JP4317644B2 - Glass fiber cartridge for radioactive liquid waste treatment - Google Patents

Glass fiber cartridge for radioactive liquid waste treatment Download PDF

Info

Publication number
JP4317644B2
JP4317644B2 JP2000153874A JP2000153874A JP4317644B2 JP 4317644 B2 JP4317644 B2 JP 4317644B2 JP 2000153874 A JP2000153874 A JP 2000153874A JP 2000153874 A JP2000153874 A JP 2000153874A JP 4317644 B2 JP4317644 B2 JP 4317644B2
Authority
JP
Japan
Prior art keywords
glass fiber
cartridge
glass
fiber
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000153874A
Other languages
Japanese (ja)
Other versions
JP2001330696A (en
Inventor
寿信 堀
琢也 陣内
剛 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2000153874A priority Critical patent/JP4317644B2/en
Publication of JP2001330696A publication Critical patent/JP2001330696A/en
Application granted granted Critical
Publication of JP4317644B2 publication Critical patent/JP4317644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放射性廃液を廃棄処分するに際し、被処理物の放射性廃液を含浸させて加熱溶融し、ガラス固化させるのに使用される放射性廃液処理用カートリッジに関する。
【0002】
【従来の技術】
原子力発電において使用された使用済み燃料を再処理工場において再処理するに際し、ウラン、超ウラン元素および核分裂生成物を含んだ硝酸を含む高レベル放射性廃液が副生する。そこで、かかる放射性廃液を安全にかつ効率的に廃棄する技術が望まれている。
従来、このような放射性廃液を処理するには、放射性廃液を直接または脱硝濃縮してスラリー状とし、このスラリー状物をガラス原料と混合して高温のガラス溶融炉に供給し、炉内で廃液中の液体成分を蒸発させると共に放射性物質をガラス中に溶融させて、この溶融ガラスをステンレス製の容器に注入して固化する技術が開発されている。
このような廃液処理技術においては、ガラス溶融炉内で廃液が激しく沸騰する際、多量の放射性物質を含む粉塵が発生し、排ガスに同伴して流出するため、この粉塵の飛散を防止することが重要となる。
このような問題を解決するためには、例えば、特公平4−240号公報に開示されるように、カートリッジにガラス繊維を用い、廃液をガラス繊維の隙間に含浸させて、溶融中に発生する粉塵をガラス繊維のフィルタ効果によって捕捉して、飛散を防止するようにした方法が提案され、実用化されている。このカートリッジに用いられるガラス繊維はバインダーを用いることなく所定形状に成形され、良好な保水性や所定の強度等、幾つかの特性が必要とされていた。
【0003】
【発明が解決しようとする課題】
ところで上記カートリッジは、ガラス繊維板状に形成されたガラス繊維を丸めて型中に押し込んで充填し、これを加熱処理して部分的に融着させ、所定形状に成形するようにしているため、大量生産に不向きで、所定個数を製造するのに多大の時間を要することからコストアップにもつながるという問題がある。
また、ガラス繊維板状に形成されたガラス繊維を丸めて型中に押し込んで成形するため、成形後も内部に応力が残存し、衝撃を受けた際に割れやすく、保管する際の形状安定性もあまりよくないという問題があった。また、外観は毛羽立ち等のために悪くなり、搬送中の摩擦による粉塵発生量も多くなるという問題もあった。
そこで、本発明の目的は、従来の放射性廃液処理用カートリッジが持つ問題点を解消し、残留応力が残らないように成形して充分な圧縮強度や衝撃強度を保有するようにし、外観の毛羽立ちも少なく保管する際の形状安定性も高く、大量生産に向いた放射性廃液処理用カートリッジを提供することにある。
【0004】
【課題を解決するための手段】
本発明の放射性廃液処理用ガラスファイバーカートリッジは、前記目的を達成するべく、請求項1記載の通り、アスペクト比が100〜1900で、繊維径が7〜15μm、繊維長が3〜6mmのガラス繊維と、無機質バインダからなることを特徴とする。
また、請求項2記載の放射性廃液処理用ガラスファイバーカートリッジは、請求項1記載の放射性廃液処理用ガラスファイバーカートリッジにおいて、前記ガラス繊維の密度は240〜260kg/m であることを特徴とする。
また、請求項3記載の放射性廃液処理用ガラスファイバーカートリッジは、請求項1または2に記載の放射性廃液処理用ガラスファイバーカートリッジにおいて、前記無機質バインダはホウ酸、ケイ酸、或いは、これらの無機塩からなることを特徴とする。
した。
【0005】
【発明の実施の形態】
本発明の放射性廃液処理用ガラスファイバーカートリッジは、前記の通り、アスペクト比が100〜1900で、繊維長が0.5〜22mmのガラス繊維と、無機質バインダとで構成するものである。
ここで、前記アスペクト比は、次ぎのように定義される値である。
アスペクト比=繊維長(mm)÷繊維径(mm)
【0006】
前記ガラス繊維としては、繊維径が0.5〜40μm、繊維長が0.5〜22mmの範囲のものを使用できる。その中でも、残留応力、形状安定性および染み込み速度等の特性全体を満足でき、生産性も満足できるという観点から、繊維径が7〜15μm、繊維長が1〜15mmの範囲で、アスペクト比が100〜1900となるような組み合わせを選択するのが好ましい。
【0007】
例えば、繊維径が11.5μmの場合は、繊維長が1.2〜15mmの範囲においてアスペクト比が100〜1900の範囲内とすることができる。この繊維長の範囲で、残留応力、形状安定性および染込性等の特性全体を満足できるものとなるが、その中でも、特に繊維長は3〜6mmの範囲とすることが好ましい。
【0008】
アスペクト比が100未満となる繊維長0.5mm未満では、加熱融着時に繊維同士の接着が少なくなり、落下した際の粉落ちが多くなり、また、アスペクト比が1900を超える繊維長22mm超えでは、ガラス繊維を型に入れ、加熱融着させた際に残留応力が残りやすく、落下させた際の割れが生じやすいものとなる。
【0009】
本発明カートリッジを構成するガラス繊維の密度は240〜260kg/mとなるように調整するのが好ましい。これは、密度が240kg/m未満の場合には、十分な圧縮強度が得られず、また、密度が260kg/mを超えると、放射性廃液の染込量が少なくなるからである。
【0010】
本発明の前記無機質バインダとしては、特に限定されるものではないが、ホウ酸、ケイ酸や、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム、ケイ酸亜鉛、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸リチウム、ホウ酸亜鉛等の前記ケイ酸塩やホウ酸塩の使用が好ましいが、硝酸ナトリウム、硫酸ナトリウム、炭酸ナトリウム、硝酸カリウム、硫酸カリウム、炭酸カリウム等の各種無機酸、無機塩が使用可能である。
【0011】
【実施例】
次ぎに、本発明放射性廃液処理用ガラスファイバーカ―トリッジの実施例を、比較例、従来例と共に説明する。
【0012】
(実施例)
実施例1,2及び参考例として、シート状に形成せずに、繊維長がある程度均一になるように解繊し、表1に示すようにアスペクト比が100〜1900の範囲内となるように調整した各種ガラス繊維を型に入れ、ガラス繊維の密度が250kg/mとなるように型内に充填した。次に、加熱融着温度700℃、加熱融着時間30分間の条件で、加熱融着してガラス繊維を融着し、直径70mm、高さ70mmのガラスファイバーカートリッジを作成した。
【0013】
(比較例)
比較例1及び2として、アスペクト比が100〜1900の範囲を外れるように調整したガラス繊維を使用するようにしたこと以外は前記実施例と同様にしてガラスファイバーカートリッジを作成した。
【0014】
(従来例)
従来例として、特公平4−240号公報に開示されるガラスファイバーカートリッジを作成した。詳細には、ガラス繊維をシート状に成形し、該シートを圧延しながら所定の径になるように巻き上げて、2つ割りのステンレス製の型に充填し、ガラス繊維の密度が250kg/mとなるようにした。次に、加熱融着温度700℃、加熱融着時間30分間の条件で、加熱融着してガラス繊維を融着し、直径70mm、高さ70mmのガラスファイバーカートリッジを作成した。
【0015】
得られた前記実施例1,2及び参考例、比較例1及び2、従来例の各カートリッジについて、その性能試験を実施した。
その結果を下表に示す。
【0016】
【表1】

Figure 0004317644
【0017】
前記表1中の硬さ(圧縮強度)、残留応力、形状安定性、外観、染込性、総合評価については、次のようにして評価した。
▲1▼硬さ(圧縮強度)
カートリッジの直径方向に10kgの加重を掛け、その際のカートリッジの変化量を測定した。規格は変形量5mm以下となっているが、評価基準は次のようにした。
○:変化量が3mm未満、△:変化量が3〜5mm、×:変化量が5mm超え▲2▼残留応力
カートリッジを水に浸漬し、1h経過後に膨れ等の形状変化の有無を目視観察した。評価基準は次ぎのようにした。
○:変化なし、△:やや膨らみ等が発生する、×:明らかに膨れが発生する
▲3▼形状安定性
カートリッジ製造中に発生する割れ欠け等の不良率で評価した。評価基準は次ぎのようにした。
○:不良率0.5%未満、△:0.5〜3%、×:3%超え
▲4▼外観
目視で外観を観察し、次のように評価にした。
○:優れている、△:やや表面に凹凸がある、×:毛羽立ち等発生
▲5▼染込性
カートリッジの初期重量を測定し、その後、カートリッジを水に浸漬させ、泡が出なくなる状態まで放置し、泡が出なくなることを確認してから、垂直に持ち上げ水が落ちなくなるまで静かに待ち、その後重量を測定し、その前後の重量差を測定した。規格はカートリッジ1g当り、水3.2g以上染み込む事となっているが、次ぎのように評価した。
○:3.4g/g超え、△:3.2〜3.4g/g、×:3.2g/g未満
▲6▼総合評価
◎:全ての項目で○、○:ひとつでも△の項目がある、×:ひとつでも×の項目がある
【0018】
上記の表1から明らかなように、本発明の放射性廃液処理用ガラスファイバーカ―トリッジでは、残留応力が残らないように成形されて充分な圧縮強度を保有し、染込性も良好で、外観の毛羽立ちも少なく保管する際の形状安定性も高く、大量生産に向いた放射性廃液処理用カートリッジが得られることが確認できた。特に、実施例1及び2のように繊維長が2〜6mmの範囲においては、外観の毛羽立ち、保管する際の形状安定性にも極めて優れた放射性廃液処理用カートリッジが得られることが確認できた。
【0019】
【発明の効果】
以上説明したように、本発明によればアスペクト比を100〜1900の範囲になるような範囲において、ガラス繊維の繊維長を特定範囲に選択すれば、ガラス繊維が残留応力が残らないように所定形状に成形されて充分な圧縮強度を保有し、染込性も良好で、外観の毛羽立ちも少なく保管する際の形状安定性も高く、大量生産に向いた放射性廃液処理用カートリッジが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radioactive waste liquid treatment cartridge that is used to impregnate a radioactive waste liquid of an object to be treated, heat and melt it, and vitrify it when the radioactive waste liquid is disposed of.
[0002]
[Prior art]
When the spent fuel used in nuclear power generation is reprocessed in a reprocessing plant, high-level radioactive liquid waste containing nitric acid containing uranium, transuranium elements and fission products is by-produced. Therefore, a technique for safely and efficiently discarding such radioactive liquid waste is desired.
Conventionally, in order to treat such a radioactive liquid waste, the radioactive liquid waste is directly or denitrated and concentrated to form a slurry, and this slurry is mixed with a glass raw material and supplied to a high-temperature glass melting furnace. A technique has been developed in which a liquid component therein is evaporated and a radioactive substance is melted in glass, and the molten glass is poured into a stainless steel container and solidified.
In such waste liquid treatment technology, when the waste liquid boils violently in the glass melting furnace, dust containing a large amount of radioactive material is generated and flows out accompanying the exhaust gas. It becomes important.
In order to solve such a problem, for example, as disclosed in Japanese Examined Patent Publication No. 4-240, glass fibers are used in the cartridge, and the waste liquid is impregnated in the gaps of the glass fibers, and is generated during melting. A method has been proposed and put into practical use in which dust is captured by the filter effect of glass fiber to prevent scattering. The glass fiber used in the cartridge is molded into a predetermined shape without using a binder, and some characteristics such as good water retention and predetermined strength are required.
[0003]
[Problems to be solved by the invention]
By the way, the cartridge is made by rolling glass fiber formed in a glass fiber plate shape, pushing it into a mold and filling it, heat-treating it partially, and molding it into a predetermined shape. There is a problem that it is unsuitable for mass production and takes a lot of time to manufacture a predetermined number, leading to an increase in cost.
In addition, glass fiber formed into a glass fiber plate shape is rolled and pressed into a mold to be molded, so that stress remains inside after molding, it is easy to break when subjected to impact, and shape stability when stored There was also a problem that was not so good. In addition, the appearance deteriorates due to fluffing and the like, and there is a problem that the amount of dust generated due to friction during conveyance increases.
Therefore, the object of the present invention is to eliminate the problems of the conventional cartridge for radioactive liquid waste treatment, so as to retain sufficient compressive strength and impact strength by molding so that residual stress does not remain, and to prevent fuzz of the appearance. An object of the present invention is to provide a radioactive waste liquid treatment cartridge suitable for mass production, which has high shape stability when stored in a small amount.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the glass fiber cartridge for treating radioactive liquid waste according to the present invention is a glass fiber having an aspect ratio of 100 to 1900, a fiber diameter of 7 to 15 μm, and a fiber length of 3 to 6 mm as claimed in claim 1. And an inorganic binder.
Moreover, the glass fiber cartridge for radioactive waste liquid treatment of Claim 2 is a glass fiber cartridge for radioactive waste liquid treatment of Claim 1 , The density of the said glass fiber is 240-260 kg / m < 3 > , It is characterized by the above-mentioned.
Further, the radioactive waste liquid glass fiber cartridge according to claim 3, wherein, in the glass fiber cartridge for radioactive waste treatment according to claim 1 or 2, wherein the inorganic binder is boric acid, silicic acid, or these inorganic salts It is characterized by becoming.
did.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the glass fiber cartridge for treating radioactive waste liquid according to the present invention comprises glass fibers having an aspect ratio of 100 to 1900 and a fiber length of 0.5 to 22 mm, and an inorganic binder.
Here, the aspect ratio is a value defined as follows.
Aspect ratio = fiber length (mm) ÷ fiber diameter (mm)
[0006]
As the glass fiber, one having a fiber diameter of 0.5 to 40 μm and a fiber length of 0.5 to 22 mm can be used. Among them, from the viewpoint of satisfying the entire characteristics such as residual stress, shape stability and penetration rate, and satisfying productivity, the fiber diameter is 7 to 15 μm, the fiber length is 1 to 15 mm, and the aspect ratio is 100. It is preferable to select a combination of ˜1900.
[0007]
For example, when the fiber diameter is 11.5 μm, the aspect ratio can be in the range of 100 to 1900 in the range of the fiber length of 1.2 to 15 mm. Within this range of fiber length, the entire characteristics such as residual stress, shape stability, and penetration can be satisfied. Among these, the fiber length is particularly preferably in the range of 3 to 6 mm.
[0008]
When the fiber length is less than 0.5 mm where the aspect ratio is less than 100, the adhesion between the fibers is reduced at the time of heat-sealing, and powder falling when falling is increased, and when the fiber length exceeds 22 mm and the aspect ratio exceeds 1900 When the glass fiber is put into a mold and heat-sealed, residual stress tends to remain, and cracking tends to occur when dropped.
[0009]
The density of the glass fibers constituting the cartridge of the present invention is preferably adjusted so as to be 240 to 260 kg / m 3 . This is because when the density is less than 240 kg / m 3 , sufficient compressive strength cannot be obtained, and when the density exceeds 260 kg / m 3 , the amount of radioactive waste liquid permeated decreases.
[0010]
The inorganic binder of the present invention is not particularly limited, but boric acid, silicic acid, sodium silicate, potassium silicate, lithium silicate, zinc silicate, sodium borate, potassium borate, boron The use of the above silicates and borates such as lithium acid and zinc borate is preferable, but various inorganic acids and salts such as sodium nitrate, sodium sulfate, sodium carbonate, potassium nitrate, potassium sulfate, and potassium carbonate can be used. is there.
[0011]
【Example】
Next, examples of the glass fiber cartridge for treating radioactive liquid waste according to the present invention will be described together with comparative examples and conventional examples.
[0012]
(Example)
As Examples 1 and 2 and a reference example , the fiber length is defibrated so as to be uniform to some extent without being formed into a sheet shape, and as shown in Table 1, the aspect ratio is in the range of 100 to 1900. Various adjusted glass fibers were put into a mold, and filled in the mold so that the density of the glass fibers was 250 kg / m 3 . Next, the glass fiber was fused by heating and fusing under the conditions of a heat fusing temperature of 700 ° C. and a heat fusing time of 30 minutes, to prepare a glass fiber cartridge having a diameter of 70 mm and a height of 70 mm.
[0013]
(Comparative example)
As Comparative Examples 1 and 2, glass fiber cartridges were prepared in the same manner as in the above Example, except that glass fibers adjusted to have an aspect ratio outside the range of 100 to 1900 were used.
[0014]
(Conventional example)
As a conventional example, a glass fiber cartridge disclosed in Japanese Patent Publication No. 4-240 was prepared. Specifically, the glass fiber is formed into a sheet shape, rolled up to a predetermined diameter while being rolled, filled into a two-part stainless steel mold, and the density of the glass fiber is 250 kg / m 3. It was made to become. Next, the glass fiber was fused by heating and fusing under the conditions of a heat fusing temperature of 700 ° C. and a heat fusing time of 30 minutes, to prepare a glass fiber cartridge having a diameter of 70 mm and a height of 70 mm.
[0015]
A performance test was conducted on each of the obtained cartridges of Examples 1 and 2 and Reference Examples, Comparative Examples 1 and 2 and the conventional example.
The results are shown in the table below.
[0016]
[Table 1]
Figure 0004317644
[0017]
The hardness (compressive strength), residual stress, shape stability, appearance, penetration, and comprehensive evaluation in Table 1 were evaluated as follows.
(1) Hardness (compressive strength)
A weight of 10 kg was applied in the diameter direction of the cartridge, and the amount of change of the cartridge at that time was measured. The standard is a deformation amount of 5 mm or less, but the evaluation criteria are as follows.
○: Change amount is less than 3 mm, Δ: Change amount is 3 to 5 mm, X: Change amount is more than 5 mm, and (2) Residual stress cartridge is immersed in water and visually observed for shape change such as swelling after 1 hour. . The evaluation criteria were as follows.
○: No change, Δ: Slightly bulging, etc., X: Clearly bulging, and (3) Shape stability Evaluation was made based on the defect rate such as chipping generated during the manufacture of the cartridge. The evaluation criteria were as follows.
○: Defect rate less than 0.5%, Δ: 0.5 to 3%, x: more than 3% (4) Appearance The appearance was observed visually and evaluated as follows.
○: Excellent, △: Slightly uneven, ×: Fluffing, etc. (5) Measure the initial weight of the infiltrating cartridge, and then immerse the cartridge in water and leave until no bubbles appear Then, after confirming that bubbles were not generated, the sample was lifted vertically and gently waited until the water did not fall, then the weight was measured, and the difference in weight before and after that was measured. According to the standard, more than 3.2 g of water per 1 g of cartridge was infiltrated.
○: More than 3.4 g / g, Δ: 3.2 to 3.4 g / g, ×: Less than 3.2 g / g (6) Overall evaluation ◎: ○ for all items, ○: At least one item of Δ Yes, x: There is at least one x item [0018]
As apparent from Table 1 above, the glass fiber cartridge for treating radioactive liquid waste according to the present invention is molded so that no residual stress remains, possesses sufficient compressive strength, has good penetration, and has a good appearance. It has been confirmed that a cartridge for radioactive liquid waste treatment suitable for mass production can be obtained. In particular, in the range of fiber lengths of 2 to 6 mm as in Examples 1 and 2, it was confirmed that a radioactive waste liquid treatment cartridge having excellent fluffing appearance and shape stability during storage could be obtained. .
[0019]
【The invention's effect】
As described above, according to the present invention, if the fiber length of the glass fiber is selected in a specific range within the range where the aspect ratio is in the range of 100 to 1900, the glass fiber is predetermined so that no residual stress remains. The cartridge is molded into a shape, possesses sufficient compressive strength, has good penetration, has little fluff of appearance, and has high shape stability when stored, and a radioactive waste liquid treatment cartridge suitable for mass production can be obtained.

Claims (3)

アスペクト比が100〜1900で、繊維径が7〜15μm、繊維長が3〜6mmのガラス繊維と、無機質バインダからなることを特徴とする放射性廃液処理用ガラスファイバーカートリッジ。A glass fiber cartridge for radioactive waste liquid treatment, comprising glass fibers having an aspect ratio of 100 to 1900, a fiber diameter of 7 to 15 μm, a fiber length of 3 to 6 mm , and an inorganic binder. 前記ガラス繊維の密度は240〜260kg/m であることを特徴とする請求項1記載の放射性廃液処理用ガラスファイバーカートリッジ。Radioactive waste liquid glass fiber cartridge of claim 1, wherein the density of the glass fibers is 240~260kg / m 3. 前記無機質バインダはホウ酸、ケイ酸、或いは、これらの無機塩からなることを特徴とする請求項1または2に記載の放射性廃液処理用ガラスファイバーカートリッジ。The glass fiber cartridge for radioactive waste liquid treatment according to claim 1 or 2, wherein the inorganic binder is made of boric acid, silicic acid, or an inorganic salt thereof.
JP2000153874A 2000-05-24 2000-05-24 Glass fiber cartridge for radioactive liquid waste treatment Expired - Lifetime JP4317644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153874A JP4317644B2 (en) 2000-05-24 2000-05-24 Glass fiber cartridge for radioactive liquid waste treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153874A JP4317644B2 (en) 2000-05-24 2000-05-24 Glass fiber cartridge for radioactive liquid waste treatment

Publications (2)

Publication Number Publication Date
JP2001330696A JP2001330696A (en) 2001-11-30
JP4317644B2 true JP4317644B2 (en) 2009-08-19

Family

ID=18659054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153874A Expired - Lifetime JP4317644B2 (en) 2000-05-24 2000-05-24 Glass fiber cartridge for radioactive liquid waste treatment

Country Status (1)

Country Link
JP (1) JP4317644B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647445B2 (en) * 2010-06-29 2014-12-24 株式会社NuSAC Sintered glass granulated body and method for producing the same
JP6430676B1 (en) * 2018-03-30 2018-11-28 日本無機株式会社 Cartridge for radioactive liquid waste treatment

Also Published As

Publication number Publication date
JP2001330696A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
US4464294A (en) Process for the stabilization of radioactive wastes
US4514329A (en) Process for vitrifying liquid radioactive waste
US4097401A (en) Thermodynamically stable product for permanent storage and disposal of highly radioactive liquid wastes
GB1589466A (en) Treatment of substances
KR20110082630A (en) Matrix material composed of graphite and inorganic binders and suitable for final storage of radioactive wastes, method for the manufacture thereof and processing and use thereof
US4404129A (en) Sequestering of radioactive waste
SU1087091A3 (en) Composition for solidifying radioactive wastes and method for solidifying radioactive wastes
JP4317644B2 (en) Glass fiber cartridge for radioactive liquid waste treatment
Kofuji et al. Chemical durability of iron-phosphate glass as the high level waste from pyrochemical reprocessing
JP6430676B1 (en) Cartridge for radioactive liquid waste treatment
JP2536778B2 (en) Manufacturing method of cartridge for radioactive liquid waste treatment
JPH04240B2 (en)
JPS62222198A (en) Manufacture of cartridge for processing radioactive waste liquor
Abdelouas et al. Immobilization of inert TRISO-coated fuel in glass for geological disposal
Pacaud et al. Effect of platinoids on French LWR reference glass properties
JPH0460712B2 (en)
Barlow et al. Synthesis of simulant ‘lava-like’fuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown
JP4283402B2 (en) Manufacturing method of cartridge for radioactive liquid waste treatment
JPH03199999A (en) Cartridge for treating radioactive waste fluid
Bingham et al. Glass development for vitrification of wet intermediate level waste (WILW) from decommissioning of the Hinkley Point ‘A’site
JPS60122397A (en) Volume decreasing treating method of radioactive waste
CN104386910A (en) Base composition for middle/low-level radioactive rock wool glass curing and cured body prepared from base composition
CN109748494A (en) It is a kind of to utilize waste refractory materials spent resin sand and boric sludge for aluminium silicate wool method
Morsi et al. Effect of neutron and gamma irradiation on some properties of borate glasses
Plodinec et al. Borosilicate glass as a matrix for the immobilization of Savannah River plant waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4317644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term