JP4283687B2 - Method for producing non-oriented electrical steel sheet - Google Patents

Method for producing non-oriented electrical steel sheet Download PDF

Info

Publication number
JP4283687B2
JP4283687B2 JP2004008173A JP2004008173A JP4283687B2 JP 4283687 B2 JP4283687 B2 JP 4283687B2 JP 2004008173 A JP2004008173 A JP 2004008173A JP 2004008173 A JP2004008173 A JP 2004008173A JP 4283687 B2 JP4283687 B2 JP 4283687B2
Authority
JP
Japan
Prior art keywords
rolling
less
temperature range
strain
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004008173A
Other languages
Japanese (ja)
Other versions
JP2005199311A (en
Inventor
英邦 村上
昌浩 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004008173A priority Critical patent/JP4283687B2/en
Publication of JP2005199311A publication Critical patent/JP2005199311A/en
Application granted granted Critical
Publication of JP4283687B2 publication Critical patent/JP4283687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、モーターやトランス用の鉄芯材料として用いられる、鉄損および磁束密度ともに優れ、かつ板面内の磁気特性の異方性が極めて小さい無方向性電磁鋼板およびその製造方法に関するものである。   The present invention relates to a non-oriented electrical steel sheet that is used as an iron core material for motors and transformers, has excellent iron loss and magnetic flux density, and has extremely small magnetic property anisotropy in the plate surface, and a method for producing the same. is there.

無方向性電磁鋼板は、重電機器、家電用など各種モーター、変圧器、安定器等の鉄芯材料として広く用いられている。一般的にはエネルギー節減の観点から低鉄損化が、また、電気機器の小型化の観点から一層の高磁束密度化が要求されており、これまでに鉄損や磁束密度の改善を目的とした多くの技術が開示され、成分の最適化、特殊元素の添加、熱延板焼鈍の付与、仕上焼鈍の高温化などが実用化されている。   Non-oriented electrical steel sheets are widely used as iron core materials for various motors, transformers, ballasts and the like for heavy electrical equipment and home appliances. Generally, low iron loss is required from the viewpoint of energy saving, and further higher magnetic flux density is required from the viewpoint of miniaturization of electrical equipment. To date, the aim is to improve iron loss and magnetic flux density. Many techniques have been disclosed, and optimization of components, addition of special elements, application of hot-rolled sheet annealing, higher temperature of finish annealing, and the like have been put into practical use.

一方、特に回転機に用いられる場合には回転の滑らかさ、モーター効率、モーター部材として組み込まれる際の応力の影響等の観点から鋼板面内の磁気特性の異方性が小さい鋼板の開発が強く要望されているが、この点での技術開発は十分とは言えない面がある。と、言うのは、無方向性電磁鋼板の磁気特性は一般に鋼板の圧延方向(コイル長手方向、L方向)およびその垂直方向(コイル幅方向、C方向)の平均値で評価されることが多いためである。L方向とC方向の特性を用いる理由は一つには鋼板の板面内異方性を考慮するためではあるが、鋼板の特性はこの二方向に比べ圧延方向と45°の方向(コイル斜め方向、D方向)の特性値が特異なものになる場合が多く、異方性はこのD方向について非常に大きくなる。また、磁気特性の板面内平均値としてリングと呼ばれる円状に切り抜いた試験片で鋼板の磁気特性が評価される場合があるが、この評価においてはモーターとして使用された場合の回転の滑らかさや、部材として受ける応力の影響を見積もることができないため、異方性を含めた評価には不適当で、この特性が高くても板面内の異方性が大きくて実用上の不都合を生じることが指摘されている。厳密にはコイル圧延方向から22.5°や67.5°方向の特性も考慮される場合があるが、一般的にはこれらの方位の特性がL、CまたはD方向と比べ大きな差を示すことは少なく、L,D,C方向の評価がほぼ必要十分な条件と考えられ、面内異方性も含めた鋼板の評価には従来のL、C方向に加えD方向の特性を考慮することが必須となっている。   On the other hand, especially when used in rotating machines, the development of steel sheets with low magnetic property anisotropy in the steel sheet surface is strong from the viewpoint of smoothness of rotation, motor efficiency, and effects of stress when incorporated as motor members. Although requested, technical development in this respect is not sufficient. That is, the magnetic properties of non-oriented electrical steel sheets are generally evaluated by the average value in the rolling direction (coil longitudinal direction, L direction) and the vertical direction (coil width direction, C direction) of the steel sheet. Because. The reason for using the characteristics in the L direction and the C direction is to consider the in-plane anisotropy of the steel sheet, but the characteristics of the steel sheet are the direction of rolling and 45 ° (coil diagonal) compared to these two directions. In many cases, the characteristic value of the direction (D direction) is unique, and the anisotropy becomes very large in the D direction. In addition, the magnetic properties of the steel sheet may be evaluated with a test piece cut into a circle called a ring as the average value of the magnetic properties in the plate surface. In this evaluation, the smoothness of rotation when used as a motor Since the effect of stress applied to the member cannot be estimated, it is unsuitable for evaluation including anisotropy, and even if this property is high, the anisotropy in the plate surface is large, resulting in practical inconvenience. Has been pointed out. Strictly speaking, the characteristics in the 22.5 ° and 67.5 ° directions from the coil rolling direction may be considered, but generally the characteristics of these orientations show a large difference compared to the L, C, or D directions. However, the evaluation in the L, D, and C directions is considered to be a necessary and sufficient condition, and the characteristics in the D direction in addition to the conventional L and C directions are considered in the evaluation of the steel sheet including in-plane anisotropy. It is essential.

このような面内異方性は主として鋼板の結晶方位の異方性、集合組織に起因するものであることはよく知られている。このため鋼板の集合組織制御を行う試みが多くなされてきた。基本的には結晶の方位を板面内の各方向に対してランダムとなるように配向させる努力がなされてきた。   It is well known that such in-plane anisotropy is mainly due to the crystal orientation anisotropy and texture of the steel sheet. For this reason, many attempts have been made to control the texture of steel sheets. Basically, efforts have been made to orient the crystal so that the orientation of the crystal is random in each direction within the plate surface.

特に、板面内の異方性を小さくするには、結晶方位として{110}方位に集積させるよりも{100}方位への集積を高めることが有利になることはよく知られており、このための技術開発が行われている。特に、熱間圧延温度を低くし、変態点を有する材料ではAr3温度以下とし、α域で熱間圧延を行うことで{100}方位への集積が高まる点に注目した開発が多くなされている。   In particular, it is well known that in order to reduce the in-plane anisotropy, it is advantageous to increase the accumulation in the {100} orientation rather than the {110} orientation as the crystal orientation. Technology development is underway. In particular, many developments have focused on the fact that the accumulation in the {100} direction is increased by lowering the hot rolling temperature, lowering the Ar3 temperature or lower in materials having transformation points, and performing hot rolling in the α region. .

例えば、特許文献1は、α域熱延による歪の蓄積を利用して冷延による歪と合算することで非常に高い冷延率に相当する結晶回転を起こさせ{100}方位を発達させる技術が開示されている。しかし、この技術では有効な効果を得るための熱延温度が狭い範囲に限定されるため、熱延が困難となるばかりでなく、Si、Alといった電磁鋼板において欠くことができない重要な元素の含有量が高い材料では効果が消失してしまい用途が限定され実用化に支障がある。さらには、変態点を有しないSi、Alが高い非変態鋼、一般的な高級電磁鋼板への適用はリジングが発生してしまう問題点も指摘されている。またこの技術では板面内平均特性はそれなりに向上するものの板面内異方性の低減は不十分である。   For example, Patent Literature 1 discloses a technique for causing the crystal rotation corresponding to a very high cold rolling rate to develop the {100} orientation by adding up the strain due to cold rolling using the accumulation of strain due to α-region hot rolling. Is disclosed. However, with this technology, the hot rolling temperature for obtaining an effective effect is limited to a narrow range, so that not only hot rolling becomes difficult, but also the inclusion of important elements essential for electrical steel sheets such as Si and Al. If the amount of the material is high, the effect disappears and the use is limited, which impedes practical use. Furthermore, it has been pointed out that ridging occurs when applied to non-transformed steels with high Si and Al, which have no transformation point, and general high-grade electrical steel sheets. In this technique, the average in-plane characteristics are improved to some extent, but the reduction in in-plane anisotropy is insufficient.

特許文献2は、技術的には特許文献1と同様の技術と考えられるが、α域熱延前の結晶粒径を粗大にすることや熱延圧下量、潤滑の効果を明確にすることで{100}方位をさらに発達させ、熱延温度の適用可能範囲を広げる技術が開示されている。しかし、この技術でもSi、Mn、Alの含有量が高い材料では効果が消失してしまうばかりか、特許文献1で指摘されている高Si、Al鋼でのリジング発生の問題も解決されておらず、さらにはα域熱延前の結晶粒径を粗大にしたことで低Si鋼においてもリジングまたは結晶模様と呼ばれる鋼板の表面欠陥が発生してしまう場合もあり安定した効果が得にくくなっている。またこの技術でもD方向の特性も考慮すると特許文献1と同様に板面内異方性の低減は不十分で実用におけるメリットが明確にはなり難く実用化が進行していない。   Patent Document 2 is technically considered to be the same technology as Patent Document 1, but by clarifying the grain size before hot rolling of α region, the amount of hot rolling reduction, and the lubrication effect. A technique for further developing the {100} orientation and extending the applicable range of the hot rolling temperature is disclosed. However, even with this technique, the effect of the material having a high content of Si, Mn, and Al disappears, and the problem of ridging in the high Si and Al steel pointed out in Patent Document 1 has not been solved. Furthermore, since the crystal grain size before α-region hot rolling is made coarse, surface defects of the steel plate called ridging or crystal pattern may occur even in low Si steel, making it difficult to obtain a stable effect. Yes. Also in this technique, if the characteristics in the D direction are also taken into consideration, the reduction of the in-plane anisotropy is insufficient as in Patent Document 1, and the merit in practical use is hardly clarified, and the practical application has not progressed.

特許文献3には鋳造時に一般的に形成される柱状凝固組織に起因する{100}方位を、熱延、冷延、焼鈍後まで残存させることで{100}方位への集積が高い電磁鋼板を得る技術が開示されている。しかし、この技術では鋳片の{100}方位を消失させないため熱延条件、特に熱延圧下率の上限が非常に低い値に制限されるため鋳片厚さを50mm以下と非常に薄くする必要があり、通常200〜250mmの厚さで製造されている連続鋳造プロセスでの生産性を数分の1に低下させてしまうため実用化が阻まれている。   Patent Document 3 discloses an electrical steel sheet having a high accumulation in the {100} orientation by allowing the {100} orientation resulting from a columnar solidified structure generally formed during casting to remain after hot rolling, cold rolling, and annealing. Obtaining techniques are disclosed. However, in this technique, since the {100} orientation of the slab is not lost, the hot rolling conditions, in particular, the upper limit of the hot rolling reduction ratio is limited to a very low value, so that the slab thickness needs to be very thin as 50 mm or less. Since the productivity in the continuous casting process, which is usually manufactured with a thickness of 200 to 250 mm, is reduced to a fraction, the practical application is hindered.

特許文献4では低温熱延に加え二回冷延焼鈍法を適用することでの{100}方位への集積技術が開示されているが二回冷延焼鈍のコストがネックで実用化されていない。   Patent Document 4 discloses a technique for integrating in the {100} orientation by applying a double cold rolling annealing method in addition to low temperature hot rolling, but the cost of the double cold rolling annealing has not been put into practical use due to the bottleneck. .

特許文献5は特許文献3と同様の技術と考えられ、熱延板厚を1mm以下にすることでの{100}方位への集積技術が開示されているが特許文献3と同様に{100}方位を消失させてしまう熱延での過剰な歪、特に鋼板表層での剪断変形に起因する歪を回避するため熱延での高潤滑が必要で、極薄熱延と相俟った熱延コスト、酸洗コストの大幅な上昇がネックとなり実用化されていない。   Patent Document 5 is considered to be the same technique as Patent Document 3, and discloses a technique for integrating in the {100} orientation by setting the hot-rolled sheet thickness to 1 mm or less, but as in Patent Document 3, {100} High lubrication in hot rolling is necessary to avoid excessive strain in hot rolling that causes the orientation to disappear, especially distortion due to shear deformation on the surface of the steel sheet. It has not been put into practical use due to a significant increase in cost and pickling cost.

特開昭60−125325号公報JP 60-125325 A 特開平2−104619号公報JP-A-2-104619 特開平3−260017号公報JP-A-3-260017 特開平4−107216号公報JP-A-4-107216 特開平11−189850号公報JP-A-11-189850

本発明はこのような状況に鑑みなされたもので、特に特許文献1および特許文献2の従来技術をさらに発展させることで、鋳造工程の生産性を阻害する熱延スラブの極薄化、熱延工程の生産性を阻害する潤滑熱延や、酸洗工程の生産性をも阻害する極薄熱延、冷延焼鈍工程の生産性を阻害する二回冷延焼鈍等を行うことなく、高Si、Al鋼を含めた通常の電磁鋼板すべてに適用可能な技術を提供するもので、板面内平均の特性としては優れた磁気特性を持ちながら、従来の技術では達し得なかった極めて小さな磁気特性の板面内異方性を有する無方向性電磁鋼板を製造する方法を安定して提供するものである。   The present invention has been made in view of such a situation, and in particular, by further developing the conventional techniques of Patent Document 1 and Patent Document 2, the thinning and hot rolling of the hot-rolled slab that hinders the productivity of the casting process. High Si without hot rolling lubrication that hinders process productivity, ultrathin hot rolling that also hinders productivity in pickling processes, and double cold rolling annealing that hinders productivity in cold rolling annealing processes , Which provides technology applicable to all ordinary electromagnetic steel sheets including Al steel, and has excellent magnetic properties as the average in-plane properties, but extremely small magnetic properties that could not be achieved with conventional technology A method for stably producing a non-oriented electrical steel sheet having in-plane anisotropy is provided.

本発明者らは、磁気特性の板面内異方性が小さい無方向性電磁鋼板の製造方法を見出すべく最適製造条件(特に熱延条件)について検討を行い、低温大圧下熱延技術を適用する際に熱間で付与する歪について静的な量ばかりでなく動的な考慮を加えることで磁気特性の板面内平均特性が大幅に向上するだけでなく、特に磁束密度の板面内異方性が非常に小さくなることに加え、特に従来、低温大圧下熱延技術において一つの壁となっていた高Si、Al鋼に適用しても非常に好ましい効果を得られるようになり、非変態鋼においてもリジング等の欠陥を抑制できることを知見した。また、さらにこのような材料においてスラブ加熱条件の制御により板面内平均の磁気特性をさらに非常に好ましく制御できることを明確にして本発明を完成したものである。   The present inventors have studied the optimum manufacturing conditions (especially hot rolling conditions) in order to find a manufacturing method of non-oriented electrical steel sheets with small in-plane anisotropy of magnetic properties, and applied hot rolling technology at low temperature and high pressure. In addition to not only static amount but also dynamic consideration of the strain applied hot, not only the average in-plane characteristics of magnetic properties are greatly improved, but also the in-plane variation of magnetic flux density. In addition to the extremely low isotropic, it is possible to obtain a very favorable effect even when applied to high-Si, Al steel, which has been a wall in the conventional hot rolling technology at low temperature and high pressure. It was found that defects such as ridging can also be suppressed in the transformation steel. Further, the present invention has been completed by clarifying that the average magnetic property in the plate surface can be controlled more preferably by controlling the slab heating conditions in such a material.

本発明は、熱延温度を単に低くして低温で大圧下を付与するだけでなく、熱延温度範囲に応じ、歪速度やパスで付与される歪量、さらにパス間時間を圧延による歪の蓄積および結晶回転を考慮して最適化することに特徴がある。本発明の要旨は次のとおりである。
(1)質量%で、C:0.040%以下、Si:0.05〜3.5%、Mn:3.0%以下、Al:3.5%以下、S:0.015%以下、P:0.25%以下、N:0.040%以下を含む溶鋼を鋳造で厚さ50mm以上の鋼片に凝固させ、500℃以上850℃以下の温度域で対数歪で1.0以上の圧延を行い、熱間圧延における850℃以下の温度域での圧延について各圧延パスの歪速度の平均が30/s以上、各圧延パスの対数歪の平均が0.2以上、各圧延パス間時間が4.0秒以下、さらに酸洗後、圧下率50%以上の冷間圧延を行うことを特徴とする無方向性電磁鋼板の製造方法。ここで対数歪は、(圧延前の板厚)/(圧延後の板厚)の自然対数である。
(2)(1)の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下の温度域での各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延が対数歪で3.0以下かつ500℃以上850℃以下の温度域での圧延による対数歪以下であることを特徴とする無方向性電磁鋼板の製造方法。
(3)(1)または(2)の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、850℃以上900℃以下の温度域での圧延が対数歪で0.5以下であることを特徴とする無方向性電磁鋼板の製造方法。
(4)(1)〜(3)の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延について各圧延パスの歪速度の平均が10/s以下であることを特徴とする無方向性電磁鋼板の製造方法。
(5)(1)〜(4)の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延について各圧延パスの対数歪の平均が0.5以下であることを特徴とする無方向性電磁鋼板の製造方法。
(6)(1)〜(5)の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延について各圧延パス間の時間が10.0秒以上であることを特徴とする無方向性電磁鋼板の製造方法。
(7)(1)〜(6)の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延が終了後、850℃以下の温度域での圧延を開始するまでの時間が10秒以上であることを特徴とする無方向性電磁鋼板の製造方法。
(8)(1)〜(7)の鋼板のうち熱間圧延のスラブ加熱温度が1100℃以下であることを特徴とする無方向性電磁鋼板の製造方法。
In the present invention, not only is the hot rolling temperature lowered to provide a large reduction at a low temperature, but also the strain rate, the amount of strain applied in passes, and the time between passes are adjusted according to the hot rolling temperature range. It is characterized by optimization in consideration of accumulation and crystal rotation. The gist of the present invention is as follows.
(1) In mass%, C: 0.040% or less, Si: 0.05 to 3.5%, Mn: 3.0% or less, Al: 3.5% or less, S: 0.015% or less, Molten steel containing P: 0.25% or less and N: 0.040% or less is solidified by casting into a steel piece having a thickness of 50 mm or more, and logarithmic strain is 1.0 or more in a temperature range of 500 ° C. or more and 850 ° C. or less. For rolling in a temperature range of 850 ° C. or lower in hot rolling, the average strain rate of each rolling pass is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more , and between each rolling pass A method for producing a non-oriented electrical steel sheet characterized by performing cold rolling at a rolling reduction of 50% or more after pickling for a time of 4.0 seconds or less. Here, the logarithmic strain is a natural logarithm of (sheet thickness before rolling) / (sheet thickness after rolling).
(2) have contact to the hot rolling of the steel plate (1), the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, each rolling pass in a temperature range of 850 ° C. or less The average strain rate is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more, the time between each rolling pass is 4.0 seconds or less, and rolling in a temperature range of 900 ° C. or more is logarithmic strain. A method for producing a non-oriented electrical steel sheet, characterized by having a logarithmic strain or less by rolling in a temperature range of 0 ° C. or lower and 500 ° C. or higher and 850 ° C. or lower.
(3) (1) or (2) have contact to the hot rolling of steel, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the temperature range at 850 ° C. or less The average strain rate of each rolling pass is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more, the time between each rolling pass is 4.0 seconds or less, and the temperature range is 850 ° C. or more and 900 ° C. or less. A method for producing a non-oriented electrical steel sheet, wherein rolling is logarithmic strain of 0.5 or less.
(4) (1) to (3) have contact to the hot rolling of steel, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the temperature range at 850 ° C. or less The average strain rate of each rolling pass is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more, the time between each rolling pass is 4.0 seconds or less, and rolling in a temperature range of 900 ° C. or more A method for producing a non-oriented electrical steel sheet, wherein an average strain rate of a rolling pass is 10 / s or less.
(5) (1) to (4) have contact to the hot rolling of steel, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the temperature range at 850 ° C. or less Each rolling pass has an average strain rate of 30 / s or more, each log pass has an average logarithmic strain of 0.2 or more, and each rolling pass has a time of 4.0 seconds or less. A method for producing a non-oriented electrical steel sheet, wherein an average logarithmic strain of a rolling pass is 0.5 or less.
(6) (1) to (5) have contact to the hot rolling of steel, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the temperature range at 850 ° C. or less Each rolling pass has an average strain rate of 30 / s or more, each log pass has an average logarithmic strain of 0.2 or more, and each rolling pass has a time of 4.0 seconds or less. The method for producing a non-oriented electrical steel sheet, wherein a time between rolling passes is 10.0 seconds or more.
(7) (1) to have contact to the hot rolling of the steel plate (6), the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the temperature range at 850 ° C. or less Rolling in a temperature range of 900 ° C. or more is completed by setting the average strain rate of each rolling pass to 30 / s or more, the average logarithmic strain of each rolling pass to 0.2 or more, and the time between each rolling pass to 4.0 seconds or less. A method for producing a non-oriented electrical steel sheet, characterized in that the time until starting rolling in a temperature range of 850 ° C. or lower is 10 seconds or longer.
(8) A method for producing a non-oriented electrical steel sheet, wherein the slab heating temperature in hot rolling is 1100 ° C. or lower among the steel sheets of (1) to (7).

本発明によれば鉄損値および磁束密度の板面内平均値が良好でかつ板面内異方性が極めて小さい無方向性電磁鋼板が製造できる。   According to the present invention, it is possible to produce a non-oriented electrical steel sheet having a good iron loss value and average value of magnetic flux density in the plate surface and extremely small in-plane anisotropy.

本発明者らは無方向性電磁鋼板の板面内異方性を低減する方法を検討した結果、
(1)質量%で、C:0.040%以下、Si:0.05〜3.5%、Mn:3.0%以下、Al:3.5%以下、S:0.015%以下、P:0.25%以下、N:0.040%以下を含む溶鋼を鋳造で厚さ50mm以上の鋼片に凝固させる、
(2)500℃以上850℃以下の低温域での圧延について、付与する歪量を高歪量、歪速度を高歪速度、複数回にわたり歪を付与する場合の間隔を短くするように制御する、
と言う製造方法により、また好ましくはさらに、
(3)850℃以上900℃以下の中温域での圧延について、付与する歪量を極低歪量に制御する、
(4)900℃以上の高温域での圧延について、付与する歪量を低歪量、歪速度を低歪速度、複数回にわたり歪を付与する場合の間隔を長くするように制御する、
(5)上記の高温域での圧延の終了後、低温域での圧延を開始するまでの時間を一定時間以上とする、
(6)さらには熱間圧延のスラブ加熱温度を1100℃以下とする
と言う製造方法により達成できることを知見した。以下に詳細に説明する。
As a result of examining the method for reducing the in-plane anisotropy of the non-oriented electrical steel sheet,
(1) In mass%, C: 0.040% or less, Si: 0.05 to 3.5%, Mn: 3.0% or less, Al: 3.5% or less, S: 0.015% or less, Molten steel containing P: 0.25% or less and N: 0.040% or less is solidified into a steel piece having a thickness of 50 mm or more by casting.
(2) For rolling in a low temperature range of 500 ° C. or more and 850 ° C. or less, control is performed so that the strain amount to be applied is a high strain amount, the strain rate is a high strain rate, and the interval when strain is applied multiple times is shortened. ,
And preferably further according to the manufacturing method
(3) For rolling in the middle temperature range of 850 ° C. or more and 900 ° C. or less, the amount of strain to be applied is controlled to an extremely low strain amount.
(4) For rolling in a high temperature range of 900 ° C. or higher, control the strain amount to be applied to be a low strain amount, the strain rate to be a low strain rate, and to increase the interval when strain is applied multiple times.
(5) After completion of the rolling in the high temperature region, the time until the rolling in the low temperature region is started is a certain time or more.
(6) Further, it has been found that this can be achieved by a production method in which the slab heating temperature in hot rolling is 1100 ° C. or lower. This will be described in detail below.

始めに、本発明鋼の成分をその限定理由とともに説明する。含有量はすべて質量%である。   First, the components of the steel of the present invention will be described together with the reasons for limitation. All the contents are mass%.

Cは本発明のように熱間圧延温度が低い材料では、特に結晶方位を好ましく制御し磁束密度を向上させる効果が強く現れるので通常の無方向性電磁鋼板よりやや高めに制御した方が特性向上が期待できるが、過度なC含有は磁気特性を劣化させるので0.040%以下とする。好ましくは0.030〜0.0001%、さらに好ましくは0.020〜0.0005%、さらに好ましくは0.010〜0.0010%、さらに好ましくは0.008〜0.0015%である。   C is a material with a low hot rolling temperature as in the present invention, and the effect of improving the magnetic flux density by controlling the crystal orientation is particularly strong. Therefore, it is better to control the characteristics slightly higher than ordinary non-oriented electrical steel sheets. However, excessive C content degrades the magnetic properties, so the content is made 0.040% or less. Preferably it is 0.030-0.0001%, More preferably, it is 0.020-0.0005%, More preferably, it is 0.010-0.0010%, More preferably, it is 0.008-0.0015%.

Siは、鋼板の電気抵抗を高め鉄損を低減することがよく知られており、電磁鋼板では当然のごとく添加される元素である。従来の熱延低温大圧下を適用した技術ではSi含有量の上限が非常に低く抑えられていたが本発明における最適化された熱延条件を適用すればこの制限は無用となり、現状の一般的なSi含有量のすべての電磁鋼板への適用が可能となる。磁気特性と通板性の兼ね合いから0.05〜3.5%とする。0.05%未満では良好な磁気特性が得られず、3.5%を超えると脆化のため製造工程での通板性が顕著に劣化する。好ましくは0.3〜3.2%、さらに好ましくは0.5〜3.0%、さらに好ましくは0.8〜2.5%である。   Si is well known to increase the electrical resistance of a steel sheet and reduce iron loss, and is an element that is naturally added to electromagnetic steel sheets. Although the upper limit of the Si content has been kept very low in the conventional technology using hot rolling and low temperature, this limitation becomes useless if the optimized hot rolling conditions in the present invention are applied. Application to all electrical steel sheets having a simple Si content is possible. In view of the balance between magnetic properties and sheet passing properties, the content is set to 0.05 to 3.5%. If it is less than 0.05%, good magnetic properties cannot be obtained, and if it exceeds 3.5%, the plate-passability in the production process is significantly deteriorated due to embrittlement. Preferably it is 0.3-3.2%, More preferably, it is 0.5-3.0%, More preferably, it is 0.8-2.5%.

Mnは、Sと反応し硫化物を形成するため本発明では重要な元素である。通常Mnが中途半端に少ない場合には熱間圧延中に微細なMnSが析出し鉄損および磁束密度を著しく劣化させる場合がある。しかし、本発明においては熱間圧延条件を特定の範囲で制御することで、この悪影響を回避する効果も現れることから、Mnの下限は特に設けない。一方、Mnは固溶Mnとして鋼板の電気抵抗を上昇させ鉄損を低減させる効果を有するが、あまりに多量に含有させると材料本来の飽和磁束密度を低下させてしまうため上限を3.0%とする。   Mn is an important element in the present invention because it reacts with S to form a sulfide. Usually, when Mn is little in the middle, fine MnS may precipitate during hot rolling, and iron loss and magnetic flux density may be remarkably deteriorated. However, in the present invention, by controlling the hot rolling conditions within a specific range, the effect of avoiding this adverse effect also appears, and therefore there is no particular lower limit for Mn. On the other hand, Mn has the effect of increasing the electric resistance of the steel sheet and reducing the iron loss as a solid solution Mn, but if it is contained too much, the original saturation magnetic flux density is lowered, so the upper limit is 3.0%. To do.

Alは、Siと同様、鋼板の電気抵抗を高め鉄損を低減する目的で積極的に添加される。AlもSiと同様に従来技術では上限が低い範囲に制限されていたが、本発明ではこの点での制限は不要である。Alが高くなると鋳造性が顕著に劣化するため3.5%以下とする。下限は特に設ける必要はなく、Al=0%でもよいが、0.01〜0.05%程度の量では微細なAlNを形成し磁気特性、特に鉄損を劣化させる場合があるので注意が必要である。好ましくは0.005%以下および0.1〜3.0%、さらに好ましくは0.003%以下および0.3〜2.5%、さらに好ましくは0.002%以下および0.5〜2.0%、さらに好ましくは0.001%以下および0.7〜1.5%である。   Al, like Si, is actively added for the purpose of increasing the electrical resistance of the steel sheet and reducing the iron loss. Al, like Si, is limited to a range where the upper limit is low in the prior art, but the present invention does not need to be limited in this respect. When Al becomes high, castability deteriorates remarkably, so 3.5% or less. The lower limit is not particularly required, and Al = 0% may be used. However, if the amount is about 0.01 to 0.05%, fine AlN may be formed to deteriorate magnetic characteristics, particularly iron loss. It is. Preferably it is 0.005% or less and 0.1-3.0%, More preferably, it is 0.003% or less and 0.3-2.5%, More preferably, it is 0.002% or less and 0.5-2. 0%, more preferably 0.001% or less and 0.7 to 1.5%.

Sは硫化物量に直接関係する。含有S量が多いと熱延条件を適当に制御したとしても析出量が多くなり粒成長性を阻害し特に鉄損を劣化させるため、上限は0.015%とする。なお、鋼板の磁気特性をより高めるためには、0.005%以下とすることが好しく、さらに好ましくは0.003%以下、さらに好ましくは0.002%以下、さらに好ましくは0.001%以下であり、0%でもよい。   S is directly related to the amount of sulfide. If the content of S is large, even if the hot rolling conditions are appropriately controlled, the amount of precipitation increases, which inhibits grain growth and particularly deteriorates iron loss. Therefore, the upper limit is made 0.015%. In order to further improve the magnetic properties of the steel sheet, it is preferably 0.005% or less, more preferably 0.003% or less, still more preferably 0.002% or less, and still more preferably 0.001%. It may be 0%.

Pは、磁気特性にとって好ましくない比較的低温で析出するCuまたはMnの硫化物の析出温度を上昇させる効果を有するので積極的に添加することが可能である。一方、鋼板の硬度を高め、打ち抜き性に強く影響するので、所望の打ち抜き硬度によりその添加量は制限される。また、過剰に含有すると冷延性などが顕著に劣化し鋼板の製造に支障をきたす場合があるので上限を0.25%とする。   P has the effect of increasing the precipitation temperature of Cu or Mn sulfide that precipitates at a relatively low temperature, which is undesirable for the magnetic properties, and therefore can be positively added. On the other hand, since the hardness of the steel sheet is increased and the punchability is strongly affected, the amount of addition is limited by the desired punch hardness. Further, if it is contained excessively, the cold-rollability and the like are remarkably deteriorated, which may hinder the production of the steel sheet, so the upper limit is made 0.25%.

Nは、Alを含有する鋼においては含有量が多いと窒化物が多くなり結晶粒成長性を阻害するため0.004%程度以下に低く制御されている。しかし、Al含有量を0.005%程度以下に抑えればこの悪影響は全く考慮する必要はない。むしろCと同様に鋼中に固溶することで結晶方位を好ましくする効果があるため積極的に添加することも可能である。ただし、過剰な添加は磁気時効性の問題や溶鋼からの凝固時に生成するミクロボイドに起因する鋼板欠陥が多発するため上限を0.040%とする。生産性を考慮し好ましくは0.020%以下、さらに好ましくは0.015%以下とする。結晶方位制御の観点からは0.0002%以上とすることが好ましく、さらに好ましくは0.0005%以上、さらに好ましくは0.001%以上、さらに好ましくは0.0015%以上、さらに好ましくは0.003%以上、さらに好ましくは0.005%以上である。   In the steel containing Al, N is controlled to a low level of about 0.004% or less because a large amount of nitride increases the amount of nitride and hinders crystal grain growth. However, if the Al content is suppressed to about 0.005% or less, this adverse effect does not need to be considered at all. Rather, since it has the effect of favoring the crystal orientation by dissolving in steel as in C, it can also be added positively. However, excessive addition causes a problem of magnetic aging and steel plate defects due to microvoids generated during solidification from molten steel, so the upper limit is made 0.040%. Considering productivity, it is preferably 0.020% or less, more preferably 0.015% or less. From the viewpoint of controlling the crystal orientation, the content is preferably 0.0002% or more, more preferably 0.0005% or more, still more preferably 0.001% or more, still more preferably 0.0015% or more, and still more preferably 0.00. It is 003% or more, more preferably 0.005% or more.

この他にNi,Cr,Cu,Ca,Mg,REM,Sn,Sb、Ti,Nb,V,Mo等、従来の無方向性電磁鋼板において添加が検討されている元素を想定されている量程度まで添加することは本発明にとって何ら影響を及ぼすものではない。また、不可避的に含有されたこれら元素、さらには他の各種の微量元素が含まれる場合も本発明の効果になんら影響を与えるものではない。言い換えればこれらの元素の影響にあえて言及するまでもなく、本発明で開示している製造工程において何ら問題なく製品を得ることができる。   In addition, Ni, Cr, Cu, Ca, Mg, REM, Sn, Sb, Ti, Nb, V, Mo, and other elements that are considered to be added in conventional non-oriented electrical steel sheets Addition of up to has no effect on the present invention. In addition, the effects of the present invention are not affected at all when these elements inevitably contained, and also various other trace elements are contained. In other words, needless to mention the influence of these elements, a product can be obtained without any problems in the production process disclosed in the present invention.

次に本発明の重要な制限要因である製造条件について説明する。   Next, manufacturing conditions that are important limiting factors of the present invention will be described.

本発明の無方向性電磁鋼板は、上述した成分からなる溶鋼を鋳造して鋼片とし、熱間圧延し、酸洗し、冷間圧延し、再結晶焼鈍することで得られる。工程の概略は通常の工程と大きく異なるものではないが、熱延条件は通常の条件とは大きく異なる。   The non-oriented electrical steel sheet of the present invention can be obtained by casting molten steel comprising the above-described components into a steel piece, hot rolling, pickling, cold rolling, and recrystallization annealing. The outline of the process is not greatly different from the normal process, but the hot rolling conditions are significantly different from the normal conditions.

特に、熱延で圧延による歪が付与される温度域が本発明での重要な要件であって、これを発明範囲内に制御することで本発明の効果を得ることができる。   In particular, the temperature range in which strain due to rolling is imparted by hot rolling is an important requirement in the present invention, and the effect of the present invention can be obtained by controlling this within the scope of the invention.

すなわち、熱間での圧延の大きな部分が、500〜850℃の温度範囲で行われる必要がある。この温度域を以下の説明では低温域と呼ぶ。本発明の効果を十分に得るには低温域で付与される歪が対数歪で1.0以上である必要がある。温度範囲が低すぎると圧延が困難となり、高すぎると本発明の効果が消失する。圧延性の観点から温度範囲の下限は好ましくは550℃、さらに好ましくは600℃、さらに好ましくは650℃である。同様に発明の効果の観点から温度範囲の上限は好ましくは820℃、さらに好ましくは780℃、さらに好ましくは750℃である。750℃以下であれば本発明の効果を非常に顕著に得ることが可能となる。この温度域で圧延を行えば極端な低速、軽圧下パススケジュールでない限り加工発熱により好ましい温度域を保つことも可能となる。このような低温度域で付与する歪は好ましくは1.5以上、さらに好ましくは2.0以上、さらに好ましくは2.5以上、さらに好ましくは3.0以上、さらに好ましくは3.3以上である。この低温域で付与される歪の効果は大まかには先行技術1,2で開示されているような熱延での歪の蓄積によるものと考えて間違いはない。ただし、本発明においては以下で詳述する高温、中温域で付与する歪、また低温域をも含めた歪速度や連続パスにおける回復、再結晶による歪の消失等を考慮することで、この効果をより顕著に得ようとするものである。   That is, a large portion of hot rolling needs to be performed in a temperature range of 500 to 850 ° C. This temperature range is referred to as a low temperature range in the following description. In order to sufficiently obtain the effects of the present invention, the strain applied in the low temperature range needs to be 1.0 or more in logarithmic strain. If the temperature range is too low, rolling becomes difficult, and if it is too high, the effect of the present invention is lost. From the viewpoint of rollability, the lower limit of the temperature range is preferably 550 ° C, more preferably 600 ° C, and further preferably 650 ° C. Similarly, from the viewpoint of the effect of the invention, the upper limit of the temperature range is preferably 820 ° C, more preferably 780 ° C, and further preferably 750 ° C. If it is 750 degrees C or less, the effect of this invention can be acquired very notably. If rolling is performed in this temperature range, it is possible to maintain a preferable temperature range by processing heat generation unless it is an extremely low speed and light pressure pass schedule. The strain applied in such a low temperature range is preferably 1.5 or more, more preferably 2.0 or more, more preferably 2.5 or more, more preferably 3.0 or more, and further preferably 3.3 or more. is there. There is no doubt that the effect of strain applied in this low temperature range is roughly due to strain accumulation in hot rolling as disclosed in the prior arts 1 and 2. However, in the present invention, this effect is considered by considering the strain applied in the high temperature and medium temperature ranges described in detail below, the strain rate including the low temperature range, recovery in a continuous pass, the disappearance of strain due to recrystallization, and the like. Is to be obtained more prominently.

本発明ではこの低温域で付与される歪の歪速度、複数回で付与する場合の時間的な間隔が重要な意味を有する。通常は連続的な多パスの圧延で歪が付与されるのでこれを想定して以下に記述する。低温域での圧延について各圧延パスの歪速度の平均が30/s以上である必要がある。これ以下では圧延温度を非常に低温にする必要が生じ圧延性に問題を生じるばかりでなく、トータルの必要歪量も増大し熱延負荷が大きくなる。さらに例えば低歪速度で低温大圧下を行った場合には磁気特性の板面内異方性はそれほど小さくならず、本発明の効果を得られなくなる。好ましくは50/s以上、さらに好ましくは70/s以上、さらに好ましくは100/s以上である。   In the present invention, the strain rate of the strain applied in this low temperature range and the time interval when applied multiple times are important. Usually, since distortion is given by continuous multi-pass rolling, this will be described below. For rolling in a low temperature region, the average strain rate of each rolling pass needs to be 30 / s or more. Below this, it is necessary to make the rolling temperature very low, which not only causes problems in rollability, but also increases the total required strain and increases the hot rolling load. Furthermore, for example, when low temperature large pressure reduction is performed at a low strain rate, the in-plane anisotropy of the magnetic properties is not so small, and the effect of the present invention cannot be obtained. Preferably it is 50 / s or more, More preferably, it is 70 / s or more, More preferably, it is 100 / s or more.

また、低温域での圧延について各圧延パスの対数歪の平均を0.2以上とする。これは上記と同様に本発明効果の特徴である特性の板面内異方性を小さくするには低温域での歪はできるだけ一気に付与することが好ましいからである。好ましくは0.3以上、さらに好ましくは0.4以上、さらに好ましくは0.5以上である。   Moreover, the average of the logarithmic distortion of each rolling pass shall be 0.2 or more about rolling in a low temperature range. This is because it is preferable to apply the strain in the low temperature region as quickly as possible in order to reduce the in-plane anisotropy of the characteristics that are the characteristics of the present invention as described above. Preferably it is 0.3 or more, More preferably, it is 0.4 or more, More preferably, it is 0.5 or more.

さらに低温域での圧延について各圧延パス間の時間を4.0秒以下とする。これは上記と同様に本発明効果の特徴である特性の板面内異方性を小さくするには低温域での歪はできるだけ一気に付与することが好ましいからである。低温域とは言えこの温度域では圧延直後に回復、再結晶が進行するため本発明が目的とする歪の蓄積が効率的に起きなくなり、特に再結晶が過度に進行する場合には本発明の効果が全く失われてしまう。好ましくは3秒以下、さらに好ましくは2秒以下、さらに好ましくは1秒以下である。   Furthermore, the time between rolling passes is set to 4.0 seconds or less for rolling in a low temperature region. This is because it is preferable to apply the strain in the low temperature region as quickly as possible in order to reduce the in-plane anisotropy of the characteristics that are the characteristics of the present invention as described above. Although it is in a low temperature range, recovery and recrystallization proceed immediately after rolling in this temperature range, so that the accumulation of strain intended by the present invention does not occur efficiently, especially when recrystallization proceeds excessively. The effect is completely lost. Preferably it is 3 seconds or less, More preferably, it is 2 seconds or less, More preferably, it is 1 second or less.

このように低温域での圧延条件を制御することによる板面内異方性低減の効果の発現に関するメカニズムは明確ではないが、低温域で付与される歪の効果は単にマクロな歪量だけではなく、ミクロな回復、再結晶挙動も考慮する必要があることを示唆していると予想される。特に、近年の材料のように極低C、N、S化に加え、TiやCu等のトランプエレメントまでも含めて高純度化された材料では、回復、再結晶挙動が従来材以上に早く起きるようになりこのような考慮が重要になったと思われる。   Although the mechanism regarding the manifestation of the effect of reducing the in-plane anisotropy by controlling the rolling conditions in the low temperature region is not clear, the effect of the strain imparted in the low temperature region is not just the macro strain amount. This suggests that it is necessary to consider microrecovery and recrystallization behavior. In particular, in addition to ultra-low C, N, and S, as in recent materials, high-purity materials including Ti and Cu and other trump elements cause recovery and recrystallization behavior faster than conventional materials. It seems that such consideration has become important.

また、本発明の効果は高温度域での圧延歪を適当量付与することでより顕著となる。つまり900℃以上の温度域で軽圧下することが好ましい。この温度域を以下の説明では高温域と呼ぶ。この温度は好ましくは950℃以上であるが、後述のようにあまりに高温だと問題を生ずる場合があるので注意が必要である。好ましくは1100℃以下、さらに好ましくは1050℃以下である。   In addition, the effect of the present invention becomes more remarkable by imparting an appropriate amount of rolling strain in a high temperature range. That is, it is preferable to lightly reduce in the temperature range of 900 ° C. or higher. This temperature range is referred to as a high temperature range in the following description. This temperature is preferably 950 ° C. or higher, but care should be taken because it may cause problems if it is too high as described later. Preferably it is 1100 degrees C or less, More preferably, it is 1050 degrees C or less.

この高温域で付与される歪を3.0以下とする。ただし、本発明の効果はあくまでも低温域での大きな歪によって発現するものであるから、高温域での歪が低温域での歪を上回ってはならない。歪量は好ましくは2.0以下、さらに好ましくは1.5以下、さらに好ましくは1.0以下、さらに好ましくは0.5以下である。下限は最終製品の異方性をより小さくするとともに特に非変態鋼で問題となるリジングを抑制するため好ましくは0.1以上、さらに好ましくは0.2以上、さらに好ましくは0.3以上とする。ただし、この好ましい範囲は高温域内での温度や後述の歪速度、パス間時間等にも依存するものである。歪速度は高温域で付与される圧延について各圧延パスの平均で10/s以下とする。好ましくは8以下である。多パスで圧延される場合には各圧延パスの対数歪の平均を0.5以下とする。好ましくは0.3以下である。さらに各パス間時間を10.0秒以上とすることが好ましい。   The strain applied in this high temperature range is 3.0 or less. However, since the effect of the present invention is manifested only by a large strain in the low temperature region, the strain in the high temperature region must not exceed the strain in the low temperature region. The amount of strain is preferably 2.0 or less, more preferably 1.5 or less, still more preferably 1.0 or less, and still more preferably 0.5 or less. The lower limit is preferably 0.1 or more, more preferably 0.2 or more, and even more preferably 0.3 or more in order to reduce the anisotropy of the final product and to suppress ridging that is a problem particularly in non-transformed steel. . However, this preferable range depends on the temperature in the high temperature range, the strain rate described later, the time between passes, and the like. The strain rate is 10 / s or less in average for each rolling pass for rolling applied in a high temperature region. Preferably it is 8 or less. When rolling in multiple passes, the average logarithmic strain of each rolling pass is 0.5 or less. Preferably it is 0.3 or less. Furthermore, it is preferable that the time between passes is 10.0 seconds or more.

この高温域で付与する歪の効果は鋳造時に形成される柱状組織に起因する集合組織を破壊し板面内異方性を小さくするとともに、従来技術で問題とされていたリジング、結晶模様といった表面欠陥を回避する効果を有する。このメカニズムは明らかではないが、単に鋳造時の柱状組織を出発点にしたり、低温域での圧延開始前の結晶粒径を粗大化したのでは結晶の選択性が非常に狭くなってしまい{100}方位の中でも特定の板面内方位を持つ方位が優先的に出現してしまうためと考えられる。高温域で適当な歪を付与することで適度な結晶回転と組織の再生成が起き、最終的な方位選択性において磁気特性に好ましくない{111}方位が顕著に減少するとともに、ランダムな{100}が多数成長し、リジングや板面内異方性の改善が図られるものと思われる。ただし、この組織の破壊が過剰となると冷延後、焼鈍時の最終的な再結晶時に{100}方位が生成するための核も消失することになる。このため過剰な歪の蓄積は避ける必要があり、上述のような範囲に制限する必要が生ずる。   The effect of strain imparted in this high temperature range is to destroy the texture due to the columnar structure formed during casting and reduce the in-plane anisotropy, as well as the surface of ridging and crystal patterns that have been problematic in the prior art It has the effect of avoiding defects. Although this mechanism is not clear, if the columnar structure at the time of casting is simply used as a starting point, or if the crystal grain size before the start of rolling in a low temperature region is increased, the crystal selectivity becomes very narrow {100 } It is considered that an orientation having a specific in-plane orientation appears preferentially among the orientations. Appropriate strain is applied in a high temperature range to cause appropriate crystal rotation and restructuring, and the {111} orientation, which is undesirable for magnetic properties in the final orientation selectivity, is significantly reduced, and random {100 } Grow in large numbers, and it seems that ridging and in-plane anisotropy can be improved. However, if the destruction of the structure becomes excessive, nuclei for generating {100} orientations will disappear after the cold rolling and at the time of final recrystallization during annealing. For this reason, it is necessary to avoid the accumulation of excessive distortion, and it is necessary to limit to the above-described range.

定性的には低温域での圧延とは逆に歪をゆっくりと付与することが好ましい。注意を要するのは歪を付与する温度と歪速度、歪量との関係で圧延直後に急速な再結晶が起きる場合があることである。特に温度が高いと再結晶率が短時間に上昇し鋼板の結晶粒が新たな最結晶粒で埋め尽くされてしまうと最終的な冷延、焼鈍時に本発明が目的とする{100}方位への集積が顕著に低下し本発明の効果が失われる場合がある。この現象は再結晶挙動に影響を及ぼす鋼成分等にも強く依存するため温度等を一義的に厳密に限定することは困難ではあるが、当業者であれば数回の試行の後に避けるべき条件を特定することは何ら困難なことではない。   Qualitatively, it is preferable to apply strain slowly, contrary to rolling in a low temperature region. It should be noted that rapid recrystallization may occur immediately after rolling due to the relationship between the straining temperature, strain rate, and strain. In particular, when the temperature is high, the recrystallization rate rises in a short time, and when the crystal grains of the steel plate are filled with new maximum crystal grains, the final {100} orientation is intended for cold rolling and annealing. In some cases, the effect of the present invention is lost. This phenomenon is also strongly dependent on the steel components that affect the recrystallization behavior, so it is difficult to strictly limit the temperature etc. unconditionally, but those skilled in the art should avoid conditions after several trials. It is not difficult to identify.

本発明の製造条件の特徴の一つは圧延を避けるべき温度域が存在することである。具体的には850℃以上900℃以下の温度域、以下中温域と呼ぶ、で付与する歪を0.5以下にする必要がある。温度としては好ましくは800℃以上950℃以下、歪としては好ましくは0.3以下、さらに好ましくは0.1以下、可能であれば中温域での圧下はすべきではない。   One of the characteristics of the production conditions of the present invention is that there exists a temperature range where rolling should be avoided. Specifically, the strain applied in the temperature range from 850 ° C. to 900 ° C., hereinafter referred to as the intermediate temperature range, needs to be 0.5 or less. The temperature is preferably 800 ° C. or more and 950 ° C. or less, the strain is preferably 0.3 or less, more preferably 0.1 or less, and if possible, the reduction in the middle temperature range should not be performed.

この理由は明確ではないが、Si、Al含有量が比較的低い変態系の材料ではこの温度域が変態領域であり、少なからず二相領域となっていることと関係していると思われ、また、非変態系の材料でも上述のように高温域で付与される歪の役割と低温域で付与される歪の役割が重畳する温度域であり、歪によるミクロな組織変化が複雑化し本発明が必要とする特定方位の組織の破壊、再結晶核の選択性の拡大、および高歪の蓄積が有効に起きず、これらの制御を無意味にしてしまうことにあると思われる。この温度域は厳密には鋼成分等に影響されるものであるが本発明では本発明内の成分鋼のすべてについて850℃以上950℃以下と限定する。このような加工が好ましくない温度域が存在することから実生産上、この温度域を冷却して過ごす必要が生ずる。   The reason for this is not clear, but it is considered that this temperature range is a transformation region in a transformation system material having a relatively low Si and Al content, and that it is related to the fact that it is a two-phase region. Further, even in a non-transformed material, as described above, it is a temperature range in which the role of strain imparted in a high temperature range and the role of strain imparted in a low temperature range overlap, and the microstructural change due to strain is complicated, and the present invention It seems that the destruction of the structure of a specific orientation required by the material, the enhancement of the selectivity of recrystallization nuclei, and the accumulation of high strain do not occur effectively, making these controls meaningless. Strictly speaking, this temperature range is affected by steel components and the like, but in the present invention, all the component steels in the present invention are limited to 850 ° C. or higher and 950 ° C. or lower. Since there exists a temperature range in which such processing is not preferable, it is necessary to cool this temperature range in actual production.

これに対応して、上述の高温域と低温域での歪付与の間に10秒以上の時間を経過させることが好ましい。条件によってはこれ以下の時間で冷却を完了できる場合も考えられるが、上述のように高温域で付与される歪と低温域で付与される歪の発明効果への違いを考慮するとこれが重畳することは好ましくなく、高温域で付与した歪が十分に消失した後に低温域での歪を付与することが好ましい。これに必要な時間として高温域での圧延が終了した後、低温域での圧延を開始するまでの時間を10秒以上とすることが好ましい。   Correspondingly, it is preferable that a time of 10 seconds or more elapses between the strain application in the high temperature range and the low temperature range. Depending on the conditions, it may be possible to complete the cooling in a time shorter than this, but this overlaps in consideration of the difference in the invention effect between the strain applied in the high temperature region and the strain applied in the low temperature region as described above. Is not preferable, and it is preferable to apply the strain in the low temperature region after the strain applied in the high temperature region has sufficiently disappeared. As the time required for this, it is preferable that the time from the end of rolling in the high temperature range to the start of rolling in the low temperature range be 10 seconds or more.

また、熱間圧延時のスラブの加熱温度は1100℃以下とすることが好ましい。これは析出物、特に硫化物、窒化物を粗大化させ無害化し鉄損を低減するのに効果的であるとともに、本発明の特徴である低温圧延に好ましい熱履歴となるからである。つまり、通常の熱延条件のように1100℃以上でスラブを加熱してしまうと本発明で必要な圧延の大部分が低温域で行われるような熱履歴をとろうとすると、加熱炉からスラブを取り出した後、冷却を行う必要が生じ、コスト、生産性を阻害することになるためである。好ましくは1050℃以下、さらに好ましくは1000℃以下とする。   Moreover, it is preferable that the heating temperature of the slab at the time of hot rolling shall be 1100 degrees C or less. This is because the precipitates, particularly sulfides and nitrides are coarsened to be harmless and effective in reducing iron loss, and the thermal history is favorable for low temperature rolling, which is a feature of the present invention. In other words, if the slab is heated at 1100 ° C. or higher as in normal hot rolling conditions, the slab is removed from the heating furnace to obtain a heat history such that most of the rolling required in the present invention is performed in a low temperature range. This is because it is necessary to perform cooling after taking out, which hinders cost and productivity. Preferably it is 1050 degrees C or less, More preferably, it is 1000 degrees C or less.

熱延終了後のコイルの巻取り温度は通常、高くすることで磁気特性の向上が図られるが、本発明では巻取り温度を低くしても本発明の効果をより好ましく得ることができる。好ましくは750℃以下、さらに好ましくは700℃以下、さらに好ましくは650℃以下、さらに好ましくは600℃以下、さらに好ましくは550℃以下で、室温程度の巻取りでも本発明の効果は何ら損なわれるものではない。このような低温巻取り材では本発明の特徴である低温での大圧下圧延と相俟って熱延組織は完全な加工組織となる。通常の電磁鋼板ではこのような熱延鋼板での加工組織の残存は磁気特性を顕著に劣化させるものとして避けられるが、本発明ではむしろこのような組織により非常に小さな板面内異方性が発現する。もちろん、高温巻取、熱延板焼鈍等を行っても発明の効果が失われるものではない。   Normally, the coil winding temperature after hot rolling is increased to improve the magnetic characteristics. However, in the present invention, the effect of the present invention can be obtained more preferably even if the winding temperature is lowered. Preferably it is 750 ° C. or lower, more preferably 700 ° C. or lower, more preferably 650 ° C. or lower, more preferably 600 ° C. or lower, more preferably 550 ° C. or lower. is not. In such a low-temperature winding material, the hot-rolled structure becomes a complete processed structure in combination with large-scale rolling at a low temperature, which is a feature of the present invention. In a normal electromagnetic steel sheet, the remaining of the processed structure in such a hot-rolled steel sheet is avoided as a significant deterioration of the magnetic properties. In the present invention, however, such a structure has a very small in-plane anisotropy. To express. Of course, the effect of the invention is not lost even if hot winding, hot-rolled sheet annealing or the like is performed.

また、上のような現象の発現は付与される歪量に依存するため熱延前の鋼片の厚みがある程度以上必要となる。本発明では熱延前の鋼片の厚さを50mm以上とする。好ましくは100mm以上、さらに好ましくは150mm以上、さらに好ましくは200mm以上である。鋼片の厚さが50mm以下の場合は本発明範囲内の低温大圧下の熱延を行ったとしても、鋳造時の凝固に伴い形成される柱状組織に起因する{100}集合組織が残存し、よく知られているように特定方位の磁束密度は向上するものの、板面内の異方性は非常に大きくなる。この原因は明確ではないが、柱状組織に起因する非常に強い面内異方性を有する{100}方位を破壊するには本発明が特徴とする低温域での歪量が発明範囲内であったとしても十分なものとは言えず、熱延トータルでの大きな歪が必要なためと考えられる。   Further, since the occurrence of the above phenomenon depends on the applied strain amount, the thickness of the steel slab before hot rolling is required to some extent. In this invention, the thickness of the steel piece before hot rolling shall be 50 mm or more. Preferably it is 100 mm or more, More preferably, it is 150 mm or more, More preferably, it is 200 mm or more. When the thickness of the steel slab is 50 mm or less, even if hot rolling under low temperature and high pressure within the scope of the present invention is performed, {100} texture resulting from the columnar structure formed with solidification during casting remains. As is well known, although the magnetic flux density in a specific direction is improved, the anisotropy in the plate surface becomes very large. The cause of this is not clear, but the amount of strain in the low temperature range, which is a feature of the present invention, is within the scope of the invention in order to destroy the {100} orientation having very strong in-plane anisotropy caused by the columnar structure. Even if this is not sufficient, it is considered that a large strain is required in the total hot rolling.

鋼片の製造工程は特に限定しないが、通常の溶製工程から連続鋳造で製造されることが現状ではコスト面から最良である。   The manufacturing process of the steel slab is not particularly limited, but it is best from the viewpoint of cost that it is manufactured by continuous casting from a normal melting process.

酸洗以降の製造工程は何ら特殊なものである必要はなく、通常の無方向性電磁鋼板の製造方法と同様で本発明の効果を得ることができる。   The manufacturing process after pickling does not need to be special at all, and the effects of the present invention can be obtained in the same manner as in a normal method for manufacturing a non-oriented electrical steel sheet.

冷間圧延条件は特に限定されるものではないが、通常の生産工程を考え50%以上とする。メカニズムを考えると冷間圧延でも本発明の熱間圧延の代替になりうる可能性も考えられるが、冷間圧延で対数歪3.0(冷延率95%)以上を付与することは圧延性等を考えると困難となるため、本発明のような熱間域で歪を付与することが工業的には好ましいものと考えられる。何らかの方法によってこれ以上に冷延率が上げられたとしても本発明鋼においては冷間圧延の対数歪は3.0以下にとどめるべきである。と言うのは、これ以上の冷間歪を付与すると本発明の熱間での歪の効果に重畳して逆に{100}方位を弱化し、{100}方位の板面内のランダムさを損ねる場合があるからである。また、例えば熱延の全てを高温域で行った場合でも冷間圧延だけでは本発明鋼ほどの{100}方位の高い集積と板面内のランダムさを両立することは本発明者の検討範囲内では達成できていない。これは熱間での歪と冷間での歪の質の違いに起因するものと思われるが、このことからも本発明のように熱間での回復、再結晶といった速度論的な考慮が重要となったことは妥当であると考えられる。   Although the cold rolling conditions are not particularly limited, the normal production process is set to 50% or more. Considering the mechanism, there is a possibility that cold rolling can be an alternative to the hot rolling of the present invention, but it is possible to provide a logarithmic strain of 3.0 (cold rolling ratio of 95%) or more by cold rolling. Therefore, it is considered industrially preferable to impart strain in the hot region as in the present invention. Even if the cold rolling rate is further increased by some method, the logarithmic strain of cold rolling should be kept to 3.0 or less in the steel of the present invention. The reason is that if more cold strain is applied, the {100} orientation is weakened by superimposing on the effect of the hot strain of the present invention, and the randomness within the {100} orientation plate is reduced. This is because it may be damaged. Further, for example, even when all the hot rolling is performed in a high temperature region, it is possible to achieve both high accumulation of {100} orientation and randomness in the plate plane as much as the steel of the present invention only by cold rolling. It has not been achieved within. This seems to be due to the difference in the quality of strain between hot and cold, and this also gives consideration to kinetic considerations such as hot recovery and recrystallization as in the present invention. It is considered reasonable that it became important.

冷間圧延の後は通常の無方向性電磁鋼板と同様の工程で再結晶焼鈍、皮膜形成等が行われる。これらの条件は本発明の効果に関して特に限定されるものではない。   After cold rolling, recrystallization annealing, film formation, etc. are performed in the same steps as those for ordinary non-oriented electrical steel sheets. These conditions are not particularly limited with respect to the effects of the present invention.

なお、本発明の製造方法により仕上焼鈍を経て得られた無方向性電磁鋼板は、その後に歪取焼鈍を行ってもその優れた鉄損値および磁束密度を保持する。   In addition, the non-oriented electrical steel sheet obtained through finish annealing by the manufacturing method of the present invention retains its excellent iron loss value and magnetic flux density even after performing strain relief annealing.

また、本発明の効果は焼鈍後の歪の導入を抑えてモーターとして使用される、いわゆるフルプロセス無方向電磁鋼板は勿論、焼鈍後にスキンパス圧延を行いモーター等に組み立て後の熱処理工程での歪誘起粒成長現象を用いて特性の改善を行ういわゆるセミプロセス無方向電磁鋼板にも適用可能である。   The effect of the present invention is to suppress the introduction of strain after annealing, which is used as a motor, so-called full-process non-oriented electrical steel sheets, as well as to induce strain in the heat treatment process after assembling to a motor etc. by performing skin pass rolling after annealing. The present invention can also be applied to a so-called semi-processed non-oriented electrical steel sheet in which characteristics are improved by using grain growth.

さらに、磁気特性の更なる向上、強度、耐食性や疲労特性等の部材としての付加機能、また鋳造成や焼鈍通板性、スクラップ使用など製造工程上の生産等を向上させる目的でSn、W、Mo、Sb、Cr、Ni、Co等の微量元素を添加または不可避的に混入することは本発明の効果を何ら損なうものではない。   Furthermore, Sn, W, for the purpose of further improving the magnetic characteristics, additional functions as members such as strength, corrosion resistance and fatigue characteristics, as well as production in the manufacturing process such as casting, annealing, and scrap use Addition or inevitable mixing of trace elements such as Mo, Sb, Cr, Ni, Co does not impair the effects of the present invention.

0.002%C−0.5%Si−0.5%Mn−0.002%S−0.06%P−0%Al−0.002%N−Fe鋼を溶製し、これを連続鋳造で鋼片となし、熱延条件を表1のように変えて熱間圧延し、板厚2.2mmの熱延板を得た。熱延板を酸洗した後、0.50mmに冷延し、次いで750℃×30秒の連続焼鈍を実施し製品とした。この板より測定用サンプルを切り出し、歪取り焼鈍として750℃×2時間の熱処理を行い得られたサンプルの磁気特性を図1〜4に示す。ここで磁気特性は55mm×55mmの大きさのサンプルでコイルの圧延方向から0°、45°、90°の方向の特性を測定し、それぞれの値
0、X45、X90、に対し、板面内平均は、
(X0+2×X45+X90)/4
により評価し、また板面内異方性は、
(X0−2×X45+X90)/2
により評価した。
0.002% C-0.5% Si-0.5% Mn-0.002% S-0.06% P-0% Al-0.002% N-Fe steel was melted and continuously A steel slab was formed by casting, and hot rolling was performed while changing the hot rolling conditions as shown in Table 1 to obtain a hot rolled plate having a thickness of 2.2 mm. After pickling the hot-rolled sheet, it was cold-rolled to 0.50 mm and then subjected to continuous annealing at 750 ° C. for 30 seconds to obtain a product. A sample for measurement is cut out from this plate, and the magnetic properties of the sample obtained by heat treatment at 750 ° C. for 2 hours as strain relief annealing are shown in FIGS. Here, the magnetic properties were measured in the direction of 0 °, 45 °, and 90 ° from the coil rolling direction with a sample having a size of 55 mm × 55 mm, and for each value X 0 , X 45 , X 90 , The average in the plane is
(X 0 + 2 × X 45 + X 90 ) / 4
And the in-plane anisotropy is
(X 0 -2 × X 45 + X 90 ) / 2
It was evaluated by.

本発明熱延条件材での顕著な平均特性の向上と板面内異方性の低減が明確である。   The remarkable improvement in the average characteristics and reduction in the in-plane anisotropy of the hot-rolled condition material of the present invention are clear.

Figure 0004283687
Figure 0004283687

0.002%C−1.6%Si−0.1%Mn−0.001%S−0.02%P−0.2%Al−0.002%N−Fe鋼を溶製し、これを連続鋳造で鋼片となし、スラブ加熱温度を1150℃とし熱延温度域を変えて熱間圧延し、板厚2.3mmの熱延板を得た。熱延板を酸洗した後、0.50mmに冷延し、次いで950℃×30秒の連続焼鈍を実施し製品とした。この板より測定用サンプルを切り出し、歪取り焼鈍として750℃2時間の熱処理を行い得られたサンプルの磁束密度B50を実施例1と同様に測定し、板面内平均および板面内異方性を熱延時の低温域での歪量で整理した結果を図5、6に示す。本発明熱延条件による板面内平均値の向上と顕著な板面内異方性の低減が明確である。 0.002% C-1.6% Si-0.1% Mn-0.001% S-0.02% P-0.2% Al-0.002% N-Fe steel was melted. Was formed into a steel slab by continuous casting, the slab heating temperature was set to 1150 ° C., and hot rolling was performed while changing the hot rolling temperature range to obtain a hot rolled sheet having a thickness of 2.3 mm. After pickling the hot-rolled sheet, it was cold-rolled to 0.50 mm and then subjected to continuous annealing at 950 ° C. × 30 seconds to obtain a product. A sample for measurement was cut out from this plate, and the magnetic flux density B 50 of the sample obtained by heat treatment at 750 ° C. for 2 hours as strain relief annealing was measured in the same manner as in Example 1, and the plate surface average and plate surface anisotropic were measured. 5 and 6 show the results of arranging the properties by the amount of strain in the low temperature range during hot rolling. The improvement in the in-plane average value and the remarkable reduction in the in-plane anisotropy by the hot rolling conditions of the present invention are clear.

0.002%C−2.1%Si−0.3%Mn−0.001%S−0.06%P−0.3%Al−0.001%N−Fe鋼を溶製し、これを連続鋳造で鋼片となし、スラブ加熱温度を1100℃とし熱延温度域を変えて熱間圧延し、板厚2.0mmの熱延板を得た。熱延板を酸洗した後、0.35mmに冷延し、次いで1050℃×30秒の連続焼鈍を実施し製品とした。この板より得られたサンプルの磁束密度B10を実施例1と同様に測定し、板面内異方性を熱延時の高温域での歪量で整理した結果図7に示す。図中●は「低温域の歪>高温域での歪」であり、○は「低温域の歪<高温域での歪」となったものである。本発明熱延条件による顕著な板面内異方性の低減が明確である。 0.002% C-2.1% Si-0.3% Mn-0.001% S-0.06% P-0.3% Al-0.001% N-Fe steel was melted. Was formed into a steel slab by continuous casting, the slab heating temperature was set to 1100 ° C., and hot rolling was performed while changing the hot rolling temperature range to obtain a hot rolled sheet having a thickness of 2.0 mm. After pickling the hot-rolled sheet, it was cold-rolled to 0.35 mm, and then subjected to continuous annealing at 1050 ° C. for 30 seconds to obtain a product. The magnetic flux density B 10 of samples obtained from a plate were measured in the same manner as in Example 1, shows a plate surface anisotropy Results Figure 7 organized with the strain amount in a high temperature range of hot rolling. In the figure, ● represents “low-temperature strain> high-temperature strain”, and ○ represents “low-temperature strain <high-temperature strain”. The remarkable reduction in in-plane anisotropy due to the hot rolling conditions of the present invention is clear.

通常の無方向性電磁鋼板と同程度の0.001〜0.003%C−0.1〜1.5%Mn−0.0003〜0.003%S−0.01〜0.08%P−0.001〜0.003%Nの範囲の成分を有する鋼について、スラブ加熱温度を900℃〜1200℃とし、熱延条件を変えて熱間圧延し、板厚1.8〜3.0mmの熱延板を得た。この熱延板を酸洗した後、0.50mmに冷延し、次いで成分に応じ結晶粒径を60〜100μmの範囲内となるような温度で30秒の連続焼鈍を実施し製品とした。この板より得られたサンプルの磁束密度B10を実施例1と同様に測定し、板面内異方性をSi+Al量で整理した結果を図8に示す。図中●は低温域での歪量、歪速度、パス間時間、各パスの歪量、高温域での歪量、歪速度、パス間時間、各パスの歪量、中温域での歪量、高温域と低温域の歪量の比、高温域から低温域の圧延の間の時間の以上11項目について全て本発明範囲内の場合であり、○は上述の11項目について半数以上が発明範囲外にあるものである。本発明熱延条件の効果が広い範囲の材料に適用できると共に板面内異方性の低減効果が明確である。なお、図中の「*」はリジングがひどく鋼板表面の状態が良好でないことを示す。 0.001 to 0.003% C-0.1 to 1.5% Mn-0.0003 to 0.003% S-0.01 to 0.08% P comparable to that of ordinary non-oriented electrical steel sheets About steel having a component in the range of -0.001 to 0.003% N, the slab heating temperature is set to 900 ° C to 1200 ° C, hot rolling is performed under different hot rolling conditions, and the plate thickness is 1.8 to 3.0 mm. A hot rolled sheet was obtained. After this hot-rolled sheet was pickled, it was cold-rolled to 0.50 mm, and then subjected to continuous annealing for 30 seconds at a temperature such that the crystal grain size was in the range of 60 to 100 μm, depending on the components, to give a product. FIG. 8 shows the result of measuring the magnetic flux density B 10 of the sample obtained from this plate in the same manner as in Example 1 and arranging the in-plane anisotropy by the amount of Si + Al. In the figure, ● is the amount of strain in the low temperature range, strain rate, time between passes, amount of strain in each pass, amount of strain in the high temperature range, strain rate, time between passes, amount of strain in each pass, strain amount in the middle temperature range , The ratio of the strain amount between the high temperature region and the low temperature region, and the time between rolling from the high temperature region to the low temperature region are all within the scope of the present invention. It is outside. The effect of the hot rolling conditions of the present invention can be applied to a wide range of materials, and the effect of reducing in-plane anisotropy is clear. Note that “*” in the figure indicates that ridging is severe and the surface state of the steel sheet is not good.

表2に示す成分の鋼を溶製し、これを表3、表4(表3のつづき)に示す条件で連鋳スラブとなし、さらに熱間圧延、酸洗、冷延、連続焼鈍し製品とし特性評価した。鋼AについてはB50とW15/50、鋼BについてはB10とW10/400、鋼CについてはB10とW10/2000で評価を行った。この結果から、本発明範囲内にある鋼板は鉄損値および特に磁束密度の板面平均が良好で板面内異方性が極めて小さいことが判り、本発明条件の制御の有効性が明らかである。 Steels with the components shown in Table 2 are melted and made into continuous cast slabs under the conditions shown in Tables 3 and 4 (continued in Table 3), followed by hot rolling, pickling, cold rolling, and continuous annealing products. The characteristics were evaluated. Steel A was evaluated with B 50 and W 15/50 , Steel B with B 10 and W 10/400 , and Steel C with B 10 and W 10/2000 . From this result, it can be seen that the steel sheet within the scope of the present invention has a good iron loss value and particularly a plate surface average of magnetic flux density and extremely small in-plane anisotropy, and the effectiveness of the control of the present invention conditions is clear. is there.

Figure 0004283687
Figure 0004283687

Figure 0004283687
Figure 0004283687

Figure 0004283687
Figure 0004283687

熱延条件に対する磁束密度B50のグラフ。Graph of magnetic flux density B 50 against hot rolling conditions. 熱延条件に対する鉄損W15/50のグラフ。Graph of iron loss W 15/50 against hot rolling conditions. 熱延条件に対する磁束密度B50の面内異方性のグラフ。Plane graph of anisotropy of the magnetic flux density B 50 with respect to the hot rolling conditions. 熱延条件に対する鉄損W15/50の面内異方性のグラフ。Graph of in-plane anisotropy of iron loss W 15/50 against hot rolling conditions. 低温域での対数歪に対する磁束密度B50のグラフ。A graph of magnetic flux density B 50 against logarithmic strain in a low temperature range. 低温域での対数歪に対する磁束密度B50の面内異方性のグラフ。Plane graph of anisotropy of the magnetic flux density B 50 with respect to the logarithm distortion in the low-temperature region. 高温域での対数歪に対する磁束密度B10の面内異方性のグラフ。Plane graph of anisotropy of the magnetic flux density B 10 with respect to the logarithm distortion in a high temperature range. Si+Al含有量に対する磁束密度B10の面内異方性のグラフ。Plane graph of anisotropy of the magnetic flux density B 10 with respect to Si + Al content.

Claims (8)

質量%で、C:0.040%以下、Si:0.05〜3.5%、Mn:3.0%以下、Al:3.5%以下、S:0.015%以下、P:0.25%以下、N:0.040%以下を含む溶鋼を鋳造で厚さ50mm以上の鋼片に凝固させ、500℃以上850℃以下の温度域で対数歪で1.0以上の圧延を行い、熱間圧延における850℃以下の温度域での圧延について各圧延パスの歪速度の平均が30/s以上、各圧延パスの対数歪の平均が0.2以上、各圧延パス間時間が4.0秒以下、さらに酸洗後、圧下率50%以上の冷間圧延を行うことを特徴とする無方向性電磁鋼板の製造方法。ここで対数歪は、(圧延前の板厚)/(圧延後の板厚)の自然対数である。 In mass%, C: 0.040% or less, Si: 0.05 to 3.5%, Mn: 3.0% or less, Al: 3.5% or less, S: 0.015% or less, P: 0 Molten steel containing 25% or less and N: 0.040% or less is solidified by casting into a steel piece having a thickness of 50 mm or more, and rolling is performed at a logarithmic strain of 1.0 or more in a temperature range of 500 ° C. or more and 850 ° C. or less. In addition, in rolling in a temperature range of 850 ° C. or less in hot rolling, the average strain rate of each rolling pass is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more , and the time between each rolling pass is 4 A method for producing a non-oriented electrical steel sheet characterized by performing cold rolling at a reduction rate of 50% or more after pickling for 0.0 second or less and further pickling. Here, the logarithmic strain is a natural logarithm of (sheet thickness before rolling) / (sheet thickness after rolling). 請求項1の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下の温度域での各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延が対数歪で3.0以下かつ500℃以上850℃以下の温度域での圧延による対数歪以下であることを特徴とする無方向性電磁鋼板の製造方法。 And have you hot rolling of the steel sheet according to claim 1, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the average strain rate of the rolling pass in a temperature range of 850 ° C. or less 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more, the time between each rolling pass is 4.0 seconds or less , rolling in a temperature range of 900 ° C. or more is 3.0 or less in terms of logarithmic strain, and The manufacturing method of the non-oriented electrical steel sheet characterized by being below logarithmic strain by rolling in a temperature range of 500 ° C or higher and 850 ° C or lower. 請求項1、2の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、850℃以上900℃以下の温度域での圧延が対数歪で0.5以下であることを特徴とする無方向性電磁鋼板の製造方法。 And have you hot rolling of the steel sheet according to claim 1, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the average of each rolling pass the temperature range at 850 ° C. or less The strain rate is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more, the time between each rolling pass is 4.0 seconds or less, and rolling in the temperature range of 850 ° C. to 900 ° C. is logarithmic strain. The manufacturing method of the non-oriented electrical steel sheet characterized by being 0.5 or less. 請求項1〜3の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延について各圧延パスの歪速度の平均が10/s以下であることを特徴とする無方向性電磁鋼板の製造方法。 And have you hot rolling of the steel sheet of claims 1 to 3, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the average of each rolling pass the temperature range at 850 ° C. or less The strain rate is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more, the time between each rolling pass is 4.0 seconds or less, and the strain rate of each rolling pass for rolling in a temperature range of 900 ° C. or more. The method of manufacturing a non-oriented electrical steel sheet, characterized in that the average is 10 / s or less. 請求項1〜4の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延について各圧延パスの対数歪の平均が0.5以下であることを特徴とする無方向性電磁鋼板の製造方法。 And have you hot rolling of the steel sheet of claims 1 to 4, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the average of each rolling pass the temperature range at 850 ° C. or less The strain rate is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more, the time between each rolling pass is 4.0 seconds or less, and the logarithmic strain of each rolling pass for rolling in a temperature range of 900 ° C. or more. The method of manufacturing a non-oriented electrical steel sheet, characterized in that the average of 請求項1〜5の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延について各圧延パス間の時間が10.0秒以上であることを特徴とする無方向性電磁鋼板の製造方法。 And have you hot rolling of the steel sheet of claims 1 to 5, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the average of each rolling pass the temperature range at 850 ° C. or less The strain rate is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more, the time between each rolling pass is 4.0 seconds or less, and the time between rolling passes for rolling in a temperature range of 900 ° C. or more. Is 10.0 seconds or more, The manufacturing method of the non-oriented electrical steel sheet characterized by the above-mentioned. 請求項1〜6の鋼板のうち熱間圧延において、500℃以上850℃以下の温度域での圧延対数歪を1.0以上とし、850℃以下での温度域の各圧延パスの平均歪速度を30/s以上、各圧延パスの平均対数歪を0.2以上、各圧延パス間時間を4.0秒以下とし、900℃以上の温度域での圧延が終了後、850℃以下の温度域での圧延を開始するまでの時間が10秒以上であることを特徴とする無方向性電磁鋼板の製造方法。 And have you hot rolling of the steel sheet of claims 1 to 6, the rolling log distortion in the temperature range of 500 ° C. or higher 850 ° C. or less and 1.0 or more, the average of each rolling pass the temperature range at 850 ° C. or less The strain rate is 30 / s or more, the average logarithmic strain of each rolling pass is 0.2 or more, the time between each rolling pass is 4.0 seconds or less, and 850 ° C. or less after rolling in the temperature range of 900 ° C. or more is completed. The method for producing a non-oriented electrical steel sheet, characterized in that the time until rolling in the temperature range of 10 seconds is 10 seconds or longer. 請求項1〜7の鋼板のうち熱間圧延のスラブ加熱温度が1100℃以下であることを特徴とする無方向性電磁鋼板の製造方法。   The manufacturing method of the non-oriented electrical steel sheet characterized by the slab heating temperature of hot rolling being 1100 degrees C or less among the steel plates of Claims 1-7.
JP2004008173A 2004-01-15 2004-01-15 Method for producing non-oriented electrical steel sheet Expired - Fee Related JP4283687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008173A JP4283687B2 (en) 2004-01-15 2004-01-15 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008173A JP4283687B2 (en) 2004-01-15 2004-01-15 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2005199311A JP2005199311A (en) 2005-07-28
JP4283687B2 true JP4283687B2 (en) 2009-06-24

Family

ID=34821624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008173A Expired - Fee Related JP4283687B2 (en) 2004-01-15 2004-01-15 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4283687B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417689B2 (en) * 2007-03-20 2014-02-19 Jfeスチール株式会社 Non-oriented electrical steel sheet
EP2703514B1 (en) * 2011-04-27 2017-04-19 Nippon Steel & Sumitomo Metal Corporation Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME
JP6880920B2 (en) * 2017-03-29 2021-06-02 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
JP7343770B2 (en) * 2019-11-15 2023-09-13 日本製鉄株式会社 Laminated core and rotating electrical machinery

Also Published As

Publication number Publication date
JP2005199311A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP4589737B2 (en) Semi-process electrical steel sheet with excellent magnetic properties after grain growth and method for producing the same
JP4724431B2 (en) Non-oriented electrical steel sheet
JP4593317B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
TWI457443B (en) Manufacturing method of non - directional electromagnetic steel sheet
WO2016190396A1 (en) Steel sheet and method for producing same
JPWO2007144964A1 (en) High strength electrical steel sheet and manufacturing method thereof
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2011114227A2 (en) Grain oriented steel strip with high magnetic characteristics, and manufacturing process of the same
JP4533036B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties in the 45 ° direction from the rolling direction and method for producing the same
JP4414727B2 (en) Magnetic steel sheet with excellent magnetic properties and deformation resistance and manufacturing method thereof
WO2012089696A1 (en) Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby
JP5197076B2 (en) Medium and high carbon steel sheet with excellent workability and manufacturing method thereof
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP4403038B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties in the 45 ° direction from the rolling direction and method for producing the same
JP6359783B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP4283687B2 (en) Method for producing non-oriented electrical steel sheet
JP6950723B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2016216809A (en) Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP2009102739A (en) Method for producing non-oriented magnetic steel sheet
JP5920256B2 (en) Hard cold-rolled steel sheet excellent in hardness thermal stability and method for producing the same
CN114901850B (en) Hot rolled steel sheet for non-oriented electromagnetic steel sheet
JP7352082B2 (en) Non-oriented electrical steel sheet
JPH11229096A (en) Nonoriented silicon steel sheet and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R151 Written notification of patent or utility model registration

Ref document number: 4283687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees