JP4283485B2 - Method and apparatus for heating a glass panel in a tempering furnace provided with rollers - Google Patents

Method and apparatus for heating a glass panel in a tempering furnace provided with rollers Download PDF

Info

Publication number
JP4283485B2
JP4283485B2 JP2002070249A JP2002070249A JP4283485B2 JP 4283485 B2 JP4283485 B2 JP 4283485B2 JP 2002070249 A JP2002070249 A JP 2002070249A JP 2002070249 A JP2002070249 A JP 2002070249A JP 4283485 B2 JP4283485 B2 JP 4283485B2
Authority
JP
Japan
Prior art keywords
heating
furnace
convection
heat
glass panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002070249A
Other languages
Japanese (ja)
Other versions
JP2002293556A (en
Inventor
ビトカーラ ヨルマ
Original Assignee
タムグラス リミテッド オイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タムグラス リミテッド オイ filed Critical タムグラス リミテッド オイ
Publication of JP2002293556A publication Critical patent/JP2002293556A/en
Application granted granted Critical
Publication of JP4283485B2 publication Critical patent/JP4283485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way
    • C03B29/06Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way with horizontal displacement of the products
    • C03B29/08Glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Tunnel Furnaces (AREA)

Abstract

The invention relates to a method and an apparatus for heating glass panels in a tempering furnace equipped with rollers. Glass panels (7) are carried on a conveyor established by rollers (6) into a tempering furnace (1) for the duration of a heating cycle, followed by carrying the glass panels (7) into a tempering station (21), and the glass panels (7) are heated in the tempering furnace (1) by means of bottom- and top-heating radiation elements (2, 3), as well as by bottom- and top-heating convection elements (4, 4a, 4b, 4c, 4', 4a', 4b', 4c', 5) whereby convection air is supplied into the tempering furnace (1). The glass panels' (7) bottom side is heated by means of the bottom-heating convection elements (4, 4a, 4b, 4c, 4', 4a', 4b', 4c'), which are lengthwise of the furnace (1) and define convection heating zones (A, B, C, D, E, F, G, H, I and J) side by side in a lateral direction of the tempering furnace (1). Thus, the convection heating effects of the convection heating zones (A, B, C, D, E, F, G, H, I and J) can be altered relative to each other for profiling the heat transfer coefficient in a lateral direction of the furnace. <IMAGE>

Description

【0001】
【発明の属する技術分野】
本発明は、ローラーが設けられた強化炉でガラスパネルを加熱する方法に関し、この方法は、加熱サイクル期間中ローラーからなるコンベヤー上のガラスパネルを搬送し、その後、強化ステーション内へとガラスパネルを搬送し、炉内で対流空気が供給されるように炉内の底部及び頂部に設けられた放熱体及び同じように底部及び頂部に設けられた熱対流体によって強化炉内でガラスパネルを加熱する工程からなる。
【0002】
本発明は、さらにローラーが設けられた強化炉でガラスパネルを加熱する装置に関し、ローラーが強化炉及びこの炉と連通した強化ステーション内へとガラスパネルを搬送するコンベヤーを形成し、強化炉にはガラスパネル上下に位置する放熱体及び同じくガラスパネルの上下に位置し、強化炉内に対流空気を供給する熱流体が設けられている。
【0003】
【従来の技術】
この種の方法及び装置は、本願出願人による米国特許第5,951,734号に開示されているものが知られている。この公知の方法及び装置では、架空の熱対流効果が、炉の横方向に広まるのでトップコートされたいわゆるローE(Low-E)ガラスパネルを加熱するのに適している。例えば、米国特許第4,505,671号では、ガラスの上部で対流を生じさせると共に底部でも対流を生じさせているが、ローラーが存在するために対流パイプが常に炉の横方向又は炉を横切って配置させなけばならず、底部対流横方向の分布が不可能になっている。
【0004】
【発明が解決しようとする課題】
本発明の目的は、ガラスの底部に適用される熱伝達率の制御を炉の横方向に亘って可能にするガラス底部への対流噴射のための方法及び装置を提供することである。
【0005】
【課題を解決するための手段】
本発明の目的は、加熱サイクル期間中、ローラーからなるコンベヤー上のガラスパネルを強化炉内へと搬送し、その後、強化ステーション内へと前記ガラスパネルを搬送し、炉内の底部及び頂部に設けられた放熱体及び炉内に対流空気が供給されるように同じように底部及び頂部に設けられた熱対流体によって強化炉内でガラスパネルを加熱する工程とからなる強化炉内でのガラスパネルの加熱方法において、炉の長手方向に配され、炉の横方向に並んだ対流加熱領域を形成する底部熱対流体によってガラスパネルの底部側が、加熱され、これら領域によって底部加熱対流効果が横方向に分布されることを特徴とする本発明の方法によって達成される。またこの目的は、ローラーが強化炉及びこの炉と連通した強化ステーション内へとガラスパネルを搬送するコンベヤーを形成し、強化炉にはガラスパネルの上下に位置する放熱体及び同じくガラスパネルの上下に位置し、強化炉内に対流空気を供給するための流体が設けられている強化炉内でガラスパネルを加熱する装置において、ガラスパネルの下に位置する熱流体が、炉の長手方向に延び且つ炉の横方向に並んだ対流加熱領域を形成することを特徴とする本発明の装置によって達成される。従属項は、本発明の好ましい態様を開示している。
【0006】
本発明の好ましい2つの態様を添付の図面を参照し、以下に詳述する。
【0007】
【発明の実施の形態】
図1及び2は、本発明を適用したガラスパネル7が加熱される強化炉1を示す。ガラスパネル7は、炉の横方向に延びたローラー6によって形成されたコンベヤーによって炉内をその長手方向に搬送される。図示の態様では、加熱サイクル中炉内でガラスパネルは、振動しながら移動する。炉1には強化ステーション21の延長部が設けられており、ガラスパネル7はこの焼戻しステーションに移動し、さらに加熱ステーションで加熱される。
【0008】
強化炉1にはローラー6の上部に位置する放熱体3、即ち頂部放熱体が設けられている。これら放熱体は、強化炉1の長手方向に延びた抵抗体からなることが好ましいが、炉の横手方向に延びるように配置してもよい。ローラー6上には頂部熱対流体5が取りつけられている。これら熱対流体は、炉の横方向に互いに適当な距離をおいて炉の長手方向に延びたパイプ5から構成されるのが好ましい。パイプ5は、その長手方向に間隔をおいて配されたオリフィスが形成された底部面を有し、このオリフィスからジェット噴射状の対流空気がガラス7の頂面上に放出される。このジェット噴射は、加熱抵抗体3の間の空間を通過する。パイプ5を加熱抵抗体3の下に位置させることも可能である。ジェット噴射は、真下又は対角線状に斜めに向けられる。
【0009】
強化炉1にはローラー6の下に位置する放熱体2、即ち底部放熱体が設けられている。これら放熱体もまた強化炉1の長手方向に延びる抵抗体から構成されるのが好ましい。ローラー6及び/又は抵抗体2の下には、熱対流体4、4a、4b、4cが位置している。これら対流体は、炉の横方向に適当な間隔を置いて配された炉の長手方向に延びるパイプから構成されている。ガラス7の底部に最も近いパイプ4の部分の頂部にはパイプの長手方向に互いに間隔を置いて配されたオリフィスが形成されており、このオリフィスからジェット噴射状の対流空気が、ガラスの底部側及び/又はローラーの面に放出される。このような底部加熱対流体それぞれが、強化炉1の横方向に並んだ対流加熱領域A、B、C、D、E、F、G、H、I及びJを形成する。対流空気の流れは、パイプ4の長手方向、即ち種々の位置でその対応する領域に対して、パイプ4を長手方向に個別のセクションに分けることによって調節することができ、個別のセクションを設けることにより炉の長手方向への熱の伝導量を変えるために異なる圧力を供給することができる。これとは別に異なるサイズの噴射オリフィスを設けたり、例えば炉の長手方向の一部に沿って特に炉の両端部ではローラーの間の間隙の1つおきに、そして炉の長手方向のいくつかの部分、特に中央部分に沿ってはローラーの間の空間毎にジェット噴射が供給されるようにオリフィス間の相対距離を狭く又は広げることによって長手方向の対流空気流の調節が可能である。
【0010】
炉1内へ供給される空気の量は、例えば炉1の屋根に設けられた排出開口部22又は予備ヒーター15に連通して設置された逆流熱交換器24によって調節される。
【0011】
少なくとも熱対流体4、4a、4b及び4cには長尺の管状熱ダクト4bが設けられており、ここでパイプ4から炉1内へと放出される前に空気が暖められる。パイプ4bと連通して好ましくは炉1の外側に設けられているのは、1つの熱対流体4の対流空気の流量を調節するためのバルブ14である。単独のバルブを1つ以上の熱対流体の流量を調節又は制御するのに使用することもできる。頂部熱対流体パイプと個々に連通して設けられているのは、1つの(またはそれ以上)頂部熱対流体5の対流空気の流量を調節するために設けられたバルブ12である。さらに少なくとも底部熱対流用空気をパイプ4bと連通した炉1の外側に配置された予備ヒーターによって予備加熱することができる。予備ヒーター15は抵抗ヒーターであってもよい。従って、対加熱領域A、B、C、D、E、F、G、H、I及びJにガラスの下側の特定の領域に対流噴射を供給することができ、これによりガラスの底部側に適用される熱伝達率を炉の横手方向において制御することが可能になる。各領域において、異なる温度及び/又は噴射圧が供給されてもよく及び/又は異なるタイミングで噴射を開始してもよく、噴射の終了又は期間も個別に調節可能である。例えば、ガラスの中央部分を縁部より集中的に熱対流に晒されるようにすることも可能である。従って、縁部領域への噴射時間を中央部への噴射時間より短くすることができる。中央部分及び縁部への噴射を連続的に、噴射時間だけ変えることもでき、又は縁部への噴射を間欠的に行ってもよい。
【0012】
図2Aに示す実施例では、パイプ4が放熱体2のケース又は支持体によって形成されるようにパイプ4と放熱体2を組み合わせてもよい。オリフィスは、種々の構成及び配向が可能である。さらに又は垂直方向への噴射に代えて、対角線上斜めに及び/又は対角線状長手方向に噴射することもできる。
【0013】
底部及び頂部熱対流体4、5のためのバルブ12、14は、制御システム10によって制御される。頂部放熱体3にはその温度を測定するための温度センサー23が、設けられている。ガラスパネル7が炉内へ搬送されたとき、その上部に位置する放熱体3が、僅かにガラスパネル7によって冷却される。放熱体の温度変化に関する情報が、温度センサー23によって制御システム10へとデータバス20に沿って送られ、センサー23から受け取った情報が、制御システムの設定値と比較され、測定値が設定値に足りない場合、放熱体の出力を増加する。従って、放熱体3の温度差及び/又は温度変化(急激な冷却)が、炉に搬入されたガラスパネルの大きさ、特に幅に関する情報を間接的に制御システム10に供給することになる。当然のことながら、ガラスパネルの搬入パターンを炉の上流に位置する別個の光学又は容量センサーで読み取ることもできる。制御の命令は制御システム10からデータ伝送バス19を介して各バルブ14へと送られる。閉じているバルブは、熱対流体4/5又はガラスと位置的に整合していない熱対流体又は噴射を行っていない抵抗体2/3の間又はその下を通る熱対流体の対流空気の流れを規制する。ガラスパネルの下に位置する熱対流体4を制御する残りのバルブ14は、ガラスパネル7の底部でこの特定のガラスパネル7用に予め定められたように熱を分布させるために調整される。このような熱分布は、特定の時間、対流噴射をガラスの底部に当てる又は熱分布に応じて対流空気の流量及び/又は温度を調節することによって得られる。
【0014】
ガラスパネルの底部のための熱伝達率に関する時間制御熱分布工程において、バルブ14のいくつかを加熱サイクルの開始から開いてもよく、残りのバルブ14を加熱サイクルの後半で開くようにしてもよい。このバルブのオン/オフを制御することによって流量又は圧力の規制を円滑に行うことができる。
【0015】
図1の場合、パイプ4bは、炉の上流端から下流端へと抵抗体2の下側を延び、締結手段4dによって炉の下流の壁に固定されており、噴射オリフィスを有する実際のパイプは抵抗体2とローラー6の間を炉の下流端から上流端へと通過する。パイプセクション4は、抵抗体2のハウジングに固定してもよい。パイプ4は、上方に向けられた放射熱を遮蔽しないように抵抗体2の間に配される。パイプ内で空気が適度に流れることによってパイプの長さにそって顕著な変化をきたさないので、熱膨張の結果生じるパイプの長手方向の変化は、炉の作動温度では、殆ど影響がない。従って、ローラーの間に正確に噴射される。パイプの連結具又は寸法は、炉の始動時に生じる熱膨張後に所望の目的に噴射できるように計算して選択される。ローラー間の各間隙には噴射のための複数のオリフィスが設けられており、これらオリフィスは互いに鋭角をなすように噴射し且つ炉の横手方向及び/又は長手方向のいずれかに傾斜するよう考慮して設けられている。この噴射は、ローラー6を部分的又は全体を直撃する。しかしながら、ガラスの底部側への対流加熱効果が損なわれるので、ローラーの底部面に直接噴射しない方がよい。
【0016】
底部熱対流体の対流空気の圧力レベルは、レギュレーター13によって設定され、このレギュレーターは、制御ユニットからのコントロールライン18によって制御される。レギュレーター13は、別個のユニットである必要はなく、各バルブに接続されていてもよい。バルブには手動のレギュレーターシステムを設けてもよい。
【0017】
頂部熱対流体の対流空気の圧力レベルは、レギュレーター11によって設定され、このレギュレーターは、制御ユニットからのコントロールライン16によって制御される。コントロールライン17は、バルブ12を制御するために用いられ、このバルブ12は、熱対流体5個々の対流空気噴射を調整するために作動する。これにより本願出願人による米国特許第5,951,734号に詳述されているようなガラスの頂部の熱伝達率を炉を横断するよう分布させることができる。
【0018】
図3及び4に示す態様は、図1及び2のものとは底部熱対流体の構成するパイプが、パイプ部分4bが炉の中央部(炉の長手方向において)で炉の床を介して延びるように配されている点でのみ異なる。パイプ部分4bはパイプ部分4b’と反対方向に抵抗体2の下側で枝分かれし、パイプ部分4b’は、炉の対向端で直立したパイプ部分4c’へと続き、さらに炉の端部から中央部分へと向いたパイプ部分4’へと続き、抵抗体2とローラーの間に位置し、ローラー6の間を通ってガラスパネル7の底部側へと噴射を配向するための噴射オリフィスが設けられている。
【0019】
図示していない熱対流パイプを炉内に引き込む第3の方法は、パイプを炉の対向端部から交互に炉の内側に引き込むことであり、これにより炉の内側のパイプ内の流れ方向を隣接するパイプ同士交互に対向させることができる。
【0020】
頂部及び底部熱対流噴射パイプ5及び4は互いに位置的に整合している必要はない。一方、加熱サイクルの初期に対流熱が、実質的にガラスの頂部に、より集中し、加熱サイクルの最終段階で対流熱がガラスパネルの下側に、より集中するように加熱サイクル中の動作タイミングが得られるようにするのが好ましい。頂部及び底部加熱噴射量の相互の関係は、例えば最初に強い頂部噴射を徐々に弱くし、加熱サイクルの終了に近づいたらまた強くし、底部加熱噴射は加熱サイクルの終了時により集中されるように加熱サイクル中に変えることができる。その結果、加熱サイクルの終了時の底部加熱噴射が強くても、頂部及び底部加熱効果の均衡を保ちながら熱の総伝導量が向上し、より早く加熱することができる。頂部及び底部加熱要件の相互の関係並びにその加熱サイクル中の変動は、各ガラスの特性によって決まる。底部加熱噴射を加熱サイクルの初期には幾分弱く、加熱サイクルの半分を過ぎた後には、時間の関数として噴射容量を表すグラフが一定、段階的に変化する、又は連続的に変化するまたはこれらの組み合わせとなる角係数(angular coefficient)を有するように噴射容量を増加させることもできる。
【0021】
図5は、底部加熱パイプ4がどのようにV字角度で対角線上斜めに噴射するかを示し、この噴射が目標地点に当たった時に頂部加熱パイプ5からの空気噴射の目標ラインのどちらかの側に位置することを示している。頂部及び底部加熱噴射が、炉の横方向に互いに間隔が設けられた目標に当たるので、ガラスの進行方向において加熱噴射が同じところに当たるのを防ぐ又は減少することができ、加熱効果がガラスの面領域に亘ってより均一に分配される。頂部加熱ライン5は、頂部加熱抵抗間を介して噴射してもよく、その際底部加熱パイプは底部加熱抵抗の上から噴射してもよい。
【図面の簡単な説明】
【図1】本発明の方法を適用した強化炉の長手方向における断面図。
【図2】図Aは図1に示した強化炉の前面横断面図であり、図Bは別の放熱体の断面図。
【図3】本発明の方法を適用した第2の態様の強化炉の長手方向における断面図。
【図4】図3に示した強化炉の前面横断面図。
【図5】頂部及び底部対流ブラストの互いの位置関係及び炉内の部品に対する位置関係を詳細に示した炉の一部断面図。
【符号の説明】
強化
2 放熱体
3 放熱体
4 熱流体
熱対流体
6 ローラー
7 ガラスパネル
10 制御システム
12 バルブ
13 レギュレーター
14 バルブ
21 強化ステーション
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of heating a glass panel in a tempering furnace provided with rollers, which transports the glass panel on a conveyor consisting of rollers during the heating cycle and then puts the glass panel into a tempering station. The glass panel is heated in the tempered furnace by a heat sink provided at the bottom and top of the furnace and the heat and fluid provided at the bottom and top as well, so that convection air is supplied in the furnace It consists of a process.
[0002]
The present invention further relates to a device for heating the glass panels in tempering furnace where the roller is provided, to form a conveyor for conveying roller to the tempering furnace and the furnace and communicating reinforcing stations in the glass panel, the reinforcing furnace heat radiator located in the glass panel vertically and also located above and below the glass panel, the heat-to-fluid is provided to supply the convection air to the strengthening furnace.
[0003]
[Prior art]
A method and apparatus of this type is known as disclosed in commonly assigned US Pat. No. 5,951,734. This known method and apparatus is suitable for heating a so-called low-E glass panel that is top-coated because the aerial thermal convection effect spreads in the transverse direction of the furnace. For example, U.S. Pat. No. 4,505,671 produces convection at the top of the glass and convection at the bottom, but due to the presence of rollers, the convection pipe always crosses the furnace or across the furnace. is not an only Re not a Banara arrangement Te, the lateral side of the direction distribution of bottom convection becomes impossible.
[0004]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method and apparatus for convective jetting to the glass bottom that allows control of the heat transfer coefficient applied to the glass bottom across the furnace.
[0005]
[Means for Solving the Problems]
The object of the present invention is to convey a glass panel on a conveyor consisting of rollers into a tempering furnace during a heating cycle, and then convey the glass panel into a tempering station, provided at the bottom and top of the furnace . A glass panel in a tempering furnace comprising the steps of heating the glass panel in a tempering furnace with a heat-converging fluid provided at the bottom and the top in the same manner so that convection air is supplied into the furnace In this heating method, the bottom side of the glass panel is heated by the bottom heat convection fluid which is arranged in the longitudinal direction of the furnace and forms a convection heating area arranged in the transverse direction of the furnace, and the bottom heating convection effect is laterally caused by these areas. It is achieved by the method of the present invention characterized in that Also this purpose, the roller forms a conveyor for conveying the glass panel to the tempering furnace and the furnace and communicating reinforcing stations within and below the heat radiating body and also the glass panel in tempering furnace positioned above and below the glass panel position to an apparatus for heating glass panels in reinforced furnace heat: fluid is eclipsed set for supplying convection air to strengthening furnace, heat: fluid located below the glass panels, the longitudinal furnace This is achieved by the apparatus according to the invention, characterized in that it forms a convection heating zone extending in the direction and aligned in the transverse direction of the furnace. The dependent claims disclose preferred embodiments of the invention.
[0006]
Two preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a tempering furnace 1 in which a glass panel 7 to which the present invention is applied is heated. The glass panel 7 is conveyed in the longitudinal direction in the furnace by a conveyor formed by rollers 6 extending in the transverse direction of the furnace. In the illustrated embodiment, the glass panel moves while vibrating in the furnace during the heating cycle. The furnace 1 is provided with an extension of the strengthening station 21, and the glass panel 7 is moved to the tempering station and further heated at the heating station.
[0008]
The tempering furnace 1 is provided with a heat radiating body 3 located above the roller 6, that is, a top heat radiating body. These radiators are preferably made of resistors extending in the longitudinal direction of the tempering furnace 1, but may be arranged so as to extend in the transverse direction of the furnace. A top heat-to-fluid 5 is mounted on the roller 6. These heat-to-fluids are preferably composed of pipes 5 extending in the longitudinal direction of the furnace at a suitable distance from each other in the transverse direction of the furnace. The pipe 5 has a bottom surface on which orifices arranged at intervals in the longitudinal direction are formed, and jet convection air is discharged from the orifice onto the top surface of the glass 7. This jet injection passes through the space between the heating resistors 3. It is also possible to place the pipe 5 under the heating resistor 3. The jet spray is directed diagonally downward or diagonally.
[0009]
The tempering furnace 1 is provided with a radiator 2 located under the roller 6, that is, a bottom radiator. These radiators are also preferably composed of resistors extending in the longitudinal direction of the tempering furnace 1. Under the roller 6 and / or the resistor 2, the heat-to-fluids 4, 4a, 4b, 4c are located. These anti-fluids are composed of pipes extending in the longitudinal direction of the furnace arranged at appropriate intervals in the transverse direction of the furnace. At the top of the portion of the pipe 4 that is closest to the bottom of the glass 7 is formed an orifice spaced apart from each other in the longitudinal direction of the pipe, from which jet convection air is transferred to the bottom side of the glass And / or discharged to the surface of the roller. Each such bottom heating convection fluid forms convection heating zones A, B, C, D, E, F, G, H, I and J aligned in the lateral direction of the tempering furnace 1. The convective air flow can be adjusted by dividing the pipe 4 longitudinally into separate sections with respect to the longitudinal direction of the pipe 4, i.e. its corresponding region at various positions, providing separate sections. Different pressures can be applied to change the amount of heat conducted in the longitudinal direction of the furnace. There may be differently sized injection orifices, for example along every other part of the length of the furnace, especially at every other gap between the rollers at both ends of the furnace, and several It is possible to adjust the longitudinal convection air flow by narrowing or widening the relative distance between the orifices so that jet injection is provided for each space between the rollers along the part, in particular the central part.
[0010]
The amount of air supplied into the furnace 1 is adjusted, for example, by a backflow heat exchanger 24 installed in communication with a discharge opening 22 provided on the roof of the furnace 1 or the auxiliary heater 15.
[0011]
At least the heat-to-fluid 4, 4 a, 4 b and 4 c are provided with a long tubular heat duct 4 b where the air is warmed before being released from the pipe 4 into the furnace 1. A valve 14 for adjusting the flow rate of convection air of one heat-to-fluid 4 is preferably provided outside the furnace 1 in communication with the pipe 4b. A single valve can also be used to regulate or control one or more heat to fluid flow rates. Provided individually in communication with the top heat-to-fluid pipe is a valve 12 provided to regulate the convective air flow rate of one (or more) top heat-to-fluid 5. Furthermore, at least the bottom heat convection air can be preheated by a preheater disposed outside the furnace 1 communicating with the pipe 4b. The preliminary heater 15 may be a resistance heater. Thus, convection heating region A, B, C, D, E, F, G, H, can supply the convection injected into specific areas of the lower glass I and J, thereby the bottom side of the glass it is possible to control the applied heat transfer coefficient in the transverse direction of the furnace. In each region, different temperatures and / or injection pressures may be supplied and / or injections may be started at different times, and the end or duration of the injection can be adjusted individually. For example, the central portion of the glass can be exposed to thermal convection more intensively than the edge. Therefore, the injection time to the edge region can be made shorter than the injection time to the center part. The injection to the central part and the edge can be continuously changed by the injection time, or the injection to the edge can be performed intermittently.
[0012]
In the embodiment shown in FIG. 2A, the pipe 4 and the heat radiating body 2 may be combined so that the pipe 4 is formed by the case or support of the heat radiating body 2. The orifice can have various configurations and orientations. In addition or instead of injection in the vertical direction, the injection can be carried out diagonally diagonally and / or in the diagonal longitudinal direction.
[0013]
The valves 12, 14 for the bottom and top heat-to-fluids 4, 5 are controlled by the control system 10. The top radiator 3 is provided with a temperature sensor 23 for measuring its temperature. When the glass panel 7 is conveyed into the furnace, the radiator 3 located on the upper part is slightly cooled by the glass panel 7. Information about the temperature change of the radiator is sent by the temperature sensor 23 to the control system 10 along the data bus 20, and the information received from the sensor 23 is compared with the set value of the control system, and the measured value becomes the set value. If not enough, increase the output of the radiator. Therefore, the temperature difference and / or temperature change (rapid cooling) of the radiator 3 indirectly supplies information to the control system 10 regarding the size, particularly the width, of the glass panel carried into the furnace. Of course, the carry-in pattern of the glass panel can also be read by a separate optical or capacitive sensor located upstream of the furnace. Control commands are sent from the control system 10 to each valve 14 via the data transmission bus 19. A closed valve is used for heat / fluid 4/5 or heat / fluid that is not in positional alignment with the glass or heat / fluid convection air that passes between or under the resistor 2/3 that is not jetting. Regulate the flow. The remaining bulb 14 that controls the heat-to-fluid 4 located under the glass panel is adjusted to distribute heat as predetermined for this particular glass panel 7 at the bottom of the glass panel 7. Such a heat distribution is obtained by applying a convection jet to the bottom of the glass for a specific time or adjusting the flow and / or temperature of the convection air depending on the heat distribution.
[0014]
In time control heat distribution process regarding heat transfer coefficient for the bottom of the glass panel may open several valve 14 from the start of the heating cycle, even in the open and the remaining valves 14 in the second half of the heating cycle Good. By controlling on / off of this valve, the flow rate or pressure can be regulated smoothly.
[0015]
In the case of FIG. 1, the pipe 4b extends below the resistor 2 from the upstream end to the downstream end of the furnace, and is fixed to the downstream wall of the furnace by fastening means 4d, and the actual pipe having the injection orifice is It passes between the resistor 2 and the roller 6 from the downstream end of the furnace to the upstream end. The pipe section 4 may be fixed to the housing of the resistor 2. The pipe 4 is disposed between the resistors 2 so as not to shield the radiant heat directed upward. The change in the longitudinal direction of the pipe resulting from the thermal expansion has little effect on the furnace operating temperature, since there is no significant change along the length of the pipe due to the moderate flow of air in the pipe. Therefore, it is accurately injected between the rollers. The pipe fittings or dimensions are calculated and selected so that they can be injected for the desired purpose after thermal expansion occurring at the start of the furnace. Considering such Each gap between the rollers to be tilted to a plurality of orifices are provided, one of transverse and / or longitudinal injection shines and the furnace so that these orifices are at an acute angle to one another for injection Is provided. This jet strikes the roller 6 partially or entirely. However, since the convection heating effect on the bottom side of the glass is impaired, it is better not injected directly to the bottom surface of the roller.
[0016]
The bottom heat-to-fluid convection air pressure level is set by a regulator 13, which is controlled by a control line 18 from a control unit. The regulator 13 does not need to be a separate unit, and may be connected to each valve. The valve may be provided with a manual regulator system.
[0017]
The pressure level of convection air in the top thermal convection body is set by the regulator 11, the regulator is controlled by a control line 16 from the control unit. The control line 17 is used to control the valve 12, which operates to regulate the individual convective air injection of the heat to fluid 5. This can be distributed to the heat transfer Itaruritsu the top of the glass as detailed in U.S. Pat. No. 5,951,734 filed by the present applicant traverses the furnace.
[0018]
The embodiment shown in FIGS. 3 and 4 differs from that of FIGS. 1 and 2 in that the pipe of the bottom heat-to-fluid has a pipe portion 4b extending through the furnace floor at the furnace center (in the furnace longitudinal direction). It differs only in that it is arranged. The pipe part 4b branches under the resistor 2 in the opposite direction to the pipe part 4b ', the pipe part 4b' continues to the pipe part 4c 'standing upright at the opposite end of the furnace and further from the end of the furnace to the center Continued to the pipe part 4 ′ facing the part, an injection orifice is provided which is located between the resistor 2 and the roller and directs the injection through the roller 6 to the bottom side of the glass panel 7. ing.
[0019]
A third method of drawing a heat convection pipe (not shown) into the furnace is to draw the pipe alternately from the opposite end of the furnace to the inside of the furnace, thereby adjoining the flow direction in the pipe inside the furnace. The pipes to be used can be alternately opposed.
[0020]
The top and bottom thermal convection injection pipes 5 and 4 need not be in positional alignment with each other. On the other hand, the operation timing during the heating cycle so that the convective heat is more concentrated at the top of the glass substantially at the beginning of the heating cycle, and the convective heat is more concentrated at the bottom side of the glass panel in the final stage of the heating cycle. Is preferably obtained. The interrelationship between the top and bottom heat injection quantities is, for example, that the strong top injection is gradually weakened at the beginning, and is increased as it approaches the end of the heating cycle, so that the bottom heat injection is more concentrated at the end of the heating cycle. It can be changed during the heating cycle. As a result, even if the bottom heating injection at the end of the heating cycle is strong, the total amount of heat conduction is improved while maintaining the balance between the top and bottom heating effects, and heating can be performed faster. The reciprocal relationship between top and bottom heating requirements and its variation during the heating cycle depends on the properties of each glass. The bottom heating spray is somewhat weak at the beginning of the heating cycle, and after more than half of the heating cycle, the graph representing the spray capacity as a function of time changes constant, stepwise, or continuously. The injection capacity can also be increased to have an angular coefficient that is a combination of
[0021]
FIG. 5 shows how the bottom heating pipe 4 injects diagonally diagonally at a V-shaped angle and when this injection hits a target point, either of the target lines for air injection from the top heating pipe 5 is shown. It is located on the side. Top and bottom heating injection, since hits the target interval from each other are provided in the lateral direction of the furnace, it is possible to heat injected in the traveling direction of the glass is prevented or reduced to hitting the same place, all the surface of the heating effect glass It is more evenly distributed over the area. The top heating line 5 may be sprayed through between the top heating resistors, in which case the bottom heating pipe may be sprayed over the bottom heating resistors.
[Brief description of the drawings]
FIG. 1 is a sectional view in a longitudinal direction of a tempering furnace to which a method of the present invention is applied.
2 is a front cross-sectional view of the tempering furnace shown in FIG. 1, and FIG. B is a cross-sectional view of another radiator.
FIG. 3 is a cross-sectional view in the longitudinal direction of a strengthening furnace of a second embodiment to which the method of the present invention is applied.
4 is a front cross-sectional view of the tempering furnace shown in FIG. 3;
FIG. 5 is a partial cross-sectional view of the furnace showing in detail the positional relationship between the top and bottom convection blasts and the positional relationship with respect to the components in the furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reinforcement furnace 2 Radiator 3 Radiator 4 Heat- to- fluid 5 Heat-to-fluid 6 Roller 7 Glass panel 10 Control system 12 Valve 13 Regulator 14 Valve 21 Strengthening station

Claims (14)

加熱サイクル期間中、ローラー(6)からなるコンベヤー上のガラスパネル(7)を強化炉(1)内へと搬送し、その後、強化ステーション(21)内へと前記ガラスパネルを搬送し、炉内の底部及び頂部に設けられた放熱体(2、3)と前記炉内に対流空気が供給されるように同じように底部及び頂部に設けられた熱対流体(4、4a、4b、4c、4’、4a’、4b’、4c’、5)によって前記強化炉内で前記ガラスパネルを加熱する工程とからなる強化炉内でのガラスパネルの加熱方法において、前記炉の長手方向に配され、前記炉の横方向に並んだ対流加熱領域(A、B、C、D、E、F、G、H、I、J)を形成する底部熱対流体(4、4a、4b、4c、4’、4a’、4b’、4c’)によってガラスパネルの底部側が、加熱され、前記領域によって底部加熱対流効果が横方向に分布されることを特徴とする方法。During the heating cycle, the glass panel (7) on the conveyor consisting of rollers (6) is transported into the tempering furnace (1), and then the glass panel is transported into the tempering station (21). And the heat convection fluid (4, 4a, 4b, 4c,. 4 ', 4a', 4b ' , 4c', 5) and by the method of heating glass panels in reinforcing furnace comprising the step of heating the glass panel with the reinforcing furnace, distribution in the longitudinal direction of the furnace Bottom heat convection fluids (4, 4a, 4b, 4c, etc.) that form convection heating zones (A, B, C, D, E, F, G, H, I, J) side by side in the furnace 4 ′, 4a ′, 4b ′, 4c ′), the bottom side of the glass panel is heated, Method characterized in that the bottom heating convection effect is distributed in the lateral direction. 前記対流加熱領域(A、B、C、D、E、F、G、H、I、J)が、互いに異なる対流加熱効果を奏し、前記ガラスパネルの頂部側が炉の長手方向に延びる熱流体(5)によって加熱され、熱流体(5)は、底部加熱対流効果を横方向に分布させる工程に少なくとも実質的に続くように頂部加熱対流効果を横方向へ分布させるために使用されることを特徴とする請求項1記載の方法。The convection heating regions (A, B, C, D, E, F, G, H, I, J) exhibit different convection heating effects, and the top side of the glass panel extends in the longitudinal direction of the furnace . Heated by (5) and the heat convection fluid (5) is used to distribute the top heating convection effect laterally so as to at least substantially follow the step of laterally distributing the bottom heating convection effect. The method of claim 1 wherein: 前記対流加熱領域(A、B、C、D、E、F、G、H、I、J)が、対流空気の流量及び/又は温度及び/又は噴射時間を調節することによって互いに異なる対流加熱効果を有することを特徴とする請求項1又は2記載の方法。 The convection heating regions (A, B, C, D, E, F, G, H, I, J) differ from each other by adjusting the flow rate and / or temperature and / or injection time of convection air The method according to claim 1 or 2, characterized by comprising: 対流加熱空気が、ガラスの中央部分よりガラスパネルの縁部に短い期間、噴射されることを特徴とする請求項1乃至3いずれか1項に記載の方法。 4. A method according to any one of claims 1 to 3, characterized in that the convection heating air is injected for a shorter period of time on the edge of the glass panel than on the central part of the glass. 底部熱対流体(4、4a、4b、4c、4’、4a’、4b’、4c’)への対流空気の流れを切り替えることによって加熱サイクル中、前記対流加熱領域(A、B、C、D、E、F、G、H、I、J)が、互いに異なる対流加熱効果を有することを特徴とする請求項1乃至4いずれか1項記載の方法。 During the heating cycle by switching the flow of convective air to the bottom heat convection fluid (4, 4a, 4b, 4c, 4 ′, 4a ′, 4b ′, 4c ′), the convection heating zone (A, B, C, The method according to claim 1, wherein D, E, F, G, H, I, J) have different convective heating effects. 加熱サイクルの初期の段階でガラスパネル(7)の頂部の対流加熱が、実質的にガラスパネルの底部側より集中し、加熱サイクルの最終段階で対流加熱が、ガラスの頂部側より底部側で、より集中するようにガラスパネルの頂部及び底部側への対流加熱効果間の相互の関係が、加熱サイクル中、変えられることを特徴とする請求項1乃至5いずれか1項に記載の方法。 Convective heating at the top of the glass panel (7) is concentrated substantially from the bottom side of the glass panel in the initial stage of the heating cycle, and convective heating is from the bottom side to the top side of the glass in the final stage of the heating cycle. 6. A method according to any one of the preceding claims, characterized in that the mutual relationship between the convective heating effects on the top and bottom sides of the glass panel is changed during the heating cycle so as to be more concentrated. 頂部放熱体(3)の温度が測定され、この温度が予め設定された値と比較され、これら放熱体の出力が、測定値が設定値に満たない場合増加され、放熱体が作動状態にある対流加熱領域(A、B、C、D、E、F、G、H、I、J)にのみ頂部及び底部加熱対流効果を及ぼすことを特徴とする請求項1乃至6いずれか1項記載の方法。 The temperature of the top radiator (3) is measured, this temperature is compared with a preset value, the output of these radiators is increased if the measured value is less than the set value, and the radiator is in operation 7. The top and bottom heating convection effects only on the convection heating zone (A, B, C, D, E, F, G, H, I, J), according to claim 1. Method. ローラー(6)が強化炉(1)及びこの炉と連通した強化ステーション(21)内へとガラスパネルを搬送するコンベヤーを形成し、強化炉に設けられたガラスパネルの上下に位置する放熱体(2、3)及び同じくガラスパネルの上下に位置し、強化炉内に対流空気を供給するための流体(4、4a、4b、4c、4’、4a’、4b’、4c’、5)によって強化炉(1)内でガラスパネルを加熱する装置において、前記ガラスパネルの下に位置する熱流体(4、4a、4b、4c、4’、4a’、4b’、4c’)が、炉(1)の長手方向に延び且つ炉の横方向に並んだ対流加熱領域(A、B、C、D、E、F、G、H、I、J)を形成することを特徴とする装置。The roller (6) forms a conveyor for conveying the glass panel into the tempering furnace (1) and the tempering station (21) communicating with the furnace, and a heat radiator (up and down located above and below the glass panel provided in the tempering furnace) 2,3) and also located in the upper and lower glass panels, heat: fluid for supplying convection air to strengthening furnace (4,4a, 4b, 4c, 4 ', 4a', 4b ', 4c', 5 ) To heat the glass panel in the tempering furnace (1), the heat- to- fluid (4, 4a, 4b, 4c, 4 ′, 4a ′, 4b ′, 4c ′) located under the glass panel is Forming convection heating zones (A, B, C, D, E, F, G, H, I, J) extending in the longitudinal direction of the furnace (1) and arranged in the transverse direction of the furnace apparatus. 少なくとも底部熱流体(4、4a、4b、4c、4’、4a’、4b’、4c’)が、対流加熱領域(A、B、C、D、E、F、G、H、I、J)の対流加熱効果を変えるために底部熱流体(4、4a、4b、4c、4’、4a’、4b’、4c’)の対流空気の流量及び/又は温度及び/又は噴射時間を調整するためのレギュレーター(14、15)に接続されていることを特徴とする請求項8記載の装置。At least the bottom heat- to- fluid (4, 4a, 4b, 4c, 4 ', 4a', 4b ', 4c') is convectively heated (A, B, C, D, E, F, G, H, I, In order to change the convective heating effect of J), the convective air flow rate and / or temperature and / or injection time of the bottom heat convection fluid (4, 4a, 4b, 4c, 4 ′, 4a ′, 4b ′, 4c ′) 9. Device according to claim 8, characterized in that it is connected to a regulator (14, 15) for regulating. 対流加熱領域(A、B、C、D、E、F、G、H、I、J)の対流加熱効果を変えるための制御ユニット(10)が前記強化炉に設けられていることを特徴とする請求項8又は9記載の装置。A control unit (10) for changing the convection heating effect in the convection heating region (A, B, C, D, E, F, G, H, I, J) is provided in the tempering furnace. An apparatus according to claim 8 or 9. 頂部放熱体(3)の温度を測定するために使用され且つ底部熱流体(4、4a、4b、4c、4’、4a’、4b’、4c’)の対流空気の流量及び/又は温度及び/又は噴射時間を規制するための制御ユニット(10)と連通した温度センサー(23)が、頂部放熱体(3)に設けられていることを特徴とする請求項8乃至10いずれか1項に記載の装置。The convective air flow rate and / or temperature used to measure the temperature of the top radiator (3) and the bottom heat- to- fluid (4, 4a, 4b, 4c, 4 ′, 4a ′, 4b ′, 4c ′) 11. A temperature sensor (23) in communication with a control unit (10) for regulating the injection time is provided on the top radiator (3). The device described in 1. 底部熱流体(4、4a、4b、4c、4’、4a’、4b’、4c’)が、強化炉の長手方向に延びる加熱ダクト(4b’、4b’)を含み、各ダクトの長さは少なくとも炉の長さの半分に等しく、このダクトを通過することによって対流空気が強化炉内に放出される前に温められることを特徴とする請求項8乃至11いずれか1項に記載の装置。The bottom heat- to- fluid (4, 4a, 4b, 4c, 4 ′, 4a ′, 4b ′, 4c ′) includes heating ducts (4b ′, 4b ′) extending in the longitudinal direction of the tempering furnace, the length of each duct 12. The length according to any one of claims 8 to 11, characterized in that the length is at least equal to half the length of the furnace and by passing through this duct the convection air is warmed before being released into the tempered furnace. apparatus. 底部放熱体(2)が、対流空気用の噴射パイプ(4)を形成するケーシング又は支持体を有することを特徴とする請求項8記載の装置。 9. A device according to claim 8, characterized in that the bottom radiator (2) has a casing or support which forms an injection pipe (4) for convection air. 底部熱流体からの噴射が、頂部熱流体からの噴射に対し前記炉の横方向にそれてれぞれガラスパネルの頂部及び底部に当たることを特徴とする請求項8記載の装置。Injection from the bottom heat: fluid The apparatus of claim 8, wherein the hitting the top and bottom of the furnace laterally, respectively Re its by its glass panels to injection from the top heat: fluid.
JP2002070249A 2001-03-16 2002-03-14 Method and apparatus for heating a glass panel in a tempering furnace provided with rollers Expired - Lifetime JP4283485B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20010528A FI20010528A0 (en) 2001-03-16 2001-03-16 Method and apparatus for heating glass sheets in a cured oven
FI20010528 2001-03-16

Publications (2)

Publication Number Publication Date
JP2002293556A JP2002293556A (en) 2002-10-09
JP4283485B2 true JP4283485B2 (en) 2009-06-24

Family

ID=8560756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070249A Expired - Lifetime JP4283485B2 (en) 2001-03-16 2002-03-14 Method and apparatus for heating a glass panel in a tempering furnace provided with rollers

Country Status (13)

Country Link
US (1) US6845633B2 (en)
EP (1) EP1241143B1 (en)
JP (1) JP4283485B2 (en)
CN (1) CN1215000C (en)
AT (1) ATE336470T1 (en)
BR (1) BR0200810B1 (en)
CA (1) CA2373332C (en)
DE (1) DE60213897T2 (en)
ES (1) ES2269640T3 (en)
FI (1) FI20010528A0 (en)
PT (1) PT1241143E (en)
RU (1) RU2281922C2 (en)
TW (1) TW570902B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI114631B (en) * 2001-10-01 2004-11-30 Tamglass Ltd Oy Method and apparatus for heating glass sheets for tempering
KR100551522B1 (en) * 2002-12-11 2006-02-13 파이오니아 가부시키가이샤 Firing furnace for plasma display panel and method of manufacturing plasma display panel
FI114697B (en) * 2003-06-11 2004-12-15 Glassrobots Oy Method for Detecting Glass and Adjusting Heating Power in a Flat Glass Tempering Furnace
FI120451B (en) 2003-06-24 2009-10-30 Uniglass Engineering Oy Method and apparatus for heating glass
DE10361756B3 (en) * 2003-12-29 2005-04-14 Eliog-Kelvitherm Industrieofenbau Gmbh Furnace conferring curvature to glass under gravity, includes channels in thermal insulation to pass flow of coolant
FI120734B (en) * 2004-04-07 2010-02-15 Tamglass Ltd Oy A method for heating glass sheets for tempering and an apparatus for applying the method
FI115834B (en) * 2004-06-09 2005-07-29 Tamglass Ltd Oy Heating glass panels in heating oven involves heating the glass panel from above and below with convection air or with a combination of convection air and radiation heat, where convection air is heated using heat accumulator
JP4978001B2 (en) * 2005-01-17 2012-07-18 オムロン株式会社 Temperature control method, temperature control apparatus, and heat treatment apparatus
DE102005033776B4 (en) * 2005-07-15 2007-06-21 Eliog-Kelvitherm Industrieofenbau Gmbh Flat glass furnace
US20070127973A1 (en) * 2005-12-01 2007-06-07 Comstock Paula G Cushioning grip
US9611029B2 (en) * 2006-10-11 2017-04-04 The Boeing Company Floor beam support assembly, system, and associated method
FI120036B (en) * 2007-11-08 2009-06-15 Uniglass Engineering Oy Method for heating a glass plate and the method applying device
CN101514077B (en) * 2008-02-22 2011-01-19 辽宁北方玻璃机械有限公司 Device for producing chemically toughened glass
EP2141132B1 (en) * 2008-07-02 2012-12-05 Astero Furnace
FI124601B (en) * 2010-09-22 2014-10-31 Glaston Services Ltd Oy Munstyckskroppskonstruktion
CN102072645B (en) * 2011-01-28 2012-12-19 金舟科技股份有限公司 Industrial furnace capable of realizing thermal shift and atmospheric uniformity of gas flow field
ITRE20110055A1 (en) * 2011-07-25 2013-01-26 Keraglass Engineering S R L OVEN FOR ANNEALING GLASS SHEETS
CN103253857A (en) * 2012-02-20 2013-08-21 王世忠 Thermal tempering production method and equipment for thin glass
CN103449713A (en) * 2013-08-14 2013-12-18 浙江鼎玻自动化设备有限公司 Jet-flow glass toughening furnace of barrier-free strong-radiation air source
EP2998113A1 (en) 2014-09-12 2016-03-23 Bottero S.p.A. Machine for heating composite glass sheets undergoing a lamination process, and method thereof
CN104402249B (en) * 2014-11-05 2017-02-15 福建省万达汽车玻璃工业有限公司 Automobile glass heating method and heating device thereof
JP6672840B2 (en) * 2016-01-29 2020-03-25 セイコーエプソン株式会社 Printing equipment
GB2555129A (en) * 2016-10-20 2018-04-25 Tung Chang Machinery And Eng Co Ltd Glass heating furnace
CN108000994B (en) * 2017-11-30 2019-12-17 天津泰立得塑胶制品有限公司 Laminated glass's roll-in equipment
FI128655B (en) * 2019-03-21 2020-09-30 Glaston Finland Oy Tempering furnace for glass sheets
FI129544B (en) * 2019-07-03 2022-04-14 Glaston Finland Oy Tempering furnace for glass sheets
FI128985B (en) * 2019-10-22 2021-04-30 Glaston Finland Oy Method and device for controlling heat treatment process of glass sheets
CN113845295B (en) * 2021-09-14 2023-10-13 福耀集团(福建)机械制造有限公司 Convection heating element for glass heating furnace
CN113636747B (en) * 2021-09-14 2023-10-13 福耀集团(福建)机械制造有限公司 Glass heating furnace and glass heating method
DE202022002918U1 (en) * 2021-11-30 2024-04-26 Saint-Gobain Glass France Device for heating, in particular for bending a glass pane
DE102021131796B3 (en) * 2021-12-02 2022-08-04 Benteler Maschinenbau Gmbh Furnace system for heating laminated glass panes
CN115583789B (en) * 2022-09-26 2023-12-22 闽耀玻璃工业有限公司 High-strength toughened glass preparation equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336442A (en) * 1981-01-12 1982-06-22 Ppg Industries, Inc. Combination radiation and convection heater with convection current directing means
US4505671A (en) * 1981-02-17 1985-03-19 Glasstech, Inc. Glass sheet roller conveyor furnace including gas jet pump heating
FR2597090A1 (en) * 1986-04-09 1987-10-16 Saint Gobain Vitrage IMPROVEMENT IN GLASS SHEET HEATING TECHNIQUES
US4957532A (en) * 1989-06-20 1990-09-18 Casso-Solar Corporation Glass-treating furnace with roller conveyor
FR2658499B1 (en) * 1990-02-21 1993-05-14 Saint Gobain Vitrage Int GLASS SHEET HEATING OVEN.
US5251734A (en) * 1992-05-08 1993-10-12 Chrysler Corporation Hydraulic controls for lock-up clutch of a torque converter assembly
EP0719242B1 (en) * 1993-08-05 1998-12-09 Michael Bryan Land Thermal treatment of glass
IT1287941B1 (en) 1996-07-05 1998-08-26 Ianua Spa OVEN FOR HEAT TREATMENTS OF GLASS SHEETS
US5951734A (en) * 1997-08-15 1999-09-14 Tgl Tempering Systems, Inc. Semi-convective forced air system for tempering low E coated glass
FI114631B (en) * 2001-10-01 2004-11-30 Tamglass Ltd Oy Method and apparatus for heating glass sheets for tempering

Also Published As

Publication number Publication date
CN1215000C (en) 2005-08-17
EP1241143A3 (en) 2004-10-06
RU2281922C2 (en) 2006-08-20
CA2373332C (en) 2009-11-17
DE60213897D1 (en) 2006-09-28
FI20010528A0 (en) 2001-03-16
TW570902B (en) 2004-01-11
JP2002293556A (en) 2002-10-09
EP1241143A2 (en) 2002-09-18
US20020134109A1 (en) 2002-09-26
CN1384072A (en) 2002-12-11
ES2269640T3 (en) 2007-04-01
BR0200810A (en) 2003-01-21
US6845633B2 (en) 2005-01-25
EP1241143B1 (en) 2006-08-16
ATE336470T1 (en) 2006-09-15
BR0200810B1 (en) 2010-11-03
DE60213897T2 (en) 2007-09-06
PT1241143E (en) 2006-12-29
CA2373332A1 (en) 2002-09-16

Similar Documents

Publication Publication Date Title
JP4283485B2 (en) Method and apparatus for heating a glass panel in a tempering furnace provided with rollers
JP3718532B2 (en) Method and apparatus for bending plate glass
AU741677B2 (en) Semi convective forced air system and method for tempering low E coated glass
RU2002106778A (en) A method of heating glass panels in a tempering furnace equipped with rollers, and a device for its implementation
KR100740795B1 (en) Improved flat glass annealing lehrs
US8650911B2 (en) Method and apparatus for heating glass
US20050210924A1 (en) Semi-convective forced air system having amplified air nozzles for heating low &#34;e&#34; coated glass
FI114631B (en) Method and apparatus for heating glass sheets for tempering
EP0228841B1 (en) Glass distribution system
FI120734B (en) A method for heating glass sheets for tempering and an apparatus for applying the method
KR101122810B1 (en) Convection heating furnace for a tempered glass sheet
FI83072B (en) FOERFARANDE OCH ANORDNING FOER ATT FOERHINDRA BOEJNINGEN AV GLASSKIVOR I EN MED VALSAR FOERSEDD UGN I EN HORISONTALHAERDNINGSANORDNING.
EP2141132A2 (en) Furnace
US6490888B1 (en) Semi-convective forced air method for tempering low “E” coated glass
JP2972028B2 (en) Vertical alloying furnace for hot dip galvanizing and its operation method
SU765245A1 (en) Method of automatic control of thermal treatment process of the long-sized ferroconcrete articles
JPH10287438A (en) Apparatus for cooling glass plate
MXPA02001290A (en) Improved flat glass annealing lehrs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080425

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250