JP4286062B2 - Power generation apparatus and power generation method - Google Patents

Power generation apparatus and power generation method Download PDF

Info

Publication number
JP4286062B2
JP4286062B2 JP2003152905A JP2003152905A JP4286062B2 JP 4286062 B2 JP4286062 B2 JP 4286062B2 JP 2003152905 A JP2003152905 A JP 2003152905A JP 2003152905 A JP2003152905 A JP 2003152905A JP 4286062 B2 JP4286062 B2 JP 4286062B2
Authority
JP
Japan
Prior art keywords
generator
working medium
turbine
cooling
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003152905A
Other languages
Japanese (ja)
Other versions
JP2004353571A (en
Inventor
修行 井上
毅一 入江
哲也 遠藤
知行 内村
弘之 加藤
淳 金子
幸夫 村井
良男 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003152905A priority Critical patent/JP4286062B2/en
Publication of JP2004353571A publication Critical patent/JP2004353571A/en
Application granted granted Critical
Publication of JP4286062B2 publication Critical patent/JP4286062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Motor Or Generator Frames (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、比較的低温の排熱などを回収して、この熱エネルギーを電力に変換する発電装置および発電方法に係り、特にタービン発電機またはその周辺機器の作動媒体を利用した冷却に関する。
【0002】
【従来の技術】
200〜400℃程度の排ガスあるいは100〜150℃の排温水など比較的低温度の廃熱を有効に発電電力として回収することが試みられている。このような低温度の廃熱の回収は、いわゆるランキンサイクル等を利用したクローズドシステムの発電装置として実現可能であり、装置のコンパクト化のために、作動媒体として水ではなく、低沸点の作動媒体が用いられている(たとえば、特許文献1参照)。
【0003】
このような小規模な用途、すなわち発電出力が10kW程度以下の設備などでは、設置スペースを小さく抑え、導入コストの回収期間を短縮する観点から、より高速・小型化したタービン発電機が求められている。特許文献2は、軸流式の多段蒸気タービンと同一軸に発電機を設けた蒸気タービン発電機を開示している。
【0004】
【特許文献1】
特開2000−110514号公報
【特許文献2】
特表2001−525512号公報
【0005】
【発明が解決しようとする課題】
このようなクローズドシステムの発電装置において、タービン発電機は例えば毎分数万回転以上の高速回転にすると、非常に小型・コンパクト化されるが、ステータ部等においてかなり発熱する。そして、発熱部は発電機外表面から一般に空気または水等の冷却液により冷却されているが、コンパクトになり過ぎると表面積が減少し、冷却が難しくなるという問題がある。また、タービン発電機の軸受に供給する潤滑油も軸受を潤滑・冷却すると発熱し昇温するため、冷却が必要となる。この潤滑油の冷却に用いられる冷却器も、空気あるいは水等が冷却媒体として用いられるが、その通路確保が難しいという問題がある。
【0006】
本発明は、上述した事情に鑑みてなされたもので、小型・コンパクト化したタービン発電機およびその周辺機器等の発熱部を効率的に冷却することができ、システム全体としての小型・コンパクト化を図ることができる発電装置および発電方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の発電装置は、排熱などを回収し作動媒体の高圧蒸気を生成する蒸気発生器と、該高圧蒸気を膨張させることにより発電機を駆動する膨張機と、前記膨張機を駆動した後の蒸気を冷却媒体にて冷却する凝縮器と、前記凝縮器にて凝縮した作動媒体の凝縮液を加圧して前記蒸気発生器に送り込むポンプとを備えた発電装置において、前記作動媒体の凝縮液の一部を前記発電機の冷却器に導き、該冷却器で前記作動媒体の蒸発潜熱を利用して前記発電機直接冷却した後に、前記作動媒体を前記凝縮器に戻すようにしたことを特徴とするものである。
【0008】
上述した本発明によれば、水よりも低沸点の作動媒体を冷却媒体として用いることで、システムの配管系を小口径にできると共に、高い冷却効率で発熱部を冷却することができる。このため、装置全体またはシステム全体としてのコンパクト化を達成できる。
【0009】
すなわち、例えばタービン発電機は毎分数万回転以上の高速回転速度とし、小型・コンパクト化した構造が得られるが、タービン発電機の外形寸法が小さくなり、空気等の冷却は殆ど不可能である。しかしながら、作動媒体の凝縮液をタービン発電機の外表面に設けた発電機の冷却器に導き、作動媒体の顕熱あるいは蒸発潜熱を利用して冷却することで、作動媒体の密度が空気に比して数桁大きいことから効率的な冷却が可能になる。また、潜熱を利用する場合にはその量を減らすことも可能である。
【0010】
また、例えばタービン発電機の各部の軸受を潤滑した潤滑油も空冷または冷却水による冷却ではなく、作動媒体の凝縮液による冷却を用いることで、作動媒体の密度が空気に比して数桁大きいことから効率的な冷却が可能になる。同様に、潜熱を利用する場合には、その量を減らすことも可能である。温度上昇した作動媒体、あるいは蒸発した作動媒体は凝縮器に導き、容易に冷却して凝縮することができる。
【0011】
また、タービン発電機の軸受の負荷が小さい場合には、潤滑油などの特別な油ではなく、作動媒体の凝縮液を直接用いて潤滑・冷却してもよい。この場合にも軸受の冷却に用いる作動媒体をタービン発電機の冷却および潤滑油の冷却にも兼用できる。しかしながら、軸受の潤滑は凝縮液の状態で行うことが好ましいので、最初に軸受を潤滑・冷却し、その後タービン発電機の冷却器等を冷却するように用いることが好ましい。
【0012】
タービン発電機の冷却器または潤滑油の循環系の冷却器に冷却水を使うとスケールが付着しメンテナンスが必要であるという問題がある。しかしながら、上述したように作動媒体を冷却媒体として用いることでスケールの付着という問題が一切なくなる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について添付図面を参照ながら説明する。なお、各図中、同一の機能を有する部材または要素には同一の符号を付して、その重複した説明を省略する。なお、この実施形態では、膨張機としてタービンを用いる例について説明するが、スクリュウ型の膨張機やスクロール型の膨張機などの他の形式の膨張機についても同様に適用が可能である。
【0014】
図1は、本発明の発電装置の概要を示す。このクローズドシステムの発電装置は、いわゆるランキンサイクルを利用した発電装置であり、廃熱などを回収し作動媒体の高圧蒸気を生成する蒸気発生器11と、該高圧蒸気を膨張させることにより発電機22に接続したタービンを駆動するタービン発電機13と、前記タービンを駆動した後の低圧蒸気を冷却媒体にて冷却して凝縮液を形成する凝縮器14と、前記凝縮器にて凝縮した作動媒体の凝縮液を加圧して前記蒸気発生器11に送り込む送液ポンプ15とを備えている。
【0015】
ここで、作動媒体として、沸点が40℃前後のHFC123あるいはトリフルオロエタノール(CFCHOH)等を用いている。これにより、比較的低温の200〜400℃程度の排ガスあるいは100〜150℃の排温水など比較的低温度の熱源を利用して、これらの熱エネルギーをまず作動媒体の高圧蒸気に変換し、これによりタービン発電機13で発電機に直結したタービンを回転駆動し、発電を行うものである。
【0016】
この発電装置では、送液ポンプ15で、作動媒体を蒸気発生器11に送り込む。作動媒体は蒸気発生器11で排熱などの熱エネルギーを受け、沸騰蒸発し高圧蒸気となる。この蒸気はタービンと発電機が直結したタービン発電機13に送り込まれ、ここで高圧蒸気の膨張によりタービンを駆動して発電機を回転させて発電をする。排出された低圧蒸気は凝縮器14にて、冷却水などの冷却媒体で冷却され、凝縮し、必要に応じてさらに過冷却器で過冷却され、送液ポンプ15に吸引され、クローズドシステムを一巡する。
【0017】
この発電システムにおいては、発電機22のステータ部の冷却に作動媒体を用いている。すなわち、送液ポンプ15で加圧した作動媒体の凝縮液の一部を発電機22の冷却ジャケット(図2の符号38参照)に導入し、発電機のステータ部を作動媒体により直接冷却する。冷却後の作動媒体は凝縮器14に戻され、冷却媒体により冷却されて凝縮液に戻る。ここで、作動媒体の密度が空気に比して数桁大きいことから、作動媒体の顕熱あるいは蒸発潜熱を利用して冷却することで、高密度に発熱するステータ部の効率的な冷却が可能になる。
【0018】
また、送液ポンプ15で加圧された凝縮液の一部は潤滑油タンク18において潤滑油の冷却に用いられる。このタービン発電機13では、その主軸が軸受35,36,37により支持されている。そして、各軸受には、潤滑油供給ポンプ17により潤滑油タンク18に貯留された潤滑油が加圧して各軸受に供給される。各軸受35,36,37を潤滑・冷却した潤滑油は加熱されて昇温した状態でタンク18に戻される。そして、潤滑油タンク18においては冷却器18aを備え、この冷却器に作動媒体を供給することで昇温した潤滑油を冷却する。ここにおいても、作動媒体は空気に比して密度が数桁大きいことから、作動媒体の顕熱あるいは蒸発潜熱を利用することで効率的な冷却が可能になる。冷却器18aにより潤滑油を冷却した作動媒体は凝縮器14に戻され、再び冷却・凝縮されて凝縮液となり送液ポンプ15により再びクローズドループを循環する。
【0019】
なお、負荷が軽い軸受においては、作動媒体の凝縮液を直接その潤滑・冷却に用いることが可能である。したがって、凝縮液の送液ポンプ15で加圧された凝縮液を負荷の軽い例えば軸受36に直接導入することができる。このような場合には、軸受36を潤滑・冷却した作動媒体はそのまま作動媒体の高圧蒸気と共に膨張してタービンを駆動し、発電に寄与した後に、低圧蒸気となり凝縮器14に戻される。このように作動媒体で軸受を直接潤滑・冷却することで、潤滑油供給ポンプ17の負担を軽減し、全体としてシステムを効率的なものとすることができる。
【0020】
なお、作動媒体を用いた冷却は、タービン発電機の発熱が大きなステータ部の冷却と、潤滑油の冷却器に並列に導いて並列に冷却を行ってもよいが、直列に導いて同一媒体で両者を冷却するようにしてもよい。
【0021】
図2は、低温の廃熱エネルギーを有効に回収利用して発電するのに好適な、本発明の実施形態のガスタービン発電機の構成例を示す。このガスタービン発電機は、高圧蒸気を膨張させることによりタービン21を回転駆動し、このタービンに直結した発電機22を回転駆動することで、発電を行うものである。即ち、このタービン発電機は、軸流式のタービン21とDCブラシレス発電機22とを備え、このタービンロータ23と発電機ロータ24とが一体的に単一軸の主軸25に固定されている。このタービン発電機は、縦置きであり、主軸25の上部にタービンロータ23が固定され、主軸25の下部に発電機ロータ24が固定されている。但し、このタービン発電機を横置きとして使用しても良いことは勿論である。
【0022】
タービンロータ23には、複数の動翼27が軸方向に配列して固定され、その動翼27の外側に複数の静翼28を備えたタービンケーシング29が配置されている。また、タービンケーシング29の外側には外胴31が設けられ、タービンケーシング29と外胴31の間をタービンを回転駆動した後の作動媒体の低圧蒸気が流れる流路33bを構成している。タービンの吸込側には、吸込管32が配置され、タービンの吸込側に接続した高圧蒸気からなる作動媒体のガス流路33aを構成している。すなわち、この吸込管32は、タービンの外胴31、または外胴に接続されるタービン吐出管34の内部に収容され、タービン吸込管32とタービン吐出管34とが二重管構造をなしている。従って、二重管の内側のタービン吸込管32からタービン21に流入した作動媒体の高圧蒸気はタービンロータ23を回転駆動し、低圧となった作動媒体の蒸気が二重管の外周部であるタービン吐出管34の内部の流路33bを通って流出する。
【0023】
発電機ロータ24は永久磁石をその円周面に沿って交互に配置した永久磁石型のロータにより構成され、発電機ロータ24の周囲には僅かなクリアランスを介して発電機ステータ26が配置されている。また、発電機ステータ26の外周部には冷却ジャケット38が設けられ、冷却液として作動媒体が供給され、発熱する発電機、特に発電機ステータ26を効率的に冷却する。作動媒体を冷却液として用いることで、冷却水のようなスケールの付着という問題を防止できる。
【0024】
この発電機22は、DCブラシレス型の交流発電機であり、その発電出力は発電機ステータ26に設けられた巻線部から動力線40を介して外部に取り出される。動力線40はコネクタ43を介して図示しない周波数変換器に接続され、交流発電機22の発電出力は周波数変換器によって所定の周波数・電圧(例えば60Hz・200V)に変換され、負荷機器に電力が供給される。
【0025】
発電機ロータ24の反タービン側の主軸端部には回転速度を検出するセンサ41が設けられ、主軸25の回転速度が検出される。センサ41の出力は信号線42によりコネクタ43を介して外部に伝達される。なお、タービン発電機の回転速度は、タービンに供給される作動媒体の高圧蒸気の供給量または供給圧力を調整することで調整することができる。すなわち、タービン発電機が安全に運転可能な許容回転速度以下の範囲において、発電量を増加させる場合は供給する作動媒体の高圧蒸気量を増加させ、発電量を減少させる場合は作動媒体の高圧蒸気量を低減することで発電量を制御することができる。このとき、回転速度センサ41によって回転速度を検出しつつ、タービンへの高圧蒸気の供給量または供給圧力を電動バルブ16(図1参照)などでコントロールすることで上記調整が可能である。また、作動媒体の供給量は、作動媒体の送液ポンプ15(図1参照)の速度を制御することによっても行うことができる。
【0026】
主軸25はタービン21と発電機22との間の略中央部で主軸受35により支持されている。主軸受35はアンギュラ玉軸受35a,35bを並列に配置して構成したものであり、タービンロータ23と発電機ロータ24とを含めた回転体全体の略重心位置に配置されている。そして、タービンロータ23の反発電機側、すなわちタービン21の高圧側の主軸端部には単列のアンギュラ玉軸受からなるタービン側補助軸受36を備えている。また、発電機ロータ24の反タービン側の主軸端部には、同様に単列のアンギュラ玉軸受からなる発電機側補助軸受37が配置されている。
【0027】
このように、このタービン発電機においては、主軸25は中央の主軸受35およびタービン側軸端部と発電機側軸端部とにそれぞれ設けられた補助軸受36,37によって支持されている。すなわち、このタービン発電機においては、主軸受35を回転体全体の重心付近に配置し、これに軸受としての主たる負荷を分担させ、主軸の両端部に小径の補助軸受36,37を補助的に振止め用として配置したものである。したがって、高速大負荷の主軸受を1カ所のみとすることができ、振止め用の補助軸受は小型のものを採用することができる。このため、発電機の信頼性を確保しつつ、よりコンパクトに且つ低コストにこのタービン発電機を製造できる。また、タービン軸端部に設けられた補助軸受36は、作動媒体の高圧蒸気流路33aの内周側に配置する必要があるが、これを作動媒体の凝縮液を用いて直接冷却することができる。
【0028】
主軸受35、タービン側補助軸受36、および発電機側補助軸受37には、潤滑・冷却のために潤滑油が供給される。潤滑油供給用ポンプ17(図1参照)から吐出された潤滑油は、潤滑油供給用配管46a,47aを介して、主軸受35および補助軸受36に流れ、並列に供給され、潤滑油回収用配管46b,47bを介して潤滑油供給用ポンプに戻る。補助軸受37にも潤滑油が順次あるいは並列に供給される。この際、必要に応じて油冷却器や除塵フィルタが各部に設けられる。これらの軸受を潤滑・冷却することで加熱された潤滑油はタンク18(図1参照)に戻され、作動媒体により冷却される。
【0029】
また、各軸受に供給された潤滑油の一部は、タービンの作動媒体に混入し、更にその一部は発電機内部にも浸入するため、潤滑油と作動媒体を分離する図示しない油分離装置が別途設けられる。分離された潤滑油は潤滑油循還用ポンプに戻り、同じく分離された作動媒体は凝縮されて作動媒体の送液ポンプに戻る。なお、上記タービン発電機はタービン21が上部に、発電機22が下部となる縦軸の構成になっているため、自然流下によって集まった油を分離するための油分離装置の好ましい取付位置は発電機22の下端部となる。
【0030】
なお、上記実施形態は本発明の実施例の一態様を述べたもので、本発明の趣旨を逸脱することなく種々の変形実施例が可能なことは勿論である。
【0031】
【発明の効果】
クローズドシステムの発電装置において、凝縮器で凝縮した作動媒体の凝縮液を用いてタービン発電機や周辺機器の冷却を行うようにしたので、作動媒体の有する大きな蒸発潜熱等を利用して効率的な冷却ができる。また、冷却水の場合のスケールの付着等が防止され、メンテナンス性の良好な冷却が行える。
【図面の簡単な説明】
【図1】本発明の実施形態の発電装置の概要を示す図である。
【図2】図1のタービン発電機の構成例を示す断面図である。
【符号の説明】
11 蒸気発生器
13 タービン発電機
14 凝縮器
15 作動媒体の送液ポンプ
16 電動弁
17 潤滑油供給ポンプ
18 潤滑油タンク
18a 冷却器
22 DCブラシレス発電機
23 タービンロータ
24 発電機ロータ
25 主軸
26 発電機ステータ
27 動翼
28 静翼
29 タービンケーシング
31 外胴
32 タービン吸込管
33 ガス流路
34 タービン吐出管
35 主軸受
36 タービン側補助軸受
37 発電機側補助軸受
38 冷却ジャケット
40 動力線
41 回転速度センサ
42 信号線
43 コネクタ
46a,46b,47a,47b 潤滑油配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power generation apparatus and a power generation method for recovering relatively low-temperature exhaust heat and the like and converting the heat energy into electric power, and more particularly to cooling using a working medium of a turbine generator or its peripheral equipment.
[0002]
[Prior art]
Attempts have been made to effectively recover relatively low-temperature waste heat such as exhaust gas at about 200 to 400 ° C. or exhaust water at 100 to 150 ° C. as generated power. Such low-temperature waste heat recovery can be realized as a power generator for a closed system using a so-called Rankine cycle. For the compactness of the device, the working medium is not water but a low boiling point working medium. Is used (for example, refer to Patent Document 1).
[0003]
In such small-scale applications, that is, facilities with a power generation output of about 10 kW or less, a turbine generator having a higher speed and a smaller size is required from the viewpoint of reducing the installation space and shortening the recovery period of the introduction cost. Yes. Patent document 2 is disclosing the steam turbine generator which provided the generator in the same axis | shaft as an axial flow type multistage steam turbine.
[0004]
[Patent Document 1]
JP 2000-110514 A [Patent Document 2]
JP-T-2001-525512 Publication
[Problems to be solved by the invention]
In such a closed system power generator, when the turbine generator is rotated at a high speed of, for example, several tens of thousands of revolutions per minute, it is very small and compact. And although a heat generating part is generally cooled by coolant, such as air or water, from the generator outer surface, there exists a problem that a surface area will reduce if it becomes too compact, and cooling will become difficult. The lubricating oil supplied to the turbine generator bearing also generates heat when the bearing is lubricated and cooled, and the temperature rises. Therefore, cooling is necessary. The cooler used for cooling the lubricating oil also uses air or water as a cooling medium, but there is a problem that it is difficult to secure the passage.
[0006]
The present invention has been made in view of the above-described circumstances, and can efficiently cool a heat generating portion of a small-sized and compact turbine generator and its peripheral devices, thereby reducing the size and compactness of the entire system. It is an object of the present invention to provide a power generation apparatus and a power generation method that can be achieved.
[0007]
[Means for Solving the Problems]
The power generation device of the present invention includes a steam generator that recovers exhaust heat and generates high-pressure steam as a working medium, an expander that drives the generator by expanding the high-pressure steam, and after driving the expander In the power generation apparatus comprising: a condenser that cools the steam of the working medium with a cooling medium; and a pump that pressurizes the condensate of the working medium condensed by the condenser and sends the condensed liquid to the steam generator. A part of the generator is guided to a cooler of the generator, and the generator is directly cooled by utilizing the latent heat of vaporization of the working medium, and then the working medium is returned to the condenser. It is a feature.
[0008]
According to the present invention described above, by using a working medium having a boiling point lower than that of water as a cooling medium, the piping system of the system can be made small in diameter, and the heat generating portion can be cooled with high cooling efficiency. For this reason, the compactness of the whole apparatus or the whole system can be achieved.
[0009]
That is, for example, a turbine generator has a high rotational speed of several tens of thousands of revolutions per minute and a compact and compact structure can be obtained, but the external dimensions of the turbine generator become small and cooling of air etc. is almost impossible. . However, the condensate of the working medium is guided to a generator cooler provided on the outer surface of the turbine generator, and cooled using the sensible heat or latent heat of evaporation of the working medium, so that the density of the working medium is higher than that of air. Since it is several orders of magnitude larger, efficient cooling becomes possible. Further, when latent heat is used, the amount can be reduced.
[0010]
Also, for example, the lubricating oil that lubricates the bearings of each part of the turbine generator is not cooled by air or cooling water, but is cooled by condensate of the working medium, so that the density of the working medium is several orders of magnitude greater than that of air. Therefore, efficient cooling becomes possible. Similarly, when using latent heat, the amount can be reduced. The working medium whose temperature has risen or the working medium which has evaporated can be led to a condenser and can be easily cooled and condensed.
[0011]
Further, when the load on the bearing of the turbine generator is small, lubrication and cooling may be performed by directly using the condensate of the working medium instead of special oil such as lubricating oil. In this case, the working medium used for cooling the bearing can also be used for cooling the turbine generator and the lubricating oil. However, since the bearing is preferably lubricated in a condensed liquid state, the bearing is preferably lubricated and cooled first, and then the turbine generator cooler and the like are preferably cooled.
[0012]
When cooling water is used in a turbine generator cooler or a lubricating oil circulation system cooler, there is a problem that scale is attached and maintenance is required. However, using the working medium as the cooling medium as described above eliminates the problem of scale adhesion.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the member or element which has the same function, and the duplicate description is abbreviate | omitted. In this embodiment, an example in which a turbine is used as an expander will be described. However, the present invention can be similarly applied to other types of expanders such as a screw expander and a scroll expander.
[0014]
FIG. 1 shows an outline of a power generator of the present invention. The power generation apparatus of this closed system is a power generation apparatus using a so-called Rankine cycle, a steam generator 11 that recovers waste heat and generates high-pressure steam as a working medium, and a generator 22 by expanding the high-pressure steam. A turbine generator 13 for driving the turbine connected to the condenser, a condenser 14 for cooling the low-pressure steam after driving the turbine with a cooling medium to form a condensate, and a working medium condensed by the condenser And a liquid feed pump 15 for pressurizing the condensate and feeding it to the steam generator 11.
[0015]
Here, as the working medium, HFC123 or trifluoroethanol (CF 3 CH 2 OH) having a boiling point of around 40 ° C. is used. By using a relatively low temperature heat source such as a relatively low temperature exhaust gas of about 200 to 400 ° C. or exhaust water having a temperature of 100 to 150 ° C., the thermal energy is first converted into high pressure steam as a working medium. The turbine generator 13 rotates the turbine directly connected to the generator to generate power.
[0016]
In this power generator, the working medium is fed into the steam generator 11 by the liquid feed pump 15. The working medium receives heat energy such as exhaust heat from the steam generator 11 and evaporates at a boiling point to become high-pressure steam. This steam is sent to a turbine generator 13 in which the turbine and the generator are directly connected. Here, the turbine is driven by the expansion of the high-pressure steam to rotate the generator to generate power. The discharged low-pressure steam is cooled by the condenser 14 with a cooling medium such as cooling water, condensed, further subcooled by the subcooler as necessary, and sucked by the liquid feed pump 15 to make a round of the closed system. To do.
[0017]
In this power generation system, a working medium is used for cooling the stator portion of the generator 22. That is, a part of the condensate of the working medium pressurized by the liquid feed pump 15 is introduced into the cooling jacket of the generator 22 (see reference numeral 38 in FIG. 2), and the stator portion of the generator is directly cooled by the working medium. The cooled working medium is returned to the condenser 14, cooled by the cooling medium, and returned to the condensate. Here, since the density of the working medium is several orders of magnitude higher than that of air, efficient cooling of the stator section that generates heat at high density is possible by cooling using the sensible heat or latent heat of evaporation of the working medium. become.
[0018]
A part of the condensate pressurized by the liquid feed pump 15 is used for cooling the lubricating oil in the lubricating oil tank 18. In the turbine generator 13, the main shaft is supported by bearings 35, 36, and 37. Then, the lubricating oil stored in the lubricating oil tank 18 is pressurized and supplied to each bearing by the lubricating oil supply pump 17. The lubricating oil that has lubricated and cooled the bearings 35, 36, and 37 is returned to the tank 18 while being heated and heated. The lubricating oil tank 18 includes a cooler 18a, and the lubricating oil whose temperature has been raised is cooled by supplying a working medium to the cooler. Also here, since the working medium has a density several orders of magnitude higher than that of air, efficient cooling is possible by utilizing the sensible heat or latent heat of vaporization of the working medium. The working medium having cooled the lubricating oil by the cooler 18 a is returned to the condenser 14, cooled and condensed again to become a condensed liquid, and circulated through the closed loop again by the liquid feed pump 15.
[0019]
In a bearing with a light load, the condensate of the working medium can be used directly for lubrication and cooling. Therefore, the condensate pressurized by the condensate feed pump 15 can be introduced directly into the bearing 36 having a light load. In such a case, the working medium that has lubricated and cooled the bearing 36 is expanded together with the high-pressure steam of the working medium to drive the turbine, contributes to power generation, and then returns to the condenser 14 as low-pressure steam. By directly lubricating and cooling the bearing with the working medium in this way, the burden on the lubricating oil supply pump 17 can be reduced, and the system as a whole can be made efficient.
[0020]
The cooling using the working medium may be performed by cooling the stator section where the heat generated by the turbine generator is large and the lubricating oil cooler in parallel. Both may be cooled.
[0021]
FIG. 2 shows a configuration example of a gas turbine generator according to an embodiment of the present invention, which is suitable for generating power by effectively recovering and using low-temperature waste heat energy. In this gas turbine generator, the turbine 21 is rotationally driven by expanding high-pressure steam, and the generator 22 directly connected to the turbine is rotationally driven to generate electric power. That is, the turbine generator includes an axial flow turbine 21 and a DC brushless generator 22, and the turbine rotor 23 and the generator rotor 24 are integrally fixed to a single shaft main shaft 25. This turbine generator is installed vertically, and the turbine rotor 23 is fixed to the upper part of the main shaft 25, and the generator rotor 24 is fixed to the lower part of the main shaft 25. However, it goes without saying that this turbine generator may be used as a horizontal installation.
[0022]
A plurality of rotor blades 27 are arranged and fixed in the axial direction on the turbine rotor 23, and a turbine casing 29 including a plurality of stationary blades 28 is disposed outside the rotor blades 27. Further, an outer cylinder 31 is provided outside the turbine casing 29, and a flow path 33b is formed between the turbine casing 29 and the outer cylinder 31 through which low-pressure steam of a working medium after the turbine is rotationally driven. A suction pipe 32 is arranged on the suction side of the turbine, and constitutes a gas flow path 33a of a working medium made of high-pressure steam connected to the suction side of the turbine. That is, the suction pipe 32 is accommodated in the turbine outer cylinder 31 or the turbine discharge pipe 34 connected to the outer cylinder, and the turbine suction pipe 32 and the turbine discharge pipe 34 form a double pipe structure. . Therefore, the high-pressure steam of the working medium that has flowed into the turbine 21 from the turbine suction pipe 32 inside the double pipe rotates the turbine rotor 23, and the steam of the working medium that has become low pressure is the outer periphery of the double pipe. It flows out through the flow path 33 b inside the discharge pipe 34.
[0023]
The generator rotor 24 is constituted by a permanent magnet type rotor in which permanent magnets are alternately arranged along the circumferential surface thereof, and a generator stator 26 is arranged around the generator rotor 24 through a slight clearance. Yes. In addition, a cooling jacket 38 is provided on the outer peripheral portion of the generator stator 26, and a working medium is supplied as a coolant to efficiently cool the generator that generates heat, particularly the generator stator 26. By using the working medium as the cooling liquid, it is possible to prevent the problem of adhesion of scale such as cooling water.
[0024]
The generator 22 is a DC brushless type AC generator, and the generated output is taken out from a winding portion provided in the generator stator 26 via a power line 40. The power line 40 is connected to a frequency converter (not shown) via a connector 43, and the power generation output of the AC generator 22 is converted into a predetermined frequency / voltage (for example, 60 Hz / 200V) by the frequency converter, and power is supplied to the load device. Supplied.
[0025]
A sensor 41 for detecting the rotational speed is provided at the end of the main shaft on the counter-turbine side of the generator rotor 24, and the rotational speed of the main shaft 25 is detected. The output of the sensor 41 is transmitted to the outside through the connector 43 by the signal line 42. The rotational speed of the turbine generator can be adjusted by adjusting the supply amount or supply pressure of the high-pressure steam of the working medium supplied to the turbine. That is, in the range below the allowable rotational speed at which the turbine generator can be operated safely, when the amount of power generation is increased, the amount of high-pressure steam of the working medium to be supplied is increased, and when the amount of power generation is decreased, the high-pressure steam of the working medium is decreased. The amount of power generation can be controlled by reducing the amount. At this time, the above adjustment is possible by detecting the rotation speed by the rotation speed sensor 41 and controlling the supply amount or supply pressure of the high-pressure steam to the turbine by the electric valve 16 (see FIG. 1) or the like. The supply amount of the working medium can also be performed by controlling the speed of the working medium feeding pump 15 (see FIG. 1).
[0026]
The main shaft 25 is supported by a main bearing 35 at a substantially central portion between the turbine 21 and the generator 22. The main bearing 35 is formed by arranging angular ball bearings 35 a and 35 b in parallel, and is arranged at a substantially center of gravity position of the entire rotating body including the turbine rotor 23 and the generator rotor 24. A turbine side auxiliary bearing 36 formed of a single row angular ball bearing is provided on the main shaft end portion of the turbine rotor 23 on the counter-generator side, that is, on the high pressure side of the turbine 21. Similarly, a generator side auxiliary bearing 37 composed of a single row angular ball bearing is disposed at the end of the main shaft on the counter turbine side of the generator rotor 24.
[0027]
Thus, in this turbine generator, the main shaft 25 is supported by the central main bearing 35 and auxiliary bearings 36 and 37 provided at the turbine side shaft end and the generator side shaft end, respectively. That is, in this turbine generator, the main bearing 35 is arranged near the center of gravity of the entire rotating body, and the main load as a bearing is shared by this, and small-diameter auxiliary bearings 36 and 37 are supplementarily provided at both ends of the main shaft. It is arranged for the purpose of steadying. Therefore, only one high-speed and large-load main bearing can be provided, and a small-sized auxiliary bearing for swinging can be employed. For this reason, this turbine generator can be manufactured more compactly and at low cost while ensuring the reliability of the generator. Further, the auxiliary bearing 36 provided at the turbine shaft end must be disposed on the inner peripheral side of the high-pressure steam passage 33a of the working medium, but this can be directly cooled using the condensate of the working medium. it can.
[0028]
Lubricating oil is supplied to the main bearing 35, the turbine side auxiliary bearing 36, and the generator side auxiliary bearing 37 for lubrication and cooling. The lubricating oil discharged from the lubricating oil supply pump 17 (see FIG. 1) flows to the main bearing 35 and the auxiliary bearing 36 via the lubricating oil supply pipes 46a and 47a and is supplied in parallel to recover the lubricating oil. It returns to the lubricating oil supply pump via the pipes 46b and 47b. Lubricating oil is also supplied to the auxiliary bearing 37 sequentially or in parallel. At this time, an oil cooler and a dust filter are provided in each part as necessary. The lubricating oil heated by lubricating and cooling these bearings is returned to the tank 18 (see FIG. 1) and cooled by the working medium.
[0029]
In addition, a part of the lubricating oil supplied to each bearing is mixed in the working medium of the turbine, and a part of the lubricating oil also enters the generator, so that an oil separation device (not shown) that separates the lubricating oil from the working medium Is provided separately. The separated lubricating oil is returned to the lubricating oil circulation pump, and the separated working medium is condensed and returned to the working medium feed pump. Since the turbine generator has a vertical axis configuration in which the turbine 21 is at the top and the generator 22 is at the bottom, the preferred mounting position of the oil separator for separating the oil collected by natural flow is the power generation. This is the lower end of the machine 22.
[0030]
In addition, the said embodiment described the one aspect | mode of the Example of this invention, Of course, a various deformation | transformation Example is possible, without deviating from the meaning of this invention.
[0031]
【The invention's effect】
In the closed system power generation device, the turbine generator and peripheral equipment are cooled using the condensate of the working medium condensed in the condenser, so it is efficient to use the large latent heat of vaporization of the working medium. Can cool. In addition, scale adhesion in the case of cooling water is prevented, and cooling with good maintainability can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a power generator according to an embodiment of the present invention.
2 is a cross-sectional view showing a configuration example of the turbine generator of FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Steam generator 13 Turbine generator 14 Condenser 15 Liquid supply pump 16 of working medium Electric valve 17 Lubricating oil supply pump 18 Lubricating oil tank 18a Cooler 22 DC brushless generator 23 Turbine rotor 24 Generator rotor 25 Main shaft 26 Generator Stator 27 Rotor blade 28 Stator blade 29 Turbine casing 31 Outer trunk 32 Turbine suction pipe 33 Gas flow path 34 Turbine discharge pipe 35 Main bearing 36 Turbine side auxiliary bearing 37 Generator side auxiliary bearing 38 Cooling jacket 40 Power line 41 Rotational speed sensor 42 Signal line 43 Connector 46a, 46b, 47a, 47b Lubricating oil piping

Claims (4)

排熱などを回収し作動媒体の高圧蒸気を生成する蒸気発生器と、該高圧蒸気を膨張させることにより発電機を駆動する膨張機と、前記膨張機を駆動した後の蒸気を冷却媒体にて冷却する凝縮器と、前記凝縮器にて凝縮した作動媒体の凝縮液を加圧して前記蒸気発生器に送り込むポンプとを備えた発電装置において、
前記作動媒体の凝縮液の一部を前記発電機の冷却器に導き、該冷却器で前記作動媒体の蒸発潜熱を利用して前記発電機直接冷却した後に、前記作動媒体を前記凝縮器に戻すようにしたことを特徴とする発電装置。
A steam generator that recovers exhaust heat and generates high-pressure steam as a working medium, an expander that drives a generator by expanding the high-pressure steam, and a steam after driving the expander in a cooling medium In a power generator comprising: a condenser to be cooled; and a pump that pressurizes the condensate of the working medium condensed in the condenser and feeds it to the steam generator.
A part of the condensate of the working medium is led to a cooler of the generator, and the cooler directly cools the generator using the latent heat of vaporization of the working medium, and then the working medium is transferred to the condenser. A power generator characterized by being returned.
排熱などを回収し作動媒体の高圧蒸気を生成する蒸気発生器と、該高圧蒸気を膨張させることにより発電機を駆動する膨張機と、前記膨張機を駆動した後の蒸気を冷却媒体にて冷却する凝縮器と、前記凝縮器にて凝縮した作動媒体の凝縮液を加圧して前記蒸気発生器に送り込むポンプとを備えた発電装置において、
前記作動媒体の凝縮液の一部を前記発電装置の一部の軸受に導き、前記作動媒体の凝縮液を用いて直接潤滑および冷却した後、前記発電機の冷却器に導き、該冷却器で前記作動媒体の蒸発潜熱を利用して前記発電機を直接冷却した後に、前記作動媒体を前記凝縮器に戻すようにしたことを特徴とする発電装置。
A steam generator that recovers exhaust heat and generates high-pressure steam as a working medium, an expander that drives a generator by expanding the high-pressure steam, and a steam after driving the expander in a cooling medium In a power generator comprising: a condenser to be cooled; and a pump that pressurizes the condensate of the working medium condensed in the condenser and feeds it to the steam generator.
A part of the condensate of the working medium is guided to a bearing of a part of the power generation apparatus, directly lubricated and cooled using the condensate of the working medium, and then led to a cooler of the generator. The power generator is configured to return the working medium to the condenser after directly cooling the generator using the latent heat of vaporization of the working medium.
排熱などを回収して作動媒体の高圧蒸気を生成し、該高圧蒸気を膨張させることにより膨張機を駆動し該膨張機に直結した発電機により発電を行い、前記膨張機を駆動した後の作動媒体の蒸気を凝縮器にて冷却媒体により冷却して凝縮させ、この作動媒体の凝縮液をポンプにて加圧して蒸気発生器に送り込むクローズドシステムの発電方法において、
前記凝縮器にて凝縮させた作動媒体を、ポンプにて加圧し、加圧した前記作動媒体の凝縮液の一部を前記発電機に導き、前記作動媒体の蒸発潜熱を利用して前記発電機を直接冷却し、冷却後の前記作動媒体を前記凝縮器に戻して凝縮することを特徴とする発電方法。
After recovering exhaust heat, etc., generating high-pressure steam of the working medium, expanding the high-pressure steam, driving the expander, generating power with a generator directly connected to the expander, and driving the expander In the power generation method of the closed system in which the vapor of the working medium is condensed by cooling with a cooling medium in a condenser, and the condensate of the working medium is pressurized with a pump and sent to the steam generator.
The working medium condensed in the condenser, pressurized at pump, a part of the condensate of a pressurized the working medium guided to the generator, the generator by utilizing the latent heat of vaporization of the working medium Is directly cooled, and the working medium after cooling is returned to the condenser for condensation.
前記加圧した作動媒体の凝縮液により、軸受の潤滑油を冷却することを特徴とする請求項に記載の発電方法。Power generation method according to claim 3, characterized in that said by condensate pressurized working medium, to cool the lubricating oil of the bearings.
JP2003152905A 2003-05-29 2003-05-29 Power generation apparatus and power generation method Expired - Fee Related JP4286062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152905A JP4286062B2 (en) 2003-05-29 2003-05-29 Power generation apparatus and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152905A JP4286062B2 (en) 2003-05-29 2003-05-29 Power generation apparatus and power generation method

Publications (2)

Publication Number Publication Date
JP2004353571A JP2004353571A (en) 2004-12-16
JP4286062B2 true JP4286062B2 (en) 2009-06-24

Family

ID=34048008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152905A Expired - Fee Related JP4286062B2 (en) 2003-05-29 2003-05-29 Power generation apparatus and power generation method

Country Status (1)

Country Link
JP (1) JP4286062B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322300A (en) * 2010-05-14 2012-01-18 诺沃皮尼奥内有限公司 The turbo-expander that is used for the power generation systems
CN104870759A (en) * 2012-12-28 2015-08-26 三菱重工业株式会社 Power generation system, power generation method
US9677414B2 (en) 2011-06-27 2017-06-13 Ihi Corporation Waste heat power generator

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20042484A1 (en) 2004-12-23 2005-03-23 Nuovo Pignone Spa TURBOGENERATOR
FI122435B (en) * 2006-10-18 2012-01-31 Savonia Power Oy steam Power plant
JP4625474B2 (en) * 2007-01-18 2011-02-02 ヤンマー株式会社 Rankine cycle power recovery system
JP2008248830A (en) * 2007-03-30 2008-10-16 Kyushu Denshi Giken Kk Compound turbine system and hot water power generation device using same
EP2604815A4 (en) * 2010-08-09 2014-07-09 Toyota Jidoshokki Kk Waste heat utilization apparatus
JP5622630B2 (en) * 2010-10-07 2014-11-12 株式会社神戸製鋼所 Power generation system
JP5719601B2 (en) * 2011-01-12 2015-05-20 株式会社神戸製鋼所 Power generation system
CN102562198B (en) * 2011-05-08 2014-07-16 淄博绿能化工有限公司 Novel method for generating high-speed airflow
JP5492170B2 (en) 2011-10-06 2014-05-14 株式会社神戸製鋼所 Power generator
JP5897302B2 (en) 2011-10-28 2016-03-30 川崎重工業株式会社 Steam turbine power generation system
JP2013100971A (en) * 2011-11-10 2013-05-23 Miura Co Ltd Steam generation system
CN103161529A (en) * 2011-12-12 2013-06-19 邵再禹 Closed circulation electricity generation method canceling working medium backwash pump
JP2013169029A (en) * 2012-02-14 2013-08-29 Kobe Steel Ltd Power generator
JP5891192B2 (en) 2013-03-25 2016-03-22 株式会社神戸製鋼所 Power generation device and power generation system
FR3042216B1 (en) * 2015-10-09 2019-06-28 IFP Energies Nouvelles DEVICE FOR LUBRICATING A BEARING RECEIVING A ROTARY SHAFT OF AN ELEMENT OF A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE, AND METHOD USING SUCH A DEVICE.
CN105756731A (en) * 2016-03-01 2016-07-13 合肥通用机械研究院 Organic Rankine cycle system capable of effectively improving efficiency of expansion machine
JP6751031B2 (en) * 2017-02-06 2020-09-02 株式会社神戸製鋼所 Thermal energy recovery device
CN107035438B (en) * 2017-06-22 2023-05-12 哈尔滨广瀚新能动力有限公司 Organic Rankine cycle turbo generator unit cooling system adopting ejector
CN107060908B (en) * 2017-06-22 2023-05-12 哈尔滨广瀚新能动力有限公司 Cooling system and cooling method for organic Rankine cycle steam turbine generator unit
CN113074023B (en) * 2021-04-12 2022-11-11 哈尔滨工业大学 Oil-free lubrication high-power-density zero-steam leakage steam turbine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612035A (en) * 1979-07-09 1981-02-05 Sumitomo Heavy Ind Ltd Waste heat recovery mechanism
US4363216A (en) * 1980-10-23 1982-12-14 Lucien Bronicki Lubricating system for organic fluid power plant
JPS57198966A (en) * 1981-06-01 1982-12-06 Matsushita Electric Ind Co Ltd Air conditioner
JP2593197B2 (en) * 1988-08-02 1997-03-26 株式会社日立製作所 Thermal energy recovery method and thermal energy recovery device
JPH07166815A (en) * 1993-12-14 1995-06-27 Hitachi Ltd Compound generation equipment
JPH07317562A (en) * 1994-05-25 1995-12-05 Mitsubishi Heavy Ind Ltd Gas turbine
CZ296581B6 (en) * 1997-11-28 2006-04-12 Siemens Aktiengesellschaft Steam-electric generating set with turbine unit and working electric current-generating machine unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322300A (en) * 2010-05-14 2012-01-18 诺沃皮尼奥内有限公司 The turbo-expander that is used for the power generation systems
US9677414B2 (en) 2011-06-27 2017-06-13 Ihi Corporation Waste heat power generator
CN104870759A (en) * 2012-12-28 2015-08-26 三菱重工业株式会社 Power generation system, power generation method
CN104870759B (en) * 2012-12-28 2016-06-29 三菱重工业株式会社 Electricity generation system, electricity-generating method
US9543808B2 (en) 2012-12-28 2017-01-10 Mitsubishi Heavy Industries, Ltd. Power generation system, power generation method

Also Published As

Publication number Publication date
JP2004353571A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4286062B2 (en) Power generation apparatus and power generation method
US8739538B2 (en) Generating energy from fluid expansion
US8400005B2 (en) Generating energy from fluid expansion
US7948105B2 (en) Turboalternator with hydrodynamic bearings
US9677414B2 (en) Waste heat power generator
JP7266707B2 (en) Power generation system and method of generating power by operation of such power generation system
US20160290176A1 (en) Power Compounder
WO2011004472A1 (en) Wind power generator
JP2011106302A (en) Engine waste heat recovery power-generating turbo system and reciprocating engine system including the same
JP4311982B2 (en) Power generation apparatus and power generation method
WO2010129003A1 (en) Rankine cycle heat recovery methods and devices
JP5834538B2 (en) Waste heat generator
JP5447677B2 (en) Waste heat power generator
JP4684762B2 (en) Power generator
JP2008175212A (en) Turbine generator
US20150107249A1 (en) Extracting Heat From A Compressor System
JP2006009592A (en) Generating set and its operating method
JP2012127231A (en) Rankine cycle system and power generation system
JP2004346843A (en) Power generating device and power generating method
JP5796371B2 (en) Waste heat power generator and power generator
EP3580454B1 (en) Wind turbine waste heat recovery system
JP2004346839A (en) Turbine generator
JP2004340014A (en) Turbine generator
KR20150062027A (en) Hybrid turbine generation system
KR101578482B1 (en) Electro Water Pump for Co-generation System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4286062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees