JP4283402B2 - Manufacturing method of cartridge for radioactive liquid waste treatment - Google Patents

Manufacturing method of cartridge for radioactive liquid waste treatment Download PDF

Info

Publication number
JP4283402B2
JP4283402B2 JP36506099A JP36506099A JP4283402B2 JP 4283402 B2 JP4283402 B2 JP 4283402B2 JP 36506099 A JP36506099 A JP 36506099A JP 36506099 A JP36506099 A JP 36506099A JP 4283402 B2 JP4283402 B2 JP 4283402B2
Authority
JP
Japan
Prior art keywords
cartridge
raw material
glass fiber
material slurry
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36506099A
Other languages
Japanese (ja)
Other versions
JP2001183495A (en
Inventor
寿信 堀
琢也 陣内
良述 中村
剛 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP36506099A priority Critical patent/JP4283402B2/en
Publication of JP2001183495A publication Critical patent/JP2001183495A/en
Application granted granted Critical
Publication of JP4283402B2 publication Critical patent/JP4283402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放射性廃液を廃棄処分するに際し、被処理物の放射性廃液を含浸させて加熱溶融し、ガラス固化させるのに使用される放射性廃液処理用カートリッジの製造法に関する。
【0002】
【従来の技術】
原子力発電において使用された使用済み燃料を再処理工場において再処理するに際して、ウラン、超ウラン元素及び核分裂生成物を含んだ硝酸を含む高レベル放射性廃液が副生する。そこで、かかる放射性廃液を安全にかつ効率的に廃棄する技術が望まれている。
【0003】
従来、このような放射性廃液を処理するには、放射性廃液を直接または脱硝濃縮してスラリー状とし、ガラス原料と混合して高温のガラス溶融炉に供給し、炉内で廃液中の液体成分を蒸発させると共に放射性物質をガラス中に溶融させて、この溶融ガラスをステンレス製の容器に注入して固化する技術が開発されてきている。
【0004】
このような廃液処理技術においては、ガラス溶融炉内で廃液が激しく沸騰する際に、多量の放射性物質を含む粉塵が発生し、排ガスに同伴して流出するため、この粉塵の飛散を防止することが重要となる。
【0005】
この種の先行技術としては、特公平4−240号公報において、ガラス繊維を型中に充填し、これを加熱処理して部分的に融着させ、所定形状に成形された放射性廃液処理用カートリッジを用意して、上記放射性廃液をこのカートリッジに含浸させて加熱溶融し、ガラス固化させる放射性廃液処理用カートリッジに関する技術がすでに提案されている。
【0006】
【発明が解決しようとする課題】
ところが、前記技術のカートリッジを用いると、加熱溶融炉に搬送するときの粉塵発生量が多く、装置トラブルが生じたり、装置の清掃メンテナンスに非常に手間がかかる等の問題があり、しかも、カートリッジは結合剤を用いることなくガラス繊維の部分的融着だけで成形しているため、充分な圧縮強度・衝撃強度が得られない問題や使用時の粉落ちの問題がある。
【0007】
また、前記技術のカートリッジを用いると、ガラス繊維板を丸めて型内に押し込むこことにより型内に充填し、これを加熱処理して部分的に融着させ、所定形状に成形するようにしているため、大量生産に不向きで、大量個数を製造するのに多大の時間を要することからコストアップにもつながる問題がある。
【0008】
従って、本発明の目的は、従来の放射性廃液処理用カートリッジが持つ充分な圧縮強度・衝撃強度を保有し、かつ、大量生産に向いた放射性廃液処理用カートリッジの製造法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の放射性廃液処理用カートリッジの製造法は、前記目的を達成するべく、請求項1の通り、ガラス繊維を解繊した原料原綿と、無機結合剤と水とで原料スラリーを調製し、前記原料スラリーを型内へ流し込み所定形状に脱水成形し、前記脱水成形物を加熱処理して部分的にガラス繊維を融着させたことを特徴とする。
【0010】
また、請求項2記載の放射性廃液処理用カートリッジの製造法は、請求項1記載の放射性廃液処理用カートリッジの製造法において、前記無機結合剤として、ホウ酸、ケイ酸の無機酸及びそれらの塩から選ばれた1種または2種以上を用いることを特徴とする。
【0011】
【発明の実施の形態】
本発明では、ガラス繊維を解繊して原料原綿とし、前記原料原綿と無機結合剤を水に添加して原料スラリーを調製し、前記原料スラリーを型内へ流し込み所定形状に脱水成形し、前記脱水成形物を加熱処理して部分的にガラス繊維を融着させて放射性廃液処理用カートリッジを得る。
【0012】
本発明の原料スラリーを型内へ流し込む方法としては、前記原料原綿と前記無機結合剤と水を1槽の調合槽へ一定供給して上層部で調合して前記原料スラリーとしながら、同時に前記調合槽の下層部から前記原料スラリーを、1槽のサービスタンクを介して複数の型内へ一定供給する方法がある。
【0013】
また、他方法として、前記原料原綿と前記無機結合剤と水を調合槽Aへ供給して調合して前記原料スラリーとして調合後に、前記調合槽Aから前記原料スラリーを、サービスタンクを介して複数の型内へ一定供給し、次に、別の調合槽Bへ前記原料原綿と前記無機結合剤と水を供給して調合して前記原料スラリーを準備しておき、前記調合槽Aと切り替え使用する方法がある。
【0014】
更に、他方法として、前記原料原綿と前記無機結合剤と水を1本のスパイラルチューブに一定供給し、前記スパイラルチューブの上端部で原料スラリーを調合しながら同時に前記スパイラルチューブの下端部から前記原料スラリーを複数の型内へ一定供給する方法があるが、特に、原料スラリーの調製方法に限定はない。
【0015】
本発明の前記無機結合剤としては、ホウ酸、ケイ酸の無機酸及びそれらの塩から選ばれた1種または2種以上の結合剤を付与するのが好ましい。
【0016】
ガラス繊維は加熱処理によってその交差点で互いに融着して相互に固定されるが、結合剤を付与しない場合、融着の程度、融着の箇所はわずかであり、従ってガラス繊維同士の固定は不充分であって、ガラス繊維は相対的に動きやすく、高い圧縮強度は得られない。また、ガラス繊維の固定箇所が少なく、固定箇所間の距離が大きいため、衝撃を与えた場合、ガラス繊維が折れ、粉塵となって飛散しやすいものとなる。
【0017】
これに対し、結合剤を付与した場合、結合剤自身によりガラス繊維同士がその交差点で結合されると共に、結合剤がフラックスとして作用し、ガラス繊維同士の融着が促進される。この結果、ガラス繊維同士の固定も強固となり、固定箇所も増大するため、圧縮強度・衝撃強度が増大し、粉塵の発生も減少する。
【0018】
なお、結合剤の付与は、溶液状態や粉末状態でガラス繊維原料と共に原料スラリー中に添加すればよいが、好ましくは溶液状態で付与する。例えば水溶液などの溶液状態とし、これにガラス繊維を浸漬させたり、あるいはガラス繊維にスプレー塗布すればよい。この結合剤の付与は、ガラス繊維の繊維化工程で行ってもよい。
【0019】
本発明のガラス繊維の平均繊維径は、原料原綿製造方法の観点から0.5〜40μmのものを使用できる。特に生産性、カートリッジへの廃液染み込み速度を速くするために、10〜20μmが好ましい。平均繊維径が10μm未満の場合には廃液染み込み速度が低下する。また、平均繊維径が20μmを超えると、脱水成型時の形状保持が難しく生産性を低下させてしまう。
【0020】
本発明のガラス繊維の平均繊維長は、0.5〜5mm、特に1〜2mmが好ましい。平均繊維長が0.5mm未満の場合には、加熱融着時に繊維1本当たりの接着が少なくなり、落下した際の粉落ちが多くなる。また、長が5mmを超えると、落下した際の割れによる分割が生じやすい。
【0021】
本発明のガラス繊維の密度は、240〜260kg/m3となるように調整することが好ましい。密度が240kg/m3未満の場合には、充分な圧縮強度が得られない。また、密度が260kg/m3を超えると、放射性廃液の染み込み量が少なくなる。
【0022】
本発明のガラス繊維の加熱融着温度及び加熱融着時間は、670〜730℃にて70〜15分間が好ましいが、加熱融着時の生産性及び外部表面の溶融等の発生を防ぐため、特に690〜710℃にて40〜20分間が好ましい。加熱融着温度が670℃よりも低く、あるいは加熱時間が15分間よりも短い場合には、ガラス繊維の融着が充分になされず、保形性が悪くなる。また、加熱温度が730℃よりも高く、あるいは加熱時間が70分間よりも長い場合には、ガラス繊維が表面又は内部まで溶融して収縮し、保水性が悪くなり割れやすくなる。
【0023】
そして、この加熱処理の際に、ガラス繊維に塗布された結合剤が酸化され、さらに溶融してガラス繊維にコーティングされ、接着効果並びに被膜形成効果がもたらされる。
【0024】
【実施例】
次に、本発明の実施例を図面に基づき説明する。
【0025】
まず、本発明のカートリッジの製造工程について、図1乃至図3を参照して説明する。
【0026】
図1は解繊工程を示しており、遠心法で繊維化され、特に結合剤を用いることなく集綿され、ロール状に巻き取られた平均繊維径13μm、軟化点650℃のガラス繊維11は、ベルトコンベア12でフェザーミル(解繊装置)13へ搬送される。前記フェザーミル(解繊装置)13で繊維長1〜2mm程度に解繊された解繊物14は、脱粒装置15でショットを脱粒し原料原綿16とされる。その際に塵埃は、ブロワ17で吸引してサイクロン装置18で分離し、集塵機19で捕集して排気される。
【0027】
図2は湿式成型工程を示しており、前記ガラス原料原綿16と、無機結合剤であるホウ酸20と、新水21を1槽の調合槽22へ一定供給して上層部22aで調合して原料スラリー23としながら、同時にこの調合槽22の下層部22bから前記原料スラリー23を、1槽のサービスタンク24を介して4個の脱水装置25、25、25、25内へ一定供給するようになっている。
【0028】
前記脱水装置25は、前記原料スラリー23を一定供給するためのポンプ25a、前記原料スラリー23を貯めるバット槽25b、前記原料スラリー23を流し込む円筒型25c、前記原料スラリー23から水分を分離するネット25dから構成されている。
【0029】
脱水装置25内へ一定供給された前記原料スラリー23は、ブロワ26で吸引サクションされて、内径70mm、外径90mm、高さ90mmの前記円筒型25c内で円筒体27に湿式成型される。
【0030】
サクションにより分離された水は、脱水槽28を経由して、リターン水29として前記調合槽22へ戻される。前記円筒体27は100℃で乾燥されて、密度250kg/m3、直径70mm、高さ70mmとされる。
【0031】
図3は加熱融着工程を示しており、図4はそれに使用する加熱融着用円筒型の全体図である。
【0032】
前記円筒型25cに、5mmφの空気穴32aを5個有する上蓋32と、下蓋33とで蓋をした加熱融着用円筒型34を、縦7列×横7列49個を3段積みにして、加熱融着炉30にて加熱融着温度700℃、加熱融着時間30分間で加熱融着してガラスファイバーカートリッジ31を作成する。
【0033】
前記製法により得られた本発明のガラスファイバーカートリッジと、比較例として先願の特公平4−240号に開示されたガラスファイバーカートリッジを作成した。後者は、まず、ガラス繊維をシート状に成形し、該シートを圧延しながら所定の径になるように巻き上げて、2つ割りのステンレス製の型に充填し、ガラス繊維の密度が250kg/m3となるようにして、次に、加熱融着温度700℃、加熱融着時間30分間で加熱融着して、ガラス繊維を融着して直径70mm、高さ70mmのガラスファイバーカートリッジとして形成した。得られた、両カートリッジについて、その性能を試験した。その結果を下記表1に示した。
【0034】
【表1】

Figure 0004283402
【0035】
試験方法
I.粉塵発生量(g/個)
直径80mm×3mのパイプを垂直に立て、カートリッジ20個を同時に落下させたときの最下部カートリッジの試験前後重量変化量を測定した。
【0036】
試験前重量(g/個)−試験後重量(g/個)=粉塵発生量(g/個)
II.圧縮強度
カートリッジの直径方向と軸方向に10kgの加重を掛け、その際のカートリッジ変化量を測定した。
【0037】
III.落下強度
直径80mm×3mのパイプを垂直に立て、カートリッジ20個を同時に落下させたときの最下部カートリッジの外観部を検査した。
【0038】
外観状況:著しい毛羽、割れ、欠け等のないこと。
【0039】
上記試験によれば、実施例は圧縮強度及び落下強度については従来技術である比較例と遜色なく目標値をクリアーしており、比較例は生産性及び粉塵発生量が目標値に達しておらず問題があったが、実施例は目標値50個/h・人以上、粉塵発生量の目標値0.8g/個以下を満足していた。
【0040】
【発明の効果】
以上説明したように、本発明によれば、湿式成形技術を用いることで大量生産が可能となり、即ち、単位時間当たり、単位人数当たりの生産個数多くなり、カートリッジの製造コストが低減できる放射性廃液処理用カートリッジが得られる。また、従来の充填シートを圧延しながら所定の径になるように巻き上げて充填する方法による歪みがないので、成型後の粉落ち・割れ欠けが少なく、圧縮破壊強度が強い放射性廃液処理用カートリッジが得られる。
【図面の簡単な説明】
【図1】本発明の放射性廃液処理用カートリッジの解繊工程の製造工程図である。
【図2】本発明の放射性廃液処理用カートリッジの湿式成型工程の製造工程図である。
【図3】本発明の放射性廃液処理用カートリッジの加熱融着工程の製造工程図である。
【図4】本発明の放射性廃液処理用カートリッジの加熱融着工程に使用する加熱融着用円筒型の全体図である。
【符号の説明】
11 ガラス繊維
12 ベルトコンベア
13 フェザーミル(解繊装置)
14 解繊物
15 脱粒装置
16 原料原綿
17 ブロワ
18 サイクロン装置
19 集塵機
20 ホウ酸
21 新水
22 調合槽
22a 上層部
22b 下層部
23 原料スラリー
24 サービスタンク
25 脱水装置
25a ポンプ
25b バット槽
25c 円筒型
25d ネット
26 ブロワ
27 円筒体
28 脱水槽
29 リターン水
32 上蓋
32a 空気穴
33 下蓋
34 加熱融着用円筒型[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a radioactive waste liquid treatment cartridge used for impregnating a radioactive waste liquid of an object to be treated, heat-melting and vitrifying it when the radioactive waste liquid is disposed of.
[0002]
[Prior art]
When the spent fuel used in nuclear power generation is reprocessed in a reprocessing plant, high-level radioactive liquid waste containing nitric acid containing uranium, transuranium elements and fission products is by-produced. Therefore, a technique for safely and efficiently discarding such radioactive liquid waste is desired.
[0003]
Conventionally, in order to treat such radioactive waste liquid, the radioactive waste liquid is directly or denitrated and concentrated to form a slurry, mixed with the glass raw material and supplied to a high-temperature glass melting furnace, and the liquid components in the waste liquid are removed in the furnace. There has been developed a technique for evaporating and melting a radioactive substance in glass and pouring the molten glass into a stainless steel container to solidify.
[0004]
In such waste liquid treatment technology, when the waste liquid boils vigorously in the glass melting furnace, dust containing a large amount of radioactive material is generated and flows out along with the exhaust gas. Is important.
[0005]
As a prior art of this type, in Japanese Patent Publication No. 4-240, a radioactive waste liquid treatment cartridge in which a glass fiber is filled in a mold, is heat-treated and partially fused, and is molded into a predetermined shape. A technique relating to a cartridge for treating radioactive liquid waste, in which the cartridge is impregnated with the above-mentioned radioactive waste liquid, heated and melted, and vitrified, has already been proposed.
[0006]
[Problems to be solved by the invention]
However, when the cartridge of the above technology is used, there is a problem that a large amount of dust is generated when it is transported to the heating and melting furnace, there is a problem that the apparatus troubles or the cleaning maintenance of the apparatus is very troublesome. Since molding is performed only by partial fusion of glass fibers without using a binder, there are problems in that sufficient compressive strength and impact strength cannot be obtained, and powder falling off during use.
[0007]
In addition, when the cartridge of the above technique is used, the glass fiber plate is rolled into the mold and pushed into the mold, and this is filled into the mold, and this is heat-treated to be partially fused and molded into a predetermined shape. Therefore, it is not suitable for mass production, and it takes a lot of time to produce a large number of products, which leads to a cost increase.
[0008]
Accordingly, an object of the present invention is to provide a method for producing a radioactive waste liquid treatment cartridge that has sufficient compressive strength and impact strength of a conventional radioactive waste liquid treatment cartridge and is suitable for mass production.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a cartridge for treating radioactive liquid waste according to the present invention, as described in claim 1, prepares a raw material slurry from raw material raw cotton defibered glass fiber, an inorganic binder and water, The raw material slurry is poured into a mold and dehydrated into a predetermined shape, and the dehydrated molded product is heat-treated to partially fuse glass fibers.
[0010]
A method for producing a cartridge for treating radioactive liquid waste according to claim 2 is the method for producing a cartridge for treating radioactive liquid waste according to claim 1, wherein the inorganic binder is boric acid, inorganic acids of silicic acid, and salts thereof. One type or two or more types selected from the above are used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, glass fiber is defibrated to obtain raw raw cotton, the raw raw cotton and an inorganic binder are added to water to prepare a raw slurry, the raw slurry is poured into a mold and dehydrated into a predetermined shape, The dehydrated molded product is heat-treated to partially fuse the glass fibers to obtain a radioactive waste liquid treatment cartridge.
[0012]
As a method of pouring the raw material slurry of the present invention into a mold, the raw material raw cotton, the inorganic binder, and water are constantly supplied to a single preparation tank and prepared in the upper layer portion to prepare the raw material slurry, while simultaneously preparing the preparation There is a method in which the raw material slurry is constantly supplied from a lower layer of the tank into a plurality of molds through a single service tank.
[0013]
As another method, the raw material raw cotton, the inorganic binder, and water are supplied to the mixing tank A and mixed to prepare the raw material slurry, and then a plurality of the raw material slurries are mixed from the mixing tank A via a service tank. The raw material slurry, the inorganic binder, and water are supplied to and mixed with another raw mixing tank B to prepare the raw material slurry, which is then switched to the mixing tank A. There is a way to do it.
[0014]
Furthermore, as another method, the raw material cotton, the inorganic binder, and water are constantly supplied to one spiral tube, and the raw material slurry is prepared at the upper end portion of the spiral tube and simultaneously from the lower end portion of the spiral tube. Although there is a method of supplying the slurry to a plurality of molds, there is no particular limitation on the method of preparing the raw slurry.
[0015]
As said inorganic binder of this invention, it is preferable to provide the 1 type, or 2 or more types of binder chosen from the inorganic acid of boric acid and silicic acid, and those salts.
[0016]
Glass fibers are fused and fixed to each other at the intersections by heat treatment. However, when no binder is applied, the degree of fusion and the number of fusion points are few, and thus the glass fibers are not fixed to each other. It is sufficient, and the glass fiber is relatively mobile and high compression strength cannot be obtained. Moreover, since there are few fixed locations of glass fiber and the distance between fixed locations is large, when an impact is given, glass fiber breaks and it becomes easy to be scattered as dust.
[0017]
On the other hand, when the binder is applied, the glass fibers are bonded to each other at the intersection by the binder itself, and the binder acts as a flux to promote the fusion of the glass fibers. As a result, the glass fibers are firmly fixed to each other and the number of fixing points is increased, so that the compressive strength / impact strength is increased and the generation of dust is also reduced.
[0018]
The binding agent may be added to the raw material slurry together with the glass fiber raw material in a solution state or a powder state, but preferably in a solution state. For example, a solution state such as an aqueous solution may be used, and glass fibers may be immersed in the solution state or spray applied to the glass fibers. You may perform provision of this binder in the fiberization process of glass fiber.
[0019]
The average fiber diameter of the glass fiber of this invention can use a 0.5-40 micrometer thing from a viewpoint of raw material raw cotton manufacturing method. In particular, 10 to 20 μm is preferable in order to increase the productivity and the speed of soaking the waste liquid into the cartridge. When the average fiber diameter is less than 10 μm, the waste liquid soaking rate decreases. On the other hand, when the average fiber diameter exceeds 20 μm, it is difficult to maintain the shape at the time of dehydration molding, and productivity is lowered.
[0020]
The average fiber length of the glass fiber of the present invention is preferably 0.5 to 5 mm, particularly preferably 1 to 2 mm. When the average fiber length is less than 0.5 mm, the adhesion per fiber during heat fusion decreases, and the amount of powder falling when dropped is increased. On the other hand, if the length exceeds 5 mm, splitting due to cracking when falling is likely to occur.
[0021]
The density of the glass fiber of the present invention is preferably adjusted to be 240 to 260 kg / m 3 . When the density is less than 240 kg / m 3 , sufficient compressive strength cannot be obtained. On the other hand, when the density exceeds 260 kg / m 3 , the amount of radioactive waste liquid soaked is reduced.
[0022]
The heating and fusing temperature and the fusing time of the glass fiber of the present invention are preferably 70 to 15 minutes at 670 to 730 ° C., but in order to prevent productivity during heating and fusing, etc. In particular, 40 to 20 minutes are preferable at 690 to 710 ° C. When the heat fusion temperature is lower than 670 ° C., or when the heating time is shorter than 15 minutes, the glass fibers are not sufficiently fused, and the shape retention is deteriorated. In addition, when the heating temperature is higher than 730 ° C. or the heating time is longer than 70 minutes, the glass fiber melts and contracts to the surface or inside, and the water retention becomes worse and the glass fiber tends to break.
[0023]
During the heat treatment, the binder applied to the glass fiber is oxidized and further melted and coated on the glass fiber, thereby providing an adhesive effect and a film forming effect.
[0024]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings.
[0025]
First, the manufacturing process of the cartridge of the present invention will be described with reference to FIGS.
[0026]
FIG. 1 shows a defibrating process. Glass fibers 11 having an average fiber diameter of 13 μm and a softening point of 650 ° C., which are fiberized by a centrifugal method, collected without using a binder, and wound in a roll shape, Then, it is conveyed to a feather mill (defibrating device) 13 by a belt conveyor 12. The defibrated material 14 defibrated to a fiber length of about 1 to 2 mm by the feather mill (defibrating device) 13 is crushed into shots by the degranulating device 15 to become raw material raw cotton 16. At that time, the dust is sucked by the blower 17, separated by the cyclone device 18, collected by the dust collector 19 and exhausted.
[0027]
FIG. 2 shows a wet molding process, in which the raw glass raw material 16, boric acid 20 as an inorganic binder, and fresh water 21 are supplied to a single mixing tank 22 and mixed in an upper layer 22a. At the same time as the raw material slurry 23, the raw material slurry 23 is constantly supplied from the lower layer portion 22 b of the preparation tank 22 into the four dehydrators 25, 25, 25, 25 through one tank of the service tank 24. It has become.
[0028]
The dehydrator 25 includes a pump 25a for supplying the raw material slurry 23 at a constant rate, a bat tank 25b for storing the raw material slurry 23, a cylindrical mold 25c into which the raw material slurry 23 is poured, and a net 25d for separating water from the raw material slurry 23. It is composed of
[0029]
The raw material slurry 23 supplied to the dehydrator 25 is sucked and sucked by a blower 26 and wet-molded into a cylindrical body 27 in the cylindrical mold 25c having an inner diameter of 70 mm, an outer diameter of 90 mm, and a height of 90 mm.
[0030]
The water separated by the suction is returned to the blending tank 22 as return water 29 via the dehydrating tank 28. The cylindrical body 27 is dried at 100 ° C. to a density of 250 kg / m 3 , a diameter of 70 mm, and a height of 70 mm.
[0031]
FIG. 3 shows a heat fusion process, and FIG. 4 is an overall view of a heat fusion cylindrical type used for the heat fusion process.
[0032]
The cylindrical mold 25c is formed by stacking a heat-bonding cylindrical mold 34 covered with five upper air holes 32a having 5 mmφ air holes 32a and a lower cover 33 in a vertical stack of 7 rows x 49 rows. Then, the glass fiber cartridge 31 is formed by heat fusion in a heat fusion furnace 30 with a heat fusion temperature of 700 ° C. and a heat fusion time of 30 minutes.
[0033]
The glass fiber cartridge of this invention obtained by the said manufacturing method and the glass fiber cartridge disclosed by Japanese Patent Publication No. 4-240 of a prior application as a comparative example were created. In the latter, first, glass fiber is formed into a sheet shape, rolled up to a predetermined diameter while rolling the sheet, filled into a two-part stainless steel mold, and the density of the glass fiber is 250 kg / m 2. 3 become manner, then, fusion bonding temperature 700 ° C., and heated fused with heat sealing time for 30 minutes to form a glass fiber fused to a diameter of 70mm, a glass fiber cartridge height 70mm . The resulting cartridges were tested for performance. The results are shown in Table 1 below.
[0034]
[Table 1]
Figure 0004283402
[0035]
Test Method I. Dust generation (g / piece)
A pipe having a diameter of 80 mm × 3 m was set up vertically, and the weight change amount before and after the test of the lowermost cartridge when 20 cartridges were dropped at the same time was measured.
[0036]
Weight before test (g / piece)-Weight after test (g / piece) = Dust generation (g / piece)
II. A load of 10 kg was applied to the diameter direction and the axial direction of the compression strength cartridge, and the amount of change in the cartridge at that time was measured.
[0037]
III. A pipe having a drop strength of 80 mm × 3 m was set up vertically, and the appearance of the lowermost cartridge when 20 cartridges were dropped at the same time was inspected.
[0038]
Appearance status: No fuzz, cracks or chipping.
[0039]
According to the above test, the example clears the target values for the compressive strength and the drop strength as compared with the comparative example of the prior art, and the comparative example does not reach the target values for productivity and dust generation amount. Although there was a problem, the example satisfied a target value of 50 pieces / h · person or more and a target value of dust generation amount of 0.8 g / piece or less.
[0040]
【The invention's effect】
As described above, according to the present invention, the radioactive waste liquid treatment enables mass production by using the wet molding technique, that is, the production quantity per unit time increases per unit time, and the manufacturing cost of the cartridge can be reduced. A cartridge is obtained. In addition, since there is no distortion due to the conventional method of rolling and filling the filled sheet so as to have a predetermined diameter, there is no radioactive waste liquid treatment cartridge with a high compressive fracture strength with little powder falling and cracking after molding. can get.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a defibrating process of a radioactive waste liquid treatment cartridge of the present invention.
FIG. 2 is a production process diagram of a wet molding process of the radioactive waste liquid treatment cartridge of the present invention.
FIG. 3 is a production process diagram of a heat fusion process of the radioactive waste liquid treatment cartridge of the present invention.
FIG. 4 is an overall view of a heat-welding cylindrical type used in the heat-sealing step of the radioactive waste liquid treatment cartridge of the present invention.
[Explanation of symbols]
11 Glass fiber 12 Belt conveyor 13 Feather mill (defibration device)
14 Defibrated material 15 Degreasing device 16 Raw material raw cotton 17 Blower 18 Cyclone device 19 Dust collector 20 Boric acid 21 Fresh water 22 Preparation tank 22a Upper layer part 22b Lower layer part 23 Raw material slurry 24 Service tank 25 Dehydrator 25a Pump 25b Butt tank 25c Cylindrical type 25d Net 26 Blower 27 Cylindrical body 28 Dehydration tank 29 Return water 32 Upper lid 32a Air hole 33 Lower lid 34 Cylindrical type for heat fusion

Claims (2)

ガラス繊維を解繊した原料原綿と、無機結合剤と水とで原料スラリーを調製し、前記原料スラリーを型内へ流し込み所定形状に脱水成形し、前記脱水成形物を加熱処理して部分的にガラス繊維を融着させたことを特徴とする放射性廃液処理用カートリッジの製造法。A raw material slurry obtained by defusing glass fibers, an inorganic binder, and water are used to prepare a raw material slurry, the raw material slurry is poured into a mold, dehydrated and molded into a predetermined shape, and the dehydrated molded product is heated and partially processed. A method for producing a cartridge for treating radioactive liquid waste, wherein glass fiber is fused. 前記無機結合剤として、ホウ酸、ケイ酸の無機酸及びそれらの塩から選ばれた1種または2種以上を用いることを特徴とする請求項1記載の放射性廃液処理用カートリッジの製造法。2. The method for producing a cartridge for treating radioactive liquid waste according to claim 1, wherein one or more selected from boric acid, inorganic acids of silicic acid and salts thereof are used as the inorganic binder.
JP36506099A 1999-12-22 1999-12-22 Manufacturing method of cartridge for radioactive liquid waste treatment Expired - Lifetime JP4283402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36506099A JP4283402B2 (en) 1999-12-22 1999-12-22 Manufacturing method of cartridge for radioactive liquid waste treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36506099A JP4283402B2 (en) 1999-12-22 1999-12-22 Manufacturing method of cartridge for radioactive liquid waste treatment

Publications (2)

Publication Number Publication Date
JP2001183495A JP2001183495A (en) 2001-07-06
JP4283402B2 true JP4283402B2 (en) 2009-06-24

Family

ID=18483342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36506099A Expired - Lifetime JP4283402B2 (en) 1999-12-22 1999-12-22 Manufacturing method of cartridge for radioactive liquid waste treatment

Country Status (1)

Country Link
JP (1) JP4283402B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406451B2 (en) 2007-09-20 2010-01-27 株式会社Ihi Glass melting method for high-level radioactive liquid waste
JP6175342B2 (en) * 2013-10-09 2017-08-02 株式会社 エスジー Slurry-like coating material and slurry-like coating material preparation apparatus method and apparatus

Also Published As

Publication number Publication date
JP2001183495A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
US3669638A (en) Method of producing bonded randomly oriented glass fiber mats and batts
JP2001524625A (en) Fiber insulation having integrated inorganic and organic fibers and building structure insulated with such fiber insulation
CZ363996A3 (en) Process for producing mineral fibers
JP4283402B2 (en) Manufacturing method of cartridge for radioactive liquid waste treatment
CN106367887A (en) High-density dry-method core material and manufacturing method thereof
DK167180B1 (en) PROCEDURE FOR THE MANUFACTURE OF FORMED ARTICLES OF FIBER Reinforced Molding Material
US3850294A (en) Package of saturated unsized glass filaments
US3498770A (en) Method for treating and processing nonsized roving of mineral filaments
US3045058A (en) Separators for electric accumulators, especially lead accumulators, and process of manufacture thereof
US3578426A (en) Method for making glass fiber strand for resin reinforcement
JP2006256909A (en) Rock wool manufacturing method and manufacturing device
JP4317644B2 (en) Glass fiber cartridge for radioactive liquid waste treatment
EP0188811A2 (en) Silica-rich, porous solid and hollow fibers and method of producing same
JP6098069B2 (en) Method for producing pre-sheet for producing fiber reinforced thermoplastic plastic and method for producing fiber reinforced thermoplastic molded article
JPH04240B2 (en)
US6478829B1 (en) Method for producing a battery with separators containing fusible binders
ATE7157T1 (en) PROCESS FOR THE MANUFACTURE OF MINERAL FIBER MATS OR PLATES AND EQUIPMENT FOR THE PERFORMANCE.
JPH0312342A (en) Production of heat insulating material of rock wool and rock wool mat
CN107101289A (en) A kind of building template manufacturing shop automatic dust removing apparatus
JP6430676B1 (en) Cartridge for radioactive liquid waste treatment
US3012930A (en) Method of wet felting and leaching mineral fibers and resultant felted product
EP0242569B1 (en) Process for preparing a cartridge for disposal of a radioactive waste liquid
JPH03199999A (en) Cartridge for treating radioactive waste fluid
JPS60122397A (en) Volume decreasing treating method of radioactive waste
FI126897B (en) Method and system for manufacturing a blow insulating product and a blow insulating product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Ref document number: 4283402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term