JP2005034679A - Method for practicing chemical operation and solvent extraction method using the method - Google Patents

Method for practicing chemical operation and solvent extraction method using the method Download PDF

Info

Publication number
JP2005034679A
JP2005034679A JP2003196906A JP2003196906A JP2005034679A JP 2005034679 A JP2005034679 A JP 2005034679A JP 2003196906 A JP2003196906 A JP 2003196906A JP 2003196906 A JP2003196906 A JP 2003196906A JP 2005034679 A JP2005034679 A JP 2005034679A
Authority
JP
Japan
Prior art keywords
fluid
microchannel
channel
fluids
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003196906A
Other languages
Japanese (ja)
Inventor
Tatsu Futami
達 二見
Tomohiro Okawa
朋裕 大川
Tatsuo Maruyama
達生 丸山
Masahiro Goto
雅宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003196906A priority Critical patent/JP2005034679A/en
Publication of JP2005034679A publication Critical patent/JP2005034679A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient method for practicing a chemical operation in a minute channel which can advance a solvent extraction and a chemical reaction between two adjacent fluids by introducing at least two fluids into the minute channel while the laminar flow state of many phases is maintained even at a high liquid supply speed of the fluids and sufficiently even a short length of the minute channel and materialize them in the width of the minute channel to be practically possible to supply liquid. <P>SOLUTION: In this method, the chemical operation is practiced by a minute channel structure having at least two inlets, an introduction channel, the minute channel for making the introduced fluids to flow, a discharge channel for discharging a prescribed fluid, and an outlet. In the minute channel, discontinuous partition walls are formed in the fluid advance direction along the boundary formed by at least two introduced fluids. The two adjacent fluids are repeatedly contacted with each other and separated from each other by the discontinuous partition walls in the minute channel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化学反応や液滴生成、分析などを行なう微小流路を有する微小流路構造体において、微小流路に導入した流体の混合や溶媒抽出、化学反応、分離等を行なうに好適な微小流路を用いた流体の化学操作の実施方法及びこれを用いた溶媒抽出方法に関する。
【0002】
【従来の技術】
近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さがサブμmから数百μmの微小流路を有する微小流路構造体を用い、流体を微小流路へ導入することにより化学反応を行う研究が注目されている。このような微小流路では、微小空間での短い物質拡散距離および大きな比界面積の効果によるすみやかな物質拡散により、特別な攪拌操作を行なわなくとも効率の良い溶媒抽出や化学反応を行なうことができることや、化学反応によって生じた反応生成物が反応相から抽出相へすばやく溶媒抽出、分離されることによって、引き続いて起こる副反応が抑えられることが示唆されている(例えば、非特許文献1参照)。
【0003】
ここで微小流路とは上記微小空間の特徴が現れる空間であれば特に流路の幅や、流路の深さは限定されないが、一般に流路の幅が50〜300μm、流路の深さが10〜100μmの大きさの流路を意味する。また、溶媒抽出とは、抽出溶媒に抽出対象物質を被抽出溶媒から抽出することを意味しており、本明細書では、液体からなる液相を蒸発させて隣接する気体からなる気相に取り込むことも溶媒抽出のひとつに含まれる。
【0004】
上記の例等では、図1に示すようにY字状の微小流路に原材料を溶かした水相(1)と有機相(2)を導入し、Y字の合流部分で形成される有機相と水相の流体境界(3)で溶媒抽出や化学反応を実施している。
【0005】
一般的に、マイクロスケールの流路内ではレイノルズ数が1より小さいケースがほとんどであり、よほど流速を大きくしない限りは図1に示すような層流の状態となる。また、物質の拡散時間は微小流路の幅(9)の2乗に比例するので、微小流路の幅(9)を小さくするほど反応液を能動的に混合しなくとも物質の拡散によって混合が進み、溶媒抽出や化学反応が起こりやすくなる。なお、流体境界は層流界面といわれることもある。
【0006】
また、図2に示すように、微小流路の流体排出口(12)をY字にしておくことで、水相と有機相を分離することができるということが一般的に言われている。このように流体排出口で導入した流体を完全に分離して排出することは、微小流路内で流体が接触することによって生じる溶媒抽出や化学反応を微小流路の分岐部(4)において完全に停止させたり、一度微小流路に導入した流体を再利用する上でも非常に重要な機能である。
【0007】
ここで通常図1のような微小流路を用いた場合、溶媒抽出や化学反応の進行は、主に流体境界(3)における隣接する流体間に含有している物質の濃度差から生じる拡散で進行し、一般に流体を供給する流速(以下、送液速度と称する)が遅いほど、あるいは流路長が長いほど、溶媒抽出や化学反応がより進行する。すなわち、隣接する流体同士の接触時間が長いほど溶媒抽出や化学反応がより進行するといわれている(例えば、非特許文献2参照)。
【0008】
しかしながら、送液速度を遅くすることにより隣接する流体同士の接触時間を長くすると、微小流路内での溶媒抽出や化学反応の進行の度合いは高くなるが、単位時間あたりの収量は減ってしまうと言う問題があった。
【0009】
また送液速度一定で流路長を長くすることで隣接する流体同士の接触時間を長くすると、微小流路内での溶媒抽出や化学反応の進行の度合いは高くなるが、流路長が長くなるほど圧力損失が大きくなり、流体を送液することが難しくなるという問題があった。
【0010】
さらに、流体境界で溶媒抽出や化学反応が進行するため、抽出物質や反応生成物が流体境界の近傍に蓄積され、微小流路内で抽出物質や反応生成物の濃度分布が生じ、流体境界の近傍で抽出物質や反応生成物の濃度が最も高くなる。このため、流体境界の近傍では溶媒抽出や化学反応が飽和状態となるため、流体境界の近傍での溶媒抽出や化学反応の進行が遅くなる。従って、前述した微小空間での化学反応の特徴である効率の良い化学反応、すばやい溶媒抽出、分離および副反応の抑制といった効果を十分に得ることができなかった。前述したように微小流路の幅(9)を狭くすればさらに物質の拡散時間を短くでき、流体境界の近傍での反応生成物の蓄積を抑えることはできるが、微小流路の幅が狭いほど圧力損失が大きくなるため流体を送液することが難しくなり現実的ではない。また、能動的に流体境界を崩して混合すれば、反応生成物は流路内に均一に分布させることができるので溶媒抽出や化学反応の効率は向上する可能性はあるが、流体は懸濁状になり反応生成物を反応相から容易に分離することができず、溶媒抽出、分離の効果や副反応の抑制効果が十分得られなかった。
【0011】
【非特許文献1】
H.Hisamoto et.al.(H.ひさもと ら著)「Fast and high conversion phase−transfer synthesis exploiting the liquid−liquidinterface formed in a microchannel chip」, Chem.Commun., 2001年発行, 2662−2663頁
【非特許文献2】
藤井、「集積型マイクロリアクターチップ」、ながれ20巻、2001年発行、99〜105頁
【0012】
【発明が解決しようとする課題】
本発明の目的は、かかる従来の実状に鑑みて提案されたものであり、2種以上の流体を微小流路に導入し、多相の層流状態を維持したまま、隣接する2種の流体間における溶媒抽出や化学反応を、より速い流体の送液速度であっても、より短い微小流路の流路長であっても十分に進行させ、かつ現実的に送液可能な微小流路の幅で実現することができる、微小流路内での高効率な溶媒抽出等の化学操作の実施方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は上記課題を解決するものとして、流体を導入するための2以上の導入口及びそれらに連通する導入流路と、前記導入流路が合流する合流部と連通しかつ導入された流体を流すための微小流路と、前記微小流路に連通しかつ所定の流体を排出する排出流路及びそれらに連通する排出口と、を有した微小流路構造体により化学操作を実施する方法であって、前記微小流路は、導入された2種以上の流体により形成される境界近傍に沿って、流体進行方向に複数の不連続な仕切壁が形成されており、前記微小流路内で隣接する2種の流体が、前記不連続な仕切り壁によって接触と分離を複数回繰り返すことにより、高効率で、2種の流体の一方よりもう一方へ、反応物あるいは抽出対象となる物質を抽出でき、溶媒抽出等の種々の化学操作を効率的に実施できることを見出し、遂に本発明を完成するに至った。
【0014】
なお、「2種以上の流体により形成される境界」という表現を、本発明では「流体境界」という表現と同意語で使用している。また、流体を排出する排出流路とそれに連通する排出口は1組でも良いし、導入した各々の流体を分離して排出できるように導入した流体と同数の排出流路とそれに連通する排出口を有していても良いし、導入した各々の流体の数によらず複数の排出流路とそれに連通する排出口を有していても良い。以下、本発明を詳細に説明する。
【0015】
本発明は、通常、水、有機溶媒等の媒体に目的とする反応物、あるいは抽出対象となる物質を溶解した2種以上の流体を微小流路構造体に形成されている微小流路に導入し、導入された流体を微小流路空間内で多相の層流を維持したまま送液することで、隣接する流体間で複数回、接触と分離を繰り返し、隣接する流体が接触している間の物質の拡散により溶媒抽出、化学反応などを行う化学操作の実施方法である。
【0016】
このため、本発明に用いる微小流路構造体には、流体を導入するための2以上の導入口及びそれらに連通する導入流路と、前記導入流路が合流する合流部と連通しかつ導入された流体を流すための微小流路と、前記微小流路に連通しかつ所定の流体を排出する排出口と、を有した微小流路構造体であって、前記微小流路には、導入された2種以上の流体のうち、隣接する流体が複数回、接触と分離を繰り返すことができるように、流体境界が形成される境界近傍に沿って、流体進行方向に複数の不連続な仕切壁が形成された微小流路であることが好ましい。
【0017】
ここで、上記の微小流路とは、微小空間の特徴が現れる空間であれば特に流路の幅や、流路の深さは限定されないが、一般的に幅500μm以下、深さ300μm以下のサイズの流路であり、好ましくは、流路の幅が50〜300μm、流路の深さが10〜100μmの大きさの流路を意味する。また、導入流路と排出流路の幅と深さは特に制限はないが、微小流路と同様の幅と深さであっても良い。また、導入口と排出口の大きさも特に制限はないが、一般的に直径約0.1mm〜数mm程度の大きさであれば良い。また、「隣接する2種の流体が、接触と分離を複数回繰り返す」とは、隣接する2種の流体が少なくとも2回以上接触と分離を繰り返すことを意味する。
【0018】
さらに、このように隣接する流体を複数回、接触と分離を繰り返すための仕切り壁を設けることにより、本発明の主たる効果である溶媒抽出や化学反応を高効率に実施することができる効果だけでなく、導入された2種以上の流体のうち、隣接する流体が互いに混入することはなく、安定した多相の層流を維持したまま、所定の排出流路に各々の流体を互いに隣接する流体の混入なしに排出することも可能としている。
【0019】
またこの仕切り壁の高さは、流路の深さに対してあまり低いと本発明による効果を得ることができない。本発明出願時での実験経験から、仕切壁の高さは流路の深さに対して20%以上の高さである事が好ましく、さらには隣接する流体が微小流路内で確実に互いに混入しないようにするためには、その仕切壁の高さが流体が仕切り壁を越えて隣接する他の流体の相へ移動することができない程度の高さが好ましく、さらには微小流路深さと実質的に等しいことがより好ましい。
【0020】
以下、本発明の微小流路構造体について図面を参照しながらさらに詳しく説明する。
【0021】
本発明に示したような、微小流路内に流体進行方向に不連続な仕切り壁を流体境界の近傍に沿って形成することにより、流体間の接触面積が減少し、溶媒抽出や化学反応の効率が、仕切り壁のない微小流路に比べて低下すると言うことが、従来までは一般的に指摘されていた。しかしながら本発明の発明者らによる精力的な実験により、実際には全くその逆であることが初めて確認された。すなわち、流体境界の近傍に沿って形成された流体進行方向に不連続な仕切り壁により、流体境界を安定に保ちながらその流体境界で溶媒抽出や化学反応を行った場合、仕切り壁がない単純な構造の微小流路と比較して溶媒抽出や化学反応の効率は飛躍的に高まる。その原理を図3を用いて以下に説明する。
【0022】
図3は、2流体が層流を形成した場合の流体境界付近の流体の線速度を示した図である。(a)は仕切り壁の無い場合を示し、(b)は仕切り壁がある場合を示す。図に描いた矢印は、流体の線速度ベクトル(82)であり、矢印の長さが長いほど、線速度が速いことを示している。
【0023】
図3(a)に示すように、仕切り壁が無い場合は、流体の線速度ベクトル(82)は、流体境界付近で最も速くなる。これに対し、溶媒抽出や化学反応の効率に直接影響する、それぞれの流体に含有する物質の流体間の拡散運動は、流体進行方向に対して垂直な方向であるために、流体進行方向の線速度が最も速い流体境界で最も妨げられてしまう。
【0024】
一方、図3(b)に示すように、不連続な仕切り壁がある場合は、その仕切り壁と仕切り壁の間隔がある程度狭くなると、流体の線速度ベクトル(82)は流体境界付近ででほぼゼロになる。これは、不連続な仕切り壁が存在することで、その仕切り壁を流体が避けて流れるためである。従って、流体境界の近傍に沿って形成された流体進行方向に不連続な仕切り壁と仕切り壁の間隔がある程度狭くなると、流体は連続して仕切り壁を避けて流れるようになり、仕切り壁と仕切り壁の間の空間は、流体の線速度ベクトルが実質的にゼロの状態になる。これにより、化学反応や溶媒抽出の効率に直接影響する、流体進行方向に対して垂直な方向であるそれぞれの流体に含有する物質の流体間の拡散運動は、流体進行方向の線速度がゼロであるために全く妨げられることがなくなり、速やかに流体間を物質が移動することが可能となる。さらに、ある程度の距離まで、他方の流体に拡散した物質は、流体境界付近から少し離れたところで速やかに流体進行方向に流体の線速度ベクトルに従って流されていくために、流体境界付近に溶媒抽出した物質や化学反応した反応生成物が蓄積することによる流体境界付近のみで溶媒抽出や化学反応の平衡状態あるいは飽和状態を回避することが可能である。従って、仕切り壁と仕切り壁の間では、常に物質拡散が速やかに行われ、仕切り壁から微小流路の外側に向かって少し離れたところでは拡散した物質が速やかに流体進行方向に排出されていく状態が実現されている。従って、流体境界の近傍に沿って形成された流体進行方向に不連続な仕切り壁により、流体境界を安定に保ちながらその流体境界で溶媒抽出や化学反応を実施した場合は、仕切り壁がない単純な構造の微小流路と比較して溶媒抽出や化学反応の効率は飛躍的に高まる。
【0025】
本発明における微小流路の態様のいくつかを図4に示した。なお本発明は、これらの態様に限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。図4(a)に示すように仕切り壁(22)を合流部(37)および分岐部(4)から離れた位置に形成することが基本的な態様であるが、図4(b)に示すように微小流路の分岐部に最も近い仕切り壁が、微小流路の分岐部と連通していてもよい。このようにすることで、隣接する流体をゆるやかに分離し、各々の流体の混入を抑制することができる。また、仕切り壁が、導入流路の合流部近傍(5)と排出流路の分岐部近傍(6)を除いて、存在しない箇所が1箇所以上ある、すなわち、図4(c)に示すように、流体境界の近傍に沿って形成された流体進行方向の仕切り壁と仕切り壁の間隔が微小流路における導入流路近傍及び/または排出流路近傍以外の部分との流体進行方向の仕切り壁と仕切り壁の間隔より短くなるように、合流部近傍と分岐部近傍には合流部から連続した仕切り壁および分岐部から連続した仕切り壁を形成すること、あるいは、図4(d)に示すように、合流部近傍と分岐部近傍の部分において、合流部から流体境界の近傍に沿って流体進行方向に連続して仕切り壁および分岐部から連続した仕切り壁を形成してもよい。この仕切り壁が流体進行方向に存在しない箇所が排出流路の分岐部近傍を除いて1箇所以上存在するということは、すなわち仕切り壁が少なくとも流体進行方向に1以上形成されていることを意味する。
【0026】
また、仕切り壁の流体進行方向における最長の長さが、すべて同じ長さになるように複数の仕切り壁を設けてもよいが、異なる長さの仕切り壁であっても差し支えない。また、流体進行方向の仕切り壁と仕切り壁の間隔も、同じ間隔であってもよいし異なる間隔であってもよい。
【0027】
また、図7に示すように本発明における微小流路(19)の直線以外の形状の部分において、前記仕切り壁(22)が前記微小流路の直線以外の形状の部分の直前の近傍付近(7)から前記微小流路の直線以外の形状の部分の直後の近傍付近(7)まで連続していることが望ましい。ここでいう近傍とは、特に制限はないが好ましくは5000μm以内を意味する。例えば、曲線状の微小流路に流体を流した場合、微小流路の曲線状の部分において遠心力が働くことで、曲線状の微小流路の内側の流体が外側の流体に向かって押し出されるような形状になり、流体進行方向の仕切り壁と仕切り壁の間に流体の流れが生じ、前述した流体間の物質の移動を妨げてしまう。しかしながら、微小流路の直線以外の形状の部分において、前記仕切り壁が前記微小流路の直線以外の形状の部分の直前の近傍付近から前記微小流路の直線以外の形状の部分の直後の近傍付近まで連続して仕切り壁を形成することで、この様な現象を防ぐことができる。
【0028】
ここで、微小流路の幅方向に対する仕切り壁の位置は、特に制限されず、送液する流量や流速、粘性などの溶液の性質に応じて変更することができる。当然、溶媒抽出や化学反応により隣接する流体の粘性が変化して流体境界の位置が流体進行方向に従って徐々に変化する場合でも、予め粘性の変化をシミュレーション等により計算し予測しておけば、予測した流体境界の近傍に沿って仕切り壁を設ければ良い。逆に、仕切り壁を流路の幅方向に対して中央付近に形成した微小流路に粘性が異なる流体を流した場合は、流体の粘性に逆比例した送液速度で流体を送液すれば流体境界を仕切り壁付近に形成することができる。また、仕切り壁の厚さ(23)は特に限定されないが、本発明出願時での実験経験から送液自体を妨げないように流路幅の3〜10%程度が好ましい。また、流体境界の近傍に沿って形成された流体進行方向における仕切り壁と仕切り壁の最短の間隔(25)の最小値は、仕切り壁(22)が不連続であれば特に制限はないが、本発明出願時での実験経験から約50[μm]程度が好ましい。
【0029】
以上のような微小流路構造体を構成している微小流路を有する微小流路基板は、例えばガラスや石英、セラミック、シリコン、あるいは金属や樹脂等の基板材料を、機械加工やレーザー加工、エッチングなどにより直接加工することによって製作できる。また、基板材料がセラミックや樹脂の場合は、流路形状を有する金属等の鋳型を用いて成形することで製作することもできる。なお一般的に、前記微小流路基板は、流体導入口、流体排出口、および各微小流路の排出口に対応する位置に直径数mm程度の小穴を設けたカバー体と積層一体化させた微小流路構造体として使用する。カバー体と微小流路基板をの接合方法としては、基板材料がセラミックスや金属の場合は、ハンダ付けや接着剤を用いたり、基板材料がガラスや石英、樹脂の場合は、百度〜千数百度の高温下で荷重をかけて熱接合させたり、基板材料がシリコンの場合は洗浄により表面を活性化させて常温で接合させるなどそれぞれの基板材料に適した接合方法が用いられる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。なお本発明は、これらの実施例のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。
(実施例)
実施例として、図6(b)に示すような微小流路構造体を製作した。微小流路(19)の形状は、導入口A(28)と導入口B(29)に連通する導入流路と排出口C(30)と排出口D(31)に連通する、排出流路がそれぞれY字状に2本に分岐している微小流路(19)を用いた。形成した微小流路の幅は100μm、深さは25μm、長さは30mmである。また、微小流路内部の構造として、微小流路の中央付近には、図6(a)に示したような流体進行方向の最大長さが50μmの不連続な高さ25μmの仕切り壁(22)を流体進行方向に50μm間隔で形成した。微小流路は、70mm×38mm×1mm(厚さ)のパイレックス(登録商標)基板に一般的なフォトリソグラフィーとウエットエッチングにより形成した。導入口A(28)と導入口B(29)、排出口C(30)と排出口D(31)に相当する位置に、直径0.6mmの貫通した小穴(35)を機械的加工手段により設けた同サイズのパイレックス(登録商標)基板をカバー体(34)として熱融着により接合することで微小流路を密閉し、微小流路構造体を形成した。
【0031】
この微小流路構造体を用いて、水相に溶解させた金属イオンを有機相に抽出する実験を行った。水相には、純水にY3+の金属イオンを各々0.5mM溶解させ、硝酸及び4−アミノ酪酸でpHを3に調整した水溶液を用いた。有機相には、抽出剤としてPC−88Aを20mM溶解させて調整したn−ヘプタンを用いた。微小流路には、導入口Aから水相を送液速度を0.1mL/h、0.2mL/h、0.3mL/h、0.4mL/h、0.5mL/h、0.6mL/h、0.8mL/hと送液速度を変えて送液し、この水相のそれぞれの送液速度に対して、導入口Bから有機相を送液速度を0.15mL/h、0.29mL/h、0.44mL/h、0.59mL/h、0.73mL/h、0.88mL/h、1.17mL/hと送液速度を変えて送液した。その結果、仕切り壁の近傍に流体境界が形成され、排出口Cからは水相が、排出口Dからは有機相が、お互いがほぼ混入せずに排出された。排出された水相中のY3+のイオン濃度をICP発光分光分析装置により定量したところ、それぞれの送液速度における抽出率は表1の結果となり、送液速度を上げても抽出効率が低下しないだけでなく、むしろ送液速度を上げることにより抽出効率が高くなる傾向が見られた。
【0032】
【表1】

Figure 2005034679
(比較例)
比較例として、図5(b)に示すような微小流路構造体を製作した。微小流路(19)の形状は、導入口A(28)と導入口B(29)に連通する導入流路と排出口C(30)と排出口D(31)に連通する、排出流路がそれぞれY字状に2本に分岐している微小流路(19)を用いた。形成した微小流路の幅は100μm、深さは25μm、長さは30mmである。また、微小流路内部の構造として、微小流路の中央付近には、図5(a)に示したような流体進行方向に高さ3μmのガイド状(16)を形成した。微小流路は、70mm×38mm×1mm(厚さ)のパイレックス(登録商標)基板に一般的なフォトリソグラフィーとウエットエッチングにより形成した。導入口A(28)と導入口B(29)、排出口C(30)と排出口D(31)に相当する位置に、直径0.6mmの貫通した小穴(35)を機械的加工手段により設けた同サイズのパイレックス(登録商標)基板をカバー体(34)として熱融着により接合することで微小流路を密閉し、微小流路構造体を形成した。また水相と有機相の二相層流分離を良好にするため、以下のような手法を用いて、微小流路構造体の微小流路の片側内壁を疎水化処理した。すなわち、飽和KOH−エタノール溶液を導入口A(28)および導入口B(29)から送液速度5μL/分で30分間程度送液し、次に導入口Aからはトルエン、導入口Bからは10%オクタデシルトリクロロシランのトルエン溶液を送液速度5μL/分で3時間程度送液した。この処理により、トルエンのみを送液した導入口Aから導入されて排出口C(30)から排出される側の微小流路片側内壁はもともとのパイレックス(登録商標)ガラスの親水性の状態であり、10%オクタデシルトリクロロシランのトルエン溶液を送液した導入口Bから導入されて排出口D(31)から排出される側の微小流路片側内壁は疎水性に修飾される。
【0033】
この微小流路構造体を用いて、水相に溶解させた金属イオンを有機相に抽出する実験を行った。水相には、純水にY3+の金属イオンを各々0.5mM溶解させ、硝酸及び4−アミノ酪酸でpHを3に調整した水溶液を用いた。有機相には、抽出剤としてPC−88Aを20mM溶解させて調整したn−ヘプタンを用いた。微小流路には、導入口Aから水相を送液速度を0.1mL/h、0.2mL/h、0.3mL/h、0.4mL/h、0.5mL/h、0.6mL/h、0.8mL/hと送液速度を変えて送液し、この水相のそれぞれの送液速度に対して、導入口Bから有機相を送液速度を0.15mL/h、0.29mL/h、0.44mL/h、0.59mL/h、0.73mL/h、0.88mL/h、1.17mL/hと送液速度を変えて送液した。その結果、微小流路の中央付近に安定した流体境界が形成され、排出口Cからは水相が、排出口Dからは有機相が、お互いがほぼ混入せずに排出された。排出された水相中のY3+のイオン濃度をICP発光分光分析装置により定量したところ、それぞれの送液速度における抽出率は表1の結果となり、送液速度を上げると抽出効率が低下する傾向が見られた。
【0034】
以上の実施例と比較例、すなわち、表1の結果から、比較例で水相の送液速度が0.1mL/hにおける抽出効率が、実施例で水相の送液速度が0.8mL/hにおける抽出効率にほぼ等しいことから、本実施例に用いた微小流路では、比較例に用いた微小流路の1/8以下の接触時間、すなわち8倍以上の抽出効率を有することを示している。抽出効率の向上は、化学反応の反応効率の向上にそのまま反映される。従って、本発明により微小流路内で隣接する2種の流体が、不連続な仕切り壁によって接触と分離を複数回繰り返すことにより非常に高効率な溶媒抽出及び/または化学反応を実施することが可能となり、より短い流体の接触時間でも十分に高効率な溶媒抽出や化学反応を実施することが可能であることがわかる。
【0035】
【発明の効果】
本発明の化学操作の実施方法によれば、流体を導入するための2以上の導入口及びそれらに連通する導入流路と、前記導入流路が合流する合流部と連通しかつ導入された流体を流すための微小流路と、前記微小流路に連通しかつ所定の流体を排出する排出流路及びそれらに連通する排出口と、を有した微小流路構造体であって、前記微小流路は、導入された2種以上の流体により形成される境界に沿って、流体進行方向に複数の不連続な仕切壁が形成されており、前記微小流路内で隣接する2種の流体が、前記不連続な仕切り壁によって接触と分離を複数回繰り返すことにより非常に高効率な溶媒抽出及び/または化学反応を実施することが可能となり、より短い流体の接触時間で高効率な溶媒抽出や化学反応を実施することができるため、流体進行方向に不連続な仕切壁のない単純な構造の微小流路よりも送液速度を速くすることが可能となる。従って、隣接する流体同士の接触時間を長くするために送液速度を遅くすることにより単位時間あたりの収量は減ってしまうという従来の問題を解決し、より速い送液速度でも十分な溶媒抽出及び/または化学反応の実施が可能となり、単位時間あたりの収量を高くすることが可能となる。
【0036】
また本発明の化学操作の実施方法によれば、より短い流体の接触時間でも十分に高効率な溶媒抽出や化学反応を実施することができるため、流体進行方向に不連続な仕切壁のない単純な構造の微小流路よりも流路長を短くすることが可能となる。従って、隣接する流体同士の接触時間を長くするために流路長を長くすることで圧力損失が大きくなり、流体を送液することが難しくなるという従来の問題を解決し、より短い流路長で高効率な溶媒抽出及び/または化学反応の実施が可能となる。これにより、微小流路の集積化による大量な化学的処理(溶媒抽出及び/または化学反応)を行う場合、単位面積あたりの微小流路の本数を増やすことが可能となり、微小流路をより高密度に微小流路基板に実装することが可能となる。
【0037】
さらに本発明の化学操作の実施方法によれば、隣接する流体間で速やかに物質移動が行われ、他の相に移動した物質は速やかに流体進行方向に流されるため、流体境界で溶媒抽出や化学反応が進行することによる、抽出物質や反応生成物が流体境界の近傍に蓄積される事が無くなる。これにより、流体境界で溶媒抽出や化学反応が進行することによる、抽出物質や反応生成物が流体境界の近傍に蓄積され、微小流路内で濃度分布が生じ、流体境界で抽出物質や反応生成物の濃度が最も高くなり、流体境界の近傍において溶媒抽出や化学反応が飽和状態となるため、流体境界での溶媒抽出や化学反応の進行が遅くなり、微小空間での化学反応の特徴である効率の良い溶媒抽出や化学反応、多相層流分離および副反応の抑制といった効果を十分に得ることができないという従来の問題を解決することができ、本発明の溶媒抽出及び/または化学反応の実施方法により高効率な溶媒抽出及び/または化学反応の実現と同時に、副反応の抑制効果を実現することが可能となる。また、流体境界の近傍に沿って流体進行方向に不連続な仕切り壁を形成することで流体境界が非常に安定となるため、隣接する流体間において、流体の混入をを抑えることが可能となり高い多相層流分離能を実現できる。
【図面の簡単な説明】
【図1】Y字状微小流路内における層流を示す概念図である。
【図2】ダブルY字状微小流路内における層流を示す概念図である。また、比較例2と比較例3に使用した微小流路の概念図である。
【図3】2流体が層流を形成した場合の流体境界付近の流体の線速度を示した図である。(a)は仕切り壁の無い場合を示し、(b)は仕切り壁がある場合を示す。
【図4】本発明における微小流路の合流部近傍及び、分岐部近傍における仕切り壁のいくつかの態様の概略平面図であり、(a)は仕切り壁が微小流路の合流部及び分岐部から離れている場合、(b)は微小流路の分岐部に最も近い仕切り壁が、微小流路の分岐部と連通している場合、(c)及び(d)は微小流路の合流部近傍において仕切り壁が合流部と連続し、かつ、微小流路の分岐部近傍にて仕切り壁が分岐部と連続している場合を示す。
【図5】(a)は比較例に使用した微小流路の内部構造の概念図であり、(b)は比較例に使用した微小流路構造体の構成を示す。
【図6】(a)は実施例に使用した微小流路の内部構造の概念図であり、(b)は実施例に使用した微小流路構造体の構成を示す。
【図7】本発明における微小流路の曲線状部分における仕切り壁の形状の概略平面図である。
【符号の説明】
1:水相
2:有機相
3:流体境界
4:分岐部
5:合流部近傍
6:分岐部近傍
7:微小流路が直線以外の形状の部分の直前及び/又は直後の近傍付近
8:微小流路の中央近傍
9:微小流路の幅
10:流路長
11:流体導入口
12:流体排出口
13:流体A
14:流体B線速度ベクトル
16:ガイド状
17:流路深さ
18:微小流路の底面
19:微小流路
20:突起
21:排出流路近傍
22:仕切り壁
23:仕切り壁の厚さ
24:仕切り壁の高さ
25:流体進行方向の仕切り壁と仕切り壁の最短間隔
26:流体進行方向の仕切り壁の最長の長さ
27:流体進行方向
28:導入口A
29:導入口B
30:排出口C
31:排出口D
32:基板
33:導入流路近傍
34:カバー体
35:小穴
36:ガイド状の厚さ
37:合流部[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is suitable for performing mixing, solvent extraction, chemical reaction, separation, and the like of fluid introduced into a microchannel in a microchannel structure having a microchannel that performs chemical reaction, droplet generation, analysis, and the like. The present invention relates to a method for performing chemical operation of a fluid using a microchannel and a solvent extraction method using the same.
[0002]
[Prior art]
In recent years, a fluid is introduced into a microchannel using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate of several cm square and a width and depth of sub-μm to several hundred μm. Research that conducts chemical reactions is attracting attention. In such a micro flow channel, efficient solvent extraction and chemical reaction can be performed without special stirring operation due to the rapid material diffusion due to the short material diffusion distance and the large specific interfacial area in the micro space. It is suggested that reaction products generated by chemical reaction can be quickly solvent extracted and separated from the reaction phase to the extraction phase, thereby suppressing side reactions that occur subsequently (for example, see Non-Patent Document 1). ).
[0003]
Here, the micro channel is not particularly limited as long as the width of the channel and the depth of the channel are limited as long as the characteristics of the micro space appear, but generally the channel width is 50 to 300 μm and the channel depth. Means a channel having a size of 10 to 100 μm. Further, solvent extraction means extraction of a substance to be extracted from an extraction solvent into an extraction solvent. In this specification, a liquid phase composed of liquid is evaporated and taken into a gas phase composed of adjacent gas. This is also included in the solvent extraction.
[0004]
In the above example, as shown in FIG. 1, an organic phase (1) and an organic phase (2) in which raw materials are dissolved are introduced into a Y-shaped microchannel, and an organic phase formed by a Y-shaped merged portion. Solvent extraction and chemical reaction are carried out at the fluid boundary (3) between the water phase and the water phase.
[0005]
In general, there are almost all cases where the Reynolds number is smaller than 1 in a micro-scale flow path, and a laminar flow state as shown in FIG. 1 is obtained unless the flow velocity is significantly increased. In addition, since the diffusion time of the substance is proportional to the square of the width (9) of the microchannel, the smaller the microchannel width (9) is, the smaller the microchannel width (9) is, the more the mixing is performed by the diffusion of the substance without active mixing. As a result, solvent extraction and chemical reaction are likely to occur. The fluid boundary is sometimes called a laminar interface.
[0006]
In addition, as shown in FIG. 2, it is generally said that the water phase and the organic phase can be separated by making the fluid outlet (12) of the microchannel into a Y shape. In this way, completely separating and discharging the fluid introduced at the fluid discharge port means that the solvent extraction and chemical reaction caused by the contact of the fluid in the microchannel are completely performed at the branch portion (4) of the microchannel. This is a very important function even when the fluid is stopped or reused once the fluid is introduced into the microchannel.
[0007]
Here, when a microchannel as shown in FIG. 1 is normally used, the progress of solvent extraction and chemical reaction is mainly diffusion caused by the difference in concentration of substances contained between adjacent fluids at the fluid boundary (3). In general, the slower the flow rate (hereinafter referred to as “liquid feeding speed”) for supplying the fluid or the longer the flow path length, the more the solvent extraction and chemical reaction proceed. That is, it is said that the longer the contact time between adjacent fluids, the more the solvent extraction and chemical reaction proceed (for example, see Non-Patent Document 2).
[0008]
However, if the contact time between adjacent fluids is lengthened by slowing the liquid feeding speed, the degree of progress of solvent extraction and chemical reaction in the microchannel increases, but the yield per unit time decreases. There was a problem.
[0009]
If the contact time between adjacent fluids is increased by increasing the flow path length at a constant liquid feed speed, the degree of progress of solvent extraction and chemical reaction in the micro flow path increases, but the flow path length increases. As the pressure loss increases, there is a problem that it is difficult to feed the fluid.
[0010]
Furthermore, since solvent extraction and chemical reaction proceed at the fluid boundary, the extracted substances and reaction products accumulate near the fluid boundary, resulting in a concentration distribution of the extracted substances and reaction products in the microchannel, and the fluid boundary The concentration of the extracted substance and reaction product is the highest in the vicinity. For this reason, since the solvent extraction and chemical reaction are saturated near the fluid boundary, the progress of the solvent extraction and chemical reaction near the fluid boundary is delayed. Therefore, the effects such as efficient chemical reaction, quick solvent extraction, separation and suppression of side reactions, which are the characteristics of the chemical reaction in the minute space described above, cannot be obtained sufficiently. As described above, if the width (9) of the microchannel is narrowed, the diffusion time of the substance can be further shortened and the accumulation of reaction products near the fluid boundary can be suppressed, but the width of the microchannel is narrow. Since the pressure loss becomes so large, it is difficult to feed the fluid, which is not realistic. In addition, if the fluid boundary is actively broken and mixed, the reaction product can be uniformly distributed in the flow path, so the efficiency of solvent extraction and chemical reaction may be improved, but the fluid is suspended. As a result, the reaction product could not be easily separated from the reaction phase, and the effects of solvent extraction and separation and the effect of suppressing side reactions were not sufficiently obtained.
[0011]
[Non-Patent Document 1]
H. Hisamoto et. al. (H. Hisamoto et al.) “Fast and high conversion phase-transfer synthesis development the liquid-liquid interface formed in a microchannel chip”, Chem. Commun. , 2001, 2662-2663.
[Non-Patent Document 2]
Fujii, “Integrated Microreactor Chip”, Nagare 20 Volume, 2001, pp. 99-105
[0012]
[Problems to be solved by the invention]
The object of the present invention has been proposed in view of such a conventional situation. Two or more kinds of fluids are introduced into a microchannel and two adjacent kinds of fluids are maintained while maintaining a multiphase laminar flow state. Microchannels that can sufficiently perform solvent extraction and chemical reactions in between, even at faster fluid delivery speeds or shorter microchannel lengths, and can be delivered practically It is an object to provide a method of performing a chemical operation such as highly efficient solvent extraction in a micro flow path that can be realized with a width of 1 mm.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides two or more inlets for introducing a fluid, an introduction channel communicating with them, and a fluid introduced and communicated with a junction where the introduction channel merges. A method of performing a chemical operation by a microchannel structure having a microchannel for flowing, a discharge channel communicating with the microchannel and discharging a predetermined fluid, and a discharge port communicating with them In the microchannel, a plurality of discontinuous partition walls are formed in the fluid traveling direction along the vicinity of the boundary formed by the two or more kinds of introduced fluids. Two adjacent fluids are contacted and separated multiple times by the discontinuous partition walls, and the reactants or substances to be extracted are extracted from one of the two fluids to the other with high efficiency. Various chemical operations such as solvent extraction It found that can be efficiently implemented, leading to the completion of the last present invention.
[0014]
The expression “boundary formed by two or more fluids” is used synonymously with the expression “fluid boundary” in the present invention. Further, the discharge channel for discharging the fluid and the discharge port communicating therewith may be one set, or the same number of the discharge channels as the introduced fluids so that each introduced fluid can be separated and discharged, and the discharge ports communicating therewith Or may have a plurality of discharge channels and discharge ports communicating therewith regardless of the number of each introduced fluid. Hereinafter, the present invention will be described in detail.
[0015]
In the present invention, usually two or more kinds of fluids in which a target reactant or a substance to be extracted is dissolved in a medium such as water or an organic solvent are introduced into a microchannel formed in a microchannel structure. Then, the introduced fluid is sent while maintaining the multi-phase laminar flow in the microchannel space, so that the adjacent fluid is in contact with the adjacent fluid by repeating contact and separation multiple times. This is a method of performing a chemical operation in which solvent extraction, chemical reaction, etc. are performed by diffusion of substances between them.
[0016]
For this reason, in the microchannel structure used in the present invention, two or more inlets for introducing a fluid, an introduction channel communicating with them, and a junction where the introduction channel merges are communicated and introduced. A micro-channel structure having a micro-channel for flowing the generated fluid and a discharge port communicating with the micro-channel and discharging a predetermined fluid, and introduced into the micro-channel Among the two or more kinds of fluids that are adjacent, a plurality of discontinuous partitions in the fluid traveling direction along the vicinity of the boundary where the fluid boundary is formed so that the adjacent fluid can repeat contact and separation multiple times It is preferable that it is a microchannel with a wall formed.
[0017]
Here, the width of the flow channel and the depth of the flow channel are not particularly limited as long as the above-described micro flow channel is a space in which the characteristics of the micro space appear, but generally the width is 500 μm or less and the depth is 300 μm or less. The size of the channel is preferably a channel having a channel width of 50 to 300 μm and a channel depth of 10 to 100 μm. The width and depth of the introduction channel and the discharge channel are not particularly limited, but may be the same width and depth as the microchannel. The sizes of the inlet and the outlet are not particularly limited, but may generally be about 0.1 mm to several mm in diameter. The phrase “two adjacent fluids repeat contact and separation multiple times” means that two adjacent fluids repeat contact and separation at least twice.
[0018]
Further, by providing a partition wall for repeating contact and separation of the adjacent fluids a plurality of times in this way, only the effect that the solvent extraction and chemical reaction, which are the main effects of the present invention, can be carried out with high efficiency. In addition, among the two or more kinds of introduced fluids, adjacent fluids do not mix with each other, and each fluid is placed adjacent to each other in a predetermined discharge channel while maintaining a stable multiphase laminar flow. It is also possible to discharge without mixing.
[0019]
If the height of the partition wall is too low with respect to the depth of the flow path, the effect of the present invention cannot be obtained. From the experimental experience at the time of filing of the present invention, the height of the partition wall is preferably 20% or more with respect to the depth of the flow path, and moreover, adjacent fluids are surely connected to each other in the micro flow path. In order to prevent mixing, the height of the partition wall is preferably high enough to prevent the fluid from moving beyond the partition wall to another adjacent fluid phase. More preferably, they are substantially equal.
[0020]
Hereinafter, the fine channel structure of the present invention will be described in more detail with reference to the drawings.
[0021]
As shown in the present invention, by forming a partition wall that is discontinuous in the fluid traveling direction in the micro flow path along the vicinity of the fluid boundary, the contact area between the fluids is reduced, and solvent extraction and chemical reaction are performed. Conventionally, it has been generally pointed out that the efficiency is lower than that of a micro flow channel without a partition wall. However, energetic experiments by the inventors of the present invention have confirmed for the first time that in fact the opposite is true. In other words, when a solvent extraction or chemical reaction is performed at a fluid boundary while keeping the fluid boundary stable by a partition wall that is discontinuous in the fluid traveling direction formed along the vicinity of the fluid boundary, there is no simple partition wall. The efficiency of solvent extraction and chemical reaction is drastically increased compared to a microchannel with a structure. The principle will be described below with reference to FIG.
[0022]
FIG. 3 is a diagram showing the linear velocity of the fluid near the fluid boundary when two fluids form a laminar flow. (A) shows a case where there is no partition wall, and (b) shows a case where there is a partition wall. The arrow drawn in the figure is the linear velocity vector (82) of the fluid, and the longer the length of the arrow, the faster the linear velocity.
[0023]
As shown in FIG. 3A, when there is no partition wall, the fluid linear velocity vector (82) is the fastest in the vicinity of the fluid boundary. On the other hand, the diffusion movement between the fluids of the substances contained in each fluid, which directly affects the efficiency of solvent extraction and chemical reaction, is perpendicular to the fluid traveling direction. Most disturbed at the fastest fluid boundary.
[0024]
On the other hand, as shown in FIG. 3B, when there is a discontinuous partition wall, the linear velocity vector (82) of the fluid is almost near the fluid boundary when the interval between the partition walls is reduced to some extent. It becomes zero. This is because the presence of a discontinuous partition wall prevents fluid from flowing through the partition wall. Therefore, if the distance between the partition wall formed in the vicinity of the fluid boundary and discontinuous in the fluid traveling direction is narrowed to some extent, the fluid will flow continuously avoiding the partition wall, and the partition wall and the partition wall will flow. The space between the walls is in a state where the fluid linear velocity vector is substantially zero. As a result, the diffusive motion between the substances contained in each fluid that is perpendicular to the fluid traveling direction, which directly affects the efficiency of chemical reaction and solvent extraction, has zero linear velocity in the fluid traveling direction. Therefore, it is not hindered at all, and the substance can move quickly between the fluids. Furthermore, the substance diffused in the other fluid up to a certain distance is extracted near the fluid boundary in order to quickly flow according to the linear velocity vector of the fluid in the fluid traveling direction at a distance from the vicinity of the fluid boundary. It is possible to avoid an equilibrium state or a saturated state of solvent extraction or chemical reaction only near the fluid boundary due to accumulation of substances and chemical reaction products. Therefore, the material diffusion is always performed quickly between the partition walls, and the diffused material is quickly discharged in the fluid traveling direction at a distance from the partition wall toward the outside of the microchannel. The state is realized. Therefore, when a solvent extraction or chemical reaction is performed at a fluid boundary while keeping the fluid boundary stable by a partition wall that is discontinuous in the fluid traveling direction formed along the vicinity of the fluid boundary, there is no simple partition wall. The efficiency of solvent extraction and chemical reaction is dramatically increased compared to a microchannel with a simple structure.
[0025]
Some of the aspects of the microchannel in the present invention are shown in FIG. It is needless to say that the present invention is not limited to these embodiments and can be arbitrarily changed without departing from the gist of the invention. As shown in FIG. 4 (a), it is a basic mode that the partition wall (22) is formed at a position away from the merging portion (37) and the branching portion (4), but as shown in FIG. 4 (b). Thus, the partition wall closest to the branch portion of the microchannel may be in communication with the branch portion of the microchannel. By doing in this way, the adjacent fluid can be separated gently and mixing of each fluid can be controlled. Further, there are one or more locations where the partition wall does not exist except in the vicinity of the confluence portion (5) of the introduction channel and in the vicinity of the branch portion (6) of the discharge channel, that is, as shown in FIG. In addition, the partition wall in the fluid traveling direction formed between the partition wall in the fluid traveling direction formed along the vicinity of the fluid boundary and the partition wall in the direction of the fluid traveling with the portion other than the vicinity of the introduction channel and / or the vicinity of the discharge channel in the minute channel A partition wall continuous from the merge portion and a partition wall continuous from the branch portion are formed in the vicinity of the merge portion and the branch portion so as to be shorter than the interval between the partition walls and the partition wall, or as shown in FIG. In addition, in the vicinity of the junction and the vicinity of the branch, a partition wall and a partition wall continuous from the branch may be formed continuously in the fluid traveling direction along the vicinity of the fluid boundary from the junction. The fact that there are one or more places where the partition wall does not exist in the fluid traveling direction except for the vicinity of the branch portion of the discharge flow path means that at least one partition wall is formed in the fluid traveling direction. .
[0026]
A plurality of partition walls may be provided so that the longest length of the partition walls in the fluid traveling direction is the same, but partition walls having different lengths may be used. Further, the interval between the partition wall and the partition wall in the fluid traveling direction may be the same interval or different intervals.
[0027]
Further, as shown in FIG. 7, in the portion of the microchannel (19) of the present invention having a shape other than the straight line, the partition wall (22) is in the vicinity of the vicinity immediately before the portion of the microchannel other than the straight line ( It is desirable to continue from 7) to the vicinity (7) immediately after the portion of the fine channel other than the straight line. The vicinity here is not particularly limited, but preferably means within 5000 μm. For example, when a fluid is caused to flow through a curved microchannel, a centrifugal force acts on the curved portion of the microchannel, so that the fluid inside the curved microchannel is pushed toward the outer fluid. Thus, a fluid flow is generated between the partition walls in the fluid traveling direction and the movement of the substance between the fluids described above is hindered. However, in the portion of the shape other than the straight line of the microchannel, the partition wall is located near the portion immediately before the portion of the shape other than the straight line of the microchannel, and immediately after the portion of the shape other than the straight line of the microchannel. Such a phenomenon can be prevented by forming the partition wall continuously to the vicinity.
[0028]
Here, the position of the partition wall with respect to the width direction of the microchannel is not particularly limited, and can be changed according to the properties of the solution such as a flow rate, a flow rate, and a viscosity to be fed. Naturally, even when the viscosity of the adjacent fluid changes due to solvent extraction or chemical reaction and the position of the fluid boundary gradually changes according to the fluid traveling direction, if the change in viscosity is calculated and predicted in advance by simulation, etc. A partition wall may be provided along the vicinity of the fluid boundary. Conversely, if fluids with different viscosities flow through a micro-channel formed near the center of the partition wall in the width direction of the channel, the fluid should be fed at a rate that is inversely proportional to the viscosity of the fluid. A fluid boundary can be formed near the partition wall. Further, the thickness (23) of the partition wall is not particularly limited, but is preferably about 3 to 10% of the flow path width so as not to hinder the liquid feeding itself from the experimental experience at the time of filing the present invention. Further, the minimum value of the shortest distance (25) between the partition wall and the partition wall in the fluid traveling direction formed along the vicinity of the fluid boundary is not particularly limited as long as the partition wall (22) is discontinuous, From the experimental experience at the time of filing the present invention, about 50 [μm] is preferable.
[0029]
The microchannel substrate having the microchannels constituting the microchannel structure as described above is made of, for example, a substrate material such as glass, quartz, ceramic, silicon, metal, resin, machining, laser processing, It can be manufactured by direct processing by etching or the like. Further, when the substrate material is ceramic or resin, it can also be manufactured by molding using a mold such as a metal having a channel shape. Generally, the microchannel substrate is laminated and integrated with a cover body having a small hole with a diameter of about several millimeters at a position corresponding to the fluid inlet, the fluid outlet, and the outlet of each microchannel. Used as a microchannel structure. As a method for joining the cover body and the microchannel substrate, soldering or adhesive is used when the substrate material is ceramic or metal, or hundreds to thousands of degrees when the substrate material is glass, quartz, or resin. A bonding method suitable for each substrate material is used, such as thermal bonding by applying a load at a high temperature, or when the substrate material is silicon, by activating the surface by washing and bonding at room temperature.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. Needless to say, the present invention is not limited to these examples, and can be arbitrarily changed without departing from the scope of the invention.
(Example)
As an example, a microchannel structure as shown in FIG. 6B was manufactured. The shape of the micro channel (19) is such that the introduction channel communicates with the introduction port A (28) and the introduction port B (29), and the discharge channel communicates with the discharge port C (30) and the discharge port D (31). Used a microchannel (19) branched into two in a Y-shape. The formed microchannel has a width of 100 μm, a depth of 25 μm, and a length of 30 mm. Further, as a structure inside the microchannel, a partition wall (22 μm) having a discontinuous height of 50 μm and a discontinuous height of 25 μm as shown in FIG. ) Were formed at intervals of 50 μm in the fluid traveling direction. The microchannel was formed on a Pyrex (registered trademark) substrate of 70 mm × 38 mm × 1 mm (thickness) by general photolithography and wet etching. A small hole (35) having a diameter of 0.6 mm is formed by mechanical processing means at a position corresponding to the introduction port A (28), the introduction port B (29), the discharge port C (30), and the discharge port D (31). The microchannel was sealed by bonding the provided Pyrex (registered trademark) substrate of the same size as the cover body (34) by thermal fusion to form a microchannel structure.
[0031]
Using this microchannel structure, an experiment was conducted to extract metal ions dissolved in an aqueous phase into an organic phase. The water phase is pure water and Y 3+ An aqueous solution in which 0.5 mM of each metal ion was dissolved and the pH was adjusted to 3 with nitric acid and 4-aminobutyric acid was used. For the organic phase, n-heptane prepared by dissolving 20 mM of PC-88A as an extractant was used. In the microchannel, the aqueous phase is fed from the inlet A at a rate of 0.1 mL / h, 0.2 mL / h, 0.3 mL / h, 0.4 mL / h, 0.5 mL / h, 0.6 mL. / H, 0.8 mL / h, and the liquid feeding speed was changed, and the organic phase was fed from the inlet B to the liquid feeding speed of 0.15 mL / h, 0 The liquid was fed at different liquid feeding speeds: 29 mL / h, 0.44 mL / h, 0.59 mL / h, 0.73 mL / h, 0.88 mL / h, and 1.17 mL / h. As a result, a fluid boundary was formed in the vicinity of the partition wall, and the water phase was discharged from the discharge port C and the organic phase was discharged from the discharge port D with almost no mixing. Y in the discharged water phase 3+ When the ion concentration was quantified with an ICP emission spectroscopic analyzer, the extraction rate at each liquid feed rate was as shown in Table 1. Not only did the extraction efficiency not decrease even if the liquid feed rate was increased, but rather the liquid feed rate was reduced. There was a tendency for the extraction efficiency to increase.
[0032]
[Table 1]
Figure 2005034679
(Comparative example)
As a comparative example, a microchannel structure as shown in FIG. The shape of the micro channel (19) is such that the introduction channel communicates with the introduction port A (28) and the introduction port B (29), and the discharge channel communicates with the discharge port C (30) and the discharge port D (31). Used a microchannel (19) branched into two in a Y-shape. The formed microchannel has a width of 100 μm, a depth of 25 μm, and a length of 30 mm. Further, as a structure inside the microchannel, a guide shape (16) having a height of 3 μm was formed in the fluid traveling direction as shown in FIG. 5A near the center of the microchannel. The microchannel was formed on a Pyrex (registered trademark) substrate of 70 mm × 38 mm × 1 mm (thickness) by general photolithography and wet etching. A small hole (35) having a diameter of 0.6 mm is formed by mechanical processing means at a position corresponding to the introduction port A (28), the introduction port B (29), the discharge port C (30), and the discharge port D (31). The microchannel was sealed by bonding the provided Pyrex (registered trademark) substrate of the same size as the cover body (34) by thermal fusion to form a microchannel structure. Further, in order to improve the two-phase laminar flow separation between the aqueous phase and the organic phase, the inner wall on one side of the microchannel of the microchannel structure was hydrophobized using the following method. That is, a saturated KOH-ethanol solution is fed from the inlet A (28) and the inlet B (29) at a liquid feeding rate of 5 μL / min for about 30 minutes, and then toluene is introduced from the inlet A and from the inlet B. A toluene solution of 10% octadecyltrichlorosilane was fed at a feeding rate of 5 μL / min for about 3 hours. As a result of this treatment, the inner wall on one side of the microchannel on the side introduced from the inlet A to which only toluene is fed and discharged from the outlet C (30) is in the hydrophilic state of the original Pyrex (registered trademark) glass. The inner wall on one side of the microchannel on the side introduced from the inlet B through which the 10% octadecyltrichlorosilane toluene solution is fed and discharged from the outlet D (31) is modified to be hydrophobic.
[0033]
Using this microchannel structure, an experiment was conducted to extract metal ions dissolved in an aqueous phase into an organic phase. The water phase is pure water and Y 3+ An aqueous solution in which 0.5 mM of each metal ion was dissolved and the pH was adjusted to 3 with nitric acid and 4-aminobutyric acid was used. For the organic phase, n-heptane prepared by dissolving 20 mM of PC-88A as an extractant was used. In the microchannel, the aqueous phase is fed from the inlet A at a rate of 0.1 mL / h, 0.2 mL / h, 0.3 mL / h, 0.4 mL / h, 0.5 mL / h, 0.6 mL. / H, 0.8 mL / h, and the liquid feeding speed was changed, and the organic phase was fed from the inlet B to the liquid feeding speed of 0.15 mL / h, 0 The liquid was fed at different liquid feeding speeds: 29 mL / h, 0.44 mL / h, 0.59 mL / h, 0.73 mL / h, 0.88 mL / h, and 1.17 mL / h. As a result, a stable fluid boundary was formed in the vicinity of the center of the microchannel, and the water phase was discharged from the discharge port C and the organic phase was discharged from the discharge port D without being substantially mixed with each other. Y in the discharged water phase 3+ When the ion concentration was quantified with an ICP emission spectroscopic analyzer, the extraction rate at each liquid feed rate was as shown in Table 1. As the liquid feed rate was increased, the extraction efficiency tended to decrease.
[0034]
From the above examples and comparative examples, that is, from the results shown in Table 1, the extraction efficiency when the aqueous phase liquid feeding rate is 0.1 mL / h in the comparative example, and the aqueous phase liquid feeding rate is 0.8 mL / h in the examples. Since it is almost equal to the extraction efficiency at h, the microchannel used in the present example shows that the microchannel used in the comparative example has a contact time of 1/8 or less, that is, an extraction efficiency of 8 times or more. ing. The improvement in extraction efficiency is directly reflected in the improvement in the reaction efficiency of the chemical reaction. Therefore, according to the present invention, two kinds of fluids adjacent to each other in the microchannel can be subjected to very efficient solvent extraction and / or chemical reaction by repeating contact and separation multiple times by discontinuous partition walls. It can be seen that sufficiently efficient solvent extraction and chemical reaction can be carried out even with a shorter fluid contact time.
[0035]
【The invention's effect】
According to the method for carrying out a chemical operation of the present invention, two or more inlets for introducing a fluid, an introduction channel communicating with them, and a fluid introduced and communicated with a junction where the introduction channel merges A microchannel structure having a microchannel, a discharge channel communicating with the microchannel and discharging a predetermined fluid, and a discharge port communicating with them, The channel is formed with a plurality of discontinuous partition walls in the fluid traveling direction along a boundary formed by two or more kinds of introduced fluids. By repeating contact and separation a plurality of times by the discontinuous partition wall, it becomes possible to carry out a very highly efficient solvent extraction and / or chemical reaction, and a highly efficient solvent extraction with a shorter fluid contact time. Because chemical reactions can be carried out, It is possible to increase the liquid feed rate than microchannels simple structure without discontinuous partition walls in the body travel direction. Therefore, the conventional problem that the yield per unit time is reduced by slowing the liquid feeding speed in order to lengthen the contact time between adjacent fluids is solved. It is possible to perform a chemical reaction and / or increase the yield per unit time.
[0036]
Further, according to the method for carrying out chemical operation of the present invention, sufficiently efficient solvent extraction and chemical reaction can be carried out even with a shorter fluid contact time, so that there is no simple partition wall that is not discontinuous in the fluid traveling direction. It is possible to make the channel length shorter than a microchannel having a simple structure. Therefore, by increasing the flow path length in order to increase the contact time between adjacent fluids, the pressure loss increases and it becomes difficult to feed the fluid. Thus, highly efficient solvent extraction and / or chemical reaction can be performed. As a result, when performing a large amount of chemical treatment (solvent extraction and / or chemical reaction) by integrating microchannels, the number of microchannels per unit area can be increased. It becomes possible to mount on a microchannel substrate with a high density.
[0037]
Furthermore, according to the method for carrying out a chemical operation of the present invention, mass transfer is performed quickly between adjacent fluids, and the material that has moved to the other phase is quickly flowed in the fluid traveling direction. Extraction substances and reaction products are not accumulated near the fluid boundary due to the progress of the chemical reaction. As a result, solvent extraction and chemical reaction proceed at the fluid boundary, so that the extracted substances and reaction products are accumulated in the vicinity of the fluid boundary, resulting in a concentration distribution in the microchannel, and the extracted substances and reaction generation at the fluid boundary. Since the concentration of substances is the highest and solvent extraction and chemical reaction are saturated near the fluid boundary, the progress of solvent extraction and chemical reaction at the fluid boundary is slow, which is a feature of chemical reaction in a minute space. It is possible to solve the conventional problems that the effects such as efficient solvent extraction and chemical reaction, multiphase laminar flow separation and side reaction suppression cannot be sufficiently obtained, and the solvent extraction and / or chemical reaction of the present invention Depending on the implementation method, it is possible to realize a highly efficient solvent extraction and / or chemical reaction and at the same time an effect of suppressing side reactions. In addition, since the fluid boundary becomes very stable by forming a discontinuous partition wall in the fluid traveling direction along the vicinity of the fluid boundary, it is possible to suppress mixing of fluid between adjacent fluids. Multiphase laminar flow separation capability can be realized.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a laminar flow in a Y-shaped microchannel.
FIG. 2 is a conceptual diagram showing a laminar flow in a double Y-shaped microchannel. In addition, it is a conceptual diagram of a microchannel used in Comparative Example 2 and Comparative Example 3.
FIG. 3 is a diagram showing a linear velocity of a fluid near a fluid boundary when two fluids form a laminar flow. (A) shows a case where there is no partition wall, and (b) shows a case where there is a partition wall.
FIG. 4 is a schematic plan view of some aspects of the partition wall in the vicinity of the junction of the microchannel and in the vicinity of the branch in the present invention, and (a) is the junction and branch of the microchannel in the partition wall. (B) is when the partition wall closest to the branch part of the microchannel is in communication with the branch part of the microchannel, and (c) and (d) are the junction part of the microchannel The case where the partition wall is continuous with the merging portion in the vicinity and the partition wall is continuous with the branch portion in the vicinity of the branch portion of the microchannel is shown.
5A is a conceptual diagram of the internal structure of a microchannel used in a comparative example, and FIG. 5B shows the configuration of the microchannel structure used in the comparative example.
6A is a conceptual diagram of the internal structure of a microchannel used in the example, and FIG. 6B shows the configuration of the microchannel structure used in the example.
FIG. 7 is a schematic plan view of the shape of a partition wall in a curved portion of a microchannel according to the present invention.
[Explanation of symbols]
1: Water phase
2: Organic phase
3: Fluid boundary
4: Branch
5: Near the junction
6: Near branch
7: Near the vicinity immediately before and / or immediately after the portion where the microchannel has a shape other than a straight line
8: Near the center of the microchannel
9: Width of minute channel
10: Channel length
11: Fluid inlet
12: Fluid outlet
13: Fluid A
14: Fluid B linear velocity vector
16: Guide shape
17: Channel depth
18: Bottom of microchannel
19: Microchannel
20: protrusion
21: Near discharge channel
22: Partition wall
23: Partition wall thickness
24: Height of partition wall
25: The shortest distance between the partition wall in the fluid traveling direction and the partition wall
26: The longest length of the partition wall in the fluid traveling direction
27: Fluid traveling direction
28: Inlet A
29: Introduction B
30: Discharge port C
31: Discharge port D
32: Substrate
33: Near the introduction flow path
34: Cover body
35: Small hole
36: Guide-shaped thickness
37: Junction

Claims (2)

流体を導入するための2以上の導入口及びそれらに連通する導入流路と、前記導入流路が合流する合流部と連通しかつ導入された流体を流すための微小流路と、前記微小流路に連通しかつ所定の流体を排出する排出流路及びそれらに連通する排出口と、を有した微小流路構造体により化学操作を実施する方法であって、前記微小流路は、導入された2種以上の流体により形成される境界近傍に沿って、流体進行方向に複数の不連続な仕切壁が形成されており、前記微小流路内で隣接する2種の流体が、前記不連続な仕切り壁によって接触と分離を複数回繰り返すことを特徴とする化学操作の実施方法。Two or more inlets for introducing a fluid, an introduction channel communicating with them, a microchannel for flowing an introduced fluid that is in communication with a junction where the introduction channel merges, and the microstream A method of performing a chemical operation using a microchannel structure having a discharge channel communicating with a channel and discharging a predetermined fluid and a discharge port communicating with the fluid, wherein the microchannel is introduced A plurality of discontinuous partition walls are formed in the fluid traveling direction along the vicinity of the boundary formed by two or more kinds of fluids, and the two kinds of fluids adjacent in the micro flow path are discontinuous. A method for performing a chemical operation, characterized in that contact and separation are repeated a plurality of times by a partition wall. 2種の流体の一方よりもう一方へ、反応物あるいは抽出対象となる物質を抽出することを特徴とする請求項1記載の溶媒抽出方法。The solvent extraction method according to claim 1, wherein a reactant or a substance to be extracted is extracted from one of the two fluids to the other.
JP2003196906A 2003-07-15 2003-07-15 Method for practicing chemical operation and solvent extraction method using the method Pending JP2005034679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196906A JP2005034679A (en) 2003-07-15 2003-07-15 Method for practicing chemical operation and solvent extraction method using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196906A JP2005034679A (en) 2003-07-15 2003-07-15 Method for practicing chemical operation and solvent extraction method using the method

Publications (1)

Publication Number Publication Date
JP2005034679A true JP2005034679A (en) 2005-02-10

Family

ID=34207207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196906A Pending JP2005034679A (en) 2003-07-15 2003-07-15 Method for practicing chemical operation and solvent extraction method using the method

Country Status (1)

Country Link
JP (1) JP2005034679A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169386A (en) * 2003-11-17 2005-06-30 Kanagawa Acad Of Sci & Technol Method of partial-chemical-modifying microchannel inner surface and microchannel structure
JP2006281057A (en) * 2005-03-31 2006-10-19 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing wastewater
JP2006322822A (en) * 2005-05-19 2006-11-30 Konica Minolta Medical & Graphic Inc Microchip for inspection and inspection device using it
JP2006320829A (en) * 2005-05-18 2006-11-30 Tosoh Corp Fine pathway structure
JP2008014791A (en) * 2006-07-05 2008-01-24 Nipro Corp Liquid mixing device, liquid mixing method, and measuring method of very small amount of specimen
WO2010022441A1 (en) * 2008-08-25 2010-03-04 University Of South Australia Extraction processes
JP2012508643A (en) * 2008-09-29 2012-04-12 コーニング インコーポレイテッド Multi-channel microreactor design
JP2014210250A (en) * 2013-04-22 2014-11-13 株式会社神戸製鋼所 Processing apparatus and processing method
CN114797738A (en) * 2022-04-30 2022-07-29 河北兰升生物科技有限公司 Improved tubular reactor, production apparatus using the same, and process for producing sulfonyl compound using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169386A (en) * 2003-11-17 2005-06-30 Kanagawa Acad Of Sci & Technol Method of partial-chemical-modifying microchannel inner surface and microchannel structure
JP4523386B2 (en) * 2003-11-17 2010-08-11 財団法人神奈川科学技術アカデミー Method of partial chemical modification of inner surface of microchannel and microchannel structure
JP2006281057A (en) * 2005-03-31 2006-10-19 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing wastewater
JP2006320829A (en) * 2005-05-18 2006-11-30 Tosoh Corp Fine pathway structure
JP4687238B2 (en) * 2005-05-18 2011-05-25 東ソー株式会社 Micro channel structure
JP2006322822A (en) * 2005-05-19 2006-11-30 Konica Minolta Medical & Graphic Inc Microchip for inspection and inspection device using it
JP4604834B2 (en) * 2005-05-19 2011-01-05 コニカミノルタエムジー株式会社 Microchip for inspection and inspection apparatus using the same
JP2008014791A (en) * 2006-07-05 2008-01-24 Nipro Corp Liquid mixing device, liquid mixing method, and measuring method of very small amount of specimen
WO2010022441A1 (en) * 2008-08-25 2010-03-04 University Of South Australia Extraction processes
JP2012508643A (en) * 2008-09-29 2012-04-12 コーニング インコーポレイテッド Multi-channel microreactor design
JP2014210250A (en) * 2013-04-22 2014-11-13 株式会社神戸製鋼所 Processing apparatus and processing method
CN114797738A (en) * 2022-04-30 2022-07-29 河北兰升生物科技有限公司 Improved tubular reactor, production apparatus using the same, and process for producing sulfonyl compound using the same
CN114797738B (en) * 2022-04-30 2024-04-02 兰升生物科技集团股份有限公司 Improved tubular reactor, production equipment using the same, and method for producing sulfonyl compound using the same

Similar Documents

Publication Publication Date Title
Mazutis et al. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion
US20100051543A1 (en) Fine channel device and a chemically operating method for fluid using the device
Jiu-Sheng et al. Droplet microfluidic technology: Mirodroplets formation and manipulation
Yang et al. Microfluidic emulsification and sorting assisted preparation of monodisperse chitosan microparticles
Sivasamy et al. Reliable addition of reagents into microfluidic droplets
Ji et al. Interfacial organic synthesis in a simple droplet-based microfluidic system
US11559809B2 (en) Enhanced cell/bead encapsulation methods and apparatuses
Liu et al. Microfluidic step emulsification techniques based on spontaneous transformation mechanism: A review
Li et al. A new droplet-forming fluidic junction for the generation of highly compartmentalised capsules
JP2005034679A (en) Method for practicing chemical operation and solvent extraction method using the method
WO2020078367A1 (en) Pressure insensitive microfluidic circuit for droplet generation and uses thereof
Li et al. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay
JP4470402B2 (en) Microchannel structure and fluid chemical operation method using the same
GB2522973A (en) Controlling fluid micro compartments
JP2018505403A (en) Microfluidic probe head for processing an array of liquid volumes separated by spacers
CN110461460A (en) Device and method for generating drop
JP4687238B2 (en) Micro channel structure
JP2016165704A (en) Micro flow channel chip and micro flow channel device
JP4453346B2 (en) Microchannel structure and chemical operation method using the same
JP4639624B2 (en) Micro channel structure
Liu et al. Adjustable behaviors and dynamic mechanisms of droplets in the cross junction
Feng et al. Generation of water–ionic liquid droplet pairs in soybean oil on microfluidic chip
JP2007061685A (en) Chip for micro reaction, and reaction method using the same
JP4389559B2 (en) Microchannel structure
JP4599805B2 (en) Microchannel structure and chemical reaction method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080929

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A02 Decision of refusal

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A02