JPH0666044A - Vibration isolating wall device - Google Patents

Vibration isolating wall device

Info

Publication number
JPH0666044A
JPH0666044A JP30838191A JP30838191A JPH0666044A JP H0666044 A JPH0666044 A JP H0666044A JP 30838191 A JP30838191 A JP 30838191A JP 30838191 A JP30838191 A JP 30838191A JP H0666044 A JPH0666044 A JP H0666044A
Authority
JP
Japan
Prior art keywords
frame
vibration
voltage
energy absorber
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30838191A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nomichi
利幸 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Original Assignee
Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd filed Critical Mitsui Construction Co Ltd
Priority to JP30838191A priority Critical patent/JPH0666044A/en
Publication of JPH0666044A publication Critical patent/JPH0666044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out vibration isolation stably at all times for a wide variety of joltings caused by winds, earthquake, etc., in the inter-columnar part and inter-beam part of a structure. CONSTITUTION:A frame 10 is secured to the beam 3 side while an aux. frame 11 is fixed to the wall 5 side. In the form of connecting the frame 10 to the aux. frame 11, an energy absorbing body 12 is installed whose visco-elasticity is variable in accordance with the voltage, and at normal times (out of earthquake), a voltage is impressed between the frame 10 and aux. frame 11 through a voltage control device 15, and the wall 5 is rigidly supported by a visco-elastic damper 6. When a vibration sensor 9 senses vibration of the structure concerned 1, the visco-elasticity of the energy absorbing body 12 is adjusted to the proper value for absorbing the vibration by means of increase or decrease of the voltage between the frame 10 and aux. frame 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造物の柱梁部分に組
み込まれて制振効果を発揮することの出来る制振壁装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damping wall device which can be incorporated into a column or beam portion of a structure to exert a damping effect.

【0002】[0002]

【従来の技術】最近、地震や風等により構造物に生じる
揺れを抑えるために各種の制振装置が提案されている
が、そのいずれもが構造物の基礎の部分に組み込んだも
のが多い。しかし、こうした方法の他に、構造物の各層
において振動を吸収することの出来る制振装置があれ
ば、個々の制振性能が比較的小型のものでも有効に作用
することが出来、そうした装置の開発が望まれていた。
そこで、各階の壁と柱を間隙を介して形成し、当該壁を
梁に対して適当なるダンパを介して接続し、地震に際し
て生じる揺れを、該ダンパを構成するエネルギ吸収体の
粘弾性及び塑性歪エネルギ等により吸収せんとする制振
壁装置の提案がなされている。
2. Description of the Related Art Recently, various types of vibration damping devices have been proposed in order to suppress the shaking generated in a structure due to an earthquake, wind, or the like, but many of them are incorporated in the foundation of the structure. However, in addition to such a method, if there is a vibration damping device capable of absorbing vibration in each layer of the structure, even if the vibration damping performance of each individual device is relatively small, it is possible to work effectively. Development was desired.
Therefore, the walls and columns of each floor are formed with a gap, and the walls are connected to the beams via appropriate dampers to prevent the shaking that occurs during an earthquake from viscoelasticity and plasticity of the energy absorber that constitutes the dampers. A damping wall device that absorbs strain energy or the like has been proposed.

【0003】[0003]

【発明が解決しようとする課題】ところでこういった制
振壁装置において、所謂パッシブ系の制振を行おうとす
ると、風や中小地震による小さな揺れから大地震時の大
きな揺れまでカバー出来るような装置を製作するのは極
めて困難である。このため、通常、小さな揺れは粘性ダ
ンパの粘性により吸収させて、他方大きな揺れは鋼材ダ
ンパ、摩擦ダンパ、鉛ダンパ等の弾塑性ダンパにより吸
収させる、といったように、複数のダンパを設定してお
かなけれなばならなくなる。こうしたパッシブ系制振に
対して最近、建物の剛性や減衰性を時々刻々と変化させ
て揺れを制御せんとする所謂セミアクティブ型の制振が
各種試案されている。しかし、こうしたセミアクティブ
型の制振において、建物の剛性や減衰性の連続的な可変
や任意の大きさへの可変を行うのは装置の製作上なかな
か難しく、建物に生じる大小の揺れに対応してこれを常
時有効に制振するのは困難を極めることであった。そこ
で本発明は、上記事情に鑑み、簡便な方法であり乍ら、
建物に発生し得る幅広い種類の大小の揺れに常時連続的
且つ有効に対応することが出来るようにした、制振壁装
置を提供することを目的とするものである。
By the way, in such a damping wall device, when a so-called passive damping system is attempted, it is possible to cover from a small sway caused by wind or a small earthquake to a large sway caused by a large earthquake. Is extremely difficult to manufacture. Therefore, usually, multiple dampers should be set such that small vibrations are absorbed by the viscosity of the viscous damper, while large vibrations are absorbed by the elasto-plastic dampers such as steel dampers, friction dampers and lead dampers. It has to be connected. In response to such passive vibration control, various so-called semi-active vibration control methods have recently been proposed in which the rigidity and damping of a building are changed every moment to control the shaking. However, in such semi-active type vibration control, it is quite difficult to manufacture the device to continuously change the rigidity and damping of the building or to change it to an arbitrary size, and it corresponds to the large and small shaking that occurs in the building. It was extremely difficult to effectively dampen this at all times. Therefore, the present invention is a simple method in view of the above circumstances,
An object of the present invention is to provide a damping wall device capable of continuously and effectively responding to a wide variety of large and small shakings that can occur in a building.

【0004】[0004]

【課題を解決するための手段】即ち、本発明は、複数の
柱(2)及び梁(3)を有し、それ等柱(2)及び梁
(3)の内、互いに隣接する柱(2)及び梁(3)間に
耐震要素部材(5)を設けた構造物(1)において、前
記梁(3)に第1の電極(10)を設け、前記耐震要素
部材(5)に第2の電極(11)を設け、前記第1と第
2の電極(10)、(11)との間に、電圧に応じて粘
弾性が可変な粘弾性材料からなるエネルギ吸収体(1
2)を設け、前記第1と第2の電極(10)、(11)
に前記エネルギ吸収体(12)の粘弾性調整手段(1
3)、(15)を、前記第1と第2の電極(10)、
(11)間の電圧を上下させることにより前記エネルギ
吸収体(12)の粘弾性を増減させ得るように接続し
て、構成される。なお、( )内の番号等は、図面にお
ける対応する要素を示す、便宜的なものであり、従っ
て、本記述は図面上の記載に限定拘束されるものではな
い。以下の
That is, the present invention has a plurality of columns (2) and beams (3), and among these columns (2) and beams (3), columns (2) adjacent to each other are provided. ) And a beam (3) provided with a seismic resistant element member (5), the beam (3) is provided with a first electrode (10) and the seismic resistant element member (5) is provided with a second electrode. An electrode (11) is provided, and an energy absorber (1) made of a viscoelastic material whose viscoelasticity is variable according to a voltage is provided between the first and second electrodes (10) and (11).
2) is provided, and the first and second electrodes (10) and (11) are provided.
The viscoelasticity adjusting means (1) of the energy absorber (12)
3) and (15) to the first and second electrodes (10),
The energy absorbers (12) are connected so that the viscoelasticity of the energy absorber (12) can be increased or decreased by raising or lowering the voltage across them. The numbers in parentheses () indicate the corresponding elements in the drawings for convenience, and therefore the present description is not limited to the description in the drawings. below

【作用】の欄についても同様である。The same applies to the column of [Operation].

【0005】[0005]

【作用】上記した構成により、本発明は、振動の大きさ
に応じて第1と第2の電極(10)、(11)間の電圧
を時々刻々と上下させて、エネルギ吸収体(12)を、
当該振動を吸収するに最適な粘弾性に変えるように作用
する。
With the above-mentioned structure, the present invention changes the voltage between the first and second electrodes (10) and (11) according to the magnitude of vibration to increase and decrease momentarily, and the energy absorber (12). To
It acts so as to change the viscoelasticity optimum for absorbing the vibration.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は本発明による制振壁装置の1実施例を示す
図、図2は粘弾性ダンパの一例を示す側面図、図3は粘
弾性ダンパの別の例を示す側面図、図4は粘弾性ダンパ
のエネルギ吸収体の一例を示す模式図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a view showing an embodiment of a damping wall device according to the present invention, FIG. 2 is a side view showing an example of a viscoelastic damper, FIG. 3 is a side view showing another example of a viscoelastic damper, and FIG. 4 is a viscoelastic damper. It is a schematic diagram which shows an example of the energy absorber of an elastic damper.

【0007】構造物1は、図1に示すように、所定の間
隔で立設された柱2を有しており、各柱2間にはそれ等
柱2間を接続する形で梁3が水平に設けられている。図
中左右方向に隣接する柱2、2及び上下方向に隣接する
梁3、3間に囲まれた空間にはプレキャストコンクリー
ト製の壁5が、図中上方の梁3に接続された形で設けら
れており、壁5の図中下縁部5dと当該下縁部5dに隣
接した梁の上面3dの間には、制振壁装置60を構成す
る粘弾性ダンパ6が梁3と壁5間を接続する形で設けら
れている。なお、壁5の粘弾性ダンパ6に支持された部
位以外の図中両側縁部5c、5c及び下縁部5dは、周
囲の柱2及び梁3との間に間隙9が形成されている。
As shown in FIG. 1, the structure 1 has columns 2 standing upright at a predetermined interval, and a beam 3 is formed between the columns 2 so as to connect the columns 2 to each other. It is installed horizontally. A wall 5 made of precast concrete is provided in a space surrounded by columns 2 and 2 adjacent to each other in the left-right direction and beams 3 adjacent to each other in the up-down direction in a form connected to the upper beam 3 in the figure. Between the lower edge 5d of the wall 5 in the figure and the upper surface 3d of the beam adjacent to the lower edge 5d, a viscoelastic damper 6 constituting a damping wall device 60 is provided between the beam 3 and the wall 5. It is provided in the form of connecting. A gap 9 is formed between the peripheral columns 2 and the beams 3 at both side edge portions 5c, 5c and the lower edge portion 5d in the figure other than the portion of the wall 5 supported by the viscoelastic damper 6.

【0008】粘弾性ダンパ6は、図2に示すように、電
気絶縁材からなるベースプレート7を介して梁3側に固
着された断面コ字形の金属性のフレーム10が、部材装
着面10a、10aを互いに対向しかつ図中紙面と直角
方向に伸延する形で設けられており、部材装着面10
a、10a間には断面がT字形の金属性の補助フレーム
11が部材装着面11a、11aをフレーム10の部材
装着面10a、10aに対向させて且つ図中紙面と直角
方向に伸延する形で設けられている。即ちフレーム10
と補助フレーム11とは、部材装着面10aと部材装着
面11aとが互いに対向し合う形で梁幅方向である図2
中矢印C、D方向に一対に並んで配置し、且つ粘弾性ダ
ンパ6に設定された制振方向である図1中矢印A、B方
向に共に伸延している。補助フレーム11の図中上部は
電気絶縁材からなるベースプレート16を介して壁5の
下縁部5dに固着されており、各部材装着面10a、1
1a間には粘弾性材料からなるエネルギ吸収体12が図
2中矢印C、D方向に両装着面10a、11a間を接続
する形で、即ち図2に示す実施例においては図1中紙面
と平行に積層する形で2枚設けられている。粘弾性ダン
パ6に装着されたエネルギ吸収体12には、図4に示す
ように、ゴム等による母材120中に誘電体微粒子19
が満遍なく分散する形で混入されており、即ちエネルギ
吸収体12は、電圧を加えることにより誘電体微粒子1
9が分極して、それぞれの微粒子19の+−が引き付け
合い母材120中で固定化されてこれによりエネルギ吸
収体12全体の剛性が増す形で粘弾性が調整され得るよ
うに構成されているものである。また、粘弾性ダンパ6
にはエネルギ吸収体12の図2中上下部分に間隙17、
17が形成されている。
In the viscoelastic damper 6, as shown in FIG. 2, a metallic frame 10 having a U-shaped cross section fixed to the beam 3 side through a base plate 7 made of an electrically insulating material is attached to the member mounting surfaces 10a and 10a. Are provided so as to face each other and extend in the direction perpendicular to the plane of the drawing in the drawing.
A metal auxiliary frame 11 having a T-shaped cross section is formed between a and 10a such that the member mounting surfaces 11a and 11a are opposed to the member mounting surfaces 10a and 10a of the frame 10 and extend in the direction perpendicular to the plane of the drawing. It is provided. That is, frame 10
2 and the auxiliary frame 11 are in the beam width direction with the member mounting surface 10a and the member mounting surface 11a facing each other.
They are arranged side by side in a pair in the directions of the middle arrows C and D, and both extend in the directions of arrows A and B in FIG. 1, which are the damping directions set in the viscoelastic damper 6. The upper portion of the auxiliary frame 11 in the figure is fixed to the lower edge portion 5d of the wall 5 via a base plate 16 made of an electrically insulating material, and each member mounting surface 10a, 1
An energy absorber 12 made of a viscoelastic material is connected between 1a in such a manner that both mounting surfaces 10a and 11a are connected in the directions of arrows C and D in FIG. 2, that is, in the embodiment shown in FIG. Two sheets are provided in a form of stacking in parallel. In the energy absorber 12 attached to the viscoelastic damper 6, as shown in FIG. 4, the dielectric fine particles 19 are contained in the base material 120 made of rubber or the like.
Are mixed in such a manner that they are evenly dispersed, that is, the energy absorber 12 is applied to the dielectric fine particles 1 by applying a voltage.
9 is polarized, and + and − of the respective fine particles 19 are attracted to each other and are fixed in the base material 120, whereby the viscoelasticity can be adjusted in such a manner that the rigidity of the entire energy absorber 12 is increased. It is a thing. In addition, the viscoelastic damper 6
In the upper and lower parts of the energy absorber 12 in FIG.
17 are formed.

【0009】また、前記梁3には、図1に示すように、
構造物1の振動を検出する振動センサ13が設けられて
おり、振動センサ13には、電圧制御装置15が接続し
ている。電圧制御装置15は各粘弾性ダンパ6のフレー
ム10と補助フレーム11とに接続されており、そし
て、電圧制御装置15は、図1に示す実施例においては
フレーム10を陰極とし且つ補助フレーム11を陽極と
して、エネルギ吸収体12に、任意の電圧を印加するこ
とが出来るように構成されている。
Further, as shown in FIG.
A vibration sensor 13 that detects the vibration of the structure 1 is provided, and a voltage control device 15 is connected to the vibration sensor 13. The voltage control device 15 is connected to the frame 10 and the auxiliary frame 11 of each viscoelastic damper 6, and the voltage control device 15 uses the frame 10 as a cathode and the auxiliary frame 11 in the embodiment shown in FIG. As the anode, an arbitrary voltage can be applied to the energy absorber 12.

【0010】構造物1等は以上のような構成を有するの
で、通常、構造物1に振動が生じていないときには、電
圧制御装置15を介してフレーム10と補助フレーム1
1を電極として、エネルギ吸収体12に所定の電圧VH
を印加しておく。すると、該通常時にはエネルギ吸収体
12に所定の電圧VHが印加されることにより、それぞ
れの誘電体微粒子19が分極して+−引き付け合いこれ
により前述したように剛性が保持される形で、エネルギ
吸収体12が剛状態を呈する。なお、該通常時には、壁
5は梁3に対して剛状態のエネルギ吸収体12を介して
支持されることにより、構造物1内で生じる人為的振動
(機械設備、運動施設等により発生し得る振動)や構造
物1外で生じる振動(車両走行等による地盤振動)に起
因して、壁5等が不必要に揺れ動くことは防止されてい
る。
Since the structure 1 and the like have the above-mentioned structure, normally, when the structure 1 is not vibrating, the frame 10 and the auxiliary frame 1 are operated via the voltage controller 15.
1 as an electrode, a predetermined voltage VH is applied to the energy absorber 12.
Is applied. Then, when the predetermined voltage VH is applied to the energy absorber 12 in the normal state, the respective dielectric fine particles 19 are polarized and +-attracted to each other, whereby the rigidity is maintained as described above, and the energy is absorbed. The absorber 12 exhibits a rigid state. In the normal state, the wall 5 is supported by the beam 3 via the energy absorber 12 in a rigid state, so that the artificial vibration (mechanical equipment, exercise facility, etc.) generated in the structure 1 may occur. It is prevented that the wall 5 and the like shake unnecessarily due to vibration (vibration) or vibration generated outside the structure 1 (ground vibration due to vehicle traveling or the like).

【0011】そして次に、地震や風等で構造物1が水平
な矢印A、B方向に振動したとすると、梁3と壁5との
間で矢印A、B方向に相対的な振動が生じ、該振動を振
動センサ13が検知して振動検知信号S1を電圧制御装
置15に出力する。これを受けて電圧制御装置15は、
エネルギ吸収体12の電圧VHを、構造物1の振動に適
合した適宜な電圧VLに設定変更する。すると、エネル
ギ吸収体12は電圧制御装置15により設定された電圧
VLに応じて粘弾性が変化する。即ち、通常は電圧VL
は電圧VHに比して低く設定されて、これにより、それ
ぞれの誘電体微粒子19のそれぞれの+−が互いに引き
付けあう力が弱まり、エネルギ吸収体12は弾性変形し
得る形の柔軟な部材状態を呈する。そしてエネルギ吸収
体12は構造物1の振動を吸収するに最も適した粘弾性
を発現し、この状態で、構造物1の振動を減衰させるよ
うにエネルギ吸収体12が変形することにより、当該構
造物1の振動エネルギは速やかに吸収される。即ち、構
造物1が振動する際には、梁3と壁5との間で矢印A、
B方向に相対的な振動が生じることにより、梁3側に固
着された形のフレーム10と壁5側に固着された形の補
助フレーム11とが矢印A、B方向に相対的に移動しよ
うとする。すると、フレーム10と補助フレーム11及
びエネルギ吸収体12とは振動方向である矢印A、B方
向に共に伸延する形になっていることから、当該振動に
よる梁3と壁5との相対的な移動動作はエネルギ吸収体
12が矢印A、B方向全長(即ち制振方向全面)におい
て変形することにより吸収される形で、円滑に減衰させ
られる。
Next, assuming that the structure 1 vibrates in the horizontal arrows A and B due to an earthquake or wind, relative vibration occurs between the beam 3 and the wall 5 in the directions A and B. The vibration sensor 13 detects the vibration and outputs a vibration detection signal S1 to the voltage controller 15. In response to this, the voltage control device 15
The voltage VH of the energy absorber 12 is set and changed to an appropriate voltage VL adapted to the vibration of the structure 1. Then, the viscoelasticity of the energy absorber 12 changes according to the voltage VL set by the voltage controller 15. That is, normally the voltage VL
Is set to be lower than the voltage VH, which weakens the attraction force between the + and − of the dielectric fine particles 19 to each other, and the energy absorber 12 has a flexible member state in which elastic deformation is possible. Present. The energy absorber 12 exhibits viscoelasticity most suitable for absorbing the vibration of the structure 1, and in this state, the energy absorber 12 is deformed so as to damp the vibration of the structure 1, thereby The vibration energy of the object 1 is quickly absorbed. That is, when the structure 1 vibrates, the arrow A between the beam 3 and the wall 5
Due to the relative vibration in the B direction, the frame 10 fixed to the beam 3 side and the auxiliary frame 11 fixed to the wall 5 side try to move relatively in the arrow A and B directions. To do. Then, since the frame 10, the auxiliary frame 11, and the energy absorber 12 are both extended in the directions of arrows A and B, which are vibration directions, the relative movement of the beam 3 and the wall 5 due to the vibration. The operation is absorbed by the energy absorber 12 being deformed along the entire length in the directions of arrows A and B (that is, the entire surface in the damping direction), and is smoothly attenuated.

【0012】こうして、構造物1の揺れが収まり、振動
センサ13がこれを検知したなら、電圧制御装置15を
介してエネルギ吸収体12に印加される電圧VLが電圧
VHに復元されて、再び粘弾性ダンパ6が剛部材として
壁5を支持し続ける。即ち、エネルギ吸収体12は、電
圧制御装置15を介して電圧上下されることにより任意
の粘弾性を自在に発現することが出来るので、粘弾性ダ
ンパ6により構造物1に生じる幅広い種類の振動を選択
的に減衰させて、効率良く制振することが出来る。
In this way, when the vibration of the structure 1 is subsided and the vibration sensor 13 detects it, the voltage VL applied to the energy absorber 12 via the voltage control device 15 is restored to the voltage VH, and the viscous force is restored again. The elastic damper 6 continues to support the wall 5 as a rigid member. That is, the energy absorber 12 can freely develop any viscoelasticity by raising or lowering the voltage via the voltage controller 15, so that a wide variety of vibrations generated in the structure 1 by the viscoelastic damper 6 can be generated. It is possible to efficiently dampen by selectively dampening.

【0013】なお、上述した実施例においては、制振壁
装置60を構成する粘弾性ダンパ6は図2に示すよう
に、断面がコ字形のフレーム10と断面がT字形の補助
フレーム11との間に2枚のエネルギ吸収体12、12
が装着されて、構成されている例を述べたが、粘弾性ダ
ンパ6には、さらに多くのエネルギ吸収体12が装着さ
れていても良い。即ち例えば、図3に示すように、フレ
ーム10’と補助フレーム11’とを、部材装着面10
a’、11a’が一対ずつ対向し合って制振方向に直交
する方向である図3中矢印C、D方向に複数(図3にお
いては5対)並ぶ形になるように、それぞれ形成してお
き、各部材装着面10a’、11a’間にエネルギ吸収
体12を装着して粘弾性ダンパ6’を構成するようにし
ても良い。すると、図3に示す粘弾性ダンパ6’は、図
2に示す粘弾性ダンパ6に比して部材装着面10’、1
1’が増えることにより、エネルギ吸収体12の制振面
(即ち図1中紙面と平行方向に複数積層して、構造物1
の振動エネルギを吸収し得る面)の面積総和が増えて、
粘弾性ダンパ6’が一層効率良く振動エネルギを吸収す
ることが出来る。そして、各エネルギ吸収体12を薄型
にすることが出来るので、ダンパの省スペース化を図る
ことが可能になる。また、このように薄型のエネルギ吸
収体12をいくつも装着した粘弾性ダンパ6’は制振面
の面積総和を大きく出来ることにより、振動振幅が小さ
な振動を即時に減衰させるのにも有効であり、従って、
粘弾性ダンパ6’を地震時以外に構造物1に発生する日
常微振動等の制振に用いることも可能となる。なお、エ
ネルギ吸収体12は、その母材120がゴム等の粘弾性
部材であることから、全く電圧を印加されていない状態
においても、当該エネルギ吸収体12自体で形状を維持
することが出来、取扱いが容易であり、故に、粘弾性ダ
ンパ6(6’)を成型する際には、単にフレーム10と
補助フレーム11間に予め板状に形成したエネルギ吸収
体12を挾着するだけで簡単にこれを行うことが出来
る。従ってエネルギ吸収体12の板厚を変更することに
より、粘弾性ダンパ6(6’)の製造上並びに施工上の
工程が複雑化される懸念はない。また、図2及び図3に
示す実施例においては、粘弾性ダンパ6(6’)は梁3
の上面3d側と壁5の下縁部5dとの間に設けられて、
制振壁装置60(60’)が構成される例を述べたが、
粘弾性ダンパ6(6’)は壁5の上側と梁3の下側との
間に配置されていても良い。また、実施例においては振
動センサ13が梁3上に設けられている例を述べたが、
該振動センサ13や電圧制御装置15の設置位置は任意
に設定されて何等差し支えなく、さらに、振動センサ1
3と電圧制御装置15には複数の粘弾性ダンパ6が接続
されていても良い。
In the above-described embodiment, the viscoelastic damper 6 constituting the damping wall device 60 comprises a frame 10 having a U-shaped cross section and an auxiliary frame 11 having a T-shaped cross section, as shown in FIG. Two energy absorbers 12, 12 in between
Although the example in which is attached and configured is described, more energy absorbers 12 may be attached to the viscoelastic damper 6. That is, for example, as shown in FIG. 3, the frame 10 ′ and the auxiliary frame 11 ′ are attached to the member mounting surface 10
a ', 11a' are formed so as to be aligned in a plurality (5 pairs in FIG. 3) in the directions of arrows C and D in FIG. 3, which are directions orthogonal to the damping direction, facing each other. Alternatively, the energy absorber 12 may be mounted between the member mounting surfaces 10a 'and 11a' to configure the viscoelastic damper 6 '. Then, the viscoelastic damper 6 ′ shown in FIG. 3 has the member mounting surfaces 10 ′, 1 ′ as compared with the viscoelastic damper 6 shown in FIG.
By increasing 1 ′, a plurality of vibration damping surfaces of the energy absorber 12 (that is, a plurality of layers are laminated in a direction parallel to the paper surface in FIG.
The total area of the surface that can absorb the vibration energy of
The viscoelastic damper 6'can absorb the vibration energy more efficiently. Since each energy absorber 12 can be made thin, it is possible to save the space of the damper. Further, since the viscoelastic damper 6'on which a number of thin energy absorbers 12 are mounted as described above can increase the total area of the damping surface, it is also effective in immediately damping the vibration having a small vibration amplitude. , Therefore,
It is also possible to use the viscoelastic damper 6 ′ for damping daily microvibrations or the like that occur in the structure 1 other than during an earthquake. Since the base material 120 of the energy absorber 12 is a viscoelastic member such as rubber, the energy absorber 12 itself can maintain its shape even when no voltage is applied. It is easy to handle, and therefore, when molding the viscoelastic damper 6 (6 '), it is easy to simply attach the plate-shaped energy absorber 12 between the frame 10 and the auxiliary frame 11 in advance. You can do this. Therefore, by changing the plate thickness of the energy absorber 12, there is no concern that the manufacturing process and the construction process of the viscoelastic damper 6 (6 ′) will be complicated. Further, in the embodiment shown in FIGS. 2 and 3, the viscoelastic damper 6 (6 ′) is the beam 3
Is provided between the upper surface 3d side of the and the lower edge portion 5d of the wall 5,
The example in which the damping wall device 60 (60 ′) is configured has been described.
The viscoelastic damper 6 (6 ′) may be arranged between the upper side of the wall 5 and the lower side of the beam 3. Further, although the example in which the vibration sensor 13 is provided on the beam 3 has been described in the embodiment,
The installation positions of the vibration sensor 13 and the voltage control device 15 may be arbitrarily set, and the vibration sensor 1
A plurality of viscoelastic dampers 6 may be connected to 3 and the voltage control device 15.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
複数の柱2及び梁3を有し、それ等柱2及び梁3の内、
互いに隣接する柱2及び梁3間に壁5等の耐震要素部材
を設けた構造物1において、前記梁3にフレーム10等
の第1の電極を設け、前記耐震要素部材に補助フレーム
11等の第2の電極を設け、前記第1と第2の電極との
間に、電圧に応じて粘弾性が可変な粘弾性材料からなる
エネルギ吸収体12を設け、前記第1と第2の電極に、
振動センサ13、電圧制御装置15等の前記エネルギ吸
収体12の粘弾性調整手段を、前記第1と第2の電極間
の電圧を上下させることにより前記エネルギ吸収体12
の粘弾性を増減させ得るように接続して構成したので、
振動の大きさに応じて第1と第2の電極間の電圧を時々
刻々と上下させて、エネルギ吸収体12を、当該振動を
吸収するに最適な粘弾性に変えることが出来る。従っ
て、エネルギ吸収体12は柱2、梁3間のような限られ
たスペース内で高効率且つ安定的な制振性を常時発揮す
ることが出来る。そして、エネルギ吸収体12を、構造
物1に生じる各種の振動を吸収させるに最適な粘弾性に
調整することが、粘弾性調整手段を介して単に電圧を上
下させるだけの簡便な方法により容易に出来るので、構
造物1に振動がない時にはエネルギ吸収体12の剛な状
態を保持することにより、該剛な状態のエネルギ吸収体
12を介して耐震要素部材を剛支持させて、そして、構
造物1に各種の振動が生じた時には、エネルギ吸収体1
2を柔軟な状態、即ち当該振動を吸収するに最も適した
任意の粘弾性に調整して、該構造物1の振動を各階の柱
2及び梁3間と耐震要素部材との間でそれぞれエネルギ
吸収体12に吸収させることにより効率的に減衰させる
ことが出来る。従って、耐震要素部材をエネルギ吸収体
12を用いたダンパにより梁3に接続して柱2梁3間に
組み込んでおくことにより、風や小地震による通常の揺
れから大地震時の大きな揺れまでの幅広い種類の揺れに
常時連続的に対応することが簡便に出来るので、本発明
による制振壁装置を適用した構造物1は常時安定的且つ
優れた制振性を発揮することが可能となる。
As described above, according to the present invention,
Having a plurality of columns 2 and beams 3, of which columns 2 and beams 3
In a structure 1 in which a seismic resistant element member such as a wall 5 is provided between a pillar 2 and a beam 3 which are adjacent to each other, a first electrode such as a frame 10 is provided on the beam 3 and an auxiliary frame 11 or the like is provided on the seismic resistant element member. A second electrode is provided, an energy absorber 12 made of a viscoelastic material whose viscoelasticity is variable according to a voltage is provided between the first and second electrodes, and the energy absorber 12 is provided between the first and second electrodes. ,
The viscoelasticity adjusting means of the energy absorber 12, such as the vibration sensor 13 and the voltage controller 15, raises and lowers the voltage between the first and second electrodes to cause the energy absorber 12 to move.
Since it was configured by connecting so as to increase or decrease the viscoelasticity of
It is possible to change the voltage between the first and second electrodes up and down every moment according to the magnitude of the vibration to change the energy absorber 12 to the optimum viscoelasticity for absorbing the vibration. Therefore, the energy absorber 12 can always exhibit a highly efficient and stable vibration damping property in the limited space between the pillar 2 and the beam 3. Then, adjusting the energy absorber 12 to the optimum viscoelasticity for absorbing various vibrations generated in the structure 1 can be easily performed by a simple method of simply increasing and decreasing the voltage via the viscoelasticity adjusting means. Therefore, when the structure 1 does not vibrate, the rigid state of the energy absorber 12 is maintained to rigidly support the seismic element member through the energy absorber 12 in the rigid state, and the structure. When various vibrations occur in the energy absorber 1,
2 is adjusted to a flexible state, that is, an arbitrary viscoelasticity most suitable for absorbing the vibration, and the vibration of the structure 1 is converted into energy between the columns 2 and the beams 3 of each floor and the seismic element member. The absorption by the absorber 12 enables efficient attenuation. Therefore, by connecting the seismic resistant element member to the beam 3 by the damper using the energy absorber 12 and assembling it between the columns 2 and the beams 3, from normal shaking due to wind or small earthquake to large shaking during large earthquake. Since it is easy to constantly and continuously respond to a wide variety of vibrations, the structure 1 to which the damping wall device according to the present invention is applied can always exhibit stable and excellent damping properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による制振壁装置の1実施例を示す図で
ある。
FIG. 1 is a diagram showing an embodiment of a damping wall device according to the present invention.

【図2】粘弾性ダンパの一例を示す側面図である。FIG. 2 is a side view showing an example of a viscoelastic damper.

【図3】粘弾性ダンパの別の例を示す側面図である。FIG. 3 is a side view showing another example of the viscoelastic damper.

【図4】粘弾性ダンパのエネルギ吸収体の一例を示す模
式図である。
FIG. 4 is a schematic diagram showing an example of an energy absorber of a viscoelastic damper.

【符号の説明】[Explanation of symbols]

1……構造物 2……柱 3……梁 5……壁(耐震要素部材) 60(60’)……制振壁装置 10(10’)……フレーム(第1の電極) 11(11’)……補助フレーム(第2の電極) 12……エネルギ吸収体 13……振動センサ(剛性調整手段) 15……電圧制御装置(剛性調整手段) 1 ... Structure 2 ... Pillar 3 ... Beam 5 ... Wall (seismic element member) 60 (60 ') ... Damping wall device 10 (10') ... Frame (first electrode) 11 (11) ') ... Auxiliary frame (second electrode) 12 ... Energy absorber 13 ... Vibration sensor (rigidity adjusting means) 15 ... Voltage control device (rigidity adjusting means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の柱及び梁を有し、それ等柱及び梁の
内、互いに隣接する柱及び梁間に耐震要素部材を設けた
構造物において、 前記梁に第1の電極を設け、 前記耐震要素部材に第2の電極を設け、 前記第1と第2の電極との間に、電圧に応じて粘弾性が
可変な粘弾性材料からなるエネルギ吸収体を設け、 前記第1と第2の電極に前記エネルギ吸収体の粘弾性調
整手段を、前記第1と第2の電極間の電圧を上下させる
ことにより前記エネルギ吸収体の粘弾性を増減させ得る
ように接続して構成した、制振壁装置。
1. A structure having a plurality of pillars and beams, wherein among these pillars and beams, a seismic resistant element member is provided between adjacent pillars and beams, wherein the beams are provided with a first electrode, A second electrode is provided on the seismic resistant element member, an energy absorber made of a viscoelastic material whose viscoelasticity is variable according to a voltage is provided between the first and second electrodes, and the first and second electrodes are provided. A viscoelasticity adjusting means for the energy absorber is connected to the electrode so that the viscoelasticity of the energy absorber can be increased or decreased by increasing or decreasing the voltage between the first and second electrodes. Swing device.
JP30838191A 1991-10-28 1991-10-28 Vibration isolating wall device Pending JPH0666044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30838191A JPH0666044A (en) 1991-10-28 1991-10-28 Vibration isolating wall device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30838191A JPH0666044A (en) 1991-10-28 1991-10-28 Vibration isolating wall device

Publications (1)

Publication Number Publication Date
JPH0666044A true JPH0666044A (en) 1994-03-08

Family

ID=17980387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30838191A Pending JPH0666044A (en) 1991-10-28 1991-10-28 Vibration isolating wall device

Country Status (1)

Country Link
JP (1) JPH0666044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601350B1 (en) * 1998-09-01 2003-08-05 Shimizu Corporation Structure for installing a viscous vibration-damping wall and method of installing the same
WO2022011644A1 (en) * 2020-07-16 2022-01-20 大连理工大学 Energy dissipation connection apparatus for prefabricated assemble-type wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601350B1 (en) * 1998-09-01 2003-08-05 Shimizu Corporation Structure for installing a viscous vibration-damping wall and method of installing the same
WO2022011644A1 (en) * 2020-07-16 2022-01-20 大连理工大学 Energy dissipation connection apparatus for prefabricated assemble-type wall
US11401712B2 (en) 2020-07-16 2022-08-02 Dalian University Of Technology Energy-consuming connecting device for prefabricated assembled wall

Similar Documents

Publication Publication Date Title
JPH05141463A (en) Laminated rubber and vibration control device for structure using laminated rubber
JPH07247727A (en) Vibration control method of structure
JPH1151111A (en) Vibration control device
JPH0666044A (en) Vibration isolating wall device
JPH0593475A (en) Elastioplastic damper
JP2006194073A (en) Vibration reducer
JP2000329187A (en) Vibration damper
JPH11200661A (en) Vibration control method for connected structure
JPH10292669A (en) Base isolating device of building and base isolating structure of building using the same
KR100390542B1 (en) Vibration control system of construction
JPH04136373A (en) Vibration isolating structure of building
JPH03272343A (en) Dual type mass damper
JPH03249443A (en) Microvibration mass damper
JP3849624B2 (en) Vibration damping device for use in damping type seismic isolation buildings
JPH0571239A (en) Vibration control apparatus built in frame
JPH05118160A (en) Damping wall device
JP2670179B2 (en) Pendulum damping device
JP2988882B2 (en) Structure damping device
JP2595870B2 (en) Vibration control device for structures
JPH08326841A (en) Base isolation support device
JP3394330B2 (en) Damping structure of high-rise structure using impact damper
JP3032870B2 (en) Structure damping device
JPH06123168A (en) Double-floor vibration damping device
JP3332140B2 (en) Structure damping method
JPH11336830A (en) Vibration damping device for building