JP4285796B2 - Viscous damper and seismic isolation structure using the same - Google Patents

Viscous damper and seismic isolation structure using the same Download PDF

Info

Publication number
JP4285796B2
JP4285796B2 JP02781098A JP2781098A JP4285796B2 JP 4285796 B2 JP4285796 B2 JP 4285796B2 JP 02781098 A JP02781098 A JP 02781098A JP 2781098 A JP2781098 A JP 2781098A JP 4285796 B2 JP4285796 B2 JP 4285796B2
Authority
JP
Japan
Prior art keywords
container
viscous
resistance plate
seismic isolation
proximity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02781098A
Other languages
Japanese (ja)
Other versions
JPH11210819A (en
Inventor
邦夫 早川
雅良 池永
昌己 持丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Okumura Corp
Original Assignee
Oiles Corp
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp, Okumura Corp filed Critical Oiles Corp
Priority to JP02781098A priority Critical patent/JP4285796B2/en
Publication of JPH11210819A publication Critical patent/JPH11210819A/en
Application granted granted Critical
Publication of JP4285796B2 publication Critical patent/JP4285796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下部構造体と上部構造体との間に、下部構造体に対する上部構造体の相対的な横方向の移動を許容すると共に、この横方向の移動において下部構造体に対して上部構造体に相対的な縦移動を生じさせる免震支承装置が配されている免震構造物に用いて好適な粘性ダンパ及びこのような粘性ダンパを具備した免震構造物に関する。
【0002】
【発明が解決しようとする課題】
例えば美術館、博物館、寺院等の建物内には、仏像、彫刻、陶磁器等の貴重な美術品又は骨董品が展示台上に載置され又は展示ケース内に収容されて展示されているが、展示台又は展示ケースが直接に建物の床上に載置されていると、地震の発生により転倒して美術品が破壊、損傷される虞がある。
【0003】
このため特公昭62−32300号公報に記載された免震支承装置を、展示台又は展示ケースと建物の床と間に介在させて、地震の振動を展示台又は展示ケースに伝達させないで、地震の振動エネルギを適宜に吸収して、美術品の破壊、損傷を回避する免震台に用いることが提案されている。
【0004】
上記の免震支承装置は、下耐圧板と、この下耐圧板上に配された中間耐圧板と、この中間耐圧板上に配される上耐圧板と、中間耐圧板を、水平面内の一の方向に移動可能とするように下耐圧板上で支持して、下耐圧板と中間耐圧板との間に介在されたローラベアリングと、上耐圧板を、水平面内の他の一の方向に移動可能とするように中間耐圧板上で支持して、中間耐圧板と上耐圧板との間に介在された他のローラベアリングとを具備してなるものであるが、この免震支承装置では、振動エネルギに対しての減衰量が必ずしも十分でなく、地震が治まってからも展示台又は展示ケースが振動する虞があり、これを防ぐためにこの種の免震支承装置には粘性ダンパが通常併設される。
【0005】
ところで、粘性体を収容する収容体と、この収容体内に、当該収容体の内壁面と所定の隙間をもって粘性体内に配された抵抗板とを具備した粘性ダンパをこの種の免震支承装置に併設する場合、この免震支承装置が相対的な横方向の移動を許容すると共に、この横方向の移動において下部構造体(下耐圧板又は中間耐圧板)に対して上部構造体(中間耐圧板又は上耐圧板)に相対的な縦移動を生じさせるために、中間耐圧板又は上部構造体に取り付けられた抵抗板に収容体に対して同じく相対的な縦移動を生じさせることになる。
【0006】
上記の粘性ダンパによって生じる粘性剪断抵抗力の大きさは、横方向に沿う収容体の内壁面に対面する抵抗板の粘性体に接する面の面積と、当該収容体の内壁面と抵抗板の面との隙間間隔(距離)と、隙間に配された粘性体の粘性と、収容体と抵抗板との間の相対速度とに関与する結果、上記のように収容体に対して抵抗板に相対的な縦移動が生じると、抵抗板の粘性体への没入量が変化して収容体の内壁面に対面する抵抗板の粘性体に接する面積が変化することになる。このように粘性体に接する抵抗板の面積が変化すると、これに基づいて当該粘性ダンパによって生じる粘性剪断抵抗力の大きさが変化することとなり、地震の振動エネルギを所望に減衰させることができなくなる虞がある。
【0007】
本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、下部構造体に対する上部構造体の相対的な横方向の移動を許容すると共に、この横方向の移動において下部構造体に対して上部構造体に相対的な縦移動を生じさせる免震支承装置に併用して好適であって、上部構造体に相対的な縦移動が生じて抵抗板の粘性体への没入量が変化しても、これによっては粘性剪断抵抗力の大きさを変化させないで、所望に地震の振動エネルギを減衰させることができる粘性ダンパ及びこのような粘性ダンパを具備した免震構造物を提供することにある。
【0008】
【課題を解決するための手段】
本発明の粘性ダンパは、下部で免震構造物の下部構造体に固定されるようになっている収容体と、この収容体に収容された粘性体と、収容体内に、当該収容体の内壁面と所定の隙間をもって且つ一部の部位が粘性体内に没入されて配されていると共に上部で免震構造物の上部構造体に固定されるようになっている水平移動自在な抵抗板とを具備しており、収容体に対する抵抗板の相対移動において、抵抗板の粘性体内に没入された部位により粘性体を剪断して、この剪断により収容体に対する抵抗板の相対移動のエネルギを減衰させるようにした粘性ダンパであって、収容体には、所定高さに狭窄部が設けられており、抵抗板の粘性体内に没入された部位の両幅広平坦面に対面すると共に粘性体内に没入された収容体の内壁面は、一方の幅広平坦面に近接した近接面と、この近接面の最下縁及び最上縁に上下方向で隣接して位置していると共に、当該近接面と比較して一方の幅広平坦面からより多く離反した離反面とを具備しており、狭窄部は、収容体の近接面からなる狭窄部位と、この近接面に対面する収容体の内壁面からなる狭窄部位とからなっており、抵抗板は、両狭窄部位間に挿通されており、近接面からなる狭窄部位の最下縁は、収容体に対する抵抗板の相対移動における抵抗板の粘性体内に没入された部位の下縁の最大上昇位置よりも上方に配されており、粘性体は、近接面からなる狭窄部位の最上縁が、抵抗板の移動に伴い上下動する粘性体の上面の最大下降位置よりも下方に配されるように、収容体に収容されており、一方の幅広平坦面から近接面までの距離と当該一方の幅広平坦面から離反面までの距離との比が1/3以下であり、粘性ダンパの性能が、両狭窄部位間を移動する抵抗板の剪断抵抗により決定づけられることを特徴とする。
【0009】
本発明において、収容体は、下部で免震構造物の下部構造体に固定されるようになっており、抵抗板は、上部で免震構造物の上部構造体に固定されるようになっている。収容体は、好ましい例では、本体と、この本体の対向する両内面の少なくとも一方に、より好ましくは両内面に溶接等により固着された矩形体とを具備しており、幅広平坦面に対面する矩形体の側壁面が近接面とされるが、これに代えて、収容体を、本体のみで構成し、この本体の対向する両内面の少なくとも一方を、好ましくは、両内面を適宜変形し若しくは肉厚にして、これにより近接面と離反面とを具備した収容体の内壁面としてもよい。
【0010】
また、近接面は、必ずしも連続面である必要はなく、複数の部分近接面の集合体であってもよい。本体の対向する両内面の夫々に矩形体等を固着して近接面とする場合、この近接面を互いに対面するように、同位置に配する必要はなく、一方の近接面が他方の近接面に対して縦方向及び横方向の少なくとも一方にずれていてもよい。粘性体としては、高粘性を有するシリコン製のものを使用するのが好ましい。
【0011】
本発明では、離反面は、近接面と比較して、抵抗板の幅広平坦面からより多く離反していればよいのであるが、具体的には、好ましくは、幅広平坦面と近接面との距離d1と、幅広平坦面と離反面との距離d2との比d1/d2が1/3以下であればよく、より好ましくは、1/10以下であればよい。
【0012】
上記の粘性ダンパを用いた本発明の免震構造物では、免震構造物の下部構造体と上部構造体との間に、下部構造体に対する上部構造体の相対的な横方向の移動を許容すると共に、この横方向の移動において下部構造体に対して上部構造体に相対的な縦移動を生じさせる免震支承装置が配されている。本発明の免震構造物は、好ましい例では、展示物用の免震台であるが、本発明は、これに必ずしも限定されず、例えば事業用の免震ビル、免震集合住宅、免震戸建住宅等であってもよい。
【0013】
【発明の実施の形態】
次に本発明の実施の形態を、図に示す好ましい実施例に基づいて更に詳細に説明する。なお、本発明はこれら実施例に何等限定されないのである。
【0014】
【実施例】
図1及び図2において、本例の粘性ダンパ1は、粘性体2を収容する収容体3と、収容体3内に、当該収容体3の内壁面4と所定の隙間をもって且つ一部の部位5が粘性体2内に没入されて配された抵抗板6とを具備している。
【0015】
収容体3は、底板11、一対の互いに対向する側板12及び13並びに一対の互いに対向する横板14及び15からなる本体16と、側板12及び13の対向面17及び18に夫々溶接等により固着された矩形体19及び20とを具備している。収容体3は、その下部で溶接等により免震構造物の下部構造体21の上面22に固定される。なお、底板11を省いて、収容体3を取り付ける下部構造物21の上面22を底板として用いてもよい。
【0016】
抵抗板6は、その上部で溶接等により免震構造物の上部構造体25の下面26に固定される。
【0017】
収容体3の内壁面4において、収容体3に対する抵抗板6の横方向の相対移動方向、本例では水平方向Hに沿う部位5の平坦面、すなわち幅広平坦面31及び32に夫々対面する収容体3の内壁面33及び34は、平坦面31及び32に近接する近接面35及び36と、近接面35及び36の下縁37及び38に隣接して位置しており、近接面35及び36と比較して平坦面31及び32からより多く離反した離反面39及び40とを具備している。このように本例では、部位5の両平坦面31及び32に夫々対面する矩形体19及び20の側壁面が近接面35及び36とされており、離反面39及び40と同様の離反面41及び42が、近接面35及び36の上縁43及び44に隣接して位置して設けられている。近接面35及び36の最上縁でもある上縁43及び44は、収容体3に対する抵抗板6の相対移動、本例では地震による収容体3に対する抵抗板6の縦方向である垂直方向Vの相対移動における粘性体2の上面45の最大下降位置よりも下方に配されている。したがって、本例では、収容体3には、近接面35からなる狭窄部位と、近接面35に対面する収容体3の内壁面であって近接面36からなる狭窄部位とからなって、粘性体2を収容する収容体3内を狭窄する狭窄部が所定高さに設けられており、抵抗板6の粘性体2内に没入された部位5の平坦面31に対面する収容体3の内壁面33は、平坦面31に近接した近接面35と、近接面35の下縁37及び上縁43に隣接して位置していると共に、当該近接面35と比較して平坦面31からより多く離反した離反面39とを具備しており、抵抗板6は、近接面35からなる狭窄部位及び近接面36からなる狭窄部位の両狭窄部位間に挿通されており、粘性体2は、近接面35からなる狭窄部位の最上縁でもある上縁43が、抵抗板6の移動に伴い上下動する粘性体2の上面45の最大下降位置よりも下方に配されるように、収容体3に収容されている。
【0018】
近接面35及び36の最下縁でもある下縁37及び38は、収容体3に対する抵抗板6の垂直方向Vの相対移動における部位5の下縁51の最大上昇位置よりも上方に配されている。したがって、近接面35からなる狭窄部位の最下縁でもある下縁37は、収容体3に対する抵抗板6の相対移動における抵抗板6の粘性体2内に没入された部位5の下縁51の最大上昇位置よりも上方に配されている。
【0019】
部位5の平坦面31及び32と近接面35及び36との距離d1と、部位5の平坦面31及び32と離反面39及び40並びに41及び42との距離d2との比d1/d2は、1/3以下であり、より好ましい例では、1/10以下である。
【0020】
以上の粘性ダンパ1では、収容体3に対する抵抗板6の水平方向Hの相対移動において、部位5により粘性体2を剪断してこの剪断により収容体3に対する抵抗板6の水平方向Hの相対移動のエネルギを減衰させるようになっている。そして、粘性ダンパ1では、離反面39及び40並びに41及び42に比較して近接面35及び36が平坦面31及び32に十分に近接して位置しているため、離反面39及び40並びに41及び42と平坦面31及び32との間で生じる粘性剪断抵抗に比較して近接面35及び36と平坦面31及び32との間で生じる粘性剪断抵抗が十分に大きくなり、離反面39及び40並びに41及び42と平坦面31及び32との間で生じる粘性剪断抵抗を無視できることになり、結局、上記の剪断により生じる粘性剪断抵抗は、近接面35及び36と平坦面31及び32との間で生じる粘性剪断抵抗に実質的に依存することになる。このように粘性ダンパ1では、その性能が、近接面35からなる狭窄部位及び近接面36からなる狭窄部位の両狭窄部位間を移動する抵抗板6の剪断抵抗により決定づけられる。
【0021】
したがって、粘性ダンパ1では、地震において収容体3に対して抵抗板6に水平方向Hの相対移動に加えて垂直方向Vの相対移動が生じて抵抗板6の粘性体2への没入量(部位5の粘性体2に接する面積)が変化しても、その垂直方向Vの相対移動により、部位5の下縁51が近接面35及び36の下縁37及び38を超えて上昇せず、しかも、抵抗板6の粘性体2への没入量の変化に起因する粘性体2の上面45の変動において粘性体2の上面45が近接面35及び36の上縁43及び44を超えて下降しない限り、近接面35及び36と平坦面31及び32との粘性体2を介在した面積が一定であり、かつ部位5による粘性体2の剪断で生じる粘性剪断抵抗が、主に、近接面35及び36と平坦面31及び32との間で生じる粘性剪断抵抗に依存した値となる結果、この値でもって収容体3に対する抵抗板6の水平方向H及び垂直方向Vの相対移動のエネルギが減衰されるようになっている。換言すれば、粘性ダンパ1では、収容体3に対して抵抗板6の相対的な縦移動が生じて抵抗板6の粘性体2への没入量が変化しても、これによっては粘性剪断抵抗力の大きさを変化させないで、所望に地震の振動エネルギを減衰させることができるのである。
【0022】
次に、粘性ダンパ1を免震構造物としての展示物用の免震台61に用いた例を図3及び図4に示す。図3及び図4において、免震台61は、下部構造物としての下部枠体62と、下部枠体62に対して上部構造物(次の上部枠体64に対しては下部構造物となる)としての中間枠体63と、下部構造物としての中間枠体63に対して上部構造物としての上部枠体64と、下部枠体62と中間枠体63との間及び中間枠体62と上部枠体64との間に夫々配された複数の免震支承装置65とを具備しており、粘性ダンパ1は、免震支承装置65と同様に、下部枠体62と中間枠体63との間及び中間枠体63と上部枠体64との間に夫々配されている。免震台61の上部枠体64に固定して展示ケース66等が載置される。
【0023】
各免震支承装置65は、同様に構成されており、下部枠体62と中間枠体63との間に配された免震支承装置65の夫々は、円弧上面71を有して下部枠体62に固着された下部ローラ受け72と、円弧下面73を有して中間枠体63に固着された上部ローラ受け74と、下部ローラ受け72及び上部ローラ受け74間に配されたローラ75とを具備しており、中間枠体63と上部枠体64との間に配された免震支承装置65の夫々は、同じく円弧上面71を有して中間枠体63に固着された下部ローラ受け72と、円弧下面73を有して上部枠体64に固着された上部ローラ受け74と、下部ローラ受け72及び上部ローラ受け74間に配されたローラ75とを具備している。
【0024】
下部枠体62と中間枠体63との間に配されて、下部枠体62に対して中間枠体63を免震支持する免震支承装置65は、ローラ75の下部ローラ受け72と上部ローラ受け74との間での転動により下部枠体62に対する中間枠体63の水平方向HにおけるH1方向の移動を許容し、H1方向の移動において下部枠体62に対して中間枠体63に縦移動、すなわちV方向の移動を生じさせ、中間枠体63と上部枠体64との間に配されて、中間枠体63に対して上部枠体64を免震支持する免震支承装置65は、ローラ75の下部ローラ受け72と上部ローラ受け74との間での転動により中間枠体63に対する上部枠体64の水平方向HにおいてH1方向に直交するH2方向の移動を許容し、H2方向の移動において中間枠体63に対して上部枠体64に縦移動、すなわちV方向の移動を生じさせる。
【0025】
下部枠体62と中間枠体63との間に配された粘性ダンパ1においては、その収容体3は、下部で溶接等により下部枠体62の上面に固定され、その抵抗板6は、上部で溶接等により中間枠体63の下面に固定されており、中間枠体63と上部枠体64との間に配された粘性ダンパ1においては、その収容体3は、下部で溶接等により中間枠体63の上面に固定され、その抵抗板6は、上部で溶接等により上部枠体64の下面に固定されている。
【0026】
以上の免震台61では、地震により床76が水平方向H1又はH2に振動した場合、下部枠体62に対して中間枠体63が水平方向H1に又は中間枠体63に対して上部枠体64が水平方向H2に相対的に移動されると共に、下部枠体62に対して中間枠体63が又は中間枠体63に対して上部枠体64が垂直方向Vに移動されて、展示ケース66への床76からの水平方向H1又はH2の振動の伝達を防止するようになっている。そして、免震台61では、下部枠体62に対する中間枠体63の水平方向H1及び垂直方向Vの相対移動において又は中間枠体63に対する上部枠体64の水平方向H2及び垂直方向Vの相対移動において、粘性ダンパ1により粘性剪断抵抗が生じて、当該相対移動のエネルギが減衰される。しかも、免震台61では、下部枠体62に対して中間枠体63が又は中間枠体63に対して上部枠体64が垂直方向Vに移動されても、上記のように抵抗板6の粘性体2への没入量の変化に影響されることなしに、粘性ダンパ1により所望の粘性剪断抵抗が生じる結果、地震による床76に対する展示ケース66の垂直方向V及び水平方向H1又はH2の相対的な振動が可及的速やかに減衰されることになる。
【0027】
上記の粘性ダンパ1では、側板12及び13の対向面17及び18に夫々固着された矩形体19及び20により近接面35及び36と離反面39及び40並びに41及び42とを形成したが、これに代えて、図5に示すように側板12及び13の中間部を断面コ字状に曲折させて、近接面35及び36と離反面39及び40並びに41及び42とを形成してもよい。
【0028】
また、図6に示すように、近接面35及び36が垂直方向Vにおいて互いにずれて対面するように、矩形体19及び20とを側板12及び13の対向面17及び18に夫々溶接等により固着してもよく、この場合には、近接面35及び36の最下縁は、下側の近接面36の下縁38となり、近接面35及び36の最上縁は、上側の近接面35の上縁43となり、下縁38を部位5の下縁51の最大上昇位置よりも上方に配し、上縁43を粘性体2の上面45の最大下降位置よりも下方に配する。
【0029】
更に、図7に示すように、近接面35及び36の夫々が垂直方向Vにおいて断続されて配された複数の部分近接面35a及び35b並びに36a及び36bの集合体からなるように、夫々複数の部分矩形体19a及び19b並びに20a及び20bからなる矩形体19及び20を側板12及び13の対向面17及び18に夫々溶接等により固着してもよく、この場合には、近接面35及び36の最下縁は、下側の部分近接面36bの下縁38bとなり、近接面35及び36の最上縁は、上側の部分近接面35aの上縁43aとなり、下縁38bを部位5の下縁51の最大上昇位置よりも上方に配し、上縁43aを粘性体2の上面45の最大下降位置よりも下方に配する。
【0030】
また、近接面35及び36を互いに同一の面積をもって形成する必要はなく、図8に示すように、近接面35の面積を近接面36の面積よりも小さくしてもよく、更に、図9に示すように、平坦面31に近接する近接面35を省いて、粘性ダンパ1を形成してもよい。この場合、狭窄部は、近接面36からなる狭窄部位と、この近接面36に対面する収容体3の内壁面33の一部の壁面からなる狭窄部位とからなる。
【0031】
【発明の効果】
本発明によれば、下部構造体に対する上部構造体の相対的な横方向の移動を許容すると共に、この横方向の移動において下部構造体に対して上部構造体に相対的な縦移動を生じさせる免震支承装置に併用して好適であって、上部構造体に相対的な縦移動が生じて抵抗板の粘性体への没入量が変化しても、これによっては粘性剪断抵抗力の大きさを変化させないで、所望に地震の振動エネルギを減衰させることができる粘性ダンパ及びこのような粘性ダンパを具備した免震構造物を提供することができる。
【図面の簡単な説明】
【図1】本発明の好ましい一実施例の側面断面説明図である。
【図2】図1の実施例の粘性ダンパの分解斜視図である。
【図3】図1の実施例を免震台に用いた例の正面図である。
【図4】図3の例の側面図である。
【図5】本発明の好ましい他の実施例の側面断面説明図である。
【図6】本発明の好ましい更に他の実施例の側面断面説明図である。
【図7】本発明の好ましい更に他の実施例の側面断面説明図である。
【図8】本発明の好ましい更に他の実施例の側面断面説明図である。
【図9】本発明の好ましい更に他の実施例の側面断面説明図である。
【符号の説明】
1 粘性ダンパ
2 粘性体
3 収容体
4、33、34 内壁面
5 部位
6 抵抗板
31、32 平坦面
35、36 近接面
37、38 下縁
39、40 離反面
43、44 上縁
45 上面
51 下縁
[0001]
BACKGROUND OF THE INVENTION
The present invention allows the relative movement of the upper structure relative to the lower structure between the lower structure and the upper structure, and the upper structure relative to the lower structure in this lateral movement. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a viscous damper suitable for use in a seismic isolation structure provided with a seismic isolation bearing device that causes a longitudinal movement relative to the body, and a seismic isolation structure including such a viscous damper.
[0002]
[Problems to be solved by the invention]
For example, in buildings such as museums, museums, temples, precious artworks or antiques such as Buddha statues, sculptures, ceramics, etc. are placed on display stands or housed in display cases. If the table or the display case is placed directly on the floor of the building, there is a risk that the artwork will be destroyed and damaged due to a fall due to the occurrence of an earthquake.
[0003]
For this reason, the seismic isolation device described in Japanese Examined Patent Publication No. 62-32300 is interposed between the exhibition stand or the display case and the floor of the building so that the earthquake vibration is not transmitted to the display stand or the display case. It has been proposed to absorb the vibration energy of the earth appropriately and use it for a base-isolated table that avoids the destruction and damage of works of art.
[0004]
The seismic isolation bearing device includes a lower pressure plate, an intermediate pressure plate disposed on the lower pressure plate, an upper pressure plate disposed on the intermediate pressure plate, and the intermediate pressure plate in a horizontal plane. The roller bearing interposed between the lower pressure plate and the intermediate pressure plate, and the upper pressure plate are supported in the other direction in the horizontal plane. It is supported on the intermediate pressure plate so as to be movable, and is provided with other roller bearings interposed between the intermediate pressure plate and the upper pressure plate. In order to prevent the display stand or display case from vibrating even after the earthquake has ceased, there is usually a viscous damper in this type of seismic isolation bearing device. It is attached.
[0005]
By the way, this type of seismic isolation device includes a viscous damper that includes a container that houses a viscous body, and a resistance plate that is disposed in the container with a predetermined clearance from the inner wall surface of the container. In the case where it is also provided, this seismic isolation device allows relative lateral movement, and the upper structure (intermediate pressure plate) with respect to the lower structure (lower pressure plate or intermediate pressure plate) in this lateral movement. In addition, in order to cause a relative vertical movement in the upper pressure-resistant plate), a relative vertical movement with respect to the container is caused in the resistance plate attached to the intermediate pressure-resistant plate or the upper structure.
[0006]
The magnitude of the viscous shear resistance generated by the viscous damper is defined by the area of the surface of the resistance plate that contacts the inner wall surface of the container along the lateral direction and the surface of the container and the surface of the resistance plate. As a result of being involved in the gap interval (distance) between the container and the viscosity of the viscous body disposed in the gap and the relative speed between the container and the resistance plate, as described above, relative to the resistance plate When the vertical movement occurs, the amount of immersion of the resistance plate into the viscous body changes, and the area of the resistance plate that contacts the inner wall surface of the container changes in contact with the viscous body. When the area of the resistance plate in contact with the viscous body changes in this way, the magnitude of the viscous shear resistance generated by the viscous damper changes based on this, and the vibration energy of the earthquake cannot be attenuated as desired. There is a fear.
[0007]
The present invention has been made in view of the above-described points, and an object of the present invention is to permit the relative lateral movement of the upper structure relative to the lower structure, and to lower the lower structure in this lateral movement. Suitable for use in seismic isolation devices that cause the vertical movement of the upper structure relative to the structure, and the vertical movement of the upper structure causes the resistance plate to be immersed in the viscous body. A viscous damper capable of damping the vibration energy of an earthquake as desired without changing the magnitude of the viscous shear resistance force even if the amount changes, and a seismic isolation structure equipped with such a viscous damper. It is to provide.
[0008]
[Means for Solving the Problems]
The viscous damper of the present invention includes a container that is fixed to the lower structure of the seismic isolation structure at a lower part, a viscous body that is accommodated in the container, and an inner body of the container. A horizontally movable resistance plate having a predetermined clearance and a part of the wall surface and a part of which is immersed in the viscous body and fixed to the upper structure of the seismic isolation structure at the upper part. In the relative movement of the resistance plate with respect to the container, the viscous body is sheared by a portion immersed in the viscous body of the resistance plate, and the energy of the relative movement of the resistance plate with respect to the container is attenuated by this shearing. The container is provided with a constricted portion at a predetermined height, facing the both wide flat surfaces of the portion of the resistance plate that has been immersed in the viscous body and being immersed in the viscous body. The inner wall of the container is wide on one side The proximity surface adjacent to the carrier surface is adjacent to the lowermost edge and the uppermost edge of the proximity surface in the vertical direction, and is separated from one wide flat surface more than the adjacent surface. The constriction part is composed of a stenosis part consisting of the proximity surface of the container and a stenosis part consisting of the inner wall surface of the container facing this proximity surface. The lowermost edge of the constricted part composed of the adjacent surface is inserted above the part, and the uppermost position of the lower edge of the part immersed in the viscous body of the resistance plate in the relative movement of the resistance plate to the container is higher than the maximum rising position. The viscous body is placed in the container so that the uppermost edge of the constricted portion consisting of the adjacent surface is disposed below the maximum descending position of the upper surface of the viscous body that moves up and down as the resistance plate moves. The distance from one wide flat surface to the adjacent surface The ratio of the distance to the separating surface from one of the wide flat surface is 1/3 or less, the performance of the viscous damper, characterized in that dictated by the shear resistance of the resistive plate to move between the stenosis.
[0009]
In the present invention, the container is fixed to the lower structure of the base isolation structure at the lower part, and the resistance plate is fixed to the upper structure of the base isolation structure at the upper part. Yes. In a preferred example, the container includes a main body and at least one of both opposing inner surfaces of the main body, more preferably a rectangular body fixed to both inner surfaces by welding or the like, and faces the wide flat surface. The side wall surface of the rectangular body is a proximity surface, but instead, the container is composed of only the main body, and at least one of both opposing inner surfaces of the main body, preferably both inner surfaces are appropriately deformed or It is good also as an inner wall surface of the container which made it thick and thereby comprised the proximity | contact surface and the separation surface.
[0010]
Further, the proximity surface is not necessarily a continuous surface, and may be an aggregate of a plurality of partial proximity surfaces. When a rectangular body or the like is fixed to each of both opposing inner surfaces of the main body to make a proximity surface, it is not necessary to place the proximity surfaces in the same position so that the proximity surfaces face each other, and one proximity surface is the other proximity surface However, it may be displaced in at least one of the vertical direction and the horizontal direction. As the viscous material, a silicon material having high viscosity is preferably used.
[0011]
In the present invention, the separation surface only needs to be separated from the wide flat surface of the resistance plate more than the proximity surface. Specifically, preferably, the separation surface is preferably formed between the wide flat surface and the proximity surface. The ratio d1 / d2 between the distance d1 and the distance d2 between the wide flat surface and the separating surface may be 1/3 or less, more preferably 1/10 or less.
[0012]
In the seismic isolation structure of the present invention using the above viscous damper, relative lateral movement of the upper structure relative to the lower structure is allowed between the lower structure and the upper structure of the seismic isolation structure. In addition, a seismic isolation bearing device is provided that causes a relative vertical movement of the upper structure relative to the lower structure in this lateral movement. In a preferable example, the seismic isolation structure of the present invention is a seismic isolation table for exhibits, but the present invention is not necessarily limited to this, for example, a business-use seismic isolation building, seismic isolation housing, seismic isolation It may be a detached house.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail based on preferred examples shown in the drawings. The present invention is not limited to these examples.
[0014]
【Example】
1 and 2, the viscous damper 1 of this example includes a container 3 that houses the viscous body 2, and a part of the container 3 that has a predetermined clearance from the inner wall surface 4 of the container 3. 5 includes a resistance plate 6 disposed so as to be immersed in the viscous body 2.
[0015]
The container 3 is fixed to the main body 16 including the bottom plate 11, the pair of side plates 12 and 13 facing each other and the pair of side plates 14 and 15 facing each other, and the facing surfaces 17 and 18 of the side plates 12 and 13 by welding or the like. The rectangular bodies 19 and 20 are provided. The container 3 is fixed to the upper surface 22 of the lower structure 21 of the seismic isolation structure at the lower part thereof by welding or the like. Note that the bottom plate 11 may be omitted, and the upper surface 22 of the lower structure 21 to which the container 3 is attached may be used as the bottom plate.
[0016]
The resistance plate 6 is fixed to the lower surface 26 of the upper structure 25 of the seismic isolation structure at the upper portion thereof by welding or the like.
[0017]
On the inner wall surface 4 of the container 3, the container faces the flat surface of the portion 5 along the horizontal direction H in the horizontal direction H in this example, that is, the wide flat surfaces 31 and 32 in this example, with respect to the container 3. The inner wall surfaces 33 and 34 of the body 3 are located adjacent to the proximity surfaces 35 and 36 adjacent to the flat surfaces 31 and 32 and the lower edges 37 and 38 of the proximity surfaces 35 and 36. Compared to the flat surfaces 31 and 32, the separation surfaces 39 and 40 are further separated from each other. Thus, in this example, the side wall surfaces of the rectangular bodies 19 and 20 that face both the flat surfaces 31 and 32 of the part 5 are the proximity surfaces 35 and 36, respectively, and the separation surface 41 similar to the separation surfaces 39 and 40. And 42 are provided adjacent to the upper edges 43 and 44 of the proximity surfaces 35 and 36. The upper edges 43 and 44 which are also the uppermost edges of the proximity surfaces 35 and 36 are relative movements of the resistance plate 6 with respect to the container 3, in this example, relative to a vertical direction V which is the longitudinal direction of the resistance plate 6 with respect to the container 3 due to an earthquake. It is arranged below the maximum lowering position of the upper surface 45 of the viscous body 2 in movement. Therefore, in this example, the container 3 is composed of a narrowed portion made of the proximity surface 35 and a narrowed portion made of the inner surface of the container 3 facing the proximity surface 35 and made of the proximity surface 36. The inner wall surface of the container 3 that faces the flat surface 31 of the portion 5 that is immersed in the viscous body 2 of the resistance plate 6 is provided with a narrowed portion that narrows the inside of the container 3 that houses the container 2. 33 is located adjacent to the proximity surface 35 close to the flat surface 31, the lower edge 37 and the upper edge 43 of the proximity surface 35, and more separated from the flat surface 31 than the proximity surface 35. The resistance plate 6 is inserted between the stenosis part of the constriction part consisting of the proximity surface 35 and the stenosis part consisting of the proximity surface 36, and the viscous body 2 includes the proximity surface 35. The upper edge 43, which is also the uppermost edge of the stenosis site consisting of Than the maximum lowered position of the upper surface 45 of the viscous body 2 to have vertical movement to be disposed downward is housed in the housing body 3.
[0018]
The lower edges 37 and 38 that are also the lowermost edges of the proximity surfaces 35 and 36 are arranged above the maximum rising position of the lower edge 51 of the region 5 in the relative movement in the vertical direction V of the resistance plate 6 with respect to the container 3. Yes. Therefore, the lower edge 37 that is also the lowermost edge of the constricted portion formed by the proximity surface 35 is the lower edge 51 of the portion 5 that is immersed in the viscous body 2 of the resistance plate 6 in the relative movement of the resistance plate 6 with respect to the container 3. It is arranged above the maximum ascending position.
[0019]
The ratio d1 / d2 between the distance d1 between the flat surfaces 31 and 32 of the region 5 and the proximity surfaces 35 and 36 and the distance d2 between the flat surfaces 31 and 32 of the region 5 and the separating surfaces 39 and 40 and 41 and 42 is: 1/3 or less, and in a more preferred example, it is 1/10 or less.
[0020]
In the viscous damper 1 described above, in the relative movement in the horizontal direction H of the resistance plate 6 with respect to the container 3, the viscous body 2 is sheared by the portion 5, and the horizontal movement of the resistance plate 6 with respect to the container 3 is sheared by this shearing. The energy is attenuated. In the viscous damper 1, the proximity surfaces 35 and 36 are positioned sufficiently closer to the flat surfaces 31 and 32 than the separation surfaces 39 and 40 and 41 and 42. And 42 and the flat shear surfaces 31 and 32, the viscous shear resistance generated between the adjacent surfaces 35 and 36 and the flat surfaces 31 and 32 is sufficiently large, and the separation surfaces 39 and 40 are separated. As a result, the viscous shear resistance generated between 41 and 42 and the flat surfaces 31 and 32 can be ignored. As a result, the viscous shear resistance generated by the above-described shear is between the adjacent surfaces 35 and 36 and the flat surfaces 31 and 32. Will substantially depend on the viscous shear resistance generated in As described above, the performance of the viscous damper 1 is determined by the shear resistance of the resistance plate 6 that moves between the stenosis part of the constriction surface 35 and the stenosis part of the proximity surface 36.
[0021]
Therefore, in the viscous damper 1, in the earthquake, relative movement in the vertical direction V occurs in the resistance plate 6 with respect to the container 3 in addition to the relative movement in the horizontal direction H, and the amount of immersion of the resistance plate 6 into the viscous body 2 (part) 5), the lower edge 51 of the portion 5 does not rise beyond the lower edges 37 and 38 of the proximity surfaces 35 and 36 due to the relative movement in the vertical direction V. As long as the upper surface 45 of the viscous body 2 does not fall beyond the upper edges 43 and 44 of the proximity surfaces 35 and 36 due to the change in the upper surface 45 of the viscous body 2 due to the change in the amount of penetration of the resistance plate 6 into the viscous body 2 The areas of the proximity surfaces 35 and 36 and the flat surfaces 31 and 32 with the viscous body 2 interposed therebetween are constant, and the viscous shear resistance generated by the shearing of the viscous body 2 by the region 5 is mainly caused by the proximity surfaces 35 and 36. And the viscous shear resistance between the flat surfaces 31 and 32 Dependent values become result, the energy of the relative movement in the horizontal direction H and vertical direction V of the resistance plate 6 for container 3 has in this value is adapted to be attenuated. In other words, in the viscous damper 1, even if the relative longitudinal movement of the resistance plate 6 with respect to the container 3 occurs and the amount of immersion of the resistance plate 6 into the viscous body 2 changes, depending on this, the viscous shear resistance The seismic vibration energy can be attenuated as desired without changing the magnitude of the force.
[0022]
Next, an example in which the viscous damper 1 is used as an isolation base 61 for an exhibition as an isolation structure is shown in FIGS. 3 and 4, the base isolation table 61 is a lower frame 62 as a lower structure and an upper structure with respect to the lower frame 62 (a lower structure with respect to the next upper frame 64). ), An upper frame 64 as an upper structure relative to the intermediate frame 63 as a lower structure, and between the lower frame 62 and the intermediate frame 63 and between the intermediate frame 62 and A plurality of seismic isolation bearing devices 65 respectively disposed between the upper frame body 64 and the viscous damper 1, similar to the seismic isolation bearing device 65, includes a lower frame body 62 and an intermediate frame body 63. Between the intermediate frame 63 and the upper frame 64. The display case 66 and the like are placed fixed to the upper frame 64 of the base isolation table 61.
[0023]
Each of the seismic isolation bearing devices 65 is configured in the same manner, and each of the seismic isolation bearing devices 65 disposed between the lower frame body 62 and the intermediate frame body 63 has an arc upper surface 71 and has a lower frame body. A lower roller receiver 72 fixed to 62, an upper roller receiver 74 having an arc lower surface 73 and fixed to the intermediate frame 63, and a roller 75 disposed between the lower roller receiver 72 and the upper roller receiver 74. Each of the seismic isolation bearing devices 65 provided between the intermediate frame 63 and the upper frame 64 has a lower roller receiver 72 which has an arc upper surface 71 and is fixed to the intermediate frame 63. And an upper roller receiver 74 having an arc lower surface 73 and fixed to the upper frame 64, and a roller 75 disposed between the lower roller receiver 72 and the upper roller receiver 74.
[0024]
The seismic isolation support device 65 disposed between the lower frame 62 and the intermediate frame 63 and supporting the intermediate frame 63 with respect to the lower frame 62 is provided with a lower roller receiver 72 of the roller 75 and an upper roller. The intermediate frame 63 is allowed to move in the H1 direction in the horizontal direction H with respect to the lower frame 62 by rolling with the receiver 74, and the intermediate frame 63 is vertically moved with respect to the lower frame 62 in the movement in the H1 direction. A seismic isolation support device 65 that causes movement, that is, movement in the V direction, is disposed between the intermediate frame 63 and the upper frame 64 and supports the upper frame 64 with respect to the intermediate frame 63. The rolling of the roller 75 between the lower roller receiver 72 and the upper roller receiver 74 allows the movement of the upper frame 64 in the horizontal direction H with respect to the intermediate frame 63 in the H2 direction perpendicular to the H1 direction. With respect to the intermediate frame 63 Longitudinal movement to the upper frame 64, i.e., causes movement of the V direction.
[0025]
In the viscous damper 1 disposed between the lower frame body 62 and the intermediate frame body 63, the container 3 is fixed to the upper surface of the lower frame body 62 by welding or the like in the lower part, and the resistance plate 6 is In the viscous damper 1 that is fixed to the lower surface of the intermediate frame 63 by welding or the like, and the viscous damper 1 disposed between the intermediate frame 63 and the upper frame 64, the container 3 is intermediate in the lower part by welding or the like. The resistance plate 6 is fixed to the upper surface of the frame 63, and the resistance plate 6 is fixed to the lower surface of the upper frame 64 by welding or the like at the upper part.
[0026]
In the base isolation table 61 described above, when the floor 76 vibrates in the horizontal direction H1 or H2 due to an earthquake, the intermediate frame 63 is in the horizontal direction H1 with respect to the lower frame 62 or the upper frame with respect to the intermediate frame 63. 64 is moved relatively in the horizontal direction H2, and the intermediate frame 63 is moved relative to the lower frame 62 or the upper frame 64 is moved in the vertical direction V relative to the intermediate frame 63, and the display case 66 is moved. The transmission of the vibration in the horizontal direction H1 or H2 from the floor 76 is prevented. In the base isolation table 61, the relative movement in the horizontal direction H1 and the vertical direction V of the intermediate frame 63 with respect to the lower frame 62 or the relative movement in the horizontal direction H2 and the vertical direction V of the upper frame 64 with respect to the intermediate frame 63. , The viscous damper 1 generates a viscous shear resistance, and the relative movement energy is attenuated. Moreover, in the base isolation table 61, even if the intermediate frame 63 is moved relative to the lower frame 62 or the upper frame 64 is moved in the vertical direction V relative to the intermediate frame 63, the resistance plate 6 is As a result of the desired viscous shear resistance caused by the viscous damper 1 without being affected by the change in the amount of immersion in the viscous body 2, the vertical V and horizontal H1 or H2 of the display case 66 with respect to the floor 76 due to the earthquake. Vibration will be damped as quickly as possible.
[0027]
In the viscous damper 1 described above, the proximity surfaces 35 and 36 and the separation surfaces 39 and 40 and 41 and 42 are formed by the rectangular bodies 19 and 20 fixed to the opposing surfaces 17 and 18 of the side plates 12 and 13, respectively. Instead, as shown in FIG. 5, the intermediate portions of the side plates 12 and 13 may be bent into a U-shaped cross section to form the proximity surfaces 35 and 36 and the separation surfaces 39 and 40 and 41 and 42.
[0028]
Further, as shown in FIG. 6, the rectangular bodies 19 and 20 are fixed to the opposing surfaces 17 and 18 of the side plates 12 and 13 by welding or the like so that the proximity surfaces 35 and 36 face each other in the vertical direction V. In this case, the lowermost edges of the proximity surfaces 35 and 36 become the lower edge 38 of the lower proximity surface 36, and the uppermost edges of the proximity surfaces 35 and 36 are above the upper proximity surface 35. The lower edge 38 is arranged above the maximum rising position of the lower edge 51 of the part 5, and the upper edge 43 is arranged below the maximum lowering position of the upper surface 45 of the viscous body 2.
[0029]
Further, as shown in FIG. 7, each of the proximity surfaces 35 and 36 includes a plurality of partial proximity surfaces 35a and 35b and a set of 36a and 36b arranged intermittently in the vertical direction V. The rectangular bodies 19 and 20 formed of the partial rectangular bodies 19a and 19b and 20a and 20b may be fixed to the opposing surfaces 17 and 18 of the side plates 12 and 13 by welding or the like. The lowermost edge is the lower edge 38b of the lower partial proximity surface 36b, the uppermost edge of the proximity surfaces 35 and 36 is the upper edge 43a of the upper partial proximity surface 35a, and the lower edge 38b is the lower edge 51 of the region 5. The upper edge 43 a is disposed below the maximum lowering position of the upper surface 45 of the viscous body 2.
[0030]
Further, it is not necessary to form the proximity surfaces 35 and 36 with the same area as each other. As shown in FIG. 8, the area of the proximity surface 35 may be smaller than the area of the proximity surface 36, and FIG. As shown, the viscous damper 1 may be formed by omitting the proximity surface 35 close to the flat surface 31. In this case, the stenosis part is composed of a stenosis portion composed of the proximity surface 36 and a stenosis region composed of a part of the inner wall surface 33 of the container 3 facing the proximity surface 36.
[0031]
【The invention's effect】
According to the present invention, the horizontal movement of the upper structure relative to the lower structure is allowed, and the vertical movement of the upper structure relative to the lower structure is caused in the horizontal movement. It is suitable for use with seismic isolation bearing devices, and even if the relative displacement of the superstructure occurs and the amount of immersion of the resistance plate into the viscous body changes, this will affect the magnitude of the viscous shear resistance. It is possible to provide a viscous damper capable of damping the vibration energy of an earthquake as desired without changing the above, and a seismic isolation structure equipped with such a viscous damper.
[Brief description of the drawings]
FIG. 1 is an explanatory side sectional view of a preferred embodiment of the present invention.
FIG. 2 is an exploded perspective view of the viscous damper of the embodiment of FIG.
FIG. 3 is a front view of an example in which the embodiment of FIG. 1 is used for a base isolation table.
4 is a side view of the example of FIG. 3. FIG.
FIG. 5 is an explanatory side sectional view of another preferred embodiment of the present invention.
FIG. 6 is an explanatory side sectional view of still another preferred embodiment of the present invention.
FIG. 7 is a side cross-sectional explanatory view of still another preferred embodiment of the present invention.
FIG. 8 is a side cross-sectional explanatory view of still another preferred embodiment of the present invention.
FIG. 9 is an explanatory side sectional view of still another preferred embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Viscous damper 2 Viscous body 3 Container body 4,33,34 Inner wall surface 5 Site | part 6 Resistance board 31,32 Flat surface 35,36 Proximal surface 37,38 Lower edge 39,40 Separation surface 43,44 Upper edge 45 Upper surface 51 Below edge

Claims (4)

下部で免震構造物の下部構造体に固定されるようになっている収容体と、この収容体に収容された粘性体と、収容体内に、当該収容体の内壁面と所定の隙間をもって且つ一部の部位が粘性体内に没入されて配されていると共に上部で免震構造物の上部構造体に固定されるようになっている水平移動自在な抵抗板とを具備しており、収容体に対する抵抗板の相対移動において、抵抗板の粘性体内に没入された部位により粘性体を剪断して、この剪断により収容体に対する抵抗板の相対移動のエネルギを減衰させるようにした粘性ダンパであって、収容体には、所定高さに狭窄部が設けられており、抵抗板の粘性体内に没入された部位の両幅広平坦面に対面すると共に粘性体内に没入された収容体の内壁面は、一方の幅広平坦面に近接した近接面と、この近接面の最下縁及び最上縁に上下方向で隣接して位置していると共に、当該近接面と比較して一方の幅広平坦面からより多く離反した離反面とを具備しており、狭窄部は、収容体の近接面からなる狭窄部位と、この近接面に対面する収容体の内壁面からなる狭窄部位とからなっており、抵抗板は、両狭窄部位間に挿通されており、近接面からなる狭窄部位の最下縁は、収容体に対する抵抗板の相対移動における抵抗板の粘性体内に没入された部位の下縁の最大上昇位置よりも上方に配されており、粘性体は、近接面からなる狭窄部位の最上縁が、抵抗板の移動に伴い上下動する粘性体の上面の最大下降位置よりも下方に配されるように、収容体に収容されており、一方の幅広平坦面から近接面までの距離と当該一方の幅広平坦面から離反面までの距離との比が1/3以下であり、粘性ダンパの性能が、両狭窄部位間を移動する抵抗板の剪断抵抗により決定づけられることを特徴とする粘性ダンパ。  A container that is fixed to the lower structure of the seismic isolation structure at the lower part, a viscous body that is accommodated in the container, and a predetermined gap between the inner wall surface of the container and the container; A part of which is immersed in the viscous body and has a horizontally movable resistance plate which is fixed to the upper structure of the seismic isolation structure at the upper part; In the relative movement of the resistance plate with respect to the resistance plate, the viscous body is sheared by the portion immersed in the viscous body of the resistance plate, and this shear attenuates the energy of the relative movement of the resistance plate with respect to the container. The container is provided with a constriction at a predetermined height, facing both wide flat surfaces of the portion of the resistance plate immersed in the viscous body and the inner wall surface of the container immersed in the viscous body, Proximity surface close to one wide flat surface The lower surface and the uppermost edge of the proximity surface are positioned adjacent to each other in the vertical direction, and have a separation surface that is more separated from one wide flat surface than the proximity surface, The stenosis part consists of a stenosis part consisting of the proximity surface of the container and a stenosis part consisting of the inner wall surface of the container facing this proximity surface, and the resistance plate is inserted between both stenosis parts, The lowermost edge of the constricted part composed of the adjacent surface is arranged above the maximum rising position of the lower edge of the part immersed in the viscous body of the resistance plate in the relative movement of the resistance plate with respect to the container, The uppermost edge of the constricted portion consisting of the adjacent surface is accommodated in the accommodating body so that the uppermost edge of the viscous body that moves up and down with the movement of the resistance plate is disposed below the maximum descending position. From the distance from the flat surface to the adjacent surface and the one wide flat surface Or less the ratio of the distance 1/3 to contrary, the viscous damper performance of the viscous damper, characterized in that dictated by the shear resistance of the resistive plate to move between the stenosis. 収容体は、本体と、この本体の対向する両内面の少なくとも一方に固着された矩形体とを具備しており、抵抗板の一方の幅広平坦面に対面する矩形体の側壁面が近接面とされている請求項1に記載の粘性ダンパ。  The container includes a main body and a rectangular body fixed to at least one of the opposing inner surfaces of the main body, and the side wall surface of the rectangular body facing one wide flat surface of the resistance plate is a proximity surface. The viscous damper according to claim 1. 請求項1又は2に記載の粘性ダンパを用いた免震構造物であって、免震構造物の下部構造体と上部構造体との間には、下部構造体に対する上部構造体の相対的な横方向の移動を許容すると共に、この横方向の移動において下部構造体に対して上部構造体に相対的な縦移動を生じさせる免震支承装置が配されている免震構造物。  A seismic isolation structure using the viscous damper according to claim 1 or 2, wherein a relative position of the upper structure relative to the lower structure is between the lower structure and the upper structure of the seismic isolation structure. A base-isolated structure in which a base-isolation support device that allows lateral movement and causes vertical movement relative to the lower structure relative to the lower structure in this lateral movement is arranged. 免震構造物が展示物用の免震台である請求項3に記載の免震構造物。  The seismic isolation structure according to claim 3, wherein the seismic isolation structure is a seismic isolation table for exhibits.
JP02781098A 1998-01-26 1998-01-26 Viscous damper and seismic isolation structure using the same Expired - Lifetime JP4285796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02781098A JP4285796B2 (en) 1998-01-26 1998-01-26 Viscous damper and seismic isolation structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02781098A JP4285796B2 (en) 1998-01-26 1998-01-26 Viscous damper and seismic isolation structure using the same

Publications (2)

Publication Number Publication Date
JPH11210819A JPH11210819A (en) 1999-08-03
JP4285796B2 true JP4285796B2 (en) 2009-06-24

Family

ID=12231342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02781098A Expired - Lifetime JP4285796B2 (en) 1998-01-26 1998-01-26 Viscous damper and seismic isolation structure using the same

Country Status (1)

Country Link
JP (1) JP4285796B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763628B2 (en) * 2007-02-01 2011-08-31 株式会社竹中工務店 Seismic isolation device
JP6358880B2 (en) * 2014-07-18 2018-07-18 オイレス工業株式会社 Seismic isolation device
CN108316733B (en) * 2018-03-23 2023-05-05 中铁大桥科学研究院有限公司 Viscous damping wall

Also Published As

Publication number Publication date
JPH11210819A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP2008019941A (en) Base isolation device
JP4285796B2 (en) Viscous damper and seismic isolation structure using the same
JPH1046869A (en) Multilayer type viscous damper for vibration-isolation device
JPS636361Y2 (en)
JP2002021917A (en) Base isolation device
JP3401441B2 (en) Structural damping device
JPH1182618A (en) Base isolation device
JP3739145B2 (en) Building damping device
JP4763628B2 (en) Seismic isolation device
JPH11166591A (en) Low floor base-isolating device for exhibition case
JP4244437B2 (en) Vibration damping device for seismic isolation bearing device
JPH07245413A (en) Acceleration sensor
JPH1030293A (en) Seismic isolation structure for wooden building
JPH1046870A (en) Viscous damper for vibration-isolation device
JPH039268B2 (en)
JP7134773B2 (en) Vibration damping device and modification method of vibration damping device
JP4553444B2 (en) Seismic isolation device
JPH0415877Y2 (en)
JPH11101021A (en) Support structure for base isolation device
JPH0722511Y2 (en) 3D damper device
JP4072874B2 (en) Base isolation table and display case or display stand supported by this base isolation base
JP3506039B2 (en) Seismic isolation bearing device
JPH0640765Y2 (en) Seismic isolation floor level adjuster
JPH0666044A (en) Vibration isolating wall device
JPH05118161A (en) Damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071012

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term