JP4285256B2 - Method for carrying out chemical reaction and microchannel structure therefor - Google Patents

Method for carrying out chemical reaction and microchannel structure therefor Download PDF

Info

Publication number
JP4285256B2
JP4285256B2 JP2004018146A JP2004018146A JP4285256B2 JP 4285256 B2 JP4285256 B2 JP 4285256B2 JP 2004018146 A JP2004018146 A JP 2004018146A JP 2004018146 A JP2004018146 A JP 2004018146A JP 4285256 B2 JP4285256 B2 JP 4285256B2
Authority
JP
Japan
Prior art keywords
fluid
chemical reaction
channel
phase
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004018146A
Other languages
Japanese (ja)
Other versions
JP2004249286A (en
Inventor
朋裕 大川
達 二見
晃治 片山
恵一郎 西澤
智彦 田川
忠厚 井土
繁雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004018146A priority Critical patent/JP4285256B2/en
Publication of JP2004249286A publication Critical patent/JP2004249286A/en
Application granted granted Critical
Publication of JP4285256B2 publication Critical patent/JP4285256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Epoxy Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、微小流路内において流体の送液、混合、化学反応、分離などの化学的物理的操作を行なうに好適な微小流路構造体とそれを用いた化学反応実施方法及びそのための微小流路構造体に関する。   The present invention relates to a microchannel structure suitable for performing chemical / physical operations such as liquid feeding, mixing, chemical reaction, separation and the like in a microchannel, a method for performing a chemical reaction using the microchannel structure, and a microchannel for the same. The present invention relates to a channel structure.

相間移動触媒は、互いに不溶な有機相と水相を行き来してそれぞれの相に溶解している成分間の反応を加速するものである。相間移動触媒の一例として四級アンモニウム塩を用いた反応系を例に説明する。図1では、求核アニオン(15)としてCNを用い、アルキルハライド(16)である(R−X)をニトリル(17)である(R−CN)に交換する反応において、四級アンモニウム塩(18)である(Q)を相間移動触媒として用いたときの反応メカニズムの概念を示している。求核アニオン(15)からなるNaCNを含む水相と、これと反応する有機基質であるアルキルハライド(16)である(R−X)を含む非極性の有機相の反応系で、相間移動触媒の四級アンモニウム塩(18)である(Q)は、水相の求核アニオン(15)である(CN)と自分とイオン対になっているハロゲンアニオン(38)である(X)を交換することにより、反応の起こる有機相に求核アニオン(15)である(CN)を移行させて反応を促進する。反応後は、脱離したハロゲンアニオン(38)である(X)とイオン対をつくり、再び四級アンモニウム塩(18)である(Q)となって水相に戻りこのサイクルを繰り返す。相間移動触媒としては、四級アンモニウム塩の他にホスホニウム塩、クラウンエーテル、クリプタンド、ジアルキルポリオキシエチレンオキサイド等が一般的に知られている。また、相間移動触媒を用いた反応系の反応の効率は、相間移動触媒がいかに効率よく相間を移動できるかに依存しており、相間移動触媒の相間移動の効率は、触媒相と反応相の比界面積が大きいほど、さらに相間移動触の拡散距離が短いほど良くなる。 The phase transfer catalyst accelerates the reaction between components dissolved in each phase by going back and forth between an organic phase and an aqueous phase that are insoluble in each other. As an example of a phase transfer catalyst, a reaction system using a quaternary ammonium salt will be described as an example. In Figure 1, CN as nucleophilic anion (15) - in the use and exchange an alkyl halide (16) to (R-X) to a nitrile (17) (R-CN) reaction, quaternary ammonium salts (18) a (Q + X -) illustrates the concept of reaction mechanism when used as a phase transfer catalyst a. A reaction system of an aqueous phase containing Na + CN composed of a nucleophilic anion (15) and a nonpolar organic phase containing (R—X) which is an alkyl halide (16) which is an organic substrate that reacts with the aqueous phase. The phase transfer catalyst quaternary ammonium salt (18), (Q + X ), is an aqueous phase nucleophilic anion (15) (CN ) and a halogen anion (38) that forms an ion pair with itself. By exchanging (X ), nucleophilic anion (15) (CN ) is transferred to the organic phase where the reaction takes place to promote the reaction. After the reaction, an ion pair is formed with (X ) which is the released halogen anion (38), and again becomes (Q + X ) which is a quaternary ammonium salt (18) to return to the aqueous phase. repeat. As phase transfer catalysts, phosphonium salts, crown ethers, cryptands, dialkyl polyoxyethylene oxides and the like are generally known in addition to quaternary ammonium salts. In addition, the reaction efficiency of the reaction system using the phase transfer catalyst depends on how efficiently the phase transfer catalyst can move between the phases, and the phase transfer efficiency of the phase transfer catalyst depends on the catalyst phase and the reaction phase. The larger the specific interface area, the better the shorter the diffusion distance of the interphase transfer touch.

上記の例は、2相系の相間移動触媒反応の例であるが、最近、特定の反応条件下で相間移動触媒は有機相にも水相にも溶けなくなり、第3の液相として存在させる反応プロセスが試みられている(例えば、非特許文献1参照)。   The above example is an example of a two-phase phase transfer catalytic reaction. Recently, the phase transfer catalyst becomes insoluble in both the organic phase and the aqueous phase under a specific reaction condition, and exists as a third liquid phase. Reaction processes have been attempted (see, for example, Non-Patent Document 1).

上記の例では、図12に示すように相間移動触媒相(41)を第3相として有機相(2)と水相(1)を直接接触させないように有機相と水相の間に存在させて反応を実施する。攪拌には特殊なラモンドスターラー(42)を用いる。このようにすることで、有機相と水相を分離したまま両相に溶解している反応物を反応させ、選択率を高めることや、室温近傍の反応温度でも反応速度が急激に増大すること、反応生成物を含む有機相を抜き出して新たに反応物を含む有機相を加えて反応を再び行う周期操作を行うことができるといったことが報告されている。例えば、相間移動触媒としてポリエチレングリコール(平均分子量3000)、有機溶媒にドデカン、水相に水酸化カリウムを使用して、相間移動触媒相を有機相と水相の中間に配置して3相を形成し、有機溶媒中の塩化ベンジルとブタノールからベンジルブチルエーテルの合成を行った例では、3相系のエーテル生成速度は2相系の7倍以上速くなること、また、有機相と水相を接触させて反応させた時の選択率が0.6であったのに対し、超音波発信器付き静止型3相回分反応をを利用して有機相と水相の接触を避けるように反応を実施したときの選択率は0.9と高くなったことが報告されている(例えば、非特許文献1参照)。   In the above example, as shown in FIG. 12, the phase transfer catalyst phase (41) is the third phase, and the organic phase (2) and the aqueous phase (1) are not directly in contact with each other so as not to contact each other. To carry out the reaction. A special Lamond stirrer (42) is used for stirring. In this way, reactants dissolved in both phases can be reacted while the organic phase and the aqueous phase are separated, and the selectivity can be increased, and the reaction rate can be rapidly increased even at a reaction temperature near room temperature. It has been reported that it is possible to perform a periodic operation in which an organic phase containing a reaction product is extracted and an organic phase containing a reaction product is newly added to react again. For example, polyethylene glycol (average molecular weight 3000) is used as the phase transfer catalyst, dodecane is used as the organic solvent, potassium hydroxide is used as the aqueous phase, and the phase transfer catalyst phase is arranged between the organic phase and the aqueous phase to form three phases. However, in the example where benzyl butyl ether was synthesized from benzyl chloride and butanol in an organic solvent, the rate of ether formation in the three-phase system was 7 times faster than that in the two-phase system, and the organic phase was brought into contact with the aqueous phase. The selectivity was 0.6, while the reaction was carried out so as to avoid contact between the organic phase and the aqueous phase using a stationary three-phase batch reaction with an ultrasonic transmitter. It has been reported that the selectivity at that time was as high as 0.9 (for example, see Non-Patent Document 1).

しかしながら一般には、試験管やビーカー、反応釜といった反応容器では、各相の配置は各相の比重により決まってしまったり、親媒性により他相と混合してしまうため、相間移動触媒を含む第3相を有機相と水相の中間に位置させることは極めて難しい。また、各相が混合しないように攪拌させるための特殊なスターラーを設計して攪拌したり、振動により各相の界面を崩さないように攪拌を行う必要があるなどスケールアップによる実用化が非常に難しい。さらに、各相を単独で分離した状態で取出したり、入れ替えたりすることが難しいため、連続的に反応を行うことが難しいといった課題があった。   However, in general, in a reaction vessel such as a test tube, a beaker, or a reaction kettle, the arrangement of each phase is determined by the specific gravity of each phase or is mixed with other phases due to the philicity, so that a phase transfer catalyst is included. It is extremely difficult to position the three phases between the organic phase and the aqueous phase. In addition, it is very practical to use by scaling up, such as designing a special stirrer to stir so that each phase does not mix, or stirring so as not to break the interface of each phase due to vibration. difficult. Furthermore, since it is difficult to take out or replace each phase separately, there is a problem that it is difficult to continuously perform the reaction.

「次世代化学反応プロセス技術開発 多相系触媒反応プロセス技術の開発 平成13年度技術報告書」,(財)化学技術戦略機構, 2001年5月発行,13−43頁"Development of next-generation chemical reaction process technology Development of multi-phase catalytic reaction process technology 2001 technical report", Chemical Technology Strategy Organization, May 2001, pages 13-43

本発明の目的は、かかる従来の実状に鑑みて提案されたものであり、微小流路中で相間移動触媒を用いた反応において、有機相流体及び水相流体と相間移動触媒を含む流体とで化学反応を実施する上で、相間移動触媒を含む流体の相を有機相流体の相と水相流体の相の間に配置させることや、各相が懸濁しないように攪拌し連続的に反応を行い、かつ有機相流体、水相流体、相間移動触媒を含む流体を容易に分離・回収し再利用するのに好適な化学反応実施方法及びそのための微小流路構造体を提供することにある。   The object of the present invention has been proposed in view of such a conventional situation, and in a reaction using a phase transfer catalyst in a microchannel, an organic phase fluid, an aqueous phase fluid, and a fluid containing a phase transfer catalyst are used. In conducting chemical reactions, the phase of the fluid containing the phase transfer catalyst is placed between the phase of the organic phase fluid and the phase of the aqueous phase fluid, or the reaction is continuously carried out by stirring so that each phase does not suspend. And a method for carrying out a chemical reaction suitable for easily separating / recovering and reusing a fluid including an organic phase fluid, an aqueous phase fluid, and a phase transfer catalyst, and a microchannel structure therefor. .

本発明は上記課題を解決するものとして、化学反応原料を含む有機相流体及び水相流体と相間移動触媒を含む流体とを微小流路に導入し、当該微小流路において前記流体が層流を保ちつつ、かつ前記相間移動触媒を含む流体が前記有機相流体と前記水相流体との間に層をなして送液され、前記化学反応原料が微小流路において化学反応を生ぜしめる化学反応を実施すること、及びこのような化学反応を実施するために、流体を導入するための3以上の導入口及びそれらに連通する導入流路と、導入流路と連通しかつ導入される流体を流すための微小流路と、微小流路から分岐しかつ流体を分離して排出するための3以上の排出流路及びそれらに連通する排出口と、を有した微小流路構造体であって、流体間の境界又はその近傍に、流体の進行方向に沿って、流路深さ以下の高さの仕切り壁が流体の進行方向に対して不連続に配置された微小流路を有した微小流路構造体を用いることで、上記の従来技術による課題を解決することができ、遂に本発明を完成することに至った。   In order to solve the above problems, the present invention introduces an organic phase fluid containing a chemical reaction raw material and an aqueous phase fluid and a fluid containing a phase transfer catalyst into a microchannel, and the fluid causes a laminar flow in the microchannel. A fluid containing the phase transfer catalyst is sent in a layer between the organic phase fluid and the aqueous phase fluid, and the chemical reaction raw material generates a chemical reaction in the microchannel. In order to carry out such a chemical reaction, three or more inlets for introducing a fluid, an introduction channel communicating with them, and a fluid introduced and communicated with the introduction channel A micro-channel structure having a micro-channel, a three- or more-exhaust channel for branching out of the micro-channel and separating and discharging the fluid, and a discharge port communicating with them, Fluid progression at or near the boundary between fluids By using a microchannel structure having a microchannel in which a partition wall having a height equal to or less than the channel depth is disposed discontinuously along the direction of the fluid, The present invention has finally been completed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さがサブμmから数百μmの微小流路を有する微小流路構造体を用い、流体を微小流路へ導入することにより化学反応を行う研究が注目されている。このような微小流路では、微小空間での短い分子間距離および大きな比界面積の効果による分子のすみやかな拡散により、特別な攪拌操作を行なわなくとも効率の良い化学反応を行なうことができる。例えば、図2に示すようにY字状の微小流路に原材料を溶かした水相(1)と有機相(2)を導入し、Y字の合流部分で形成される有機相と水相の流体の境界(3)で反応を起こす。一般的に、マイクロスケールの流路内ではレイノルズ数が1より小さいケースがほとんどであり、よほど流速を大きくしない限りは図2に示すような層流の状態となる。また、拡散時間は微小流路の幅(9)の2乗に比例するので、微小流路の幅(9)を小さくするほど反応液を能動的に混合しなくとも分子の拡散によって混合が進み、反応や抽出が起こりやすくなる。また、図3に示すように、微小流路の流体排出口(12)もY字にしておけば、比較的容易に水相と有機相を分離することができ、これを利用して2種類の液相間で抽出操作、分離操作などが行われている。
<化学反応実施方法>
本発明の化学反応実施方法は、上記微小流路の特徴を利用したものであり、化学反応原料を含む有機相流体及び水相流体と相間移動触媒を含む流体とを微小流路に導入し、微小流路において前記流体が層流を保ちつつ、かつ前記相間移動触媒を含む流体が前記有機相流体と前記水相流体との間に層をなして送液され、前記化学反応原料が微小流路において化学反応を生ぜしめるものである。
In recent years, a fluid is introduced into a microchannel using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate of several cm square and a width and depth of sub-μm to several hundred μm. Research that conducts chemical reactions is attracting attention. In such a microchannel, an efficient chemical reaction can be performed without performing a special stirring operation due to the rapid diffusion of molecules due to the effect of a short intermolecular distance and a large specific interfacial area in a microspace. For example, as shown in FIG. 2, an aqueous phase (1) and an organic phase (2) in which raw materials are dissolved are introduced into a Y-shaped microchannel, and the organic phase and the aqueous phase formed at the Y-shaped merged portion are introduced. Reaction occurs at fluid boundary (3). In general, there are almost all cases where the Reynolds number is smaller than 1 in a microscale flow path, and a laminar flow state as shown in FIG. 2 is obtained unless the flow velocity is significantly increased. Moreover, since the diffusion time is proportional to the square of the width (9) of the microchannel, the smaller the microchannel width (9), the more the mixing proceeds by molecular diffusion without actively mixing the reaction solution. , Reaction and extraction are likely to occur. In addition, as shown in FIG. 3, if the fluid outlet (12) of the microchannel is also Y-shaped, the water phase and the organic phase can be separated relatively easily. Extraction and separation operations are performed between the liquid phases.
<Chemical reaction method>
The method for carrying out a chemical reaction of the present invention utilizes the characteristics of the microchannel, and introduces an organic phase fluid containing a chemical reaction raw material and an aqueous phase fluid and a fluid containing a phase transfer catalyst into the microchannel, The fluid containing the phase transfer catalyst is sent in a layer between the organic phase fluid and the aqueous phase fluid while the fluid maintains a laminar flow in the microchannel, and the chemical reaction raw material is microflowed. It causes a chemical reaction in the road.

ここで、本発明において用いられる化学反応原料を含む有機相流体とは、目的とする反応生成物を得るために微小流路に導入される原料及びそれを溶解する媒体を指し、これら反応原料を含む流体は化学反応原料を含む水相流体及び相間移動触媒を含む流体とは別に微小流路より導入され、微小流路において化学反応を生ぜしめるのである。有機相流体に用いられる有機溶媒としては本発明の目的を逸脱しないものであれば特に制限されないが、一般に、メタノール、エタノール、ブタノール等のアルコール、酢酸エチル、酢酸ブチル等のエステル類、ジブチルエーテル等のエーテル類、トルエン、ヘキサン、シクロヘキサン等の直鎖状あるいは環式の炭化水素といった有機溶媒が用いられる。   Here, the organic phase fluid containing a chemical reaction raw material used in the present invention refers to a raw material introduced into a microchannel to obtain a target reaction product and a medium for dissolving the raw material. The contained fluid is introduced from the microchannel separately from the aqueous phase fluid containing the chemical reaction raw material and the fluid containing the phase transfer catalyst, and causes a chemical reaction in the microchannel. The organic solvent used in the organic phase fluid is not particularly limited as long as it does not depart from the object of the present invention. In general, alcohols such as methanol, ethanol and butanol, esters such as ethyl acetate and butyl acetate, dibutyl ether and the like Organic solvents such as linear ethers and cyclic hydrocarbons such as toluene, hexane, and cyclohexane are used.

本発明において用いられる化学反応原料を含む水相流体とは、目的とする反応生成物を得るために微小流路に導入される原料及びそれを溶解する媒体を指し、これら反応原料を含む流体は化学反応原料を含む有機相流体及び相間移動触媒を含む流体とは別に微小流路より導入され、微小流路において化学反応を生ぜしめるのである。水相流体に用いられる溶媒としては冷水、温水など水であればよく、また、本発明の目的を逸脱しないものであれば有機溶媒を添加したものであっても差し支えない。   The aqueous phase fluid containing a chemical reaction raw material used in the present invention refers to a raw material introduced into a microchannel and a medium for dissolving the raw material in order to obtain a target reaction product. It is introduced from the microchannel separately from the organic phase fluid containing the chemical reaction raw material and the fluid containing the phase transfer catalyst, and causes a chemical reaction in the microchannel. The solvent used in the aqueous phase fluid may be water such as cold water or warm water, and may be an organic solvent added as long as it does not depart from the object of the present invention.

本発明において用いられる相間移動触媒を含む流体とは、目的とする反応生成物を得るために微小流路に導入される原料及びそれを溶解する媒体を指し、これら反応原料を含む流体は化学反応原料を含む有機相流体及び水相流体とは別に微小流路より導入され、微小流路において化学反応を生ぜしめるのである。相間移動触媒を含む流体に用いられる有機溶媒としては本発明の目的を逸脱しないものであれば特に制限されないが、メタノールやエタノール等のアルコール系有機溶媒などが一般に用いられる。さらに相間移動触媒としては、本発明の目的を逸脱しないものであれば、一般的に用いられるものを採用することができ、例えば、N−(4−トリフルオロメチルベンジル)シンコニニウムブロマイド、n−オクチルジメチルアンモニウムブロマイド、シンコニジウムクロライド、等のアンモニウム塩系相間移動触媒、または、12−クラウン−4、15−クラウン−5、18−クラウン−6、ジベンゾ−18−クラウン−6、ジシクロヘキシル−18−クラウン−6等のクラウンエーテル系相間移動触媒、ポリエチレングリコールやポリビニルアルコール等のクラウンエーテル系化合物と類似機能を有する非環状化合物、および上述したアンモニウム系相間移動触媒、クラウンエーテル系相間移動触媒、クラウンエーテル系化合物と類似機能を有する非環状化合物のうち、いずれか異なる2以上を混合物が挙げられる。異なる2以上の相間移動触媒を混合物を用いることにより、例えばアルカリ等の反応開始剤の有機相への移動を容易にするとともに、光学活性物質の選択性を向上させることが同時にできるなどといった効果が得られる。   The fluid containing a phase transfer catalyst used in the present invention refers to a raw material introduced into a microchannel and a medium for dissolving the raw material to obtain a target reaction product, and the fluid containing these reaction raw materials is a chemical reaction. The organic phase fluid containing the raw material and the aqueous phase fluid are introduced separately from the microchannel and cause a chemical reaction in the microchannel. The organic solvent used in the fluid containing the phase transfer catalyst is not particularly limited as long as it does not depart from the object of the present invention, but an alcoholic organic solvent such as methanol or ethanol is generally used. Furthermore, as the phase transfer catalyst, those generally used can be adopted as long as they do not deviate from the object of the present invention. For example, N- (4-trifluoromethylbenzyl) cinconium bromide, n -Ammonium salt phase transfer catalyst such as octyldimethylammonium bromide, cinchondium chloride, or the like, or 12-crown-4, 15-crown-5, 18-crown-6, dibenzo-18-crown-6, dicyclohexyl- Crown ether phase transfer catalysts such as 18-crown-6, acyclic compounds having similar functions to crown ether compounds such as polyethylene glycol and polyvinyl alcohol, and the above ammonium phase transfer catalysts, crown ether phase transfer catalysts, Crown ether compounds and similar machines Among the acyclic compound having the mixtures thereof of any two or more different. By using a mixture of two or more different phase transfer catalysts, for example, the effect of facilitating the transfer of an initiator such as alkali to the organic phase and simultaneously improving the selectivity of the optically active substance can be achieved. can get.

本発明において用いられる有機相流体及び水相流体に含まれる化学反応原料とは、用いられる化学反応原料が有機相流体、水相流体の各々に実質的に溶解でき、かつ、有機相流体に含まれる化学反応原料と水相流体に含まれる化学反応原料とが相間移動触媒の作用により化学反応できる組み合わせとなっておればよい。例えば、相間移動触媒としてN−(4−トリフルオロメチルベンジル)シンコニニウムブロミド、化学反応原料として、有機相流体にフェナルシドとイソブチルアルデヒドを溶解させ、水相流体には水酸化リチウムを溶解したものを組み合わせの例としてあげることができる。これらは目的物、反応効率や原料の溶解性などで適宜決められる。   The chemical reaction raw material contained in the organic phase fluid and the aqueous phase fluid used in the present invention means that the chemical reaction raw material used can be substantially dissolved in each of the organic phase fluid and the aqueous phase fluid, and is included in the organic phase fluid. The chemical reaction raw material and the chemical reaction raw material contained in the aqueous phase fluid may be combined in such a way as to allow a chemical reaction by the action of the phase transfer catalyst. For example, N- (4-trifluoromethylbenzyl) cinconium bromide as a phase transfer catalyst, phenalside and isobutyraldehyde dissolved in an organic phase fluid, and lithium hydroxide dissolved in an aqueous phase fluid as a chemical reaction raw material Can be given as examples of combinations. These are appropriately determined depending on the target product, reaction efficiency, solubility of raw materials, and the like.

上記した化学反応原料を含む有機相流体及び水相流体、相間移動触媒を含む流体は、微小流路に導入され、微小流路においてこれらの流体は層流を保ちつつ、かつ相間移動触媒を含む流体が化学反応原料を含む有機相流体と化学反応原料を含む水相流体との間に層をなしており、これらの流体は送液されながら、化学反応原料が微小流路において化学反応を生ずるのである。なお本発明は、相間移動触媒を用いた反応全てに適用が可能であることはいうまでも無く、例えば、相関移動触媒を用いた加水分解反応、シアノ置換反応、アルドール反応、アルキル化反応、ダルツェン縮合、エポキシ化反応、不斉アルドール反応、不斉アルキル化反応、不斉ダルツェン縮合、不斉エポキシ化反応などがあげられる。   The organic phase fluid, the aqueous phase fluid containing the chemical reaction raw material, and the fluid containing the phase transfer catalyst are introduced into the micro flow channel, and these fluids maintain the laminar flow in the micro flow channel and include the phase transfer catalyst. The fluid forms a layer between the organic phase fluid containing the chemical reaction raw material and the aqueous phase fluid containing the chemical reaction raw material. These fluids are fed while the chemical reaction raw material causes a chemical reaction in the microchannel. It is. Needless to say, the present invention can be applied to all reactions using a phase transfer catalyst. For example, a hydrolysis reaction, a cyano substitution reaction, an aldol reaction, an alkylation reaction, a daltzen reaction using a phase transfer catalyst. Examples include condensation, epoxidation reaction, asymmetric aldol reaction, asymmetric alkylation reaction, asymmetric darzen condensation, asymmetric epoxidation reaction and the like.

このように、本発明は導入された流体が実質的に交じり合うことなく層流を容易に形成することができるという微小流路の特徴を利用することにより、各流体の比重や親媒性に依存すること無く、相間移動触媒相を有機相と水相の間に配置させて送液することができ、また、相間移動触媒を含む流体が化学反応原料を含む有機相流体と化学反応原料を含む水相流体との間に層をなさしめることで、有機相流体と水相流体を直接接触させること無く分離したまま両流体に溶解している反応物(化学反応原料)を反応させ化学反応を実施することができるのである。また、前述したように微小流路では短い分子間距離および大きな比界面積の効果による分子のすみやかな拡散により、特別な攪拌操作を行なわなくとも効率の良い化学反応を行なうことができるので、特殊なスターラーや振動による攪拌を行うことなく、相間移動触媒を含む流体、化学反応原料を含む有機相流体、化学反応原料を含む水相流体のそれぞれの界面を保ったまま各流体が混合せずに速やかに反応を進行させることができる。   As described above, the present invention makes it possible to reduce the specific gravity and lyophilicity of each fluid by utilizing the characteristics of the micro flow channel that can easily form a laminar flow without substantially intermingling the introduced fluid. The phase transfer catalyst phase can be disposed between the organic phase and the aqueous phase without depending on the liquid phase, and the fluid containing the phase transfer catalyst can be used to convert the organic phase fluid containing the chemical reaction raw material and the chemical reaction raw material. By forming a layer between the water-phase fluid and the water-phase fluid, the reactant (chemical reaction raw material) dissolved in both fluids is allowed to react without causing direct contact between the organic-phase fluid and the water-phase fluid. Can be implemented. In addition, as described above, in the microchannel, the rapid diffusion of molecules due to the short intermolecular distance and the effect of a large specific interfacial area enables efficient chemical reaction without special stirring operation. Without mixing with fluid stirrers or vibrations, the fluids containing the phase transfer catalyst, the organic phase fluid containing the chemical reaction raw material, and the aqueous phase fluid containing the chemical reaction raw material are kept in contact with each other without mixing the fluids. The reaction can proceed promptly.

また、本発明の化学反応実施方法は、上記のように微小流路にて層流を保ったまま化学反応させるものであるが、その後、微小流路は流路を分岐し(分離部ともいう)、相間移動触媒を含む流体、化学反応原料を含む有機相流体、化学反応原料を含む水相流体の各流体を分離させ、排出させることができる。このようにすることで、後述するように、用いた各流体を再度化学反応に用いることができ、相間移動触媒のような高価なものを回収、再利用できるからである。   In addition, the chemical reaction carrying out method of the present invention is to carry out a chemical reaction while maintaining a laminar flow in the micro flow channel as described above. However, the micro flow channel then divides the flow channel (also referred to as a separation unit). ), A fluid containing a phase transfer catalyst, an organic phase fluid containing a chemical reaction raw material, and an aqueous phase fluid containing a chemical reaction raw material can be separated and discharged. By doing so, as described later, each used fluid can be used again for a chemical reaction, and an expensive material such as a phase transfer catalyst can be recovered and reused.

本発明のの化学反応実施方法は、以上のような特徴を有するが、さらに具体的に述べると、流体を導入するための3つ以上の導入口及びそれらに連通する導入流路と、前記導入流路と連通しかつ導入される流体を流すための微小流路と、前記微小流路から分岐しかつ流体を分離して排出するための3つ以上の排出流路及びそれらに連通する排出口と、を有した微小流路構造体を使用して化学反応を実施する方法であって、少なくとも1つの導入口からは相間移動触媒を含む流体を導入し、少なくとも1つの別の導入口からは化学反応原料を含む有機相流体を導入し、少なくとも1つのさらに別の導入口からは化学反応原料を含む水相流体を導入するものである。このように、本発明に用いられる流体を3以上の導入口から導入し、微小流路で層流を保ちつつ、相間移動触媒を含む流体を、化学反応原料を含む有機相流体と化学反応原料を含む水相流体の間に配置させることにより、化学反応を効率的に行わせることができるとともに、化学反応後も各流体を分離し排出させることができるのである。   The method for carrying out a chemical reaction according to the present invention has the above-described features. More specifically, the method for carrying out a chemical reaction includes three or more inlets for introducing a fluid, an introduction channel communicating with them, and the introduction. A micro-channel for flowing a fluid to be introduced and communicating with the channel, three or more discharge channels for branching from the micro-channel and separating and discharging the fluid, and a discharge port communicating with them And a method for performing a chemical reaction using a micro-channel structure having: a fluid containing a phase transfer catalyst is introduced from at least one inlet, and from at least one other inlet An organic phase fluid containing a chemical reaction raw material is introduced, and an aqueous phase fluid containing a chemical reaction raw material is introduced from at least one additional inlet. As described above, the fluid used in the present invention is introduced from three or more inlets, and the fluid containing the phase transfer catalyst is changed into the organic phase fluid containing the chemical reaction raw material and the chemical reaction raw material while maintaining the laminar flow in the micro flow path. By arranging them between the aqueous phase fluids containing the chemical reaction, the chemical reaction can be efficiently performed, and each fluid can be separated and discharged even after the chemical reaction.

さらに、微小流路での化学反応を実施させた後、有機相流体、水相流体及び前記相間移動触媒を含む流体からなる群より選ばれる1あるいは2以上の流体を、排出流路の分離部で分離後、各々の流体の所定の導入口より再び導入することもでき、反応効率がさらに一層向上することとなる。このようにすることで、高価な相間移動触媒を回収して再利用したり、未反応物のある有機相あるいは水相を回収して再利用することで連続的に反応を行うことができるのである。   Furthermore, after performing the chemical reaction in the micro flow channel, one or two or more fluids selected from the group consisting of an organic phase fluid, an aqueous phase fluid, and a fluid containing the phase transfer catalyst are supplied to the separation unit of the discharge channel. Then, after separation, each fluid can be reintroduced from a predetermined introduction port, and the reaction efficiency is further improved. By doing so, it is possible to continuously react by recovering and reusing an expensive phase transfer catalyst, or by recovering and reusing an organic phase or an aqueous phase with unreacted substances. is there.

また、上記の微小流路とは、一般的に幅500μm以下、深さ300μm以下のサイズの流路である。また、導入流路と排出流路の幅と深さは特に制限はないが、微小流路と同様の幅と深さであっても良い。また、導入口と排出口の大きさも特に制限はないが、一般的に直径数0.1〜数mm程度の大きさであれば良い。
<微小流路構造体>
本発明の化学反応実施方法に使用するための微小流路構造体は、流体を導入するための3以上の導入口及びそれらに連通する導入流路と、前記導入流路と連通しかつ導入される流体を流すための微小流路と、前記微小流路から分岐しかつ流体を分離して排出するための3以上の排出流路及びそれらに連通する排出口と、を有した微小流路構造体であって、前記流体間の境界又はその近傍に、流体の進行方向に沿って、流路深さ以下の高さの仕切り壁が流体の進行方向に対して不連続に配置された微小流路を有するものである。
Moreover, said microchannel is a channel generally having a width of 500 μm or less and a depth of 300 μm or less. The width and depth of the introduction channel and the discharge channel are not particularly limited, but may be the same width and depth as the microchannel. The sizes of the introduction port and the discharge port are not particularly limited, but may generally be about 0.1 to several mm in diameter.
<Microchannel structure>
A microchannel structure for use in the method for carrying out a chemical reaction according to the present invention includes three or more inlets for introducing a fluid, an introduction channel communicating with the inlets, a communication channel with the introduction channel, and the introduction channel. A micro-channel structure having a micro-channel for flowing a fluid, three or more discharge channels branching from the micro-channel and separating and discharging the fluid, and a discharge port communicating with them A micro flow in which a partition wall having a height equal to or less than a flow path depth is disposed discontinuously with respect to the fluid traveling direction along the fluid traveling direction at or near the boundary between the fluids It has a road.

また、分離された少なくとも1つの流体を排出口より前記導入口へ導くための再導入流路、前記再導入流路に連通しておりかつ流体を送液するためのポンプ、及び前記再導入流路に連通しておりかつ流体を一時的に貯えておくためのリザーバータンクを、さらに備えていることが好ましいものである。   A reintroduction flow path for guiding at least one separated fluid from a discharge port to the introduction port; a pump communicating with the reintroduction flow path and sending fluid; and the reintroduction flow It is preferable to further include a reservoir tank that communicates with the path and temporarily stores fluid.

以下、本発明の微小流路構造体について図面を参照しながらさらに詳しく説明する。   Hereinafter, the fine channel structure of the present invention will be described in more detail with reference to the drawings.

前述したように、微小流路内に2種以上の流体を導入すると比較的容易に層流が形成され、それぞれの流体の境界が形成されるが、前記2種以上の流体の境界をさらに安定に保持し、前記微小流路から排出流路に分岐する分岐部において、前記流体が接触していた他の流体から容易に分離できるようにするために、図4に示すように、流体の境界またはその近傍に流体の進行方向に沿って、流路深さ以下の高さの、流体方向に対して不連続な仕切り壁(7)を微小流路(5)の底面(36)に形成しても良い。ここで不連続とは、流体の進行方向(26)に対して仕切り壁(7)がある所と無いところが任意の間隔で交互に配置されていることを意味する。一般に、幅が数μm〜数百μmであり、長さが数cm〜数十cm程度の微小流路(5)で流体間の接触と隔離を多数回繰り返す必要があることから、任意の間隔は1μm〜1000μm程度が好ましく、仕切り壁(7)があるところと無いところの比率は、微小流路(5)の全体にわたって仕切り壁(7)があるところで流体と仕切り壁(7)が接触する面積の総和と、仕切り壁(7)がないところで流体と流体が接触する面積の総和が等しいように設定することがより好ましい。このような流路を有した構造体とすることで、相間移動触媒を含む流体(以下、単に「触媒流体」ということがある。)、化学反応原料を含む有機相流体(以下、単に「有機流体」ということがある。)及び化学反応原料を含む水相流体(以下、単に「水」ということがある。)を極めて良好に分離すると共に各流体を回収し、再び化学反応に用いることができ、効率の良い化学反応を実施することができる。   As described above, when two or more kinds of fluids are introduced into the microchannel, laminar flows are formed relatively easily, and boundaries between the two fluids are formed. However, the boundaries between the two or more kinds of fluids are further stabilized. In order to make it easy to separate from other fluids with which the fluid is in contact at the branching portion that is held at the branching path from the minute channel to the discharge channel, as shown in FIG. Alternatively, a partition wall (7) discontinuous with respect to the fluid direction and having a height equal to or less than the channel depth is formed on the bottom surface (36) of the microchannel (5) in the vicinity thereof along the fluid traveling direction. May be. Here, discontinuous means that the place where the partition wall (7) is present and the place where the partition wall (7) is absent are alternately arranged at an arbitrary interval with respect to the fluid traveling direction (26). In general, it is necessary to repeat contact and isolation between fluids many times in a micro flow channel (5) having a width of several μm to several hundred μm and a length of several cm to several tens of cm. Is preferably about 1 μm to 1000 μm, and the ratio between where the partition wall (7) is present and where the partition wall (7) is not present It is more preferable that the sum of the areas is equal to the sum of the areas where the fluid and the fluid contact each other where there is no partition wall (7). By using a structure having such a flow path, a fluid containing a phase transfer catalyst (hereinafter sometimes simply referred to as “catalyst fluid”) and an organic phase fluid containing a chemical reaction raw material (hereinafter simply referred to as “organic”). And a water phase fluid (hereinafter, simply referred to as “water”) containing a chemical reaction raw material are separated very well and each fluid is recovered and used again for a chemical reaction. And an efficient chemical reaction can be carried out.

また本発明の微小流路構造体は、微小流路において化学反応させた後、送液方向から見て微小流路の後方側では、微小流路から分岐しかつ流体を排出するための3以上の排出流路及びそれらに連通する排出口が備えられている。この排出流路は、微小流路と排出流路との連通部分に分岐部を有しており、分岐部では微小流路内の層流が分離される。さらに分離された少なくとも1つの流体を排出口より前記導入口へ導くための再導入流路を備えている。再導入流路は分離された触媒流体、有機流体、水の少なくとも1つの流体を導くためのものであり、当該再導入流路は排出口を通じて前記した導入口の内のいずれかあるいはいずれとも連通している。さらに、この再導入流路には、これに連通しており流体を送液するためのマイクロポンプと、流路に連通しており流体を一時的に貯えておくためのリザーバータンクとを、さらに備えていてもよい。このような構造とすることで、高価な相間移動触媒を連続的に繰り返し再利用することや、化学反応をさせた流体の内の化学反応用原料を未だ残している流体を導入口へ連続的に再導入させることができ、結果として効率の良い化学反応を実施することができる。   The microchannel structure according to the present invention has three or more for branching from the microchannel and discharging the fluid on the rear side of the microchannel when viewed from the liquid feeding direction after the chemical reaction in the microchannel. The discharge flow path and the discharge port communicating with them are provided. This discharge flow path has a branch portion at the communication portion between the micro flow path and the discharge flow path, and the laminar flow in the micro flow path is separated at the branch portion. Further, a reintroduction flow path for guiding at least one separated fluid from the discharge port to the introduction port is provided. The reintroduction channel is for guiding at least one of the separated catalyst fluid, organic fluid, and water, and the reintroduction channel communicates with any one or any of the above-described introduction ports through the discharge port. is doing. The reintroduction channel further includes a micropump that is in communication with the reintroduction channel and supplies a fluid, and a reservoir tank that is in communication with the channel and temporarily stores the fluid. You may have. By adopting such a structure, it is possible to continuously reuse an expensive phase transfer catalyst continuously, or to continuously introduce a fluid that has been left behind for a chemical reaction to the introduction port. As a result, an efficient chemical reaction can be carried out.

また、上記の微小流路とは、一般的に幅500μm以下、深さ300μm以下のサイズの流路である。また、導入流路と排出流路の幅と深さは特に制限はないが、微小流路と同様の幅と深さであっても良い。また、導入口と排出口の大きさも特に制限はないが、一般的に直径数0.1〜数mm程度の大きさであれば良い。   Moreover, said microchannel is a channel generally having a width of 500 μm or less and a depth of 300 μm or less. The width and depth of the introduction channel and the discharge channel are not particularly limited, but may be the same width and depth as the microchannel. The sizes of the introduction port and the discharge port are not particularly limited, but may generally be about 0.1 to several mm in diameter.

流体を導入する手段は、図5に示すように微小流路構造体(28)の外部に設置した送液ポンプ(4)などを用いて送液すれば良い。また、排出口B(23)から排出された流体を、再び所定の導入口B(20)から導入する方法は、図5に示すように送液ポンプ(4)が送液する流体をあらかじめ入れてある容器B(10)にキャピラリーチューブ(40)などを通して戻せば良い。また別の形態としては、図6に示すように微小流路構造体(28)の中に、流体を溜めておくリザーバータンク(13)と送液するためのマイクロポンプ(14)を埋め込み、リザーバータンク(13)からマイクロポンプ(図5中、MPと表示)(14)による流体を導入口B(20)に送液し、微小流路(5)を通って排出口B(23)から排出された流体を微小流路構造体(28)の中に設けた回収流路(27)を通して再び前記リザーバータンク(13)に戻し、前記マイクロポンプ(14)により再び流体を送液しても良い。なお、前記リザーバータンク(13)は、微小流路(5)の全体に流体を送液しても、リザーバータンク(13)内の流体が枯渇しない容量を有していれば、その大きさに特に制限はない。また、前記回収流路(27)の幅と深さにも特に制限はないが、微小流路(5)と同等の幅と深さであっても良い。   As a means for introducing the fluid, liquid feeding may be performed using a liquid feeding pump (4) installed outside the microchannel structure (28) as shown in FIG. In addition, the method of introducing the fluid discharged from the discharge port B (23) through the predetermined introduction port B (20) again is to put the fluid to be fed by the liquid feed pump (4) in advance as shown in FIG. The container B (10) may be returned through a capillary tube (40) or the like. As another form, as shown in FIG. 6, a reservoir tank (13) for storing fluid and a micropump (14) for feeding fluid are embedded in the microchannel structure (28), and the reservoir Fluid from the tank (13) by the micropump (indicated as MP in FIG. 5) (14) is sent to the inlet B (20) and discharged from the outlet B (23) through the microchannel (5). The fluid may be returned to the reservoir tank (13) again through the recovery channel (27) provided in the microchannel structure (28), and the fluid may be fed again by the micropump (14). . If the reservoir tank (13) has a capacity that does not deplete the fluid in the reservoir tank (13) even if the fluid is fed to the entire microchannel (5), the reservoir tank (13) is sized. There is no particular limitation. The width and depth of the recovery channel (27) are not particularly limited, but may be the same width and depth as the microchannel (5).

以上のような微小流路構造体を構成する微小流路を有する微小流路基板は、例えばガラスや石英、セラミック、シリコン、あるいは金属や樹脂等の基板材料を、機械加工やレーザー加工、エッチングなどにより直接加工することによって製作できる。また、基板材料がセラミックや樹脂の場合は、流路形状を有する金属等の鋳型を用いて成形することで製作することもできる。   The microchannel substrate having the microchannels constituting the microchannel structure as described above is made of, for example, glass, quartz, ceramic, silicon, or a substrate material such as metal or resin by machining, laser processing, etching, or the like. Can be manufactured by direct processing. Further, when the substrate material is ceramic or resin, it can also be manufactured by molding using a mold such as a metal having a channel shape.

なお一般的に、微小流路基板は、微小流路と連通している導入口、排出口に対応する位置に直径数mm程度の小穴を設けたカバー体と積層一体化させた微小流路構造体として使用する。カバー体と微小流路基板の接合方法としては、基板材料がセラミックスや金属の場合は、ハンダ付けや接着剤を用いたり、基板材料がガラスや石英、樹脂の場合は、百度〜千数百度の高温下で荷重をかけて熱接合させたり、基板材料がシリコンの場合は洗浄により表面を活性化させて常温で接合させるなどそれぞれの基板材料に適した接合方法が用いられる。   In general, the microchannel substrate has a microchannel structure in which a cover body having a small hole having a diameter of about several millimeters is laminated and integrated at a position corresponding to the inlet and outlet that communicate with the microchannel. Use as a body. As a method for joining the cover body and the micro-channel substrate, when the substrate material is ceramics or metal, soldering or adhesive is used, or when the substrate material is glass, quartz, or resin, it is a hundred to several hundreds of degrees A bonding method suitable for each substrate material is used, such as thermal bonding by applying a load at a high temperature, or when the substrate material is silicon, by activating the surface by washing and bonding at room temperature.

本発明によれば以下の効果を奏することができる。   According to the present invention, the following effects can be obtained.

本発明の化学反応実施方法によれば、触媒流体、有機流体、水相流体を本発明の微小流路構造体に設けられた別々の導入口から導入し、有機流体と水相流体が直接接触しないように有機流体と水相流体の間に触媒流体を配置し、触媒流体の一方の片側を有機流体と、もう一方の片側を水相流体と、各々の流体間の境界を保ちつつ流体進行方向に沿って接触させて化学反応を実施し、触媒流体、有機流体及び水相流体が各々別の排出口から分離して排出されることにより、各層の比重や親媒性に依存すること無く、触媒流体を有機相と水相の間に配置させて送液し化学反応を実施することができる。   According to the method for carrying out a chemical reaction of the present invention, the catalyst fluid, the organic fluid, and the aqueous phase fluid are introduced from separate inlets provided in the microchannel structure of the present invention, and the organic fluid and the aqueous phase fluid are in direct contact with each other. The catalyst fluid is arranged between the organic fluid and the water phase fluid so that one side of the catalyst fluid is the organic fluid and the other side is the water phase fluid while maintaining the boundary between each fluid. The chemical reaction is carried out by contacting along the direction, and the catalyst fluid, organic fluid and aqueous phase fluid are separated and discharged from separate outlets, without depending on the specific gravity or philicity of each layer The catalyst fluid can be placed between the organic phase and the aqueous phase and sent to carry out a chemical reaction.

また、異なる2以上の相間移動触媒を混合物を用いることにより、例えばアルカリ等の反応開始剤の有機相への移動を容易にするとともに、光学活性物質の選択性を向上させるなど複数の効果を同時に得ることができる。   Further, by using a mixture of two or more different phase transfer catalysts, for example, it is possible to facilitate the transfer of an initiator such as alkali to the organic phase and to simultaneously improve the selectivity of the optically active substance. Obtainable.

また、前述したように微小流路では短い分子間距離および大きな比界面積の効果による分子のすみやかな拡散により、本発明による化学反応実施方法により特別な攪拌操作を行なわなくとも効率の良い化学反応を行なうことができるので、特殊なスターラーや振動による攪拌を行うことなく、触媒流体、有機流体、水相流体それぞれの界面を保ったまま各相が混合せずに速やかに反応を進行させることができる。   In addition, as described above, in the microchannel, due to the rapid diffusion of molecules due to the short intermolecular distance and the effect of a large specific interfacial area, an efficient chemical reaction can be performed without performing a special stirring operation by the chemical reaction execution method according to the present invention. Therefore, the reaction can proceed quickly without mixing each phase while maintaining the interfaces of the catalyst fluid, organic fluid, and water phase fluid, without stirring by a special stirrer or vibration. it can.

また本発明の化学反応実施方法を適用することにより、分離して排出された触媒流体、有機流体、水相流体の少なくとも1つの流体を前記所定の導入口より再び導入することで、各相を独立に回収して廃棄あるいは再利用することができるので、高価な相間移動触媒を繰り返し再利用することや、化学反応をさせた流体の内の化学反応用原料を未だ残している流体を導入口へ再導入させることができ、結果として効率の良い化学反応を実施することができる。   Further, by applying the chemical reaction execution method of the present invention, each phase is introduced by reintroducing at least one of the separated catalyst fluid, organic fluid, and aqueous phase fluid from the predetermined introduction port. Since it can be recovered and discarded or reused independently, the expensive phase transfer catalyst can be reused repeatedly, or the fluid that has been left behind for the chemical reaction in the fluid that has undergone the chemical reaction is introduced into the inlet. As a result, an efficient chemical reaction can be carried out.

また、本発明の前記化学反応を実施するための微小流路構造体は、流体間の境界又はその近傍に、流体の進行方向に沿って、流路深さ以下の高さの仕切り壁が流体の進行方向に対して不連続に配置された微小流路を有する微小流路構造体であって、このような流路を有した構造体とすることで、触媒流体、有機流体及び水相流体を極めて良好に分離すると共に各流体を回収し、再び化学反応に用いることができる。   Further, in the microchannel structure for carrying out the chemical reaction of the present invention, the partition wall having a height equal to or less than the channel depth is formed along the fluid traveling direction at or near the boundary between the fluids. A microchannel structure having microchannels discontinuously arranged with respect to the traveling direction of the catalyst, and having such a channel makes it possible to form a catalyst fluid, an organic fluid, and an aqueous phase fluid. Can be separated very well and each fluid can be recovered and used again for chemical reactions.

また本発明の微小流路構造体は、排出口で分離、排出された触媒流体、有機流体、水相流体の少なくとも1つの流体を排出口より導入口へ導くための再導入流路を備えていても良く、さらにこの再導入流路には、これに連通しており流体を送液するためのポンプと、流路に連通しており流体を一時的に貯えておくためのリザーバータンクとを、さらに備えていても良く、高価な相間移動触媒を再利用し連続的に反応を行うことや、化学反応をさせた流体の内の化学反応用原料を未だ残している流体を連続的に導入口へ再導入させることができ、結果として効率の良い化学反応を実施することができる。   The microchannel structure according to the present invention further includes a reintroduction channel for guiding at least one of the catalyst fluid, the organic fluid, and the aqueous phase fluid separated and discharged at the discharge port from the discharge port to the introduction port. The re-introduction channel may further include a pump that communicates with the re-introduction channel and feeds fluid, and a reservoir tank that communicates with the channel and temporarily stores the fluid. In addition, it is possible to re-use the expensive phase transfer catalyst for continuous reaction, or continuously introduce the chemical reaction raw material remaining in the chemical reaction fluid. It can be reintroduced into the mouth, and as a result, an efficient chemical reaction can be carried out.

以下、本発明の実施の形態について詳細に説明する。なお本発明は、これらの実施例のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。   Hereinafter, embodiments of the present invention will be described in detail. Needless to say, the present invention is not limited to these examples, and can be arbitrarily changed without departing from the scope of the invention.

実施例として、図7及び、図7におけるA−A’断面を示す図8とB−B’断面を示す図9に示すような微小流路構造体(28)を製作した。微小流路の形状は、3つの導入口と3つの排出口を有し、各導入口(11)に連通する導入流路(30)と各排出口(12)に連通する排出流路(31)がΨ字状に3本に分岐している微小流路(5)を用いた。形成した微小流路(5)の幅は150μm、深さは20μm、長さは300mmである。また、図4に示すように流路の幅方向を3分割するように、流路の片側側面から約50μm及び約100μmの位置に、高さ20μm、長さ50μm、幅5μmの仕切り壁(7)を200μm間隔で形成した。流路は、70mm
×38mm×1mm(厚さ)のパイレックス(登録商標)基板に一般的なフォトリソグラフィーとウエットエッチングにより形成し微小流路基板(6)を作製した。3つの導入口(11)と3つの排出口(12)に相当する位置に、直径0.6mmの貫通した小穴(35)を機械的加工手段により設けた同サイズのパイレックス(登録商標)基板をカバー体(29)として熱融着により接合することで微小流路(5)を密閉し、微小流路構造体を形成した。
As an example, a microchannel structure (28) as shown in FIG. 7 and FIG. 8 showing the AA ′ section in FIG. 7 and FIG. 9 showing the BB ′ section was manufactured. The shape of the micro channel has three inlets and three outlets, and the inlet channel (30) communicating with each inlet (11) and the outlet channel (31) communicating with each outlet (12). ) Was used as a microchannel (5) branched into three in a ψ-shape. The formed microchannel (5) has a width of 150 μm, a depth of 20 μm, and a length of 300 mm. Further, as shown in FIG. 4, a partition wall (7 μm high, 50 μm long, 5 μm wide) at a position of about 50 μm and about 100 μm from one side surface of the flow channel so that the width direction of the flow channel is divided into three. ) At intervals of 200 μm. The flow path is 70mm
A microchannel substrate (6) was produced by forming a Pyrex (registered trademark) substrate of × 38 mm × 1 mm (thickness) by general photolithography and wet etching. A Pyrex (registered trademark) substrate of the same size, in which small holes (35) having a diameter of 0.6 mm are provided by mechanical processing means at positions corresponding to three inlets (11) and three outlets (12). The micro flow path (5) was sealed by bonding by heat fusion as the cover body (29) to form a micro flow path structure.

この微小流路構造体を使用して、相間移動触媒として、図10に示すN−(4−トリフルオロメチルベンジル)シンコニニウムブロミドと1%のポリエチレングリコール(PEG200)の混合物を用いて図11に示すイソブチルアルデヒドと芳香族ケトンであるフェナルシドの不斉ダルツエンス反応による光学活性なエポキシケトンである1−フェナシル−1,2−エポキシ−4−メチルペンタンの合成を行った。なお、本生成物の光学活性の指標として、光学異性体であるR体とS体の存在量の差を示す両として、以下の(式1)に示すエナンチオ選択性を用いた。なお(式1)のRとSは、それぞれR体とS体の生成量を示す。
エナンチオ選択性 = (R−S)/(R+S) (式1)
触媒流体は、N−(4−トリフルオロメチルベンジル)シンコニニウムブロミド(53.4mg、0.1mmol)と1%のポリエチレングリコール(PEG200)の混合物をエタノールに溶解させた。また、有機流体は、フェナルシド(154.5mg、1.0mmol)とイソブチルアルデヒド(0.14ml、1.5mmol)を室温下ジクロロエタンに溶解させた。水相流体としては、水酸化カリウム(2.0mmol)を水に溶解させた。図7に示す微小流路構造体の中央の導入口B(20)から触媒流体を、導入口A(19)からは有機流体を、導入口C(21)からは水相流体を導入し、それぞれ5μL/分で送液したところ、微小流路内で有機流体、触媒流体、水相流体が3相の層流を形成して送液することができ、排出口A(22)から有機流体、排出口B(23)から触媒流体、排出口C(24)から水相流体をそれぞれ極めて良好に分離して排出することができた。反応温度は、微小流路構造体を恒温槽に入れ4℃で行った。なお、本微小流路に送液速度5L/分で送液したときの、本微小流路内での反応時間は約4秒であった。
Using this microchannel structure, a mixture of N- (4-trifluoromethylbenzyl) cinchoninium bromide and 1% polyethylene glycol (PEG200) shown in FIG. 10 was used as a phase transfer catalyst. Then, 1-phenacyl-1,2-epoxy-4-methylpentane, which is an optically active epoxy ketone, was synthesized by an asymmetric Durzens reaction between isobutyraldehyde and aromatic ketone, phenalside. In addition, as an index of the optical activity of this product, enantioselectivity shown in the following (formula 1) was used as both indicating the difference in the abundance between the R isomer and the S isomer, which are optical isomers. In addition, R and S of (Formula 1) show the production amount of R body and S body, respectively.
Enantioselectivity = (R−S) / (R + S) (Formula 1)
As a catalyst fluid, a mixture of N- (4-trifluoromethylbenzyl) cinchoninium bromide (53.4 mg, 0.1 mmol) and 1% polyethylene glycol (PEG200) was dissolved in ethanol. As the organic fluid, phenalside (154.5 mg, 1.0 mmol) and isobutyraldehyde (0.14 ml, 1.5 mmol) were dissolved in dichloroethane at room temperature. As an aqueous phase fluid, potassium hydroxide (2.0 mmol) was dissolved in water. Catalyst fluid is introduced from the central inlet B (20) of the microchannel structure shown in FIG. 7, organic fluid is introduced from the inlet A (19), and aqueous fluid is introduced from the inlet C (21). When the liquid is fed at a rate of 5 μL / min, the organic fluid, the catalyst fluid, and the water phase fluid can form a three-phase laminar flow in the microchannel, and the organic fluid can be fed from the discharge port A (22). The catalyst fluid could be separated and discharged from the outlet B (23) and the aqueous phase fluid from the outlet C (24) very well. The reaction temperature was 4 ° C. by placing the microchannel structure in a thermostat. The reaction time in the microchannel when the liquid was fed into the microchannel at a liquid feeding speed of 5 L / min was about 4 seconds.

排出された有機流体をジエチルエーテルで抽出し、得られた有機流体を飽和食塩水で洗浄後、ろ過、溶媒留去を順次行い、粗生成物を得、フラッシュカラムクロマトグラフィー(ヘキサン:ジエチルエーテル=15:1)で分離清製することで、目的とするエポキシケトンを得た。得られたエポキシケトンの収率は、原料のN−(4−トリフルオロメチルベンジル)シンコニニウムブロミドに対して75%、エナンチオ選択性は69(%)であった。   The discharged organic fluid was extracted with diethyl ether, and the obtained organic fluid was washed with saturated saline, followed by filtration and evaporation of the solvent in order to obtain a crude product. Flash column chromatography (hexane: diethyl ether = The desired epoxy ketone was obtained by separation and purification in 15: 1). The yield of the obtained epoxy ketone was 75% with respect to the raw material N- (4-trifluoromethylbenzyl) cinconium bromide, and the enantioselectivity was 69 (%).

また、分離して排出された触媒流体を回収したところ、送液した相間移動触媒の90%を回収することができた。   Further, when the separated catalyst fluid was recovered, 90% of the transferred phase transfer catalyst could be recovered.

さらに、新たな有機流体と水相流体とともに再度、微小流路構造体の導入口から導入し反応を実施したところ、上記と同様の抽出方法により目的とするエポキシケトンを再度得ることができ、その収率は、原料のN−(4−トリフルオロメチルベンジル)シンコニニウムブロミドに対して75%、エナンチオ選択性は69(%)であった。   Furthermore, when the reaction was carried out by introducing again from the introduction port of the microchannel structure together with the new organic fluid and aqueous phase fluid, the target epoxy ketone could be obtained again by the same extraction method as above, The yield was 75% with respect to the raw material N- (4-trifluoromethylbenzyl) cinchoninium bromide, and the enantioselectivity was 69 (%).

比較例Comparative example

比較例として、直径5cm、高さ10cmのサンプル瓶を使用して、実施例1と同様に相間移動触媒として、図10に示すN−(4−トリフルオロメチルベンジル)シンコニニウムブロミドと1%のポリエチレングリコール(PEG200)の混合物を用いて図11に示すイソブチルアルデヒドと芳香族ケトンであるフェナルシドの不斉ダルツエンス反応による光学活性なエポキシケトンの合成を行った。   As a comparative example, a sample bottle having a diameter of 5 cm and a height of 10 cm was used. As in the case of Example 1, as a phase transfer catalyst, N- (4-trifluoromethylbenzyl) cinchoninium bromide and 1% shown in FIG. An optically active epoxy ketone was synthesized by an asymmetric Durzence reaction of isobutyraldehyde and an aromatic ketone, phenalside, using a mixture of polyethylene glycol (PEG200).

触媒流体は、N−(4−トリフルオロメチルベンジル)シンコニニウムブロミド(53.4mg、0.1mmol)と1%のポリエチレングリコールの混合物(PEG200)をエタノールに溶解させた。また、有機流体は、フェナルシド(154.5mg、1.0mmol)とイソブチルアルデヒド(0.14ml、1.5mmol)を室温下ジクロロエタンに溶解させた。水相流体としては、水酸化カリウム(2.0mmol)を水に溶解させた。有機流体と水相流体及び触媒流体をそれぞれ40mlづつサンプル瓶に入れたところ、相間移動触媒相は有機相及び水相と混合して2相を形成し、有機流体、水相流体、触媒流体の3相を形成することができなかった。   The catalyst fluid was a mixture of N- (4-trifluoromethylbenzyl) cinchoninium bromide (53.4 mg, 0.1 mmol) and 1% polyethylene glycol (PEG 200) dissolved in ethanol. As the organic fluid, phenalside (154.5 mg, 1.0 mmol) and isobutyraldehyde (0.14 ml, 1.5 mmol) were dissolved in dichloroethane at room temperature. As an aqueous phase fluid, potassium hydroxide (2.0 mmol) was dissolved in water. When 40 ml each of the organic fluid, the aqueous phase fluid, and the catalytic fluid are put into the sample bottle, the phase transfer catalytic phase is mixed with the organic phase and the aqueous phase to form two phases, and the organic fluid, the aqueous phase fluid, and the catalytic fluid are mixed. Three phases could not be formed.

このサンプル瓶を恒温槽に入れ4℃で72時間攪拌しサンプル瓶内の反応液を懸濁状にして反応を行ったあと、1Nの塩酸を加えて反応を停止させた。反応停止後、サンプル瓶内の反応液は2相に分離したが、相間移動触媒を回収することはできなかった。反応後の反応液をジエチルエーテルで抽出し、得られた有機相を飽和食塩水で洗浄後、ろ過、溶媒留去を順次行い、粗生成物を得、フラッシュカラムクロマトグラフィー(ヘキサン:ジエチルエーテル=15:1)で分離清製することで、目的とするエポキシ体を得た。得られたエポキシケトンの収率は、原料のN−(4−トリフルオロメチルベンジル)シンコニニウムブロミドに対して75%、エナンチオ選択性は69(%)であった。   The sample bottle was placed in a thermostatic bath and stirred at 4 ° C. for 72 hours to carry out the reaction by suspending the reaction solution in the sample bottle, and then the reaction was stopped by adding 1N hydrochloric acid. After the reaction was stopped, the reaction solution in the sample bottle separated into two phases, but the phase transfer catalyst could not be recovered. The reaction solution after the reaction was extracted with diethyl ether, and the obtained organic phase was washed with saturated brine, filtered and evaporated to obtain a crude product. Flash column chromatography (hexane: diethyl ether = The target epoxy product was obtained by separating and purifying in 15: 1). The yield of the obtained epoxy ketone was 75% with respect to the raw material N- (4-trifluoromethylbenzyl) cinconium bromide, and the enantioselectivity was 69 (%).

相間移動触媒を用いた反応系の一例を示す図である。It is a figure which shows an example of the reaction system using a phase transfer catalyst. Y字状微小流路内における層流を示す概念図である。It is a conceptual diagram which shows the laminar flow in a Y-shaped microchannel. ダブルY字状微小流路内における層流を示す概念図である。It is a conceptual diagram which shows the laminar flow in a double Y-shaped microchannel. 微小流路の底面に流体境界に位置する不連続な仕切り壁を形成した例を示す概念図である。It is a conceptual diagram which shows the example which formed the discontinuous partition wall located in the fluid boundary in the bottom face of a microchannel. 流体を微小流路構造体の外部に設置した送液ポンプにより送液する手段を示す概念図である。It is a conceptual diagram which shows the means to liquid-feed with the liquid feed pump installed outside the microchannel structure. 流体を微小流路構造体の内部に埋め込んだマイクロポンプにより送液する手段を示す概念図である。It is a conceptual diagram which shows the means to liquid-feed with the micro pump which embedded the fluid inside the microchannel structure. 実施例で用いた微小流路構造体である。It is the microchannel structure used in the example. 図7の微小流路構造体中のA−A’断面図(拡大)である。It is A-A 'sectional drawing (enlargement) in the microchannel structure of FIG. 図7の微小流路構造体中のB−B’断面図(拡大)である。It is B-B 'sectional drawing (enlargement) in the microchannel structure of FIG. 実施例で使用した相間移動触媒である。It is the phase transfer catalyst used in the Example. 実施例でのイソブチルアルデヒドとフェナルシドの不斉ダルツエンス反応による光学活性なエポキシケトンの合成である。It is the synthesis | combination of the optically active epoxy ketone by the asymmetrical Darzens reaction of isobutyraldehyde and phenalside in an Example. 触媒流体を第3相として有機流体と水相流体を直接接触させないように有機流体と水相流体の間に存在させて反応を実施する一例を示した図である。It is the figure which showed an example which makes it exist between an organic fluid and an aqueous phase fluid so that a catalyst fluid may be made into a 3rd phase, and an organic fluid and an aqueous phase fluid may not contact directly.

符号の説明Explanation of symbols

1:水相流体
2:有機流体
3:流体の境界
4:送液ポンプ
5:微小流路
6:微小流路基板
7:仕切り壁
8:容器A
9:微小流路の幅
10:容器B
11:導入口
12:排出口
13:リザーバータンク
14:マイクロポンプ
15:求核アニオン
16:アルキルハライド
17:ニトリル
18:四級アンモニウム塩
19:導入口A
20:導入口B
21:導入口C
22:排出口A
23:排出口B
24:排出口C
25:上面
26:流体の進行方向
27:回収流路
28:微小流路構造体
29:カバー体
30:導入流路
31:排出流路
32:容器C
33:容器D
34:側面
35:小穴
36:底面
37:微小流路の深さ
38:ハロゲンアニオン
39:流体境界の幅
40:キャピラリーチューブ
41:触媒流体
42:ラモンドスターラー
1: Water phase fluid 2: Organic fluid 3: Fluid boundary 4: Liquid feed pump 5: Microchannel 6: Microchannel substrate 7: Partition wall 8: Container A
9: Width of microchannel 10: Container B
11: inlet 12: outlet 13: reservoir tank 14: micropump 15: nucleophilic anion 16: alkyl halide 17: nitrile 18: quaternary ammonium salt 19: inlet A
20: Inlet B
21: Inlet C
22: Discharge port A
23: Discharge port B
24: Discharge port C
25: Upper surface 26: Fluid traveling direction 27: Recovery flow path 28: Micro flow path structure 29: Cover body 30: Introduction flow path 31: Discharge flow path 32: Container C
33: Container D
34: Side surface 35: Small hole 36: Bottom surface 37: Depth of minute flow path 38: Halogen anion 39: Width of fluid boundary 40: Capillary tube 41: Catalytic fluid 42: Lamond stirrer

Claims (6)

化学反応原料を含む有機相流体及び水相流体と相間移動触媒を含む流体とを微小流路に導入し、当該微小流路において前記流体が層流を保ちつつ、かつ前記相間移動触媒を含む流体が前記有機相流体と前記水相流体との間に層をなして送液され、前記化学反応原料が微小流路において化学反応を生ぜしめる化学反応実施方法であって、流体を導入するための3以上の導入口及びそれらに連通する導入流路と、前記導入流路と連通しかつ導入される流体を流すための微小流路と、前記微小流路から分岐しかつ流体を分離して排出するための3以上の排出流路及びそれらに連通する排出口を有し、前記流体間の境界又はその近傍に、流体の進行方向に沿って、流路深さ以下の高さの仕切り壁が流体の進行方向に対して不連続に配置された微小流路を有する微小流路構造体を使用し、少なくとも1つの導入口からは相間移動触媒を含む流体を導入し、少なくとも1つの別の導入口からは前記有機相流体を導入し、少なくとも1つのさらに別の導入口からは前記水相流体を導入することを特徴とする化学反応実施方法。 An organic phase fluid containing a chemical reaction raw material and an aqueous phase fluid and a fluid containing a phase transfer catalyst are introduced into a micro flow channel, and the fluid containing the phase transfer catalyst is maintained in a laminar flow in the micro flow channel. Is a chemical reaction execution method in which a liquid is sent in a layer between the organic phase fluid and the aqueous phase fluid, and the chemical reaction raw material causes a chemical reaction in a microchannel, Three or more introduction ports and introduction flow passages communicating with them, a micro flow passage for communicating the introduction flow passage and flowing the introduced fluid, a branch from the fine flow passage, and separating and discharging the fluid A partition wall having a height equal to or less than the depth of the channel along the fluid traveling direction at or near the boundary between the fluids. Microchannels discontinuously arranged in the direction of fluid flow A fluid containing phase transfer catalyst is introduced from at least one inlet, the organic phase fluid is introduced from at least one other inlet, and at least one further A method for carrying out a chemical reaction, wherein the aqueous phase fluid is introduced from an introduction port . 前記相間移動触媒が異なる2以上の相間移動触媒からなることを特徴とする請求項1記載の化学反応実施方法。 The method for carrying out a chemical reaction according to claim 1, wherein the phase transfer catalyst comprises two or more different phase transfer catalysts. 前記有機相流体、前記水相流体及び前記相間移動触媒を含む流体が、分離して排出されることを特徴とする請求項1又は請求項2記載の化学反応実施方法。 The method for carrying out a chemical reaction according to claim 1 or 2, wherein the fluid containing the organic phase fluid, the aqueous phase fluid and the phase transfer catalyst is separated and discharged. 前記有機相流体、前記水相流体及び前記相間移動触媒を含む流体からなる群より選ばれる1あるいは2以上の流体を、分離後、各々の流体の所定の導入口より再び導入することを特徴とする請求項3記載の化学反応実施方法。 One or two or more fluids selected from the group consisting of the organic phase fluid, the aqueous phase fluid and the fluid containing the phase transfer catalyst are reintroduced through predetermined inlets of each fluid after separation. The method for carrying out a chemical reaction according to claim 3 . 流体を導入するための3以上の導入口及びそれらに連通する導入流路と、前記導入流路と連通しかつ導入される流体を流すための微小流路と、前記微小流路から分岐しかつ流体を分離して排出するための3以上の排出流路及びそれらに連通する排出口と、を有した微小流路構造体であって、前記流体間の境界又はその近傍に、流体の進行方向に沿って、流路深さ以下の高さの仕切り壁が流体の進行方向に対して不連続に配置された微小流路を有することを特徴とする請求項1〜4のいずれかに記載の化学反応実施方法に使用するための微小流路構造体。 Three or more inlets for introducing a fluid, an introduction channel communicating with the inlets, a micro channel for communicating the introduction channel and flowing the introduced fluid, a branch from the micro channel, and A micro-channel structure having three or more discharge channels for separating and discharging a fluid and a discharge port communicating with the three or more channels, and a fluid traveling direction at or near the boundary between the fluids along the partition wall of the channel depth less height according to any one of claims 1 to 4, characterized by having a fine channel which is arranged discontinuously with respect to the traveling direction of the fluid A microchannel structure for use in a method for carrying out a chemical reaction. 前記分離された少なくとも1つの流体を排出口より前記導入口へ導くための再導入流路、前記再導入流路に連通しておりかつ流体を送液するためのポンプ、及び前記再導入流路に連通しておりかつ流体を一時的に貯えておくためのリザーバータンクを、さらに備えていることを特徴とする請求項5に記載の化学反応実施方法に使用するための微小流路構造体。 A reintroduction channel for guiding the separated at least one fluid from a discharge port to the introduction port, a pump that communicates with the reintroduction channel and feeds the fluid, and the reintroduction channel The microchannel structure for use in the method for carrying out a chemical reaction according to claim 5 , further comprising a reservoir tank that communicates with the fluid tank and temporarily stores fluid.
JP2004018146A 2003-01-30 2004-01-27 Method for carrying out chemical reaction and microchannel structure therefor Expired - Lifetime JP4285256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018146A JP4285256B2 (en) 2003-01-30 2004-01-27 Method for carrying out chemical reaction and microchannel structure therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003021795 2003-01-30
JP2004018146A JP4285256B2 (en) 2003-01-30 2004-01-27 Method for carrying out chemical reaction and microchannel structure therefor

Publications (2)

Publication Number Publication Date
JP2004249286A JP2004249286A (en) 2004-09-09
JP4285256B2 true JP4285256B2 (en) 2009-06-24

Family

ID=33032191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018146A Expired - Lifetime JP4285256B2 (en) 2003-01-30 2004-01-27 Method for carrying out chemical reaction and microchannel structure therefor

Country Status (1)

Country Link
JP (1) JP4285256B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965032B1 (en) * 2004-11-16 2010-06-21 벨로시스, 인코포레이티드 Multiphase reaction process using microchannel technology
WO2008050760A1 (en) * 2006-10-24 2008-05-02 Daikin Industries, Ltd. Process for production of hexafluoropropylene oxide
CN114832654A (en) * 2022-04-25 2022-08-02 苏州思脉新材料科技有限公司 Porous membrane for cleaning and filtering in semiconductor manufacturing process and production method thereof

Also Published As

Publication number Publication date
JP2004249286A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
Stankiewicz et al. The fundamentals of process intensification
US7641871B2 (en) Fine channel device and a chemically operating method for fluid using the device
McQuade et al. Applying flow chemistry: methods, materials, and multistep synthesis
US8435387B2 (en) Small-scale method and apparatus for separating mixtures
TWI417136B (en) Parallelized jet loop reactors
ES2220629T3 (en) PROCEDURE FOR THE PREPARATION OF DISAZOIC CONDENSATION PIGMENTS IN MICRORREACTORS.
JP5116114B2 (en) Operation method of micro chemical equipment
Ji et al. Interfacial organic synthesis in a simple droplet-based microfluidic system
JP4032128B2 (en) Microchannel structure, desk-size chemical plant constructed, and fine particle production apparatus using them
JP4285256B2 (en) Method for carrying out chemical reaction and microchannel structure therefor
JP4470402B2 (en) Microchannel structure and fluid chemical operation method using the same
JP2002292275A (en) Microchip pile-up type chemical reaction system
CN108610350A (en) A method of synthesizing 5- Isosorbide Mononitrates using micro passage reaction
WO2020044359A1 (en) Dual function multiphase microreactor
JP2009166039A (en) Fine particle manufacturing apparatus
Ren et al. Femtosecond laser-engineered 3D microfluidic chips: Synthesis system sprouting highly efficient multiphase organic reactions
JP4687238B2 (en) Micro channel structure
A. Lapkin et al. Solids in continuous flow reactors for specialty and pharmaceutical syntheses
JP4389559B2 (en) Microchannel structure
KR20010111040A (en) Preparation of alcoholic solutions of alkali metal alkoxides
JP2005034679A (en) Method for practicing chemical operation and solvent extraction method using the method
CN113527109A (en) Method for preparing perfluoroalkyl aniline by micro-flow field reaction technology
JP2004305940A (en) Microchannel structure and chemical reaction method using the same
JP4419419B2 (en) Method for carrying out chemical reactions using microdroplets
JP4352890B2 (en) Fine particle production apparatus and fine particle production method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Effective date: 20081212

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Effective date: 20090126

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120403

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120403

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20140403