JP4284800B2 - Rolling method setting method - Google Patents

Rolling method setting method Download PDF

Info

Publication number
JP4284800B2
JP4284800B2 JP36041899A JP36041899A JP4284800B2 JP 4284800 B2 JP4284800 B2 JP 4284800B2 JP 36041899 A JP36041899 A JP 36041899A JP 36041899 A JP36041899 A JP 36041899A JP 4284800 B2 JP4284800 B2 JP 4284800B2
Authority
JP
Japan
Prior art keywords
rolling
yield
efficiency
rolling method
risk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36041899A
Other languages
Japanese (ja)
Other versions
JP2001179315A (en
Inventor
雅美 中村
博美 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP36041899A priority Critical patent/JP4284800B2/en
Publication of JP2001179315A publication Critical patent/JP2001179315A/en
Application granted granted Critical
Publication of JP4284800B2 publication Critical patent/JP4284800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼材圧延法の設定方法に関し、特に高歩止圧延法か、或いは高能率圧延法の何れかを選択するのに好適なものである。
【0002】
【従来の技術】
一般に、スラブ寸法、圧延寸法、圧延方向などを基に圧延法を決定し、その圧延法に則って圧延素材を算出設定している。一方、歩止計算では、前記圧延素材を用いて、その製品を製造するのに必要なスラブの大きさから求める基準歩止と、圧延上の制約から決まるスラブの大きさから求める圧延歩止(通常は基準歩止と同値)がある。通常は、一つの圧延材に対しては一つの圧延法で圧延するものとして圧延素材を算出設定しているので、前記算出される歩止は、夫々一つずつである。例えば特開昭59−232606号公報では、異厚圧延を行うことにより板厚の異なる鋼板を一度の圧延工程で製造し、能率向上を図っているが、高歩止圧延法で圧延を行うものとして圧延素材を算出している。
【0003】
【発明が解決しようとする課題】
しかしながら、従来は、可及的に高歩止を図るために、予め高歩止圧延法で圧延を行うものとして圧延素材を算出しているため、要求操業状態が変化すると、それに即応することができず、結果的に能率が低下するという問題がある。
本発明は前記諸問題を解決すべく開発されたものであり、要求操業状態の変化にも即応することができ、歩止及び能率の低下回避並びにそれらの更なる向上を図ることができるように圧延法を設定する圧延法設定方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記諸問題を解決するため、本発明のうち圧延法設定方法は、高歩止圧延法で圧延する場合と高能率圧延法で圧延する場合の夫々で圧延素材を算出し、各圧延素材を基に所定のパラメータを算出し、各パラメータを基に圧延歩止、格落危険率、能率の夫々で評価を行い、それらの総合評価で前記何れの圧延法で圧延を行うかを設定することを特徴とするものである。
【0005】
なお、前記所定のパラメータには、前述した基準歩止や圧延歩止の他、基準歩止式で設定される総合精度や危険率設定値などが挙げられる。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。図1は、本実施形態の圧延法設定方法のロジックである。このロジックでは、まず高歩止圧延法で圧延を行うものとして圧延素材を計算する。次に、高能率圧延法で圧延を行うものとして圧延素材を計算する。次に、夫々の圧延法で求めた圧延素材から、基準歩止KY、圧延歩止AY、総合精度D2、危険率設定値Kを求め、更に下記1式及び2式から判定用圧延歩止HAY、格落危険率JKの各評価用パラメータを算出する。
【0007】
HAY=AY+α ……… (1)
但し、α:歩止補正率であり、後述する図2に従って、要求される能率の高さに応じて設定される。なお、この1式で判定用圧延歩止HAYが設定されるのは高能率圧延法で圧延を行うものとして算出した圧延歩止AYのみであり、高歩止圧延法で圧延を行うものとして算出した圧延歩止AYは、そのまま判定用圧延歩止HAYとして用いる。つまり、高歩止圧延法は、本来高歩止を目標に行う圧延であるから、高能率圧延法に比べて歩止が高いのは当然である。そこで、後述のように、ラインが要求する能率、つまり要求操業状態に応じて歩止補正率αを設定し、それを歩止の低い高能率圧延法の圧延歩止AYに加算して、要求される能率が高ければ高いほど、高能率圧延法が選択される機会を増大するようにしているのである。
【0008】
YSA=KY−AY
JK=(D2×K+YSA)/2 ……… (2)
ちなみに、格落危険率JKは、例えば目標とする板幅と板厚の精度が得られるかどうかを考慮した危険率であり、精度が得られない危険が高いほど、数値が小さくなるように設定してある。
【0009】
次に、後述する図3の制御テーブルに従って、前記二つの圧延法に対して、圧延歩止のランク付け、格落危険率のランク付け、能率のランク付けの各評価項目の評価を行い、それらを総合ランクとして総合評価して何れの圧延法を選択するかを決定する。勿論、このときには、圧延素材は事前に算出されたものを用いる。
【0010】
前述した図3の制御テーブルでは、まず前記判定用圧延歩止HAYを用い、二つの圧延法のうち、当該反映用圧延歩止HAYの高い(大きい)方の圧延歩止ランクAYRUNKを1に、低い(小さい)方の圧延歩止ランクAYRUNKを2に設定する。次いで、前記格落危険率JKを用い、前記二つの各圧延法ごとに、当該格落危険率JKが閾値より大きければ格落危険率ランクKRUNKを1に設定し、当該格落危険率JKが閾値より小さく且つ数値が大きい場合には格落危険率ランクKRUNKを2に設定し、当該格落危険率JKが閾値より小さく且つ数値が小さい場合には格落危険率ランクKRUNKを3に設定する。次いで、高能率圧延法には能率ランクNRUNKを1とし、高歩止圧延法には能率ランクNRUNKを2とする。
【0011】
そして、下記3式に従って総合ランクGRUNKを算出し、高能率圧延法の総合ランクGRUNKと高歩止圧延法の総合ランクGRUNKのうち、何れか小さい方の圧延法を選択する。
GRUNK=AYRUNK×100+KRUNK×10+NRUNK……… (3)
次に、前記図2のマップで選択される歩止補正値αについて説明する。この制御マップは、例えば1ヶ月の操業で、歩止補正値αを操作したときの圧延影響率ここでは能率と歩止の関係について表したものである。前述したように、歩止補正値αが大きければ大きいほど、前記1式で算出される判定用圧延歩止HAYが大きくなるので、前記図3の制御テーブルでは、圧延歩止ランクAYRUNKが1に設定される可能性が高くなり、その結果、総合ランクGRUNKが小さくなるため、高能率圧延法が選択される可能性が高くなる。従って、歩止補正値αが大きくなると能率が向上し、歩止が低下する。但し、能率の向上代に比べて、歩止の低下率は遙かに小さい。具体的には、歩止補正値αを1.5%に設定したときの能率の向上代は1.5%であるが、歩止の低下率は0.04%である。従って、要求される能率が高い場合には、若干の歩止の低下が発生するものの、歩止補正値αを適切に設定すれば当該歩止の低下を補償できる程度の能率の向上が見込める。逆に、図2には表れていないが、能率が若干低下しても、歩止の大幅な向上を図る歩止補正値αも存在するので、そのような場合には、歩止補正値αを適切に設定することにより、当該能率の低下を保証できる程度の歩止の向上が見込める。
【0012】
なお、前記評価用パラメータは前述のものに限定されるものではなく、その他のパラメータでも、或いはその他のパラメータとの組合せでも、必要に応じて設定することが可能である。
【0013】
【発明の効果】
以上説明したように、本発明のうち圧延法設定方法によれば、高歩止圧延法で圧延する場合と高能率圧延法で圧延する場合の夫々で圧延素材を算出し、各圧延素材を基に所定のパラメータを算出し、各パラメータを基に圧延歩止、格落危険率、能率の夫々で評価を行い、それらの総合評価で前記何れの圧延法で圧延を行うかを設定することとしたため、僅かに歩止が低下しても能率を大幅に向上することで歩止の低下分を補償したり、逆に僅かな能率の低下に対して歩止を大幅に向上することで能率の低下分を補償したりすることができるので、歩止及び能率の低下の抑制並びにそれらの更なる向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の圧延法設定方法の一実施形態を示すロジックのフローチャートである。
【図2】図1のロジックに用いられる制御マップである。
【図3】図1のロジックの詳細を示す制御テーブルである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for setting a steel material rolling method, and is particularly suitable for selecting either a high-stop rolling method or a high-efficiency rolling method.
[0002]
[Prior art]
Generally, a rolling method is determined based on a slab size, a rolling dimension, a rolling direction, and the like, and a rolling material is calculated and set in accordance with the rolling method. On the other hand, in the yield calculation, using the rolled material, the standard yield obtained from the size of the slab necessary for manufacturing the product, and the rolling yield obtained from the size of the slab determined from the restrictions on rolling ( Usually the same as the standard yield). Usually, since the rolling material is calculated and set for one rolled material to be rolled by one rolling method, the calculated yield is one by one. For example, in Japanese Patent Application Laid-Open No. 59-232606, steel sheets having different thicknesses are manufactured in a single rolling process by carrying out different thickness rolling, and the efficiency is improved. The rolling material is calculated as
[0003]
[Problems to be solved by the invention]
However, conventionally, in order to achieve as high a yield as possible, the rolling material is calculated in advance as rolling with a high-stop rolling method. There is a problem that the efficiency is lowered as a result.
The present invention has been developed to solve the above-mentioned problems, and can respond immediately to changes in the required operating state, so that it is possible to avoid a decrease in yield and efficiency, and to further improve them. An object of the present invention is to provide a rolling method setting method for setting a rolling method.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the rolling method setting method of the present invention calculates the rolling material in the case of rolling by the high yield rolling method and in the case of rolling by the high efficiency rolling method, and based on each rolling material. To calculate the predetermined parameters, to evaluate each of the rolling yield, the risk of downgrade risk, and the efficiency based on each parameter, and to set which rolling method to perform the rolling in their overall evaluation It is a feature.
[0005]
In addition to the above-described standard yield and rolling yield, the predetermined parameter includes the total accuracy and risk factor set value set by the standard yield method.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 shows the logic of the rolling method setting method of this embodiment. In this logic, first, the rolling material is calculated on the assumption that rolling is performed by the high-stop rolling method. Next, a rolling raw material is calculated on the assumption that rolling is performed by a high-efficiency rolling method. Next, from the rolling materials obtained by the respective rolling methods, the standard yield KY, the rolling yield AY, the overall accuracy D2, and the risk factor set value K are obtained, and the rolling yield HAY for judgment is further calculated from the following formulas 1 and 2. Then, each evaluation parameter of the downgrade risk rate JK is calculated.
[0007]
HAY = AY + α (1)
However, α is a yield correction rate, and is set according to the required efficiency according to FIG. 2 described later. Note that the rolling yield for determination HAY is set only in the above-mentioned one set only for the rolling yield AY calculated as rolling by the high-efficiency rolling method, and is calculated as rolling by the high-stop rolling method. The rolled yield AY is used as it is as the rolling yield HAY for determination. In other words, since the high yield rolling method is originally intended to achieve a high yield, the yield is naturally higher than that of the high efficiency rolling method. Therefore, as described later, the efficiency required by the line, that is, the yield correction rate α is set in accordance with the requested operation state, and this is added to the rolling yield AY of the high efficiency rolling method with a low yield to obtain the required The higher the efficiency that is achieved, the greater the chance that a high efficiency rolling process will be selected.
[0008]
YSA = KY-AY
JK = (D2 × K + YSA) / 2 (2)
By the way, the crash risk factor JK is a risk factor that considers whether the target plate width and plate thickness accuracy can be obtained, for example, and is set so that the higher the risk that accuracy cannot be obtained, the smaller the value It is.
[0009]
Next, according to the control table of FIG. 3 to be described later, for each of the two rolling methods, evaluation of each evaluation item of the ranking of the rolling yield, the ranking of the danger rate of the downgrade, the ranking of the efficiency, Is evaluated as an overall rank to determine which rolling method is to be selected. Of course, at this time, the rolling material is calculated in advance.
[0010]
In the control table of FIG. 3 described above, first, the determination rolling yield HAY is used, and of the two rolling methods, the higher (larger) rolling yield rank AYRUNK of the reflecting rolling yield HAY is set to 1. The lower (smaller) rolling yield rank AYRUNK is set to 2. Next, using the above-described risk of risk JK, for each of the two rolling methods, if the risk of risk JK is greater than the threshold, the risk of risk rank KRUNK is set to 1, and the risk of risk JK If the numerical value is smaller than the threshold value and the numerical value is large, the risk factor rank KRUNK is set to 2, and if the critical risk factor JK is smaller than the threshold value and the numerical value is small, the risk factor rank KRUNK is set to 3. . Next, the efficiency rank NRUNK is set to 1 for the high-efficiency rolling method, and the efficiency rank NRUNK is set to 2 for the high-stop rolling method.
[0011]
Then, the overall rank GRUNK is calculated according to the following three formulas, and the smaller rolling method is selected from the overall rank GRUNK of the high-efficiency rolling method and the overall rank GRUNK of the high-stop rolling method.
GRUNK = AYRUNK × 100 + KRUNK × 10 + NRUNK ……… (3)
Next, a description will be given of the yield correction value α selected on the map of FIG. This control map represents, for example, the rolling influence rate when the yield correction value α is operated in one month of operation, here the relationship between efficiency and yield. As described above, the larger the yield correction value α is, the larger the rolling yield for determination HAY calculated by the above equation 1 is, so the rolling yield rank AYRUNK is set to 1 in the control table of FIG. Since the possibility of being set increases and as a result, the overall rank GRUNK becomes smaller, the possibility of selecting a high-efficiency rolling method increases. Therefore, as the yield correction value α increases, the efficiency improves and the yield decreases. However, the rate of decrease in yield is much smaller than the efficiency improvement fee. Specifically, when the yield correction value α is set to 1.5%, the efficiency improvement margin is 1.5%, but the yield reduction rate is 0.04%. Therefore, although a slight decrease in yield occurs when the required efficiency is high, an improvement in efficiency that can compensate for the decrease in yield can be expected by appropriately setting the retention correction value α. On the contrary, although not shown in FIG. 2, there is a step correction value α that greatly improves the yield even if the efficiency is slightly reduced. In such a case, the step correction value α By setting appropriately, it is possible to improve the yield to such an extent that the reduction in the efficiency can be guaranteed.
[0012]
The evaluation parameters are not limited to those described above, and other parameters or combinations with other parameters can be set as necessary.
[0013]
【The invention's effect】
As described above, according to the rolling method setting method of the present invention, the rolling material is calculated in each of the case of rolling by the high-stop rolling method and the case of rolling by the high-efficiency rolling method, and based on each rolling material. Calculating a predetermined parameter, and evaluating each of the rolling yield, the risk of downgrade risk, and the efficiency based on each parameter, and setting which rolling method to perform the rolling in their comprehensive evaluation; Therefore, even if the yield drops slightly, the efficiency is greatly improved to compensate for the decrease in yield, and conversely the efficiency is improved by significantly improving the yield against a slight decrease in efficiency. Since the amount of decrease can be compensated for, it is possible to suppress the decrease in yield and efficiency and further improve them.
[Brief description of the drawings]
FIG. 1 is a logic flowchart showing an embodiment of a rolling method setting method of the present invention.
FIG. 2 is a control map used in the logic of FIG.
FIG. 3 is a control table showing details of the logic of FIG. 1;

Claims (1)

高歩止圧延法で圧延する場合と高能率圧延法で圧延する場合の夫々で圧延素材を算出し、各圧延素材を基に所定のパラメータを算出し、各パラメータを基に圧延歩止、格落危険率、能率の夫々で評価を行い、それらの総合評価で前記何れの圧延法で圧延を行うかを設定することを特徴とする圧延法設定方法。The rolling material is calculated for each of the rolling with the high yield rolling method and the rolling with the high efficiency rolling method, and predetermined parameters are calculated based on each rolling material. A rolling method setting method characterized in that evaluation is performed by each of a drop risk rate and an efficiency, and the rolling method is set by the above-described comprehensive evaluation.
JP36041899A 1999-12-20 1999-12-20 Rolling method setting method Expired - Fee Related JP4284800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36041899A JP4284800B2 (en) 1999-12-20 1999-12-20 Rolling method setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36041899A JP4284800B2 (en) 1999-12-20 1999-12-20 Rolling method setting method

Publications (2)

Publication Number Publication Date
JP2001179315A JP2001179315A (en) 2001-07-03
JP4284800B2 true JP4284800B2 (en) 2009-06-24

Family

ID=18469329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36041899A Expired - Fee Related JP4284800B2 (en) 1999-12-20 1999-12-20 Rolling method setting method

Country Status (1)

Country Link
JP (1) JP4284800B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200580B2 (en) * 2008-02-26 2013-06-05 Jfeスチール株式会社 Method for improving rolling efficiency in plate rolling and method for manufacturing plate
CN108647791B (en) * 2018-03-30 2020-12-29 中国标准化研究院 Multi-source automobile safety information processing method, device and system

Also Published As

Publication number Publication date
JP2001179315A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
CN101678417B (en) Rolling load prediction learning method for hot plate rolling
KR101242841B1 (en) Method and apparatus for roughing mill of thick steel sheet
JP4284800B2 (en) Rolling method setting method
JP4148551B2 (en) Manufacturing method of cold-rolled steel strip with less variation in material property values
JP5347912B2 (en) Thick steel plate manufacturing method
JP5056294B2 (en) Slab design method and apparatus
JP5229069B2 (en) Method for determining rolling pass schedule of thick steel plate and method for manufacturing thick steel plate
JP5126763B2 (en) Extraction pitch prediction method for continuous furnace
JP4285154B2 (en) Rolling method setting method
JP4213434B2 (en) Edge drop control device for rolling mill
KR100780420B1 (en) Determination method for reduction rate pattern to improve the strip crown
JP3944002B2 (en) Rolling load prediction method for sheet metal rolling
JP4352470B2 (en) Cold rolled steel strip manufacturing method
JP5200580B2 (en) Method for improving rolling efficiency in plate rolling and method for manufacturing plate
JP2000202512A (en) Automatically extracting method for heating furnace in hot rolling
JP4492496B2 (en) Steel plate manufacturing method
JPH10235402A (en) Method for edging slab
JPS6150044B2 (en)
JP2008073724A (en) Slab design method and slab design apparatus
JP5633414B2 (en) Heating furnace control method and thick steel plate manufacturing method
JP4395765B2 (en) Manufacturing method of differential thickness steel plate
JPH05269516A (en) Method for controlling shape in rolling of thick plate
JPH06142733A (en) Method for changing rolling thickness of running hot rolled strip
JP2004246467A (en) Production control support apparatus
JPH10305304A (en) Cutting billets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees