JP4284311B2 - Manufacturing method of semiconductor memory device - Google Patents

Manufacturing method of semiconductor memory device Download PDF

Info

Publication number
JP4284311B2
JP4284311B2 JP2005290291A JP2005290291A JP4284311B2 JP 4284311 B2 JP4284311 B2 JP 4284311B2 JP 2005290291 A JP2005290291 A JP 2005290291A JP 2005290291 A JP2005290291 A JP 2005290291A JP 4284311 B2 JP4284311 B2 JP 4284311B2
Authority
JP
Japan
Prior art keywords
insulating film
film
forming
manufacturing
mask layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005290291A
Other languages
Japanese (ja)
Other versions
JP2006024969A (en
Inventor
徹 丸山
ヘミンク・ゲルトヤン
浩 渡部
誠一 有留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005290291A priority Critical patent/JP4284311B2/en
Publication of JP2006024969A publication Critical patent/JP2006024969A/en
Application granted granted Critical
Publication of JP4284311B2 publication Critical patent/JP4284311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

本発明は、半導体記憶装置の製造方法に係わり、特にトレンチ構造による素子分離領域に対して電荷蓄積層やゲート電極などの電極を自己整合的に形成した半導体記憶装置の製造方法に関する。 The present invention relates to a method of manufacturing a semiconductor memory equipment, a method for manufacturing a semiconductor memory equipment of the electrode such as the charge storage layer and the gate electrode are formed in self-alignment with the particular element isolation region by a trench structure.

近年、半導体記憶装置は高集積化の一途を辿っており、微細な半導体記憶装置の研究が盛んである。例えば各種半導体記憶装置のうち不揮発性メモリ素子はハードディスク装置の代替品として期待されており、さらなる高集積化が望まれている。   In recent years, semiconductor memory devices have been highly integrated, and research on fine semiconductor memory devices has been actively conducted. For example, a nonvolatile memory element is expected as an alternative to a hard disk device among various semiconductor memory devices, and further higher integration is desired.

この不揮発性メモリ素子は、他の半導体記憶装置には見られない浮遊ゲートを用いる特殊な構造を有しており、素子微細化の上で、この浮遊ゲートを微細形成する技術が重要な要素の一つである。   This non-volatile memory element has a special structure using a floating gate that is not found in other semiconductor memory devices, and the technology for finely forming the floating gate is an important element in element miniaturization. One.

浮遊ゲートは堆積した膜を分離して形成するが、シリコン半導体基板上に不揮発性メモリ素子を形成する場合には、この浮遊ゲート分離に写真触刻法が用いられる。しかしながら、写真触刻法では、最新の技術を用いても0.4μm以下の幅(スリット)で浮遊ゲートの分離を行うことは極めて困難である。   The floating gate is formed by separating the deposited film. When a nonvolatile memory element is formed on a silicon semiconductor substrate, a photolithography method is used for the floating gate separation. However, it is extremely difficult to separate floating gates with a width (slit) of 0.4 μm or less even with the latest technology using the photographic contact method.

さらに、写真触刻法を用いた場合、合わせずれが生じてしまうため、64M以降の高密度素子では、素子上で浮遊ゲート分離を行うおそれが生ずる。この場合、トンネル酸化膜上に直接制御ゲートが形成されるため、素子動作時にトンネル酸化膜の絶縁破壊を起こすので、素子動作に致命的な影響を与えてしまう。また、これを回避しようとすると、素子形成領域を大きくせざるを得ない。   Further, when using the photo-engraving method, misalignment occurs, and therefore, in a high-density element of 64M or later, there is a risk of performing floating gate isolation on the element. In this case, since the control gate is directly formed on the tunnel oxide film, the dielectric breakdown of the tunnel oxide film occurs during the operation of the element, which has a fatal effect on the element operation. In order to avoid this, the element formation region must be enlarged.

そこで、自己整合的に浮遊ゲートを分離する技術が開発されている(例えば特許文献1、2参照)。しかし、さらなる改善が望まれている。
特開平3−220778号公報 特開平4−208572号公報
Therefore, a technique for separating the floating gate in a self-aligned manner has been developed (see, for example, Patent Documents 1 and 2). However, further improvements are desired.
JP-A-3-220778 JP-A-4-208572

本発明は、素子動作特性に変動を与えることのない、微細に分離された電極を備えた半導体記憶装置の製造方法を提供しようとするものである。 The present invention is intended to provide a method of manufacturing a semiconductor memory equipment equipped without giving variations in device operating characteristics, the finely separated electrodes.

本発明の半導体記憶装置の製造方法の態様は、半導体基板表面に、熱酸化膜、所定の材料からなるマスク層を順次形成する第1の工程と、素子形成領域以外の前記熱酸化膜及び前記マスク層を除去する第2の工程と、前記素子形成領域上に残ったマスク層をマスクとし、前記第2の工程によって露出した半導体基板表面をエッチングして溝を形成する第3の工程と、前記溝の底部から前記マスク層の上端面まで絶縁膜を堆積する第4の工程と、前記溝から突出した部分の絶縁膜を残すように前記マスク層を除去して素子形成領域上に前記絶縁膜の開口部を形成する第5の工程と、半導体基板表面に形成されている熱酸化膜をはく離する第6の工程と、前記溝から突出した部分の絶縁膜を所望の量除去して前記開口部を素子形成領域両端の外側に素子形成領域に対して自己整合的に広げる第7の工程と、半導体基板表面にゲート絶縁膜を形成する第8の工程と、電荷蓄積層形成のための導電性膜を形成する第9の工程と、前記導電性膜を前記絶縁膜の上端面が露出するまで除去し前記導電性膜表面を平坦化する第10の工程と、前記導電性膜及び前記絶縁膜上に電極間絶縁膜を形成する第11の工程と、前記電極間絶縁膜上に制御ゲート形成のための導電性膜を形成する第12の工程とを備えたことを特徴とする。 A method of manufacturing a semiconductor memory device according to the present invention includes a first step of sequentially forming a thermal oxide film and a mask layer made of a predetermined material on the surface of a semiconductor substrate, the thermal oxide film other than the element formation region, and the A second step of removing the mask layer; a third step of forming a groove by etching the surface of the semiconductor substrate exposed in the second step using the mask layer remaining on the element formation region as a mask; A fourth step of depositing an insulating film from the bottom of the groove to the upper end surface of the mask layer; and removing the mask layer so as to leave a portion of the insulating film protruding from the groove, the insulating layer on the element formation region A fifth step of forming an opening of the film, a sixth step of peeling off the thermal oxide film formed on the surface of the semiconductor substrate, and removing a desired amount of the insulating film protruding from the groove Open the outside of both ends of the element formation area Ninth step of forming a seventh step of spreading in a self-aligned manner with respect to the device formation region, an eighth step of forming a gate insulating film on a semiconductor substrate surface, a conductive film for charge storage layer formed When, a tenth step of planarizing the removed the conductive film surface to the conductive film is an upper end surface of the insulating film is exposed, the insulating film on the conductive film and the insulating film formed And an twelfth step of forming a conductive film for forming a control gate on the interelectrode insulating film.

本発明によれば、素子動作特性に変動を与えることのない、微細に分離された電極を備えた半導体記憶装置の製造方法を提供できる。
According to the present invention, without giving a variation in device operation characteristics, it can provide a method of manufacturing the semiconductor memory equipment having a finely separated electrodes.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の参考例に係るNAND型EEPROMの平面図を示している。また、図2および図3にはそれぞれ、図1のNAND型EEPROMのA−A´断面図およびB−B´断面図を示す。   FIG. 1 is a plan view of a NAND type EEPROM according to a reference example of the present invention. 2 and FIG. 3 show an AA ′ sectional view and a BB ′ sectional view of the NAND type EEPROM of FIG. 1, respectively.

図1および2のように、このNAND型EEPROMでは、複数のコントロール・ゲート9と複数の活性層30が直交配列され、両者が交差する部分にトンネル酸化膜22とONO膜8を介してフローティング・ゲート7が挟まれた形で設けられており、各交差部分が記憶ノードを形成している。   As shown in FIGS. 1 and 2, in this NAND type EEPROM, a plurality of control gates 9 and a plurality of active layers 30 are arranged in an orthogonal arrangement, and a floating oxide film 22 and an ONO film 8 are interposed at the intersection of the two. Gates 7 are provided in a sandwiched manner, and each intersection forms a storage node.

また、本参考例では、図1および図3のように、素子分離領域31は、半導体基板1の表面に設けた溝12を上端面まで2種類の絶縁膜5,6で埋め込んで形成するとともに、隣り合う素子分離領域31間に浮遊ゲート電極7が自己整合的に形成されている。なお、本参考例では、浮遊ゲート電極7が素子分離領域31の第1の絶縁膜5にオーバーラップしたウイング型の構造になっている。   In this reference example, as shown in FIGS. 1 and 3, the element isolation region 31 is formed by embedding the groove 12 provided on the surface of the semiconductor substrate 1 with two kinds of insulating films 5 and 6 up to the upper end surface. The floating gate electrode 7 is formed in a self-aligned manner between the adjacent element isolation regions 31. In this reference example, the floating gate electrode 7 has a wing structure in which the first insulating film 5 in the element isolation region 31 is overlapped.

本参考例では、浮遊ゲート電極を隣り合う素子分離領域間に自己整合的に形成するので、極めて微細に分離・形成された浮遊ゲート電極を得ることができるとともに、従来問題であった写真触刻時の合わせずれ等による素子形状の変動を生じることなく動作特性の変動も完全になくすことができる。   In this reference example, the floating gate electrode is formed in a self-aligned manner between adjacent element isolation regions, so that it is possible to obtain a floating gate electrode that is extremely finely separated and formed, and at the same time, a photographic contact that has been a problem in the past. It is possible to completely eliminate fluctuations in operating characteristics without causing fluctuations in the element shape due to misalignment of time.

なお、本参考例では、浮遊ゲート電極をウイング型の構造にするので、コントロール・ゲート電極との間の容量を大きく設けることができる。また本参考例では、図3のように浮遊ゲート電極側壁部と浮遊ゲート電極側壁間に形成されたコントロール・ゲート電極との間にも容量が形成されるので、さらなる容量の増加を図ることができる。   In this reference example, since the floating gate electrode has a wing structure, a large capacitance can be provided between the control gate electrode and the floating gate electrode. In this reference example, as shown in FIG. 3, a capacitance is also formed between the side wall of the floating gate electrode and the control gate electrode formed between the side walls of the floating gate electrode, so that the capacitance can be further increased. it can.

以下、図3のような構造を有するEEPROMを得るための製造工程について説明する。   A manufacturing process for obtaining an EEPROM having the structure as shown in FIG. 3 will be described below.

まず、例えば面方位(100)、比抵抗5〜50Ω・cmのN型シリコン基板1上に、P型ウェルを形成し、例えば厚さ25nmの熱酸化膜2をHCl雰囲気中で成膜し、さらに多結晶シリコンを400nm程度形成して第一マスク層3とし、CVD法で酸化シリコン膜を500nm程度形成して第二マスク層4とする。   First, for example, a P-type well is formed on an N-type silicon substrate 1 having a plane orientation (100) and a specific resistance of 5 to 50 Ω · cm. For example, a thermal oxide film 2 having a thickness of 25 nm is formed in an HCl atmosphere. Further, polycrystalline silicon is formed to a thickness of about 400 nm to form the first mask layer 3, and a silicon oxide film is formed to a thickness of about 500 nm by the CVD method to form the second mask layer 4.

その後、写真触刻法で、選択的にレジスト膜(図示せず)で覆い、これをマスクとして使用し、CVD酸化シリコン膜4をエッチングし、その後レジストを剥離する。そして、このCVD酸化シリコン膜4をマスクにして、先の工程によって露出した第一マスク層である多結晶シリコン膜3をエッチングし、さらに下の熱酸化膜2をエッチングする。   Thereafter, it is selectively covered with a resist film (not shown) by photolithography, and this is used as a mask, the CVD silicon oxide film 4 is etched, and then the resist is peeled off. Then, using this CVD silicon oxide film 4 as a mask, the polycrystalline silicon film 3 which is the first mask layer exposed by the previous process is etched, and the thermal oxide film 2 below is further etched.

次に、残ったCVDシリコン酸化膜4および多結晶シリコン膜3をマスクにして、露出したシリコン基板1の表面を例えばHBr/SiF4 /O2 雰囲気中でエッチングし、深さ0.5μm程度、幅0.4μm程度の溝12を形成する。 Next, using the remaining CVD silicon oxide film 4 and polycrystalline silicon film 3 as a mask, the exposed surface of the silicon substrate 1 is etched, for example, in an HBr / SiF 4 / O 2 atmosphere, and the depth is about 0.5 μm. A groove 12 having a width of about 0.4 μm is formed.

そして、フィールドI/Iを行った後、トレンチを埋め込む第一の素子分離絶縁膜5として、例えばCVD法で成膜したシリコン酸化膜を100nm成膜する。このシリコン酸化膜5は、膜質を向上させるために、例えばN2 雰囲気中において1000℃前後で焼き固めるのが好ましい。 Then, after performing the field I / I, as the first element isolation insulating film 5 for burying the trench, a silicon oxide film formed by, for example, a CVD method is formed to a thickness of 100 nm. In order to improve the film quality, this silicon oxide film 5 is preferably baked and hardened at about 1000 ° C. in an N 2 atmosphere, for example.

上記までの工程が完了した時点での半導体装置の概略断面図を図4に示す。なお、後に示す図4〜図11においては、p+ 型層20を省略した。 FIG. 4 is a schematic cross-sectional view of the semiconductor device at the time when the above steps are completed. 4 to 11 described later, the p + type layer 20 is omitted.

次に、シリコン窒化膜6を200nm程度成膜し、図5のように溝12を完全に埋め込む。この時、シリコン窒化膜6をボイドが発生しない様に埋め込むことが望ましい。   Next, a silicon nitride film 6 is formed to a thickness of about 200 nm, and the groove 12 is completely buried as shown in FIG. At this time, it is desirable to bury the silicon nitride film 6 so as not to generate voids.

さらに、シリコン窒化膜6をCDE(ケミカル・ドライ・エッチング)法などによりエッチバックし、第一マスク層である多結晶シリコン層3に挟まれた部分およびシリコン基板1表面に形成された溝12の中に成膜された部分のみを残すようにする(図6)。   Further, the silicon nitride film 6 is etched back by a CDE (Chemical Dry Etching) method or the like, and a portion sandwiched between the polycrystalline silicon layers 3 as the first mask layer and the grooves 12 formed on the surface of the silicon substrate 1 are formed. Only the film-formed part is left inside (FIG. 6).

この後、CVD法により成膜したシリコン酸化膜である第一絶縁膜5および同様に成膜したシリコン酸化膜である第二マスク層4を例えばRIE法などにより選択的にエッチングすることにより、第一マスク層である多結晶シリコン層3および第二絶縁膜であるシリコン窒素化膜6はエッチングされないようにし、第一マスク層である多結晶シリコン層3の上端部まで、第一絶縁膜であるCVDシリコン酸化膜5と第二絶縁膜であるシリコン窒化膜6により埋め込まれているようにする(図7)。   Thereafter, the first insulating film 5 which is a silicon oxide film formed by the CVD method and the second mask layer 4 which is a silicon oxide film similarly formed are selectively etched by, for example, the RIE method, so that the first The polycrystalline silicon layer 3 as one mask layer and the silicon nitride film 6 as the second insulating film are not etched, and are the first insulating film up to the upper end portion of the polycrystalline silicon layer 3 as the first mask layer. It is embedded with the CVD silicon oxide film 5 and the silicon nitride film 6 as the second insulating film (FIG. 7).

この後、例えばCDE法等により第一マスク層である多結晶シリコン層3を除去し、さらに例えばフッ化アンモニウム等の溶液でエッチングすることにより、シリコン基板1上に形成されている熱酸化膜2および第一絶縁膜であるCVDシリコン酸化膜5のうちシリコン基板1に形成された溝12に埋め込まれた部分以外は除去する。その後、ゲート酸化膜22を形成する(図8)。   Thereafter, the polycrystalline silicon layer 3 which is the first mask layer is removed by, for example, the CDE method, and further etched by a solution such as ammonium fluoride, for example, to thereby form the thermal oxide film 2 formed on the silicon substrate 1. The portions other than the portion embedded in the trench 12 formed in the silicon substrate 1 are removed from the CVD silicon oxide film 5 as the first insulating film. Thereafter, a gate oxide film 22 is formed (FIG. 8).

次に、リンをドープした多結晶シリコン膜7を形成し(図9)、表面を例えばCMP(ケミカル・メカニカル・ポリッシング)法により平坦化する(図10)。これにより、浮遊ゲート電極7を形成すると同時に、浮遊ゲート電極7間の分離を、第二絶縁膜のシリコン窒化膜6により自己整合的に行うことが可能である。   Next, a polycrystalline silicon film 7 doped with phosphorus is formed (FIG. 9), and the surface is planarized by, for example, a CMP (Chemical Mechanical Polishing) method (FIG. 10). Thereby, at the same time as forming the floating gate electrode 7, it is possible to perform the separation between the floating gate electrodes 7 in a self-aligned manner by the silicon nitride film 6 as the second insulating film.

この後、例えばCDE法により浮遊ゲート側壁部のシリコン窒素化膜6をエッチングし(図11)、ONO膜8を形成した後に、制御ゲート電極9を形成し、CVD絶縁膜10を堆積して、素子形成を完了する(図3)。   Thereafter, the silicon nitride film 6 on the sidewall of the floating gate is etched by, for example, the CDE method (FIG. 11), the ONO film 8 is formed, the control gate electrode 9 is formed, the CVD insulating film 10 is deposited, The element formation is completed (FIG. 3).

以上説明した参考例によれば、半導体基板上に形成された溝および第1のマスク層を第1の絶縁膜および第2の絶縁膜で埋め込み、その後第1の絶縁膜および第1のマスク層を取り除いた箇所(隣り合う第2の絶縁膜の間)に、電極を形成するので、電極を隣り合う素子分離領域間に自己整合的に形成することができる。この結果、極めて微細に分離・形成された電極を得ることができるとともに、写真触刻時の合わせずれ等による素子形状および動作特性の変動の回避を完全になくすことができる。   According to the reference example described above, the trench and the first mask layer formed on the semiconductor substrate are filled with the first insulating film and the second insulating film, and then the first insulating film and the first mask layer are formed. Since the electrode is formed at a place where the electrode is removed (between adjacent second insulating films), the electrode can be formed in a self-aligned manner between the adjacent element isolation regions. As a result, it is possible to obtain electrodes that are separated and formed extremely finely, and it is possible to completely eliminate variations in element shape and operating characteristics due to misalignment during photo-engraving.

また、電極間のスリット幅は、第1の絶縁膜および第2の絶縁膜の膜厚を制御することで、極めて制御性良く形成できる。   Further, the slit width between the electrodes can be formed with extremely good controllability by controlling the film thicknesses of the first insulating film and the second insulating film.

さらに、写真触刻工程数の減少をも図ることができる。   In addition, the number of photo-engraving steps can be reduced.

<変形例1>
ここで、上記製造方法において、図5までの工程を上記参考例と同様に行った後、第二マスク層であるシリコン酸化膜4、第一絶縁膜であるCVDシリコン酸化膜5と第二絶縁膜であるシリコン窒化膜6が同一のエッチングレートになる条件で、第一マスク層である多結晶シリコン層3の上端部において終了するようにエッチングを行った後、図6に示される工程を省略し、図7の以下の工程を進めることが可能である。
<Modification 1>
Here, in the above manufacturing method, after performing the steps up to FIG. 5 in the same manner as in the above reference example, the silicon oxide film 4 as the second mask layer, the CVD silicon oxide film 5 as the first insulating film, and the second insulating film. Etching is performed so that the upper end portion of the polycrystalline silicon layer 3 as the first mask layer is finished under the condition that the silicon nitride film 6 as the film has the same etching rate, and then the step shown in FIG. 6 is omitted. However, it is possible to proceed with the following steps of FIG.

この場合、上述した参考例の利点に加え、プロセスを簡略化することができる利点がある。   In this case, in addition to the advantages of the reference example described above, there is an advantage that the process can be simplified.

<変形例2>
ここで、参考例に係る製造方法においては、図4に示すように第一絶縁膜5を形成する前にフィールドI/Iを行ったが、その代りに先に第一絶縁膜5を形成し、溝12の底部が露出するように軽くエッチングした後、フィールドI/Iを行い(図12)、第二絶縁膜6を形成しても良い(図13)。
<Modification 2>
Here, in the manufacturing method according to the reference example, the field I / I was performed before the first insulating film 5 was formed as shown in FIG. 4, but instead, the first insulating film 5 was formed first. After the light etching is performed so that the bottom of the trench 12 is exposed, field I / I is performed (FIG. 12), and the second insulating film 6 may be formed (FIG. 13).

このようにすれば、上記参考例に比較してp+ 型層21の領域を小さく設けることができるので、p+ 型層21と図1に示すn+ 型層19との間でのジャンクション・ブレークダウンを発生し難くすることができる。もちろん、上述した参考例の利点も同時に得られる。 Thus, it is possible to provide small area of the p + -type layer 21 as compared to the reference example, junction between the n + -type layer 19 shown in the p + -type layer 21 and Figure 1 Breakdown can be made difficult to occur. Of course, the advantages of the above-described reference example can be obtained at the same time.

<変形例3>
浮遊ゲート電極7間(浮遊ゲート側壁部)のシリコン窒化膜6をエッチングせずに、図10の構造の上にONO膜8を形成しても良い(図14)。
<Modification 3>
The ONO film 8 may be formed on the structure of FIG. 10 without etching the silicon nitride film 6 between the floating gate electrodes 7 (floating gate sidewalls) (FIG. 14).

このようにすれば、さらに工程を簡略化することができる。   In this way, the process can be further simplified.

(実施例)
図22に、本発明の実施例に係るNAND型EEPROMの断面図を示す。本実施例は、参考例に比較して工程をさらに簡略化したものである。
(Example)
FIG. 22 is a sectional view of a NAND type EEPROM according to the embodiment of the present invention. In this example, the process is further simplified as compared with the reference example.

図22のように本実施例において、素子分離領域は、半導体基板1の表面に設けた溝12を絶縁膜16で埋め込んで形成するとともに、隣り合う素子分離領域間にゲート電極7が自己整合的に形成されている。なお、本実施例では、ゲート電極7が素子分離領域31の第1の絶縁膜5にオーバーラップしていない非ウイング型の構造になっている。   As shown in FIG. 22, in this embodiment, the element isolation region is formed by embedding the groove 12 provided on the surface of the semiconductor substrate 1 with the insulating film 16, and the gate electrode 7 is self-aligned between adjacent element isolation regions. Is formed. In this embodiment, the gate electrode 7 has a non-wing structure in which it does not overlap the first insulating film 5 in the element isolation region 31.

本実施例では、浮遊ゲート電極を隣り合う素子分離領域間に自己整合的に形成するので、極めて微細に分離・形成された浮遊ゲート電極を得ることができるとともに、従来問題であった写真触刻時の合わせずれ等による素子形状の変動を生じることなく動作特性の変動も完全になくすことができる。   In this embodiment, since the floating gate electrode is formed in a self-aligned manner between the adjacent element isolation regions, it is possible to obtain a floating gate electrode that is extremely finely separated and formed, and at the same time, a photographic contact that has been a problem in the past. It is possible to completely eliminate fluctuations in operating characteristics without causing fluctuations in the element shape due to misalignment of time.

以下、図22のような構造を有するEEPROMを得るための製造工程について説明する。   Hereinafter, a manufacturing process for obtaining an EEPROM having the structure as shown in FIG. 22 will be described.

まず、例えば面方位(100)、比抵抗5〜50Ω・cmのP型シリコン基板1上に例えば厚さ25nmの熱酸化膜2をHCl雰囲気中で成膜し、さらにシリコン窒化膜14を400nm程度形成してマスク層とする。   First, for example, a thermal oxide film 2 having a thickness of, for example, 25 nm is formed in a HCl atmosphere on a P-type silicon substrate 1 having, for example, a plane orientation (100) and a specific resistance of 5 to 50 Ω · cm, and further a silicon nitride film 14 is formed to a thickness of about 400 nm. A mask layer is formed.

その後、写真触刻法で、選択的にレジスト膜40で覆う(図15)。   Thereafter, it is selectively covered with a resist film 40 by photolithography (FIG. 15).

これをマスクとして使用し、シリコン窒化膜14と下の熱酸化膜2を順次エッチングする(図16)。その後、レジスト40を剥離する。   Using this as a mask, the silicon nitride film 14 and the underlying thermal oxide film 2 are sequentially etched (FIG. 16). Thereafter, the resist 40 is peeled off.

次に、残ったシリコン窒化膜14をマスクにして、露出したシリコン基板1表面を例えばHBr/SiF4 /O2 雰囲気中でエッチングし、深さ0.5μm程度、幅0.4μm程度の溝12を形成する。そして、フィールドI/Iを行う(図17)。 Next, using the remaining silicon nitride film 14 as a mask, the exposed surface of the silicon substrate 1 is etched in, for example, an HBr / SiF 4 / O 2 atmosphere to form a groove 12 having a depth of about 0.5 μm and a width of about 0.4 μm. Form. Then, field I / I is performed (FIG. 17).

次に、トレンチを埋め込む素子分離絶縁膜16として、例えばCVD法で成膜したシリコン酸化膜を1000nm程度成膜し、溝12の底面からシリコン窒化膜からなるマスク層14の上方まで完全に埋め込む。   Next, as the element isolation insulating film 16 for burying the trench, for example, a silicon oxide film formed by the CVD method is formed to a thickness of about 1000 nm and completely buried from the bottom surface of the groove 12 to above the mask layer 14 made of a silicon nitride film.

さらに、CVD法により成膜したCVDシリコン酸化膜16のうち、マスク層であるシリコン窒化膜14に挟まれた部分およびシリコン基板1により形成された溝12の中に成膜された部分のみを残すようにCVDエッチバックを行う(図18)。   Further, of the CVD silicon oxide film 16 formed by the CVD method, only a portion sandwiched between the silicon nitride films 14 which are mask layers and a portion formed in the groove 12 formed by the silicon substrate 1 are left. As shown in FIG. 18, CVD etch back is performed.

この後、例えばCDE法等によりマスク層であるシリコン窒素化膜14を除去する(図19)。   Thereafter, the silicon nitride film 14 as a mask layer is removed by, for example, the CDE method (FIG. 19).

さらに、フッ化アンモニウム等の溶液でエッチングすることにより、シリコン基板1上に形成されている熱酸化膜2を除去する。そして、ダミー酸化、チャネルI/I、ダミー酸化剥離を順次行う(図20)。   Further, the thermal oxide film 2 formed on the silicon substrate 1 is removed by etching with a solution such as ammonium fluoride. Then, dummy oxidation, channel I / I, and dummy oxidation peeling are sequentially performed (FIG. 20).

そして、トンネル酸化膜22を形成した後、リンをドープした多結晶シリコン膜7を形成し、表面を例えばCMP(ケミカル・メカニカル・ポリッシング)法により平坦化する(図21)。   Then, after forming the tunnel oxide film 22, a polycrystalline silicon film 7 doped with phosphorus is formed, and the surface is planarized by, for example, a CMP (Chemical Mechanical Polishing) method (FIG. 21).

これにより、浮遊ゲート電極7を形成すると同時に、浮遊ゲート電極7間の分離を、絶縁膜であるCVDシリコン酸化膜16により自己整合的に行うことが可能である。   As a result, the floating gate electrodes 7 can be formed, and at the same time, the separation between the floating gate electrodes 7 can be performed in a self-aligned manner by the CVD silicon oxide film 16 as an insulating film.

この後、ONO膜8を形成した後に、制御ゲート電極9を形成し、後酸化を行い、CVD絶縁膜14を堆積して素子形成を完了する(図22)。   Thereafter, after the ONO film 8 is formed, the control gate electrode 9 is formed, post-oxidation is performed, and the CVD insulating film 14 is deposited to complete the element formation (FIG. 22).

<変形例>
ここで、図21の構造において、例えばCDE法により浮遊ゲート7側壁部のCVDシリコン酸化膜16をエッチングし、ONO膜8を形成した後に、コントロール・ゲート電極9を形成しても良い(図23)。
<Modification>
In the structure of FIG. 21, the control gate electrode 9 may be formed after etching the CVD silicon oxide film 16 on the side wall of the floating gate 7 by the CDE method to form the ONO film 8 (FIG. 23). ).

このようにすれば、浮遊ゲート電極側壁部と浮遊ゲート電極側壁間に形成されたコントロール・ゲート電極との間に容量が形成されるので、容量の増加を図ることができる。この場合、マスク層を厚く積むと、その後に形成する浮遊ゲート電極側壁がより高くなり、容量がより大きくなるので好ましい。   In this way, the capacitance is formed between the floating gate electrode sidewall and the control gate electrode formed between the floating gate electrode sidewalls, so that the capacitance can be increased. In this case, it is preferable that the mask layer is stacked thick because the side wall of the floating gate electrode to be formed later becomes higher and the capacitance becomes larger.

なお、本実施例では、本発明をEEPROM(浮遊ゲート)に適用した例について説明したが、MISトランジスタのゲート電極にも適用することが可能である。   In this embodiment, an example in which the present invention is applied to an EEPROM (floating gate) has been described. However, the present invention can also be applied to a gate electrode of a MIS transistor.

また、本発明は上述した各実施例に限定されるものではなく、その要旨を逸脱しない範囲で、種々変形して実施することができる。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明の参考例に係るEEPROMの平面図The top view of EEPROM which concerns on the reference example of this invention 同参考例に係るEEPROMのA−A´断面図AA 'sectional view of the EEPROM according to the reference example 同参考例に係るEEPROMのB−B´断面図BB 'sectional view of the EEPROM according to the reference example 同参考例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the reference example 同参考例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the reference example 同参考例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the reference example 同参考例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the reference example 同参考例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the reference example 同参考例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the reference example 同参考例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the reference example 同参考例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the reference example 同参考例の一変形例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the modification of the reference example 同参考例の一変形例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the modification of the reference example 同参考例の他の変形例に係るEEPROMの断面図Sectional drawing of EEPROM which concerns on the other modification of the reference example 本発明の実施例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the Example of this invention 同実施例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the Example 同実施例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the Example 同実施例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the Example 同実施例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the Example 同実施例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the Example 同実施例に係るEEPROMの製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of EEPROM which concerns on the Example 同実施例に係るEEPROMの断面図Sectional drawing of EEPROM which concerns on the same Example 同実施例の一変形例に係るEEPROMの断面図Sectional drawing of EEPROM which concerns on the modification of the Example

符号の説明Explanation of symbols

1…シリコン基板、2…熱酸化膜、3…第一マスク層、4…第二マスク層、5…第1の素子分離絶縁膜、6…第2の素子分離絶縁膜、7…フローティング・ゲート、8…ONO膜、9…コントロール・ゲート、10…CVD絶縁膜、12…溝、13…酸化膜、14…CVD絶縁膜、16…素子分離絶縁膜、19…n+ 型層、20,21,23…p+ 型層、22…トンネル酸化膜、30…素子分離領域、31…素子形成領域、32…コンタクト・ホール、40…レジスト膜。 DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 2 ... Thermal oxide film, 3 ... 1st mask layer, 4 ... 2nd mask layer, 5 ... 1st element isolation insulating film, 6 ... 2nd element isolation insulating film, 7 ... Floating gate 8 ... ONO film, 9 ... control gate, 10 ... CVD insulating film, 12 ... groove, 13 ... oxide film, 14 ... CVD insulating film, 16 ... element isolation insulating film, 19 ... n + type layer, 20, 21 , 23 ... p + -type layer, 22 ... tunnel oxide film, 30 ... element isolation region, 31 ... element formation region, 32 ... contact hole, 40 ... resist film.

Claims (3)

半導体基板表面に、熱酸化膜、所定の材料からなるマスク層を順次形成する第1の工程と、A first step of sequentially forming a thermal oxide film and a mask layer made of a predetermined material on the surface of the semiconductor substrate;
素子形成領域以外の前記熱酸化膜及び前記マスク層を除去する第2の工程と、A second step of removing the thermal oxide film and the mask layer other than the element formation region;
前記素子形成領域上に残ったマスク層をマスクとし、前記第2の工程によって露出した半導体基板表面をエッチングして溝を形成する第3の工程と、A third step of forming a groove by etching the surface of the semiconductor substrate exposed in the second step using the mask layer remaining on the element formation region as a mask;
前記溝の底部から前記マスク層の上端面まで絶縁膜を堆積する第4の工程と、A fourth step of depositing an insulating film from the bottom of the groove to the upper end surface of the mask layer;
前記溝から突出した部分の絶縁膜を残すように前記マスク層を除去して素子形成領域上に前記絶縁膜の開口部を形成する第5の工程と、A fifth step of removing the mask layer so as to leave a portion of the insulating film protruding from the trench and forming an opening of the insulating film on the element formation region;
半導体基板表面に形成されている熱酸化膜をはく離する第6の工程と、A sixth step of peeling the thermal oxide film formed on the surface of the semiconductor substrate;
前記溝から突出した部分の絶縁膜を所望の量除去して前記開口部を素子形成領域両端の外側に素子形成領域に対して自己整合的に広げる第7の工程と、A seventh step of removing a desired amount of the insulating film protruding from the groove and expanding the opening in a self-aligned manner with respect to the element formation region outside both ends of the element formation region;
半導体基板表面にゲート絶縁膜を形成する第8の工程と、An eighth step of forming a gate insulating film on the surface of the semiconductor substrate;
電荷蓄積層形成のための導電性膜を形成する第9の工程と、A ninth step of forming a conductive film for forming the charge storage layer;
前記導電性膜を前記絶縁膜の上端面が露出するまで除去し前記導電性膜表面を平坦化する第10の工程と、A tenth step of removing the conductive film until an upper end surface of the insulating film is exposed and planarizing the surface of the conductive film;
前記導電性膜及び前記絶縁膜上に電極間絶縁膜を形成する第11の工程と、An eleventh step of forming an interelectrode insulating film on the conductive film and the insulating film;
前記電極間絶縁膜上に制御ゲート形成のための導電性膜を形成する第12の工程とA twelfth step of forming a conductive film for forming a control gate on the interelectrode insulating film;
を備えたことを特徴とする半導体記憶装置の製造方法。A method of manufacturing a semiconductor memory device.
前記第10の工程と前記第11の工程との間に、前記導電性膜間の前記絶縁膜をエッチバックして前記導電性膜の側壁の少なくとも一部分を露出させる工程を備えたことを特徴とする請求項1記載の半導体記憶装置の製造方法。Etching back the insulating film between the conductive films to expose at least a part of the side wall of the conductive film between the tenth step and the eleventh step. A method of manufacturing a semiconductor memory device according to claim 1. 前記第7の工程と前記第8の工程との間に、前記半導体基板表面に熱酸化膜を形成した後、この熱酸化膜をはく離する工程を備えたことを特徴とする請求項1記載の半導体記憶装置の製造方法。2. The method according to claim 1, further comprising a step of separating the thermal oxide film after forming a thermal oxide film on the surface of the semiconductor substrate between the seventh step and the eighth step. Manufacturing method of semiconductor memory device.
JP2005290291A 2005-10-03 2005-10-03 Manufacturing method of semiconductor memory device Expired - Fee Related JP4284311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290291A JP4284311B2 (en) 2005-10-03 2005-10-03 Manufacturing method of semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290291A JP4284311B2 (en) 2005-10-03 2005-10-03 Manufacturing method of semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07156394A Division JP3764177B2 (en) 1994-03-16 1994-03-16 Semiconductor memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006024969A JP2006024969A (en) 2006-01-26
JP4284311B2 true JP4284311B2 (en) 2009-06-24

Family

ID=35797963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290291A Expired - Fee Related JP4284311B2 (en) 2005-10-03 2005-10-03 Manufacturing method of semiconductor memory device

Country Status (1)

Country Link
JP (1) JP4284311B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027205A (en) * 2019-08-06 2021-02-22 キオクシア株式会社 Semiconductor storage device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006024969A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US7329580B2 (en) Method of fabricating a semiconductor device having self-aligned floating gate and related device
JP3512976B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
KR100724074B1 (en) Fin field effect transistor and method for forming the same
JP3540633B2 (en) Method for manufacturing semiconductor device
EP2455967B1 (en) A method for forming a buried dielectric layer underneath a semiconductor fin
JP2007036242A (en) Non-volatile memory element having fin-type channel region, and method of fabricating the same
JP2006339446A (en) Semiconductor device and its manufacturing method
US20040145020A1 (en) Methods of fabricating a semiconductor device having multi-gate insulation layers and semiconductor devices fabricated thereby
JP2007165543A (en) Method for manufacturing semiconductor memory device
JPH10335497A (en) Semiconductor non-volatile storage device and its manufacture
KR20220008275A (en) 3D Horizontal NOR Memory Array Forming Process
JP2009267208A (en) Semiconductor device, and manufacturing method thereof
JP4250616B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
KR100966957B1 (en) Flash memory device and manufacturing method thereof
JP5268979B2 (en) Semiconductor device and manufacturing method of semiconductor device.
JP3764177B2 (en) Semiconductor memory device and manufacturing method thereof
JP2011066052A (en) Semiconductor device manufacturing method, and the semiconductor device
KR100900301B1 (en) Memory Semiconductor Devices With Buried Bit Line And Methods Of Fabricating The Same
JP2007294750A (en) Semiconductor device and its manufacturing method
JP4284311B2 (en) Manufacturing method of semiconductor memory device
TW202332012A (en) Method of manufacturing non-volatile memory device
JP4364523B2 (en) Manufacturing method of flash memory device
US7394128B2 (en) Semiconductor memory device with channel regions along sidewalls of fins
JP2007221106A (en) Nand semiconductor memory device and method for fabrication thereof
CN111326516A (en) Non-volatile memory structure and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees