12-17 Titan Linkabit Corporation Suppression of spurious frequency components in direct digital frequency synthesizer
US5142487A (en) * 1991-01-29 1992-08-25 Graham Iii Hatch Numerically controlled oscillator
US5224125A (en) * 1991-04-05 1993-06-29 National Semiconductor Corporation Digital signed phase-to-frequency converter for very high frequency phase locked loops
US5371765A (en) 1992-07-10 1994-12-06 Hewlett-Packard Company Binary phase accumulator for decimal frequency synthesis
US5493700A (en) * 1993-10-29 1996-02-20 Motorola Automatic frequency control apparatus
US5521534A (en) * 1995-06-21 1996-05-28 Dsc Communications Corporation Numerically controlled oscillator for generating a digitally represented sine wave output signal
US5673212A (en) * 1995-09-01 1997-09-30 Motorola, Inc. Method and apparatus for numerically controlled oscillator with partitioned phase accumulator
US5646967A (en) 1996-05-09 1997-07-08 National Semiconductor Corporation Multi-phase triangular wave synthesizer for phase-to-frequency converter
JPH10200336A (ja) * 1997-01-08 1998-07-31 Nec Eng Ltd 数値制御発振器
KR100539508B1 (ko) * 1998-10-21 2006-03-23 엘지전자 주식회사 수치 제어 오실레이터
US6232878B1 (en) * 1999-05-20 2001-05-15 Checkpoint Systems, Inc. Resonant circuit detection, measurement and deactivation system employing a numerically controlled oscillator
US6252464B1 (en) * 1999-10-06 2001-06-26 Cubic Defense Systems, Inc. Numerically-controlled nyquist-boundary hopping frequency synthesizer
US6320431B1 (en) * 1999-10-08 2001-11-20 National Semiconductor Corporation Apparatus and method of generating numerically controlled oscillator signals

Also Published As

Publication number Publication date
HK1047976B (zh) 2009-05-15
CN100409026C (zh) 2008-08-06
KR20020047001A (ko) 2002-06-21
JP2002290154A (ja) 2002-10-04
TW531952B (en) 2003-05-11
KR100838945B1 (ko) 2008-06-16
US6650150B2 (en) 2003-11-18
US20020075077A1 (en) 2002-06-20
HK1047976A1 (ja) 2003-03-14
CN1363843A (zh) 2002-08-14
CA2362232A1 (en) 2002-06-15

Similar Documents

Publication Publication Date Title
JP3947732B2 (ja) 拡散スペクトラム受信機のための相関器
JP4674707B2 (ja) スペクトラム拡散レシーバのアーキテクチャおよびその方法
JP4048566B2 (ja) 信号取得の効率のよいgps受信器
JP4386464B2 (ja) 電力効率のよい受信器
JP3992294B2 (ja) Gps受信器における取得前の周波数オフセット除去
US7085309B2 (en) Radiofrequency signal receiver with means for correcting the effects of multipath signals, and method for activating the receiver
US6912242B2 (en) Low power RF receiver with redistribution of synchronisation tasks
US7079076B2 (en) Method of determining the position of a radio-frequency signal receiver without knowledge of the initial approximate position, and receiver for implementing the same
JP4287085B2 (ja) 特に無線周波数信号受信器用の数値制御発振器
US7092433B2 (en) Radiofrequency signal receiver with means for improving the reception dynamic of said signals
CN211577433U (zh) 全球导航卫星系统接收器装置
US7696925B2 (en) Memory reduction in GNSS receiver
EP1426782B1 (en) Parallel correlator for a spread spectrum receiver
Sagiraju et al. Block correlator for tracking GPS/GNSS Signals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees