JP2001183495A - Method of manufacturing cartridge for radioactive waste fluid disposal - Google Patents

Method of manufacturing cartridge for radioactive waste fluid disposal

Info

Publication number
JP2001183495A
JP2001183495A JP36506099A JP36506099A JP2001183495A JP 2001183495 A JP2001183495 A JP 2001183495A JP 36506099 A JP36506099 A JP 36506099A JP 36506099 A JP36506099 A JP 36506099A JP 2001183495 A JP2001183495 A JP 2001183495A
Authority
JP
Japan
Prior art keywords
cartridge
raw material
radioactive waste
waste liquid
material slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36506099A
Other languages
Japanese (ja)
Other versions
JP4283402B2 (en
Inventor
Hisanobu Hori
寿信 堀
Takuya Jinnai
琢也 陣内
Yoshinobu Nakamura
良述 中村
Takeshi Kawakami
剛 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP36506099A priority Critical patent/JP4283402B2/en
Publication of JP2001183495A publication Critical patent/JP2001183495A/en
Application granted granted Critical
Publication of JP4283402B2 publication Critical patent/JP4283402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a cartridge for radioactive waste fluid disposal, having as sufficient compression and impulse strength as a conventional cartridge for radioactive waste fluid disposal and suitable for mass-production. SOLUTION: The method of manufacturing the cartridge for radioactive waste fluid disposal comprises preparing of a raw material slurry with a raw material cotton having disorganized glass fibers, an inorganic binder and a water, pouring the raw material slurry into a mold, dewatering and forming it into a predetermined shape, and giving heat treatment to the dewatered molding to which the glass fibers are welded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射性廃液を廃棄
処分するに際し、被処理物の放射性廃液を含浸させて加
熱溶融し、ガラス固化させるのに使用される放射性廃液
処理用カートリッジの製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a cartridge for treating radioactive waste liquid, which is used for impregnating an object to be treated with heat, melting it by heating, and vitrifying it when disposing of the radioactive waste liquid. .

【0002】[0002]

【従来の技術】原子力発電において使用された使用済み
燃料を再処理工場において再処理するに際して、ウラ
ン、超ウラン元素及び核分裂生成物を含んだ硝酸を含む
高レベル放射性廃液が副生する。そこで、かかる放射性
廃液を安全にかつ効率的に廃棄する技術が望まれてい
る。
2. Description of the Related Art When a spent fuel used in nuclear power is reprocessed in a reprocessing plant, a high-level radioactive liquid waste containing nitric acid containing uranium, transuranium elements and fission products is produced as a by-product. Therefore, a technique for safely and efficiently disposing of such radioactive waste liquid is desired.

【0003】従来、このような放射性廃液を処理するに
は、放射性廃液を直接または脱硝濃縮してスラリー状と
し、ガラス原料と混合して高温のガラス溶融炉に供給
し、炉内で廃液中の液体成分を蒸発させると共に放射性
物質をガラス中に溶融させて、この溶融ガラスをステン
レス製の容器に注入して固化する技術が開発されてきて
いる。
Conventionally, in order to treat such a radioactive waste liquid, the radioactive waste liquid is directly or denitrated and concentrated to form a slurry, mixed with a glass raw material and supplied to a high-temperature glass melting furnace, and the waste liquid in the furnace is heated in the furnace. A technique has been developed in which a liquid component is evaporated and a radioactive substance is melted in glass, and the molten glass is poured into a stainless steel container and solidified.

【0004】このような廃液処理技術においては、ガラ
ス溶融炉内で廃液が激しく沸騰する際に、多量の放射性
物質を含む粉塵が発生し、排ガスに同伴して流出するた
め、この粉塵の飛散を防止することが重要となる。
In such a waste liquid treatment technique, when the waste liquid boils violently in a glass melting furnace, dust containing a large amount of radioactive substances is generated and flows out together with the exhaust gas. It is important to prevent it.

【0005】この種の先行技術としては、特公平4−2
40号公報において、ガラス繊維を型中に充填し、これ
を加熱処理して部分的に融着させ、所定形状に成形され
た放射性廃液処理用カートリッジを用意して、上記放射
性廃液をこのカートリッジに含浸させて加熱溶融し、ガ
ラス固化させる放射性廃液処理用カートリッジに関する
技術がすでに提案されている。
The prior art of this type is disclosed in Japanese Patent Publication No. 4-2.
In Japanese Patent Publication No. 40, a glass fiber is filled in a mold, and the glass fiber is heated and partially fused to prepare a radioactive waste liquid treatment cartridge molded into a predetermined shape. Techniques relating to a radioactive waste liquid treatment cartridge that is impregnated, heated and melted, and vitrified have already been proposed.

【0006】[0006]

【発明が解決しようとする課題】ところが、前記技術の
カートリッジを用いると、加熱溶融炉に搬送するときの
粉塵発生量が多く、装置トラブルが生じたり、装置の清
掃メンテナンスに非常に手間がかかる等の問題があり、
しかも、カートリッジは結合剤を用いることなくガラス
繊維の部分的融着だけで成形しているため、充分な圧縮
強度・衝撃強度が得られない問題や使用時の粉落ちの問
題がある。
However, when the cartridge of the above technology is used, a large amount of dust is generated when the cartridge is conveyed to a heating and melting furnace, which causes a trouble in the apparatus, and requires much trouble in cleaning and maintenance of the apparatus. Problem,
In addition, since the cartridge is formed only by partial fusion of glass fibers without using a binder, there is a problem that a sufficient compressive strength and impact strength cannot be obtained and a problem of powder drop during use.

【0007】また、前記技術のカートリッジを用いる
と、ガラス繊維板を丸めて型内に押し込むこことにより
型内に充填し、これを加熱処理して部分的に融着させ、
所定形状に成形するようにしているため、大量生産に不
向きで、大量個数を製造するのに多大の時間を要するこ
とからコストアップにもつながる問題がある。
Further, when the cartridge of the above-mentioned technology is used, the glass fiber plate is rolled and pressed into the mold, thereby filling the inside of the mold, and heat-treating the glass fiber plate to partially fuse it.
Since it is formed into a predetermined shape, it is not suitable for mass production, and a large amount of time is required to produce a large number of pieces, which leads to a problem of an increase in cost.

【0008】従って、本発明の目的は、従来の放射性廃
液処理用カートリッジが持つ充分な圧縮強度・衝撃強度
を保有し、かつ、大量生産に向いた放射性廃液処理用カ
ートリッジの製造法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a radioactive waste liquid processing cartridge which has sufficient compressive strength and impact strength of a conventional radioactive liquid processing cartridge and is suitable for mass production. It is in.

【0009】[0009]

【課題を解決するための手段】本発明の放射性廃液処理
用カートリッジの製造法は、前記目的を達成するべく、
請求項1の通り、ガラス繊維を解繊した原料原綿と、無
機結合剤と水とで原料スラリーを調製し、前記原料スラ
リーを型内へ流し込み所定形状に脱水成形し、前記脱水
成形物を加熱処理して部分的にガラス繊維を融着させた
ことを特徴とする。
According to the present invention, there is provided a method for manufacturing a cartridge for treating a radioactive waste liquid, the method comprising:
As set forth in claim 1, a raw material slurry is prepared from raw raw cotton obtained by defibrating glass fibers, an inorganic binder and water, and the raw material slurry is poured into a mold, dewatered and formed into a predetermined shape, and the dewatered molded product is heated. It is characterized in that the glass fibers are partially fused by the treatment.

【0010】また、請求項2記載の放射性廃液処理用カ
ートリッジの製造法は、請求項1記載の放射性廃液処理
用カートリッジの製造法において、前記無機結合剤とし
て、ホウ酸、ケイ酸の無機酸及びそれらの塩から選ばれ
た1種または2種以上を用いることを特徴とする。
The method for manufacturing a cartridge for treating radioactive waste liquid according to claim 2 is a method for manufacturing a cartridge for treating radioactive waste liquid according to claim 1, wherein boric acid, an inorganic acid of silicic acid, It is characterized in that one or more selected from these salts are used.

【0011】[0011]

【発明の実施の形態】本発明では、ガラス繊維を解繊し
て原料原綿とし、前記原料原綿と無機結合剤を水に添加
して原料スラリーを調製し、前記原料スラリーを型内へ
流し込み所定形状に脱水成形し、前記脱水成形物を加熱
処理して部分的にガラス繊維を融着させて放射性廃液処
理用カートリッジを得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a raw material cotton is prepared by fibrillating glass fibers, a raw material slurry is prepared by adding the raw material raw cotton and an inorganic binder to water, and the raw material slurry is poured into a mold. The dewatered molded product is heat-treated and the glass fiber is partially fused to obtain a radioactive waste liquid treatment cartridge.

【0012】本発明の原料スラリーを型内へ流し込む方
法としては、前記原料原綿と前記無機結合剤と水を1槽
の調合槽へ一定供給して上層部で調合して前記原料スラ
リーとしながら、同時に前記調合槽の下層部から前記原
料スラリーを、1槽のサービスタンクを介して複数の型
内へ一定供給する方法がある。
As a method of pouring the raw material slurry of the present invention into a mold, the raw material wool, the inorganic binder and water are supplied to a single mixing tank at a constant rate and mixed in the upper layer to form the raw material slurry. At the same time, there is a method in which the raw material slurry is constantly supplied from a lower part of the mixing tank into a plurality of molds through a single service tank.

【0013】また、他方法として、前記原料原綿と前記
無機結合剤と水を調合槽Aへ供給して調合して前記原料
スラリーとして調合後に、前記調合槽Aから前記原料ス
ラリーを、サービスタンクを介して複数の型内へ一定供
給し、次に、別の調合槽Bへ前記原料原綿と前記無機結
合剤と水を供給して調合して前記原料スラリーを準備し
ておき、前記調合槽Aと切り替え使用する方法がある。
In another method, the raw cotton wool, the inorganic binder, and water are supplied to a mixing tank A to be mixed and mixed as the raw material slurry, and then the raw material slurry is supplied from the mixing tank A to a service tank. The raw material slurry is prepared by supplying the raw material cotton, the inorganic binder, and water to another mixing tank B, and then preparing the raw material slurry. There is a method of switching and using.

【0014】更に、他方法として、前記原料原綿と前記
無機結合剤と水を1本のスパイラルチューブに一定供給
し、前記スパイラルチューブの上端部で原料スラリーを
調合しながら同時に前記スパイラルチューブの下端部か
ら前記原料スラリーを複数の型内へ一定供給する方法が
あるが、特に、原料スラリーの調製方法に限定はない。
Further, as another method, the raw cotton wool, the inorganic binder and water are supplied to one spiral tube at a constant rate, and the raw material slurry is mixed at the upper end of the spiral tube while the lower end of the spiral tube is simultaneously fed. There is a method in which the raw material slurry is supplied into a plurality of molds at a constant rate, but the method for preparing the raw material slurry is not particularly limited.

【0015】本発明の前記無機結合剤としては、ホウ
酸、ケイ酸の無機酸及びそれらの塩から選ばれた1種ま
たは2種以上の結合剤を付与するのが好ましい。
As the inorganic binder of the present invention, one or more binders selected from boric acid, inorganic acids of silicic acid and salts thereof are preferably provided.

【0016】ガラス繊維は加熱処理によってその交差点
で互いに融着して相互に固定されるが、結合剤を付与し
ない場合、融着の程度、融着の箇所はわずかであり、従
ってガラス繊維同士の固定は不充分であって、ガラス繊
維は相対的に動きやすく、高い圧縮強度は得られない。
また、ガラス繊維の固定箇所が少なく、固定箇所間の距
離が大きいため、衝撃を与えた場合、ガラス繊維が折
れ、粉塵となって飛散しやすいものとなる。
The glass fibers are fused and fixed to each other at the intersections by heat treatment. However, when a binder is not provided, the degree of fusion and the location of fusion are small, and therefore, Fixation is insufficient, glass fibers are relatively mobile, and high compressive strength cannot be obtained.
Further, since the glass fiber is fixed at a small number of places and the distance between the fixed parts is large, when an impact is applied, the glass fiber is broken, becomes dust, and easily scatters.

【0017】これに対し、結合剤を付与した場合、結合
剤自身によりガラス繊維同士がその交差点で結合される
と共に、結合剤がフラックスとして作用し、ガラス繊維
同士の融着が促進される。この結果、ガラス繊維同士の
固定も強固となり、固定箇所も増大するため、圧縮強度
・衝撃強度が増大し、粉塵の発生も減少する。
On the other hand, when a binder is provided, the glass fibers are bonded to each other at their intersections by the binder itself, and the binder acts as a flux to promote fusion of the glass fibers. As a result, the glass fibers are firmly fixed to each other and the number of fixing points is increased, so that the compressive strength and the impact strength are increased and the generation of dust is reduced.

【0018】なお、結合剤の付与は、溶液状態や粉末状
態でガラス繊維原料と共に原料スラリー中に添加すれば
よいが、好ましくは溶液状態で付与する。例えば水溶液
などの溶液状態とし、これにガラス繊維を浸漬させた
り、あるいはガラス繊維にスプレー塗布すればよい。こ
の結合剤の付与は、ガラス繊維の繊維化工程で行っても
よい。
The binder may be applied in a solution state or a powder state together with the glass fiber raw material to the raw material slurry, but is preferably applied in a solution state. For example, a glass fiber may be immersed in a solution such as an aqueous solution, or sprayed on the glass fiber. The application of the binder may be performed in a fiberizing step of the glass fiber.

【0019】本発明のガラス繊維の平均繊維径は、原料
原綿製造方法の観点から0.5〜40μmのものを使用
できる。特に生産性、カートリッジへの廃液染み込み速
度を速くするために、10〜20μmが好ましい。平均
繊維径が10μm未満の場合には廃液染み込み速度が低
下する。また、平均繊維径が20μmを超えると、脱水
成型時の形状保持が難しく生産性を低下させてしまう。
The average fiber diameter of the glass fibers of the present invention may be 0.5 to 40 μm from the viewpoint of the raw material raw cotton production method. In particular, the thickness is preferably 10 to 20 μm in order to increase the productivity and the speed of soaking the waste liquid into the cartridge. When the average fiber diameter is less than 10 μm, the waste liquid permeation rate is reduced. On the other hand, when the average fiber diameter exceeds 20 μm, it is difficult to maintain the shape at the time of dehydration molding, which lowers productivity.

【0020】本発明のガラス繊維の平均繊維長は、0.
5〜5mm、特に1〜2mmが好ましい。平均繊維長が0.
5mm未満の場合には、加熱融着時に繊維1本当たりの接
着が少なくなり、落下した際の粉落ちが多くなる。ま
た、長が5mmを超えると、落下した際の割れによる分割
が生じやすい。
The average fiber length of the glass fiber of the present invention is 0.1.
5-5 mm, especially 1-2 mm, is preferred. The average fiber length is 0.
If it is less than 5 mm, the adhesion per fiber during heating and fusion is reduced, and powder dropping when dropped is increased. On the other hand, when the length is more than 5 mm, division due to cracks at the time of falling tends to occur.

【0021】本発明のガラス繊維の密度は、240〜2
60kg/m3となるように調整することが好ましい。密度
が240kg/m3未満の場合には、充分な圧縮強度が得ら
れない。また、密度が260kg/m3を超えると、放射性
廃液の染み込み量が少なくなる。
The density of the glass fiber of the present invention is 240 to 2
It is preferable to adjust so as to be 60 kg / m 3 . If the density is less than 240 kg / m 3 , sufficient compressive strength cannot be obtained. On the other hand, when the density exceeds 260 kg / m 3 , the amount of radioactive waste liquid permeated decreases.

【0022】本発明のガラス繊維の加熱融着温度及び加
熱融着時間は、670〜730℃にて70〜15分間が
好ましいが、加熱融着時の生産性及び外部表面の溶融等
の発生を防ぐため、特に690〜710℃にて40〜2
0分間が好ましい。加熱融着温度が670℃よりも低
く、あるいは加熱時間が15分間よりも短い場合には、
ガラス繊維の融着が充分になされず、保形性が悪くな
る。また、加熱温度が730℃よりも高く、あるいは加
熱時間が70分間よりも長い場合には、ガラス繊維が表
面又は内部まで溶融して収縮し、保水性が悪くなり割れ
やすくなる。
The heat fusion temperature and the heat fusion time of the glass fiber of the present invention are preferably 70 to 15 minutes at 670 to 730 ° C., but the productivity and the occurrence of melting of the outer surface during the heat fusion are reduced. To prevent, especially 40 ~ 2 at 690 ~ 710 ° C
0 minutes is preferred. If the heat fusing temperature is lower than 670 ° C. or the heating time is shorter than 15 minutes,
The glass fibers are not sufficiently fused, resulting in poor shape retention. If the heating temperature is higher than 730 ° C. or the heating time is longer than 70 minutes, the glass fiber melts to the surface or inside and shrinks, and the water retention becomes poor and the glass fiber is easily cracked.

【0023】そして、この加熱処理の際に、ガラス繊維
に塗布された結合剤が酸化され、さらに溶融してガラス
繊維にコーティングされ、接着効果並びに被膜形成効果
がもたらされる。
During the heat treatment, the binder applied to the glass fibers is oxidized, melted and coated on the glass fibers, thereby providing an adhesive effect and a film forming effect.

【0024】[0024]

【実施例】次に、本発明の実施例を図面に基づき説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0025】まず、本発明のカートリッジの製造工程に
ついて、図1乃至図3を参照して説明する。
First, the manufacturing process of the cartridge according to the present invention will be described with reference to FIGS.

【0026】図1は解繊工程を示しており、遠心法で繊
維化され、特に結合剤を用いることなく集綿され、ロー
ル状に巻き取られた平均繊維径13μm、軟化点650
℃のガラス繊維11は、ベルトコンベア12でフェザー
ミル(解繊装置)13へ搬送される。前記フェザーミル
(解繊装置)13で繊維長1〜2mm程度に解繊された解
繊物14は、脱粒装置15でショットを脱粒し原料原綿
16とされる。その際に塵埃は、ブロワ17で吸引して
サイクロン装置18で分離し、集塵機19で捕集して排
気される。
FIG. 1 shows a defibration step, in which fibers are formed by a centrifugal method, collected in particular without using a binder, wound up into a roll, and have an average fiber diameter of 13 μm and a softening point of 650.
The glass fiber 11 of ° C. is conveyed to a feather mill (defibrating device) 13 by a belt conveyor 12. The defibrated material 14 defibrated to a fiber length of about 1 to 2 mm by the feather mill (defibrillation device) 13 is crushed by a degranulation device 15 to obtain raw cotton 16. At that time, the dust is sucked by the blower 17, separated by the cyclone device 18, collected by the dust collector 19, and exhausted.

【0027】図2は湿式成型工程を示しており、前記ガ
ラス原料原綿16と、無機結合剤であるホウ酸20と、
新水21を1槽の調合槽22へ一定供給して上層部22
aで調合して原料スラリー23としながら、同時にこの
調合槽22の下層部22bから前記原料スラリー23
を、1槽のサービスタンク24を介して4個の脱水装置
25、25、25、25内へ一定供給するようになって
いる。
FIG. 2 shows a wet molding process, in which the raw glass raw material cotton 16, boric acid 20 as an inorganic binder,
The fresh water 21 is supplied to one mixing tank 22 at a constant rate and the upper layer 22
a, while simultaneously forming the raw material slurry 23 from the lower layer portion 22 b of the mixing tank 22.
Through a single service tank 24 into the four dehydrators 25, 25, 25, 25.

【0028】前記脱水装置25は、前記原料スラリー2
3を一定供給するためのポンプ25a、前記原料スラリ
ー23を貯めるバット槽25b、前記原料スラリー23
を流し込む円筒型25c、前記原料スラリー23から水
分を分離するネット25dから構成されている。
The dewatering device 25 is provided with the raw material slurry 2.
Pump 25a for constantly supplying the slurry 3; a vat tank 25b for storing the slurry 23;
And a net 25d for separating water from the raw material slurry 23.

【0029】脱水装置25内へ一定供給された前記原料
スラリー23は、ブロワ26で吸引サクションされて、
内径70mm、外径90mm、高さ90mmの前記円筒型25
c内で円筒体27に湿式成型される。
The raw material slurry 23 constantly supplied into the dehydrating device 25 is sucked and suctioned by a blower 26,
The cylindrical mold 25 having an inner diameter of 70 mm, an outer diameter of 90 mm, and a height of 90 mm.
It is wet molded into the cylindrical body 27 in c.

【0030】サクションにより分離された水は、脱水槽
28を経由して、リターン水29として前記調合槽22
へ戻される。前記円筒体27は100℃で乾燥されて、
密度250kg/m3、直径70mm、高さ70mmとされる。
The water separated by the suction passes through a dewatering tank 28 and returns as return water 29 to the mixing tank 22.
Returned to The cylindrical body 27 is dried at 100 ° C.
The density is 250 kg / m 3 , the diameter is 70 mm, and the height is 70 mm.

【0031】図3は加熱融着工程を示しており、図4は
それに使用する加熱融着用円筒型の全体図である。
FIG. 3 shows a heat-sealing process, and FIG. 4 is an overall view of a heat-sealing cylindrical type used for the process.

【0032】前記円筒型25cに、5mmφの空気穴32
aを5個有する上蓋32と、下蓋33とで蓋をした加熱
融着用円筒型34を、縦7列×横7列49個を3段積み
にして、加熱融着炉30にて加熱融着温度700℃、加
熱融着時間30分間で加熱融着してガラスファイバーカ
ートリッジ31を作成する。
A 5 mmφ air hole 32 is provided in the cylindrical mold 25 c.
The upper and lower lids 32 and 33 each having five a are stacked in a three-tiered manner by heating and fusing cylindrical molds 34 each having a length of 7 rows and 7 rows, and are heated and fused in a heating and fusion furnace 30. The glass fiber cartridge 31 is prepared by heat-sealing at a fixing temperature of 700 ° C. and a heat-fusion time of 30 minutes.

【0033】前記製法により得られた本発明のガラスフ
ァイバーカートリッジと、比較例として先願の特公平4
−240号に開示されたガラスファイバーカートリッジ
を作成した。後者は、まず、ガラス繊維をシート状に成
形し、該シートを圧延しながら所定の径になるように巻
き上げて、2つ割りのステンレス製の型に充填し、ガラ
ス繊維の密度が250kg/m3となるようにして、次に、
加熱融着温度700℃、加熱融着時間30分間で加熱融
着して、ガラス繊維を融着して直径70mm、高さ70mm
のガラスファイバーカートリッジとして形成した。得ら
れた、両カートリッジについて、その性能を試験した。
その結果を下記表1に示した。
The glass fiber cartridge of the present invention obtained by the above-mentioned manufacturing method was compared with the glass fiber cartridge of the present invention as a comparative example.
A glass fiber cartridge disclosed in -240 was made. In the latter, first, a glass fiber is formed into a sheet shape, and the sheet is rolled up to a predetermined diameter while being rolled, and is filled in a two-piece stainless steel mold, and the density of the glass fiber is 250 kg / m2. So that it becomes 3 , then
Heat fusing temperature 700 ° C, heat fusing time 30 minutes, fusing glass fiber, diameter 70mm, height 70mm
As a glass fiber cartridge. The performance of each of the obtained cartridges was tested.
The results are shown in Table 1 below.

【0034】[0034]

【表1】 [Table 1]

【0035】試験方法 I.粉塵発生量(g/個) 直径80mm×3mのパイプを垂直に立て、カートリッジ
20個を同時に落下させたときの最下部カートリッジの
試験前後重量変化量を測定した。
Test Method I. Dust generation (g / piece) A pipe with a diameter of 80 mm x 3 m was set upright, and the weight change of the lowermost cartridge before and after the test when 20 cartridges were dropped simultaneously was measured.

【0036】試験前重量(g/個)−試験後重量(g/個)
=粉塵発生量(g/個) II.圧縮強度 カートリッジの直径方向と軸方向に10kgの加重を掛
け、その際のカートリッジ変化量を測定した。
Weight before test (g / piece)-Weight after test (g / piece)
= Dust generation (g / piece) II. Compressive strength A load of 10 kg was applied in the diameter direction and the axial direction of the cartridge, and the amount of change in the cartridge at that time was measured.

【0037】III.落下強度 直径80mm×3mのパイプを垂直に立て、カートリッジ
20個を同時に落下させたときの最下部カートリッジの
外観部を検査した。
III. Drop strength A pipe with a diameter of 80 mm x 3 m was set upright, and the appearance of the lowermost cartridge when 20 cartridges were dropped simultaneously was inspected.

【0038】外観状況:著しい毛羽、割れ、欠け等のな
いこと。
Appearance condition: No remarkable fluff, crack, chipping, etc.

【0039】上記試験によれば、実施例は圧縮強度及び
落下強度については従来技術である比較例と遜色なく目
標値をクリアーしており、比較例は生産性及び粉塵発生
量が目標値に達しておらず問題があったが、実施例は目
標値50個/h・人以上、粉塵発生量の目標値0.8g/個
以下を満足していた。
According to the above-mentioned test, the examples have achieved the target values of the compressive strength and the drop strength, which are comparable to those of the comparative example of the prior art, and the comparative examples show that the productivity and the amount of dust generation reach the target values. However, the example satisfied the target value of 50 particles / h · person or more and the target value of the amount of generated dust of 0.8 g / piece or less.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
湿式成形技術を用いることで大量生産が可能となり、即
ち、単位時間当たり、単位人数当たりの生産個数多くな
り、カートリッジの製造コストが低減できる放射性廃液
処理用カートリッジが得られる。また、従来の充填シー
トを圧延しながら所定の径になるように巻き上げて充填
する方法による歪みがないので、成型後の粉落ち・割れ
欠けが少なく、圧縮破壊強度が強い放射性廃液処理用カ
ートリッジが得られる。
As described above, according to the present invention,
By using the wet molding technique, mass production becomes possible, that is, the number of products produced per unit time per unit person increases, and a radioactive waste liquid treatment cartridge that can reduce the manufacturing cost of the cartridge is obtained. In addition, since there is no distortion due to the conventional method of rolling up a filling sheet to a predetermined diameter while rolling and filling the sheet, a cartridge for radioactive waste liquid treatment that has a small powder drop-off / crack after molding and a high compression breaking strength is provided. can get.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放射性廃液処理用カートリッジの解繊
工程の製造工程図である。
FIG. 1 is a manufacturing process diagram of a defibration process of a cartridge for treating a radioactive waste liquid of the present invention.

【図2】本発明の放射性廃液処理用カートリッジの湿式
成型工程の製造工程図である。
FIG. 2 is a manufacturing process diagram of a wet molding process of the radioactive waste liquid treatment cartridge of the present invention.

【図3】本発明の放射性廃液処理用カートリッジの加熱
融着工程の製造工程図である。
FIG. 3 is a manufacturing process diagram of a heating and fusing step of the cartridge for treating a radioactive waste liquid of the present invention.

【図4】本発明の放射性廃液処理用カートリッジの加熱
融着工程に使用する加熱融着用円筒型の全体図である。
FIG. 4 is an overall view of a cylindrical shape for heat fusion used in the heat fusion step of the cartridge for treating radioactive waste liquid of the present invention.

【符号の説明】[Explanation of symbols]

11 ガラス繊維 12 ベルトコンベア 13 フェザーミル(解繊装置) 14 解繊物 15 脱粒装置 16 原料原綿 17 ブロワ 18 サイクロン装置 19 集塵機 20 ホウ酸 21 新水 22 調合槽 22a 上層部 22b 下層部 23 原料スラリー 24 サービスタンク 25 脱水装置 25a ポンプ 25b バット槽 25c 円筒型 25d ネット 26 ブロワ 27 円筒体 28 脱水槽 29 リターン水 32 上蓋 32a 空気穴 33 下蓋 34 加熱融着用円筒型 DESCRIPTION OF SYMBOLS 11 Glass fiber 12 Belt conveyor 13 Feather mill (fibrillation apparatus) 14 Defibrated material 15 Dehulling apparatus 16 Raw material cotton 17 Blower 18 Cyclone apparatus 19 Dust collector 20 Boric acid 21 Fresh water 22 Mixing tank 22a Upper part 22b Lower part 23 Raw material slurry 24 Service tank 25 Dehydrator 25a Pump 25b Butt tank 25c Cylindrical type 25d Net 26 Blower 27 Cylindrical body 28 Dehydration tank 29 Return water 32 Top lid 32a Air hole 33 Lower lid 34 Heat welding cylindrical type

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 良述 茨城県結城市作の谷415番地 日本無機株 式会社結城工場内 (72)発明者 川上 剛 茨城県結城市作の谷415番地 日本無機株 式会社結城工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshinori Nakamura 415 Sakunodani, Yuki-shi, Ibaraki Pref. Inside the Yuki Plant of Inorganic Inorganic Company, Ltd. Inside the Yuki factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス繊維を解繊した原料原綿と、無機
結合剤と水とで原料スラリーを調製し、前記原料スラリ
ーを型内へ流し込み所定形状に脱水成形し、前記脱水成
形物を加熱処理して部分的にガラス繊維を融着させたこ
とを特徴とする放射性廃液処理用カートリッジの製造
法。
1. A raw material slurry is prepared from raw raw cotton obtained by defibrating glass fibers, an inorganic binder and water, and the raw material slurry is poured into a mold to be dehydrated and formed into a predetermined shape. A method for manufacturing a cartridge for treating a radioactive waste liquid, wherein a glass fiber is partially fused.
【請求項2】 前記無機結合剤として、ホウ酸、ケイ酸
の無機酸及びそれらの塩から選ばれた1種または2種以
上を用いることを特徴とする請求項1記載の放射性廃液
処理用カートリッジの製造法。
2. The radioactive waste liquid treatment cartridge according to claim 1, wherein one or two or more selected from boric acid, inorganic acids of silicic acid and salts thereof are used as the inorganic binder. Manufacturing method.
JP36506099A 1999-12-22 1999-12-22 Manufacturing method of cartridge for radioactive liquid waste treatment Expired - Lifetime JP4283402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36506099A JP4283402B2 (en) 1999-12-22 1999-12-22 Manufacturing method of cartridge for radioactive liquid waste treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36506099A JP4283402B2 (en) 1999-12-22 1999-12-22 Manufacturing method of cartridge for radioactive liquid waste treatment

Publications (2)

Publication Number Publication Date
JP2001183495A true JP2001183495A (en) 2001-07-06
JP4283402B2 JP4283402B2 (en) 2009-06-24

Family

ID=18483342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36506099A Expired - Lifetime JP4283402B2 (en) 1999-12-22 1999-12-22 Manufacturing method of cartridge for radioactive liquid waste treatment

Country Status (1)

Country Link
JP (1) JP4283402B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512285B1 (en) 2007-09-20 2015-04-15 에너지솔루션, 엘엘씨 Mitigation of secondary phase formation during waste vitrification
JP2015074719A (en) * 2013-10-09 2015-04-20 株式会社 エスジー Slurry state coating material, method and apparatus for preparing slurry state coating material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512285B1 (en) 2007-09-20 2015-04-15 에너지솔루션, 엘엘씨 Mitigation of secondary phase formation during waste vitrification
JP2015074719A (en) * 2013-10-09 2015-04-20 株式会社 エスジー Slurry state coating material, method and apparatus for preparing slurry state coating material

Also Published As

Publication number Publication date
JP4283402B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US4145202A (en) Method for reprocessing glass fibers
US20070231500A1 (en) Silica Microspheres, Method for Making and Assembling Same and Possible Uses of Silica Microspheres
DK167180B1 (en) PROCEDURE FOR THE MANUFACTURE OF FORMED ARTICLES OF FIBER Reinforced Molding Material
JP5795242B2 (en) Method for producing a solidified body of radioactive waste and a solidified body
JP4283402B2 (en) Manufacturing method of cartridge for radioactive liquid waste treatment
CN109174914A (en) Fusing fly ash device
US4362543A (en) Method for controlling particulate emissions
US3045058A (en) Separators for electric accumulators, especially lead accumulators, and process of manufacture thereof
CA1115144A (en) Method and apparatus for reprocessing glass fibers
JPH04240B2 (en)
JP4317644B2 (en) Glass fiber cartridge for radioactive liquid waste treatment
US6478829B1 (en) Method for producing a battery with separators containing fusible binders
US4822525A (en) Process for preparing a cartridge for disposal of a radioactive waste liquid
EP0155418A2 (en) Method of volume-reducing disposal of radioactive wastes
US5128174A (en) Metallized fiber/member structures and methods of producing same
CN112700902B (en) Treatment method of waste graphite crucible
US3012930A (en) Method of wet felting and leaching mineral fibers and resultant felted product
DE3067560D1 (en) Methods for manufacturing mineral-wool mats or slaps and equipment for carrying them out
JP6430676B1 (en) Cartridge for radioactive liquid waste treatment
JPH0312342A (en) Production of heat insulating material of rock wool and rock wool mat
GB834051A (en) Improvements in melt spinning
JP2536778B2 (en) Manufacturing method of cartridge for radioactive liquid waste treatment
JPH03199999A (en) Cartridge for treating radioactive waste fluid
KR102313545B1 (en) Eco-Friendly Insulation Materials with High Performance Sound Insulation Properties Using Recycled Cotton Fiber and their manufacturing methods.
JPH055078B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Ref document number: 4283402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term