JP4281587B2 - Production method of chloroprene rubber - Google Patents

Production method of chloroprene rubber Download PDF

Info

Publication number
JP4281587B2
JP4281587B2 JP2004068787A JP2004068787A JP4281587B2 JP 4281587 B2 JP4281587 B2 JP 4281587B2 JP 2004068787 A JP2004068787 A JP 2004068787A JP 2004068787 A JP2004068787 A JP 2004068787A JP 4281587 B2 JP4281587 B2 JP 4281587B2
Authority
JP
Japan
Prior art keywords
polymerization
weight
parts
chloroprene rubber
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004068787A
Other languages
Japanese (ja)
Other versions
JP2005255831A (en
Inventor
清児 松本
知一 小池
正則 吉木
保 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004068787A priority Critical patent/JP4281587B2/en
Publication of JP2005255831A publication Critical patent/JP2005255831A/en
Application granted granted Critical
Publication of JP4281587B2 publication Critical patent/JP4281587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、クロロプレンゴムの製造方法に関するものである。詳しくは乳化重合において1バッチあたりの生産量を増加させ、かつ従来とほぼ同等の重合時間にて重合が可能であることから、生産性に優れるクロロプレンゴムの製造方法に関するものである。   The present invention relates to a method for producing chloroprene rubber. More specifically, the present invention relates to a method for producing a chloroprene rubber having excellent productivity because it can increase the production amount per batch in emulsion polymerization and can be polymerized in a polymerization time substantially equal to that in the past.

クロロプレンゴムは、各種合成ゴムの中でも各物性のバランスが良好であるため幅広い用途に使用されている。   Chloroprene rubber is used in a wide range of applications because of a good balance of physical properties among various synthetic rubbers.

クロロプレンゴムの主な製造方法としては、乳化重合によるバッチ重合が挙げられる。クロロプレンはモノマー中に2個の二重結合を有しており、高転化率まで重合を行うと架橋しゲル状ポリマーとなるため、一般的なグレードでは約70%の転化率にて重合を停止し、ゲル化を抑制している。従って次工程にて未反応モノマーを除去する必要があるだけでなく、バッチあたりの生産量が不十分であり、改善が求められていた。   The main production method of chloroprene rubber includes batch polymerization by emulsion polymerization. Chloroprene has two double bonds in the monomer, and when polymerized to a high conversion rate, it crosslinks to become a gel polymer. Therefore, in general grades, the polymerization is stopped at a conversion rate of about 70%. In addition, gelation is suppressed. Therefore, not only the unreacted monomer needs to be removed in the next step, but the production amount per batch is insufficient, and improvement has been demanded.

これに対し、乳化重合の媒体である水を減量し、単量体仕込量を増大することによる生産量増加が試みられたが、ラテックス粘度の上昇により重合熱を除去しきれず、重合器内のラテックスを設定温度に保つためには重合速度の低減が必要となり、生産量は増加するものの生産時間が延びてしまい、結果として生産性が低下してしまった。   On the other hand, an attempt was made to increase the production amount by reducing the amount of water, which is a medium for emulsion polymerization, and increasing the amount of monomer charged. In order to keep the latex at the set temperature, it is necessary to reduce the polymerization rate, and although the production amount is increased, the production time is extended, and as a result, the productivity is lowered.

また、クロロプレンのモノマーとポリマーの比重差から、重合進行に伴い系内の比重が上昇し液体積が減少する。例えば、重合開始時に重合器容積を完全に満たしていても、重合終了時には重合器内に空間が生じるため、バッチあたりの生産量向上の余地があると考えられていた。   Further, from the difference in specific gravity between the monomer and polymer of chloroprene, the specific gravity in the system increases and the liquid volume decreases as the polymerization proceeds. For example, even when the polymerization vessel volume is completely filled at the start of polymerization, a space is generated in the polymerization vessel at the end of polymerization, so it has been considered that there is room for improvement in production per batch.

さらに、重合途中に反応媒体と単量体混合物の一部を添加する重合方法により、重合進行に伴い拡大する重合器空間の利用が提案されている(特許文献1参照)。しかし、単量体混合物と共に反応媒体を追加するため生産性の向上が十分でなかった。   Furthermore, use of a polymerization vessel space that expands as the polymerization progresses has been proposed by a polymerization method in which a part of the reaction medium and the monomer mixture is added during the polymerization (see Patent Document 1). However, since the reaction medium is added together with the monomer mixture, the productivity is not sufficiently improved.

従って、通常の重合方法とほぼ同等の速度にて重合が可能で、かつ同じ転化率で重合を停止した際のバッチあたりの生産量が増加する生産性の改善された製造方法が要望されていた。   Accordingly, there has been a demand for a production method with improved productivity in which polymerization can be performed at a rate almost equal to that of a normal polymerization method, and production per batch increases when polymerization is stopped at the same conversion rate. .

特開平8−109210号公報JP-A-8-109210

本発明は、上記した問題点に鑑みてなされたものであり、その目的は、乳化重合において、バッチあたりの生産量を増加させ、かつ通常の重合方法とほぼ同等の速度にて重合が可能な、生産性の優れるクロロプレンゴムの製造方法を提供することである。   The present invention has been made in view of the above-mentioned problems, and its purpose is to increase the production amount per batch in emulsion polymerization and to perform polymerization at a rate substantially equal to that of a normal polymerization method. Another object is to provide a method for producing chloroprene rubber having excellent productivity.

本発明者らは、上記した課題を解決するために鋭意検討を重ねた結果、クロロプレンあるいはクロロプレンと共重合可能なコモノマーの乳化重合において、重合途中よりクロロプレンと連鎖移動剤および必要によりコモノマーの混合物を添加しながら重合を継続することにより、生産性に優れ、かつ通常重合品と同等の品質を有するクロロプレンゴムが得られることを見出し本発明に至った。   As a result of intensive studies in order to solve the above-mentioned problems, the present inventors, as a result of emulsion polymerization of chloroprene or a comonomer copolymerizable with chloroprene, in the middle of polymerization, a mixture of chloroprene, a chain transfer agent, and if necessary, a comonomer. It was found that by continuing the polymerization while being added, a chloroprene rubber having excellent productivity and a quality equivalent to that of a normal polymerized product can be obtained.

すなわち、本発明は、クロロプレンゴムの乳化重合において、重合開始時の単量体混合物に対する重合転化率が15〜60%の時点で、2−クロロ−1,3−ブタジエンおよび連鎖移動剤からなる単量体混合物、または2−クロロ−1,3−ブタジエン、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーおよび連鎖移動剤からなる単量体混合物を添加するものであり、かつ、重合途中に添加する当該単量体混合物は、重合開始時の単量体混合物100重量部に対し、2〜20重量部であり、0.02〜2重量部/分の速度で添加することを特徴とするクロロプレンゴムの製造方法に関するものである。   That is, in the emulsion polymerization of chloroprene rubber, the present invention provides a simple substance comprising 2-chloro-1,3-butadiene and a chain transfer agent when the polymerization conversion rate relative to the monomer mixture at the start of polymerization is 15 to 60%. A monomer mixture or a monomer mixture composed of at least one comonomer copolymerizable with 2-chloro-1,3-butadiene, 2-chloro-1,3-butadiene and a chain transfer agent is added. The monomer mixture added during the polymerization is 2 to 20 parts by weight with respect to 100 parts by weight of the monomer mixture at the start of the polymerization, and is added at a rate of 0.02 to 2 parts by weight / minute. The present invention relates to a method for producing a chloroprene rubber.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の方法は、クロロプレンゴムの乳化重合において、重合開始時の単量体混合物に対する重合転化率が15〜60%の時点で、2−クロロ−1,3−ブタジエンおよび連鎖移動剤からなる単量体混合物、または2−クロロ−1,3−ブタジエン、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーおよび連鎖移動剤からなる単量体混合物を添加して重合を行うものである。   In the emulsion polymerization of chloroprene rubber, the method of the present invention is a simple process comprising 2-chloro-1,3-butadiene and a chain transfer agent when the polymerization conversion rate relative to the monomer mixture at the start of polymerization is 15 to 60%. Polymerization is carried out by adding a monomer mixture or a monomer mixture comprising at least one comonomer copolymerizable with 2-chloro-1,3-butadiene, 2-chloro-1,3-butadiene and a chain transfer agent. Is what you do.

重合開始時の単量体混合物に対する重合転化率15%未満から添加を開始すると、ラテックス粘度の上昇が大きく、重合熱の除去が困難となるため、重合を設定温度に保つためには重合速度の低減が必要となり生産性が低下する。また、重合進行より拡大する重合器内の空間が低転化率では小さいため、生産量増加が十分でなく好ましくない。一方、重合転化率60%を超えて添加を開始すると、重合停止までの時間が短いため、十分な生産量増加のためには単量体混合物の添加速度を大きくする必要があり、急激な単量体増加に伴い増加する重合熱の除去が困難となるため、重合を設定温度に保つには重合速度の低減が必要となり生産性が低下するため好ましくない。また、得られるラテックスの安定性が損なわれる。   When the addition is started at a polymerization conversion ratio of less than 15% with respect to the monomer mixture at the start of polymerization, the increase in latex viscosity is large and it is difficult to remove the heat of polymerization. Reduction is required and productivity is reduced. Moreover, since the space in the polymerization vessel that expands from the progress of polymerization is small at a low conversion rate, the increase in production is not sufficient, which is not preferable. On the other hand, if the addition is started at a polymerization conversion rate exceeding 60%, the time until the termination of the polymerization is short. Therefore, in order to sufficiently increase the production amount, it is necessary to increase the addition rate of the monomer mixture. Since it is difficult to remove the heat of polymerization that increases with an increase in the amount of the polymer, it is not preferable because it is necessary to reduce the polymerization rate in order to maintain the polymerization at the set temperature, and the productivity is lowered. In addition, the stability of the resulting latex is impaired.

重合途中で添加する単量体混合物は、2−クロロ−1,3−ブタジエンおよび連鎖移動剤からなる単量体混合物、または2−クロロ−1,3−ブタジエン、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーおよび連鎖移動剤からなる単量体混合物である。   The monomer mixture added during the polymerization is a monomer mixture comprising 2-chloro-1,3-butadiene and a chain transfer agent, or 2-chloro-1,3-butadiene, 2-chloro-1,3- A monomer mixture comprising at least one comonomer copolymerizable with butadiene and a chain transfer agent.

重合途中で添加する単量体混合物では、得られるクロロプレンゴムの分子量を調整するために連鎖移動剤が必要であるが、連鎖移動剤としては、一般のラジカル重合に用いられる化合物であれば、特に限定するものではなく、例えば、n−ドデシルメルカプタン、t−ドデシルメルカプタン、オクチルメルカプタン等のアルキルメルカプタン類、キサントゲンスルフィド類、ヨウ化ベンジル、ヨードホルム等が挙げられ、単独または2種以上で使用される。連鎖移動剤の量としては、分子量調整のため一般のラジカル重合で使用される量であれば特に限定するものではないが、得られる重合体の分子量を目的通りにし、さらに、得られる重合体が架橋したポリマー構造となるのを防止し、クロロプレンゴムとしての加工成型を可能とするために、0.1〜1重量部であることが好ましく、0.15〜0.3重量部がさらに好ましい。   In the monomer mixture added during the polymerization, a chain transfer agent is necessary to adjust the molecular weight of the resulting chloroprene rubber, and as the chain transfer agent, if it is a compound used for general radical polymerization, Although it does not limit, For example, alkyl mercaptans, such as n-dodecyl mercaptan, t-dodecyl mercaptan, octyl mercaptan, xanthogen sulfide, benzyl iodide, iodoform, etc. are mentioned, It uses individually or in 2 or more types. The amount of the chain transfer agent is not particularly limited as long as it is an amount used in general radical polymerization for adjusting the molecular weight, but the molecular weight of the obtained polymer is set as intended. In order to prevent the formation of a crosslinked polymer structure and to enable processing and molding as a chloroprene rubber, the content is preferably 0.1 to 1 part by weight, and more preferably 0.15 to 0.3 part by weight.

また、重合途中で添加する単量体混合物には、得られるクロロプレンゴムの性能を改質するために、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーを含有してもよい。2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーとしては、ラジカル重合可能な単量体であれば特に限定するものではなく、例えば、アクリロニトリル、メタクリロニトリル、塩化ビニリデン等のモノビニル化合物、スチレン、α−メチルスチレン等の芳香族ビニル化合物、アクリル酸、メタクリル酸等の不飽和基含有カルボン酸類、アクリル酸エステル、メタクリル酸エステル等の不飽和基含有カルボン酸エステル類、イソプレン、1,3−ブタジエン、1−クロロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエン等の共役ジエン化合物等が挙げられ、単独または2種以上を組み合わせて用いることができる。これらのうち、1−クロロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエンが2−クロロ−1,3−ブタジエンとの共重合が容易であり、得られるクロロプレンゴムの改質効果が大きいために特に好ましい。   The monomer mixture added during the polymerization contains at least one comonomer copolymerizable with 2-chloro-1,3-butadiene in order to improve the performance of the resulting chloroprene rubber. Also good. The at least one comonomer copolymerizable with 2-chloro-1,3-butadiene is not particularly limited as long as it is a monomer capable of radical polymerization. For example, acrylonitrile, methacrylonitrile, vinylidene chloride, etc. Monovinyl compounds, aromatic vinyl compounds such as styrene and α-methylstyrene, unsaturated group-containing carboxylic acids such as acrylic acid and methacrylic acid, unsaturated group-containing carboxylic esters such as acrylic acid esters and methacrylic acid esters, isoprene , 1,3-butadiene, 1-chloro-1,3-butadiene, conjugated diene compounds such as 2,3-dichloro-1,3-butadiene and the like can be used, and these can be used alone or in combination of two or more. . Of these, 1-chloro-1,3-butadiene and 2,3-dichloro-1,3-butadiene are easily copolymerized with 2-chloro-1,3-butadiene, and the resulting chloroprene rubber is improved. This is particularly preferable because of its high quality effect.

2−クロロ−1,3−ブタジエン、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーおよび連鎖移動剤からなる単量体混合物においては、2−クロロ−1,3−ブタジエンと、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーとの割合は、共重合可能な量比であれば特に限定するものではないが、クロロプレンゴムとしての特性を維持するために,重量比で25/75〜99/1が好ましく、クロロプレンゴムの特徴を強く発揮させるために、80/20〜99/1がさらに好ましい。   In a monomer mixture comprising 2-chloro-1,3-butadiene, at least one comonomer copolymerizable with 2-chloro-1,3-butadiene, and a chain transfer agent, 2-chloro-1,3-butadiene is used. The ratio of butadiene and at least one comonomer copolymerizable with 2-chloro-1,3-butadiene is not particularly limited as long as it is a copolymerizable amount ratio, but the characteristics as chloroprene rubber are not limited. In order to maintain, the weight ratio is preferably 25/75 to 99/1, and more preferably 80/20 to 99/1 in order to exert the characteristics of the chloroprene rubber strongly.

本発明の方法は、重合開始時の単量体混合物100重量部に対し、2〜20重量部の単量体混合物を0.02〜2重量部/分の速度で重合途中に添加するものである。   In the method of the present invention, 2 to 20 parts by weight of a monomer mixture is added during polymerization at a rate of 0.02 to 2 parts by weight per 100 parts by weight of the monomer mixture at the start of polymerization. is there.

単量体混合物の添加量が2重量部未満の場合には、生産量増加が十分でなく好ましくない。一方、20重量部を超える場合には、重合進行に伴い拡大する重合器の空間だけでは不十分であるため、重合開始時の仕込量を低減し重合器空間を確保する必要があり、生産性向上の面から効率的ではない。なお、生産性向上の効率が最も優れるために、好ましくは、5〜15重量部である。   When the addition amount of the monomer mixture is less than 2 parts by weight, the production amount is not increased sufficiently, which is not preferable. On the other hand, when the amount exceeds 20 parts by weight, the space for the polymerization vessel that expands as the polymerization progresses is not sufficient, so it is necessary to reduce the amount charged at the start of polymerization to secure the polymerization vessel space, and to improve productivity. Not efficient in terms of improvement. In addition, since the efficiency of productivity improvement is the most excellent, Preferably it is 5-15 weight part.

単量体混合物の添加速度が0.02重量部/分未満の場合には、添加される単量体混合物が少量であるため生産量増加が十分でなく好ましくない。一方、2重量部/分を超えると、急激な単量体増加に伴い増加する重合熱の除去が困難となるため、重合を設定温度に保つためには重合速度の低減が必要となり生産性が低下するため好ましくない。また、得られるラテックスの安定性が損なわれる。なお、重合速度制御を容易とするために、好ましくは、0.05〜2重量部/分である。   When the addition rate of the monomer mixture is less than 0.02 parts by weight / minute, the amount of the monomer mixture to be added is small, which is not preferable because the production amount is not increased sufficiently. On the other hand, if it exceeds 2 parts by weight / min, it will be difficult to remove the heat of polymerization that increases with a rapid increase in monomer, and therefore it is necessary to reduce the polymerization rate in order to keep the polymerization at the set temperature. Since it falls, it is not preferable. In addition, the stability of the resulting latex is impaired. In order to facilitate the polymerization rate control, the amount is preferably 0.05 to 2 parts by weight / minute.

本発明のクロロプレンゴムの乳化重合において、重合開始時の単量体混合物は、2−クロロ−1,3−ブタジエンおよび連鎖移動剤からなる単量体混合物、または2−クロロ−1,3−ブタジエン、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーおよび連鎖移動剤からなる単量体混合物であり、これらは、先に例示したものが適用できる。なお、重合途中で添加したコモノマーや連鎖移動剤と、重合開始時のコモノマーや連鎖移動剤とは異なっていても良い。   In the emulsion polymerization of the chloroprene rubber of the present invention, the monomer mixture at the start of polymerization is a monomer mixture comprising 2-chloro-1,3-butadiene and a chain transfer agent, or 2-chloro-1,3-butadiene. , A monomer mixture comprising at least one comonomer copolymerizable with 2-chloro-1,3-butadiene and a chain transfer agent, and those exemplified above can be applied. The comonomer or chain transfer agent added during the polymerization may be different from the comonomer or chain transfer agent at the start of polymerization.

2−クロロ−1,3−ブタジエン、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーおよび連鎖移動剤からなる重合開始時の単量体混合物においては、2−クロロ−1,3−ブタジエンと、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーとの割合は、共重合可能な量比であれば特に限定するものではないが、得られる共重合体中のクロロプレン組成比を保持してクロロプレンゴムとしての特性を維持するために、重量比で70/30〜99/1が好ましく、クロロプレンゴムとしての特性を強く発揮させるために80/20〜99/1がさらに好ましい。   In the monomer mixture at the start of polymerization comprising 2-chloro-1,3-butadiene, at least one comonomer copolymerizable with 2-chloro-1,3-butadiene, and a chain transfer agent, 2-chloro- The ratio of 1,3-butadiene and at least one comonomer copolymerizable with 2-chloro-1,3-butadiene is not particularly limited as long as it is a copolymerizable amount ratio, but can be obtained. The weight ratio is preferably 70/30 to 99/1 in order to maintain the chloroprene composition ratio in the copolymer and maintain the characteristics as a chloroprene rubber, and 80/20 in order to exert the characteristics as a chloroprene rubber strongly. -99/1 is more preferred.

本発明の方法では、重合開始時に単量体混合物を乳化分散剤水溶液とともに混合し、エマルジョンを形成させ、これに重合開始剤を添加することにより重合を進行させる。乳化分散剤としては、一般に乳化重合に用いられる界面活性剤であれば、特に限定するものではなく、カルボン酸塩型、スルホン酸塩型、硫酸塩型等のアニオン型乳化剤及びノニオン型乳化剤等が用いられ、具体的には、不均化ロジン酸のアルカリ金属塩、ロジン酸のアルカリ金属塩、高級脂肪酸アルカリ金属塩、アルキルスルホン酸塩、アルキルアリールスルホン酸塩、アルキル硫酸塩、アルキルアリール硫酸塩、ナフタレンスルホン酸ナトリウムとホルムアルデヒドとの縮合物、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンアシルエステル等が挙げられ、単独または2種以上の併用が可能である。各乳化分散剤の添加量はその種類により最適範囲は異なるが、乳化重合を安定に実施できる範囲として、初期仕込みモノマー100重量部に対して0.1〜15重量部が好ましく、0.1〜10重量部が特に好ましい。重合開始剤としては、フリーラジカル生成物質であれぱ、特に限定するものではなく、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸化物、過酸化水素、パラメンタンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の無機又は有機過酸化物等が挙げられ、これら単独または上記化合物と硫酸第一鉄、ハイドロサルファイトナトリウム、ナトリウムホルムアルデヒドスルホキシレート、チオ硫酸塩、チオ亜硫酸塩、有機アミン等の還元性物質を併用したレドックス系が使用される。   In the method of the present invention, the monomer mixture is mixed with an aqueous emulsifying dispersant solution at the start of polymerization to form an emulsion, and polymerization is allowed to proceed by adding a polymerization initiator thereto. The emulsifying dispersant is not particularly limited as long as it is a surfactant generally used for emulsion polymerization, and examples thereof include anionic emulsifiers such as carboxylate type, sulfonate type, sulfate type, and nonionic type emulsifiers. Specifically, alkali metal salt of disproportionated rosin acid, alkali metal salt of rosin acid, higher fatty acid alkali metal salt, alkyl sulfonate, alkyl aryl sulfonate, alkyl sulfate, alkyl aryl sulfate , A condensate of sodium naphthalenesulfonate and formaldehyde, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, sorbitan fatty acid ester, polyoxyethylene acyl ester, etc., can be used alone or in combination of two or more . The optimum range of the amount of each emulsifying dispersant added varies depending on the type, but the range in which emulsion polymerization can be carried out stably is preferably 0.1 to 15 parts by weight with respect to 100 parts by weight of the initially charged monomer. 10 parts by weight is particularly preferred. The polymerization initiator is not particularly limited as long as it is a free radical generating substance, and examples thereof include persulfates such as potassium persulfate and ammonium persulfate, hydrogen peroxide, paramentane hydroperoxide, and t-butyl hydroperoxide. Inorganic or organic peroxides such as oxide and cumene hydroperoxide, etc. are mentioned alone or with the above compounds and ferrous sulfate, hydrosulfite sodium, sodium formaldehyde sulfoxylate, thiosulfate, thiosulfite, organic A redox system in combination with a reducing substance such as amine is used.

本発明の方法は、重合進行に伴うラテックス比重上昇により生成する重合器の空間を利用し、重合途中より単量体混合物を追加する。従って、重合開始前に導入される単量体混合物が多いほど、重合により生成する空間が大きくなり、多量の単量体混合物の追加が可能となる。ただし、重合開始時点で既に重合器に空間が存在するのでは生産性の面からは効率が悪いので、重合器が全て満たされた状態から重合を開始する。この点、特許文献1のように重合開始時の単量体混合物の仕込み量が少ない方法では、重合進行に伴い生成する空間が少なく、また単量体混合物とともに乳化剤水溶液をともに添加しているため、添加可能な単量体混合物の量が少なく、生産性向上が十分でない。   In the method of the present invention, a monomer mixture is added in the middle of polymerization using the space of a polymerization vessel formed by an increase in latex specific gravity as the polymerization proceeds. Therefore, the more monomer mixture introduced before the start of polymerization, the larger the space generated by polymerization, and the addition of a large amount of monomer mixture becomes possible. However, if there is already a space in the polymerization vessel at the start of polymerization, the efficiency is poor from the viewpoint of productivity, and thus the polymerization is started from a state in which the polymerization vessel is completely filled. In this respect, in the method in which the amount of the monomer mixture charged at the start of polymerization as in Patent Document 1 is small, there is little space generated as the polymerization proceeds, and the emulsifier aqueous solution is added together with the monomer mixture. The amount of the monomer mixture that can be added is small, and the productivity improvement is not sufficient.

本発明の方法における重合を停止する重合転化率は、クロロプレンゴムが得られる範囲内であれば、特に限定するものではないが、生産性を維持しつつ、得られるクロロプレンゴムの流動性を保持して加工性を維持するため、重合開始時の単量体および重合途中に添加した単量体の総和に対して60〜85%が好ましく、62〜75%が特に好ましい。ここで、重合を停止する際に添加する重合停止剤としては、ラジカルを捕捉する化合物であれば特に限定するものではなく、例えば、フェノチアジン、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−メチルフェノール、ハイドロキノン、4−メトキシハイドロキノン、N,N−ジエチルヒドロキシルアミン等のラジカル禁止剤等が挙げられ、単独または2種以上が使用される。   The polymerization conversion rate for stopping the polymerization in the method of the present invention is not particularly limited as long as the chloroprene rubber can be obtained, but the fluidity of the obtained chloroprene rubber is maintained while maintaining the productivity. In order to maintain processability, the content is preferably 60 to 85%, particularly preferably 62 to 75%, based on the sum of the monomers at the start of polymerization and the monomers added during the polymerization. Here, the polymerization terminator added when the polymerization is terminated is not particularly limited as long as it is a compound that traps radicals. For example, phenothiazine, 2,2′-methylenebis- (4-methyl-6- 6) t-butylphenol), 2,2'-methylenebis- (4-ethyl-6-t-butylphenol), 2,6-di-t-butyl-4-methylphenol, hydroquinone, 4-methoxyhydroquinone, N, N- Examples include radical inhibitors such as diethylhydroxylamine, and one or two or more of them are used.

本発明の方法における重合温度は0〜60℃の範囲で行うことができ、好ましくは5〜50℃の範囲である。   The polymerization temperature in the method of the present invention can be carried out in the range of 0 to 60 ° C, preferably in the range of 5 to 50 ° C.

本発明の生産性に優れるクロロプレンゴムの製造方法により得られるクロロプレンゴムは通常の重合方法により得られるクロロプレンゴムと同等の品質を有している。従って通常知られているクロロプレンゴムと同様に、ロール、ニーダー又はバンバリー等の混練機によって加硫剤、加硫促進剤、補強剤、充填剤、可塑剤、老化防止剤等と混合し、コンパウンドを作成することができ、さらに目的に応じた形状に成型後、加硫することにより、通常の重合方法により得られるクロロプレンゴムと同等の性能を持つ加硫物を得ることができる。   The chloroprene rubber obtained by the method for producing chloroprene rubber excellent in productivity of the present invention has the same quality as the chloroprene rubber obtained by the usual polymerization method. Therefore, in the same manner as the conventionally known chloroprene rubber, it is mixed with a vulcanizing agent, a vulcanization accelerator, a reinforcing agent, a filler, a plasticizer, an anti-aging agent, etc. by a kneading machine such as a roll, a kneader or a Banbury, Further, a vulcanized product having performance equivalent to that of chloroprene rubber obtained by an ordinary polymerization method can be obtained by vulcanizing after molding into a shape suitable for the purpose.

本発明の重合方法は、重合途中に単量体混合物を添加するためバッチあたりの生産量が増加し、かつ急激な重合熱増加やラテックス粘度上昇を回避することにより、通常の重合方法とほぼ同等の重合速度にて重合が可能であるため、クロロプレンゴムの生産性向上が達成されることが明らかである。さらに得られるクロロプレンゴムの品質は従来の重合方法により得られるクロロプレンゴムと同等である。   The polymerization method of the present invention increases the production amount per batch because a monomer mixture is added during the polymerization, and avoids a rapid increase in heat of polymerization and an increase in latex viscosity. It is clear that the productivity of chloroprene rubber can be improved because the polymerization can be carried out at a polymerization rate of 5%. Further, the quality of the chloroprene rubber obtained is equivalent to that of the chloroprene rubber obtained by the conventional polymerization method.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.

実施例中のクロロプレンゴムのムーニー粘度は、JIS K6388(1995年度版)に従い測定、評価した。加硫物特性の硬さは、JIS K6253(1997年度版)に従い、測定した。加硫物特性の破断伸び,破断強度,100%応力は、JIS K6251(1993年度版)に従いダンベル状3号型の試験片を用い、引張り速度500mm/分にて評価した。   The Mooney viscosity of the chloroprene rubber in the examples was measured and evaluated according to JIS K6388 (1995 edition). The hardness of the vulcanizate characteristic was measured according to JIS K6253 (1997 edition). The rupture elongation, rupture strength, and 100% stress of the vulcanizate were evaluated using a dumbbell-shaped No. 3 type test piece according to JIS K6251 (1993 edition) at a pulling speed of 500 mm / min.

なお、以下の記述で重量部とは重合開始前に重合器に仕込む全単量体を100重量部とする重量比を表す。   In the following description, “part by weight” means a weight ratio in which 100 parts by weight of all monomers charged into the polymerization vessel before the start of polymerization is represented.

参考例1
以下は、従来の重合方法によりクロロプレンゴムを製造した参考例1である。
Reference example 1
The following is Reference Example 1 in which chloroprene rubber was produced by a conventional polymerization method.

表1に示す重合処方に従い、2−クロロ−1,3−ブタジエン100重量部、n−ドデシルメルカプタン0.200重量部を10Lの攪拌機付きオートクレーブに仕込み、ロジン酸カリウム3.5重量部、ナフタレンスルホン酸ナトリウムのホルムアルデヒド縮合物0.7重量部、水酸化ナトリウム0.25重量部、蒸留水90重量部からなる乳化液をそれに添加し、充分に窒素置換した後、撹拌により乳化させた。3wt%ハイドロサルファイトナトリウム水溶液を添加し、重合器内が40℃一定となるようにジャケット温度を制御しながら、0.2wt%過硫酸カリウム水溶液の連続滴下により重合を開始した。   In accordance with the polymerization formulation shown in Table 1, 100 parts by weight of 2-chloro-1,3-butadiene and 0.200 parts by weight of n-dodecyl mercaptan were charged into a 10 L autoclave equipped with a stirrer, 3.5 parts by weight of potassium rosinate, naphthalene sulfone. An emulsion composed of 0.7 parts by weight of a sodium acid formaldehyde condensate, 0.25 parts by weight of sodium hydroxide and 90 parts by weight of distilled water was added thereto, and after sufficiently purging with nitrogen, the mixture was emulsified by stirring. Polymerization was started by continuous addition of a 0.2 wt% potassium persulfate aqueous solution while adding a 3 wt% sodium hydrosulfite aqueous solution and controlling the jacket temperature so that the inside of the polymerization vessel was kept constant at 40 ° C.

全単量体に対する転化率が65%となった時点で、フェノチアジン0.02重量部をトルエンに溶解しドデシルベンゼンスルホン酸ナトリウム水溶液にて乳化したものおよびN,N−ジエチルヒドロキシルアミン0.05重量部の混合物を停止剤として添加し重合を終了させた。重合時間は240分、生産量は全単量体100重量部の転化率65%から65重量部と算出した。両者の商として時間当りの生産量は0.27重量部/分と算出された。   When the conversion ratio to all monomers reaches 65%, 0.02 part by weight of phenothiazine is dissolved in toluene and emulsified with an aqueous sodium dodecylbenzenesulfonate solution, and 0.05 weight of N, N-diethylhydroxylamine Part of the mixture was added as a terminator to terminate the polymerization. The polymerization time was 240 minutes, and the production amount was calculated from 65% to 65 parts by weight with a conversion rate of 100 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated to be 0.27 parts by weight / minute.

減圧スチームストリッピング法により残存する未反応単量体を除去し、得られたラテックスの凍結凝固によりポリマーを析出させ、水洗、熱風乾燥することによりクロロプレンゴムを得た。   The remaining unreacted monomer was removed by a vacuum steam stripping method, the polymer was precipitated by freeze-coagulation of the obtained latex, washed with water, and dried with hot air to obtain chloroprene rubber.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表1に示す。   The raw rubber Mooney viscosity of the obtained chloroprene rubber is shown in Table 1.

得られたクロロプレンゴムを表2に示す配合に従い3.6Lバンバリーで混練を行い、コンパウンドを作成した。そのコンパウンドを160℃にて20分間プレス加硫することにより加硫ゴムシートを得た。加硫物の常態物性を測定した。加硫物の特性値を表1に示す。   The obtained chloroprene rubber was kneaded in a 3.6 L Banbury according to the formulation shown in Table 2 to prepare a compound. The compound was press vulcanized at 160 ° C. for 20 minutes to obtain a vulcanized rubber sheet. The normal physical properties of the vulcanizate were measured. Table 1 shows the characteristic values of the vulcanizates.

Figure 0004281587
Figure 0004281587

Figure 0004281587
参考例2
以下は、従来の重合方法によりクロロプレンゴムを製造した参考例2である。
Figure 0004281587
Reference example 2
The following is Reference Example 2 in which chloroprene rubber was produced by a conventional polymerization method.

表1に示す重合処方に従い、2−クロロ−1,3−ブタジエン93重量部、2,3−ジクロロ−1,3−ブタジエン7重量部、n−ドデシルメルカプタン0.222重量部に変更した以外は参考例1と同様の方法にて重合を行い、クロロプレンゴムを得た。重合時間は240分、生産量は全単量体100重量部の転化率65%から65重量部と算出した。両者の商として時間当りの生産量は0.27重量部/分と算出された。   According to the polymerization formulation shown in Table 1, except that it was changed to 93 parts by weight of 2-chloro-1,3-butadiene, 7 parts by weight of 2,3-dichloro-1,3-butadiene, and 0.222 parts by weight of n-dodecyl mercaptan. Polymerization was carried out in the same manner as in Reference Example 1 to obtain a chloroprene rubber. The polymerization time was 240 minutes, and the production amount was calculated from 65% to 65 parts by weight with a conversion rate of 100 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated to be 0.27 parts by weight / minute.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表1に示す。   The raw rubber Mooney viscosity of the obtained chloroprene rubber is shown in Table 1.

得られたクロロプレンゴムを参考例1と同様の方法にて評価した。加硫物の特性値を表1に示す。   The obtained chloroprene rubber was evaluated in the same manner as in Reference Example 1. Table 1 shows the characteristic values of the vulcanizates.

実施例1
表3に示す重合処方に従い、2−クロロ−1,3−ブタジエン100重量部、n−ドデシルメルカプタン0.211重量部を10Lの攪拌機付きオートクレーブに仕込み、ロジン酸カリウム3.5重量部、ナフタレンスルホン酸ナトリウムのホルムアルデヒド縮合物0.7重量部、水酸化ナトリウム0.25重量部、蒸留水90重量部からなる乳化液をそれに添加し、充分に窒素置換した後、撹拌により乳化させた。3wt%ハイドロサルファイトナトリウム水溶液を添加し、重合器内が40℃一定となるようにジャケット温度を制御しながら、0.2wt%過硫酸カリウム水溶液の連続滴下により重合を開始した。
Example 1
In accordance with the polymerization formulation shown in Table 3, 100 parts by weight of 2-chloro-1,3-butadiene and 0.211 parts by weight of n-dodecyl mercaptan were charged into a 10 L autoclave with a stirrer, and 3.5 parts by weight of potassium rosinate and naphthalene sulfone. An emulsion composed of 0.7 parts by weight of a sodium acid formaldehyde condensate, 0.25 parts by weight of sodium hydroxide and 90 parts by weight of distilled water was added thereto, and after sufficiently purging with nitrogen, the mixture was emulsified by stirring. Polymerization was started by continuous addition of a 0.2 wt% potassium persulfate aqueous solution while adding a 3 wt% sodium hydrosulfite aqueous solution and controlling the jacket temperature so that the inside of the polymerization vessel was kept constant at 40 ° C.

重合転化率が40%に達した時点より、2−クロロ−1,3−ブタジエン11重量部、n−ドデシルメルカプタン0.022重量部の混合物を0.11重量部/分の速度で重合器に添加しながら重合を継続した。   From the time when the polymerization conversion reached 40%, a mixture of 11 parts by weight of 2-chloro-1,3-butadiene and 0.022 parts by weight of n-dodecyl mercaptan was fed into the polymerization vessel at a rate of 0.11 part by weight / minute. Polymerization was continued while adding.

単量体混合物の添加が終了しても重合を継続し、全単量体に対する転化率が65%となった時点で、フェノチアジン0.02重量部をトルエンに溶解しドデシルベンゼンスルホン酸ナトリウム水溶液にて乳化したものおよびN,N−ジエチルヒドロキシルアミン0.05重量部の混合物を停止剤として添加し重合を終了させた。重合時間は240分、生産量は全単量体111重量部の転化率65%から72.2重量部と算出した。両者の商として時間当りの生産量は0.30重量部/分と算出され、参考例1の時間当りの生産量0.27重量部/分よりも11%向上しており、参考例1と比較して生産性が非常に優れていることが明らかである。   When the addition of the monomer mixture is completed, the polymerization is continued, and when the conversion rate with respect to all the monomers becomes 65%, 0.02 part by weight of phenothiazine is dissolved in toluene to make a sodium dodecylbenzenesulfonate aqueous solution. The mixture was emulsified and a mixture of 0.05 part by weight of N, N-diethylhydroxylamine was added as a terminator to terminate the polymerization. The polymerization time was 240 minutes, and the production amount was calculated to be 72.2 parts by weight from 65% conversion of 111 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated to be 0.30 parts by weight / minute, which is 11% higher than the production amount per hour of 0.27 parts by weight / minute in Reference Example 1. It is clear that the productivity is very excellent in comparison.

減圧スチームストリッピング法により残存する未反応単量体を除去し、得られたラテックスの凍結凝固によりポリマーを析出させ、水洗、熱風乾燥することによりクロロプレンゴムを得た。   The remaining unreacted monomer was removed by a vacuum steam stripping method, the polymer was precipitated by freeze-coagulation of the obtained latex, washed with water, and dried with hot air to obtain chloroprene rubber.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表3に示す。   Table 3 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを表2に示す配合に従い3.6Lバンバリーで混練を行い、コンパウンドを作成した。そのコンパウンドを160℃にて20分間プレス加硫することにより加硫ゴムシートを得た。加硫物の常態物性を測定したところ、参考例1により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表3に示す。   The obtained chloroprene rubber was kneaded in a 3.6 L Banbury according to the formulation shown in Table 2 to prepare a compound. The compound was press vulcanized at 160 ° C. for 20 minutes to obtain a vulcanized rubber sheet. When the normal physical properties of the vulcanizate were measured, they had properties that were not different from the chloroprene rubber obtained in Reference Example 1. The characteristic values of the vulcanizate are shown in Table 3.

Figure 0004281587
実施例2
表3に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン93重量部、2,3−ジクロロ−1,3−ブタジエン7重量部、n−ドデシルメルカプタン0.234重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン10.2重量部、2,3−ジクロロ−1,3−ブタジエン0.8重量部、n−ドデシルメルカプタン0.024重量部に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。重合時間は240分、生産量は全単量体111重量部の転化率65%から72.2重量部と算出した。両者の商として時間当りの生産量は0.30重量部/分と算出され、参考例2の時間当りの生産量0.27重量部/分よりも11%向上しており、参考例2と比較して生産性が非常に優れていることが明らかである。
Figure 0004281587
Example 2
According to the polymerization prescription shown in Table 3, the monomer mixture before the start of polymerization was 93 parts by weight of 2-chloro-1,3-butadiene, 7 parts by weight of 2,3-dichloro-1,3-butadiene, n-dodecyl mercaptan 0 234 parts by weight of the monomer mixture added during the polymerization is 10.2 parts by weight of 2-chloro-1,3-butadiene, 0.8 part by weight of 2,3-dichloro-1,3-butadiene, n- Polymerization was carried out in the same manner as in Example 1 except that the amount was changed to 0.024 parts by weight of dodecyl mercaptan to obtain chloroprene rubber. The polymerization time was 240 minutes, and the production amount was calculated to be 72.2 parts by weight from 65% conversion of 111 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated as 0.30 parts by weight / minute, which is 11% higher than the production amount per hour of 0.27 parts by weight / minute in Reference Example 2. It is clear that the productivity is very excellent in comparison.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表3に示す。   Table 3 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例2により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表3に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 2. The characteristic values of the vulcanizate are shown in Table 3.

実施例3
表3に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン97重量部、2,3−ジクロロ−1,3−ブタジエン3重量部、n−ドデシルメルカプタン0.227重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン10重量部、2,3−ジクロロ−1,3−ブタジエン1重量部、n−ドデシルメルカプタン0.024重量部に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。重合時間は240分、生産量は全単量体111重量部の転化率65%から72.2重量部と算出した。両者の商として時間当りの生産量は0.30重量部/分と算出され、参考例2の時間当りの生産量0.27重量部/分よりも11%向上しており、参考例2と比較して生産性が非常に優れていることが明らかである。
Example 3
In accordance with the polymerization formulation shown in Table 3, the monomer mixture before the start of polymerization was 97 parts by weight of 2-chloro-1,3-butadiene, 3 parts by weight of 2,3-dichloro-1,3-butadiene, and n-dodecyl mercaptan. The monomer mixture added in the middle of the polymerization to 227 parts by weight is 10 parts by weight of 2-chloro-1,3-butadiene, 1 part by weight of 2,3-dichloro-1,3-butadiene, and n-dodecyl mercaptan. Polymerization was carried out in the same manner as in Example 1 except that the amount was changed to 024 parts by weight to obtain chloroprene rubber. The polymerization time was 240 minutes, and the production amount was calculated to be 72.2 parts by weight from 65% conversion of 111 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated as 0.30 parts by weight / minute, which is 11% higher than the production amount per hour of 0.27 parts by weight / minute in Reference Example 2. It is clear that the productivity is very excellent in comparison.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表3に示す。   Table 3 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例2により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表3に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 2. The characteristic values of the vulcanizate are shown in Table 3.

実施例4
表3に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン100重量部、n−ドデシルメルカプタン0.205重量部に、単量体混合物の添加開始転化率を25%、添加速度を0.07重量部/分に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。重合時間は240分、生産量は全単量体111重量部の転化率65%から72.2重量部と算出した。両者の商として時間当りの生産量は0.30重量部/分と算出され、参考例1の時間当りの生産量0.27重量部/分よりも11%向上しており、参考例1と比較して生産性が非常に優れていることが明らかである。
Example 4
According to the polymerization formulation shown in Table 3, the monomer mixture before the start of polymerization was added to 100 parts by weight of 2-chloro-1,3-butadiene and 0.205 parts by weight of n-dodecyl mercaptan, and the conversion start of addition of the monomer mixture was started. The polymerization was carried out in the same manner as in Example 1 except that the addition rate was changed to 25% and the addition rate was changed to 0.07 parts by weight / minute, to obtain chloroprene rubber. The polymerization time was 240 minutes, and the production amount was calculated to be 72.2 parts by weight from 65% conversion of 111 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated to be 0.30 parts by weight / minute, which is 11% higher than the production amount per hour of 0.27 parts by weight / minute in Reference Example 1. It is clear that the productivity is very excellent in comparison.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表3に示す。   Table 3 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例1により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表3に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 1. The characteristic values of the vulcanizate are shown in Table 3.

実施例5
表3に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン100重量部、n−ドデシルメルカプタン0.225重量部に、単量体混合物の添加開始転化率を50%、添加速度を0.28重量部/分、重合温度を45℃に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。重合時間は230分、生産量は全単量体111重量部の転化率65%から72.2重量部と算出した。両者の商として時間当りの生産量は0.31重量部/分と算出され、参考例1の時間当りの生産量0.27重量部/分よりも15%向上しており、参考例1と比較して生産性が非常に優れていることが明らかである。
Example 5
According to the polymerization formulation shown in Table 3, the monomer mixture before the start of polymerization was added to 100 parts by weight of 2-chloro-1,3-butadiene and 0.225 parts by weight of n-dodecyl mercaptan, and the conversion start of the addition of the monomer mixture was started. Was performed in the same manner as in Example 1 except that the addition rate was changed to 0.28 parts by weight / min and the polymerization temperature was changed to 45 ° C. to obtain a chloroprene rubber. The polymerization time was 230 minutes, and the production amount was calculated to be 72.2 parts by weight from a conversion rate of 65% of 111 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated to be 0.31 parts by weight / minute, which is 15% higher than the production amount per hour of 0.27 parts by weight / minute in Reference Example 1. It is clear that the productivity is very excellent in comparison.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表3に示す。   Table 3 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例1により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表3に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 1. The characteristic values of the vulcanizate are shown in Table 3.

実施例6
表3に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン97重量部、2,3−ジクロロ−1,3−ブタジエン3重量部、n−ドデシルメルカプタン0.224重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン6重量部、n−ドデシルメルカプタン0.011重量部に変更し、単量体混合物の添加速度を0.05重量部/分に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。重合時間は240分、生産量は全単量体106重量部の転化率65%から68.9重量部と算出した。両者の商として時間当りの生産量は0.29重量部/分と算出され、参考例2の時間当りの生産量0.27重量部/分よりも7.4%向上しており、参考例2と比較して生産性が優れていることが明らかである。
Example 6
In accordance with the polymerization formulation shown in Table 3, the monomer mixture before the start of polymerization was 97 parts by weight of 2-chloro-1,3-butadiene, 3 parts by weight of 2,3-dichloro-1,3-butadiene, and n-dodecyl mercaptan. The monomer mixture added to 224 parts by weight during the polymerization was changed to 6 parts by weight of 2-chloro-1,3-butadiene and 0.011 parts by weight of n-dodecyl mercaptan, and the addition rate of the monomer mixture was changed. Polymerization was carried out in the same manner as in Example 1 except that the amount was changed to 0.05 parts by weight / minute, to obtain a chloroprene rubber. The polymerization time was 240 minutes, and the production amount was calculated to be 68.9 parts by weight from 65% conversion of 106 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated to be 0.29 parts by weight / minute, which is 7.4% higher than the production amount per hour of 0.27 parts by weight / minute in Reference Example 2. It is clear that productivity is superior to 2.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表3に示す。   Table 3 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例2により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表3に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 2. The characteristic values of the vulcanizate are shown in Table 3.

実施例7
表3に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン95重量部、2,3−ジクロロ−1,3−ブタジエン5重量部、n−ドデシルメルカプタン0.252重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン10.4重量部、2,3−ジクロロ−1,3−ブタジエン0.6重量部、n−ドデシルメルカプタン0.024重量部に変更し、単量体混合物の添加開始転化率を50%、添加速度を0.73重量部/分に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。重合時間は245分、生産量は全単量体111重量部の転化率65%から72.2重量部と算出した。両者の商として時間当りの生産量は0.29重量部/分と算出され、参考例2の時間当りの生産量0.27重量部/分よりも7.4%向上しており、参考例2と比較して生産性が優れていることが明らかである。
Example 7
In accordance with the polymerization formulation shown in Table 3, the monomer mixture before the start of polymerization was 95 parts by weight of 2-chloro-1,3-butadiene, 5 parts by weight of 2,3-dichloro-1,3-butadiene, and n-dodecyl mercaptan. The monomer mixture added in the middle of the polymerization to 252 parts by weight is 10.4 parts by weight of 2-chloro-1,3-butadiene, 0.6 part by weight of 2,3-dichloro-1,3-butadiene, n- Polymerization was carried out in the same manner as in Example 1 except that the amount was changed to 0.024 parts by weight of dodecyl mercaptan, the conversion rate at the start of addition of the monomer mixture was changed to 50%, and the addition rate was changed to 0.73 parts by weight / minute. And chloroprene rubber was obtained. The polymerization time was calculated to be 245 minutes, and the production amount was 72.2 parts by weight from 65% conversion of 111 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated to be 0.29 parts by weight / minute, which is 7.4% higher than the production amount per hour of 0.27 parts by weight / minute in Reference Example 2. It is clear that productivity is superior to 2.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表3に示す。   Table 3 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例2により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表3に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 2. The characteristic values of the vulcanizate are shown in Table 3.

実施例8
表3に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン97重量部、2,3−ジクロロ−1,3−ブタジエン3重量部、n−ドデシルメルカプタン0.235重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン11重量部、n−ドデシルメルカプタン0.023重量部に変更し、単量体混合物の添加開始転化率を50%、添加速度を1.83重量部/分に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。重合時間は245分、生産量は全単量体111重量部の転化率65%から72.2重量部と算出した。両者の商として時間当りの生産量は0.29重量部/分と算出され、参考例2の時間当りの生産量0.27重量部/分よりも7.4%向上しており、参考例2と比較して生産性が優れていることが明らかである。
Example 8
In accordance with the polymerization formulation shown in Table 3, the monomer mixture before the start of polymerization was 97 parts by weight of 2-chloro-1,3-butadiene, 3 parts by weight of 2,3-dichloro-1,3-butadiene, and n-dodecyl mercaptan. The monomer mixture added in the middle of the polymerization to 235 parts by weight was changed to 11 parts by weight of 2-chloro-1,3-butadiene and 0.023 parts by weight of n-dodecyl mercaptan. Polymerization was carried out in the same manner as in Example 1 except that the rate was changed to 50% and the addition rate was changed to 1.83 parts by weight / min to obtain chloroprene rubber. The polymerization time was calculated to be 245 minutes, and the production amount was 72.2 parts by weight from 65% conversion of 111 parts by weight of all monomers. As a quotient of both, the production amount per hour was calculated to be 0.29 parts by weight / minute, which is 7.4% higher than the production amount per hour of 0.27 parts by weight / minute in Reference Example 2. It is clear that productivity is superior to 2.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表3に示す。   Table 3 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例2により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表3に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 2. The characteristic values of the vulcanizate are shown in Table 3.

比較例1
表4に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン100重量部、n−ドデシルメルカプタン0.204重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン1重量部、n−ドデシルメルカプタン0.002重量部に変更し、単量体混合物の添加開始転化率を10%、添加速度を0.06重量部/分に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。単量体混合物の添加開始転化率が低いため、重合進行に伴い拡大する重合器の空間が十分でなく、添加可能な単量体が少なかった。重合時間は240分、生産量は全単量体101重量部の転化率65%から65.7重量部と算出した。両者の商として時間当りの生産量は0.27重量部/分と算出され、参考例1の時間当りの生産量と同等であり、本発明の重合方法に比べ生産性が劣っていることが明らかである。
Comparative Example 1
In accordance with the polymerization formulation shown in Table 4, the monomer mixture before the start of polymerization is added to 100 parts by weight of 2-chloro-1,3-butadiene and 0.204 parts by weight of n-dodecyl mercaptan from the middle of the polymerization. Was changed to 1 part by weight of 2-chloro-1,3-butadiene and 0.002 part by weight of n-dodecyl mercaptan, the conversion of starting addition of the monomer mixture was 10%, and the addition rate was 0.06 parts by weight / minute. Polymerization was carried out in the same manner as in Example 1 except that the chloroprene rubber was obtained. Since the conversion at the start of addition of the monomer mixture was low, the space of the polymerization vessel expanding as the polymerization progressed was insufficient, and there were few monomers that could be added. The polymerization time was 240 minutes, and the production amount was calculated to be 65.7 parts by weight from 65% conversion of 101 parts by weight of all monomers. As the quotient of both, the production amount per hour is calculated to be 0.27 parts by weight / minute, which is equivalent to the production amount per hour in Reference Example 1, and that the productivity is inferior compared to the polymerization method of the present invention. it is obvious.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表4に示す。   Table 4 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例1により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表4に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 1. Table 4 shows the characteristic values of the vulcanizates.

Figure 0004281587
比較例2
表4に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン100重量部、n−ドデシルメルカプタン0.221重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン10重量部、2,3−ジクロロ−1,3−ブタジエン1重量部、n−ドデシルメルカプタン0.023重量部に変更し、単量体混合物の添加開始転化率を63%、添加速度を2.20重量部/分に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。単量体の添加開始転化率が高く、重合停止転化率に達するまでの時間が短いため、添加速度を非常に高く設定せざるを得なかった。それにより急激な単量体増加に伴い重合熱が著しく増加したため、重合器内ラテックスを設定温度に保つには一時的に重合速度を低減し、重合熱を抑制する必要があった。よって重合時間が275分と長くなった。生産量は全単量体111重量部の転化率65%から72.2重量部、両者の商として時間当りの生産量は0.26重量部/分と算出され、本発明の重合方法に比べ生産性が劣っていることが明らかである。
Figure 0004281587
Comparative Example 2
According to the polymerization prescription shown in Table 4, the monomer mixture before the start of polymerization is added to 100 parts by weight of 2-chloro-1,3-butadiene and 0.221 parts by weight of n-dodecyl mercaptan from the middle of the polymerization. Is changed to 10 parts by weight of 2-chloro-1,3-butadiene, 1 part by weight of 2,3-dichloro-1,3-butadiene, and 0.023 parts by weight of n-dodecyl mercaptan. Polymerization was carried out in the same manner as in Example 1 except that the rate was changed to 63% and the addition rate was changed to 2.20 parts by weight / min to obtain chloroprene rubber. Since the monomer addition start conversion rate was high and the time required to reach the polymerization termination conversion rate was short, the addition rate had to be set very high. As a result, the heat of polymerization markedly increased with a rapid increase in monomer, and therefore it was necessary to temporarily reduce the polymerization rate and suppress the heat of polymerization in order to keep the latex in the polymerization vessel at the set temperature. Therefore, the polymerization time was as long as 275 minutes. The production amount is calculated from 65% to 72.2 parts by weight of the conversion rate of 111 parts by weight of all monomers, and the quotient of both is calculated to be 0.26 parts by weight / minute, compared with the polymerization method of the present invention. It is clear that productivity is inferior.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表4に示す。   Table 4 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例2により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表4に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 2. Table 4 shows the characteristic values of the vulcanizates.

比較例3
表4に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン93重量部、2,3−ジクロロ−1,3−ブタジエン7重量部、n−ドデシルメルカプタン0.234重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン23.3重量部、2,3−ジクロロ−1,3−ブタジエン1.7重量部、n−ドデシルメルカプタン0.056重量部に変更し、単量体混合物の添加速度を0.25重量部/分に変更した以外は実施例1と同様の方法にて重合を行ったが、重合進行に伴い拡大する重合器の空間相当量以上に単量体を添加しようとしたため、重合器よりラテックスが溢れ出し、設定した単量体全量を添加することが出来ず、重合を中止した。
Comparative Example 3
According to the polymerization prescription shown in Table 4, the monomer mixture before the start of polymerization was 93 parts by weight of 2-chloro-1,3-butadiene, 7 parts by weight of 2,3-dichloro-1,3-butadiene, n-dodecyl mercaptan 0 The monomer mixture added in the middle of the polymerization to 234 parts by weight was 23.3 parts by weight of 2-chloro-1,3-butadiene, 1.7 parts by weight of 2,3-dichloro-1,3-butadiene, n- Polymerization was carried out in the same manner as in Example 1 except that the content was changed to 0.056 parts by weight of dodecyl mercaptan and the addition rate of the monomer mixture was changed to 0.25 parts by weight / min. Since an attempt was made to add more monomer than the space corresponding to the expanding polymerization vessel, the latex overflowed from the polymerization vessel, and it was impossible to add the total amount of the monomer, and the polymerization was stopped.

比較例4
表4に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン100重量部、n−ドデシルメルカプタン0.204重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン1重量部、n−ドデシルメルカプタン0.001重量部に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。重合時間は240分であり、重合途中に添加した単量体混合物量が少ないため、生産量は全単量体101重量%の転化率65%から65.7重量部と算出した。両者の商として時間当りの生産量は0.27重量部/分と算出され、参考例1の時間当りの生産量と同等であり、本発明の重合方法に比べ生産性が劣っていることが明らかである。
Comparative Example 4
In accordance with the polymerization formulation shown in Table 4, the monomer mixture before the start of polymerization is added to 100 parts by weight of 2-chloro-1,3-butadiene and 0.204 parts by weight of n-dodecyl mercaptan from the middle of the polymerization. Polymerization was carried out in the same manner as in Example 1 except that 1 part by weight of 2-chloro-1,3-butadiene and 0.001 part by weight of n-dodecyl mercaptan were changed to obtain chloroprene rubber. Since the polymerization time was 240 minutes and the amount of the monomer mixture added during the polymerization was small, the production amount was calculated as 65% to 65.7 parts by weight with a conversion rate of 101% by weight of all monomers. As the quotient of both, the production amount per hour is calculated to be 0.27 parts by weight / minute, which is equivalent to the production amount per hour in Reference Example 1, and that the productivity is inferior compared to the polymerization method of the present invention. it is obvious.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表4に示す。   Table 4 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例1により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表4に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 1. Table 4 shows the characteristic values of the vulcanizates.

比較例5
表4に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン100重量部、n−ドデシルメルカプタン0.216重量部に変更し、重合途中より添加する単量体混合物の添加速度を2.20重量部/分に変更した以外は実施例1と同様の方法にて重合を行い、クロロプレンゴムを得た。単量体の添加速度が非常に高く、急激な単量体増加に伴い重合熱が著しく増加したため、重合器内ラテックスを設定温度に保つには一時的に重合速度を低減し、重合熱を抑制する必要があった。よって重合時間が280分と長くなった。生産量は全単量体111重量部の転化率65%から72.2重量部、両者の商として時間当りの生産量は0.26重量部/分と算出され、本発明の重合方法に比べ生産性が劣っていることが明らかである。
Comparative Example 5
According to the polymerization formulation shown in Table 4, the monomer mixture before the start of polymerization was changed to 100 parts by weight of 2-chloro-1,3-butadiene and 0.216 parts by weight of n-dodecyl mercaptan, and added in the middle of the polymerization. Polymerization was carried out in the same manner as in Example 1 except that the addition rate of the body mixture was changed to 2.20 parts by weight / min to obtain chloroprene rubber. The monomer addition rate is very high, and the heat of polymerization significantly increases with rapid monomer increase. To keep the latex in the polymerization vessel at the set temperature, the polymerization rate is temporarily reduced to suppress the heat of polymerization. There was a need to do. Therefore, the polymerization time was as long as 280 minutes. The production amount is calculated from 65% to 72.2 parts by weight of the conversion rate of 111 parts by weight of all monomers, and the quotient of both is calculated to be 0.26 parts by weight / minute, compared with the polymerization method of the present invention. It is clear that productivity is inferior.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表4に示す。   Table 4 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例1により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表4に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 1. Table 4 shows the characteristic values of the vulcanizates.

比較例6
表4に示す重合処方に従い、重合開始前の単量体混合物を2−クロロ−1,3−ブタジエン93重量部、2,3−ジクロロ−1,3−ブタジエン7重量部、n−ドデシルメルカプタン0.234重量部に、重合途中より添加する単量体混合物を2−クロロ−1,3−ブタジエン6重量部、n−ドデシルメルカプタン0.003重量部に変更し、単量体混合物の添加開始転化率を25%、添加速度を0.01重量部/分に変更した以外は実施例1と同様の方法にて重合を行ったが、単量体添加速度が低いため重合停止転化率65%に到達しても未添加の単量体が多く残っていたため、重合を中止した。
Comparative Example 6
According to the polymerization prescription shown in Table 4, the monomer mixture before the start of polymerization was 93 parts by weight of 2-chloro-1,3-butadiene, 7 parts by weight of 2,3-dichloro-1,3-butadiene, n-dodecyl mercaptan 0 The monomer mixture added in the middle of the polymerization to 234 parts by weight was changed to 6 parts by weight of 2-chloro-1,3-butadiene and 0.003 parts by weight of n-dodecyl mercaptan. Polymerization was carried out in the same manner as in Example 1 except that the rate was changed to 25% and the addition rate was changed to 0.01 parts by weight / min. Even after reaching, a large amount of unadded monomer remained, so the polymerization was stopped.

比較例7
本比較例においては重合開始時に重合器に仕込む単量体が少なく、これまでの実施例及び比較例と同様に重合開始時に仕込んだ単量体を100重量部とする記述では重合途中より添加する単量体混合物を始めとするそれ以外の成分の重量比が大きくなり、状況を把握し難い。従って重合開始時および重合中に添加した単量体の総量を100重量部とした重量比を重量部として記載した。また本発明の実施例と生産性を比較するため、実施例1において重合開始時に仕込んだ単量体量を100重量部とした重量比を併記した。
Comparative Example 7
In this comparative example, there is little monomer charged into the polymerization vessel at the start of polymerization, and in the description of 100 parts by weight of the monomer charged at the start of polymerization as in the previous examples and comparative examples, it is added during the polymerization. The weight ratio of the other components including the monomer mixture increases, making it difficult to grasp the situation. Therefore, the weight ratio with the total amount of monomers added at the start of polymerization and during the polymerization as 100 parts by weight was described as parts by weight. In addition, in order to compare productivity with the examples of the present invention, the weight ratio in Example 1 with the amount of monomers charged at the start of polymerization being 100 parts by weight is also shown.

表5に示す重合処方に従い、重合開始時の単量体混合物を2−クロロ−1,3−ブタジエン8.7重量部(実施例1における重合開始時の単量体量を100重量部とした重量比では9.1重量部、以下同様に表記する)、n−ドデシルメルカプタン0.020重量部(0.021重量部)に、乳化液をロジン酸カリウム0.52重量部(0.55重量部)、ナフタレンスルホン酸ナトリウムのホルムアルデヒド縮合物0.098重量部(0.10重量部)、水酸化ナトリウム0.084重量部(0.09重量部)、蒸留水61重量部(64重量部)に変更し、実施例1と同様に重合を開始した。転化率が15%に達した時点から、2−クロロ−1,3−ブタジエン91.3重量部(95.9重量部)、n−ドデシルメルカプタン0.235重量部(0.247重量部)からなる単量体混合物と、ロジン酸カリウム2.09重量部(2.19重量部)、ナフタレンスルホン酸ナトリウムのホルムアルデヒド縮合物0.388重量部(0.41重量部)、水酸化ナトリウム0.445重量部(0.47重量部)、蒸留水19重量部(20重量部)からなる乳化液とを予め混合し乳化させておいたエマルジョンを、単量体当たり0.46重量部/分(0.48重量部/分)の速度にて添加しつつ重合を継続し、実施例1と同様に重合を停止した。重合開始時及び途中添加を合わせた単量体の総量は実施例1の重合開始時の仕込み単量体総量に対して105重量部となり、重合途中に単量体混合物とともに乳化液を追加したため、実施例1の単量体総量111重量部ほど多くすることはできなかった。生産量は105重量部の転化率65%から68.3重量部と算出した。また重合初期に仕込む単量体及び乳化液が少ないため重合器の熱伝導性能が低下し、重合途中より添加した単量体の重合熱除去が困難となった。重合器内ラテックスを設定温度に保つには重合速度の低減が必要となり、重合時間は250分となった。生産量と重合時間の商である時間当りの生産量は0.27重量部/分と算出され、本発明の重合方法に比べ生産性が劣っていることが明らかである。   According to the polymerization prescription shown in Table 5, the monomer mixture at the start of polymerization was 8.7 parts by weight of 2-chloro-1,3-butadiene (the monomer amount at the start of polymerization in Example 1 was 100 parts by weight). The weight ratio is 9.1 parts by weight, the same applies hereinafter), n-dodecyl mercaptan 0.020 part by weight (0.021 part by weight), and the emulsion is 0.52 part by weight potassium rosinate (0.55 part by weight). Part), 0.098 part by weight (0.10 part by weight) of formaldehyde condensate of sodium naphthalenesulfonate, 0.084 part by weight (0.09 part by weight) sodium hydroxide, 61 part by weight (64 parts by weight) distilled water The polymerization was started in the same manner as in Example 1. From the time when the conversion rate reached 15%, 91.3 parts by weight (95.9 parts by weight) of 2-chloro-1,3-butadiene and 0.235 parts by weight (0.247 parts by weight) of n-dodecyl mercaptan A monomer mixture consisting of 2.09 parts by weight (2.19 parts by weight) of potassium rosinate, 0.388 parts by weight (0.41 parts by weight) of a formaldehyde condensate of sodium naphthalenesulfonate, 0.445 parts by weight of sodium hydroxide The emulsion previously mixed and emulsified with an emulsion composed of parts by weight (0.47 parts by weight) and 19 parts by weight (20 parts by weight) of distilled water was 0.46 parts by weight per minute (0 Polymerization was continued while adding at a rate of .48 parts by weight), and the polymerization was stopped in the same manner as in Example 1. The total amount of monomers combined at the start of polymerization and during the addition was 105 parts by weight relative to the total amount of monomers charged at the start of polymerization in Example 1, and the emulsion was added together with the monomer mixture during the polymerization. The total amount of monomers in Example 1 could not be increased as much as 111 parts by weight. The production amount was calculated to be 68.3 parts by weight from a conversion rate of 65 parts by weight of 65%. In addition, since there are few monomers and emulsions to be charged in the initial stage of polymerization, the heat conduction performance of the polymerization vessel is lowered, and it is difficult to remove the polymerization heat of the monomer added during the polymerization. In order to keep the latex in the polymerization vessel at the set temperature, it was necessary to reduce the polymerization rate, and the polymerization time was 250 minutes. The production amount per hour, which is the quotient of the production amount and the polymerization time, is calculated to be 0.27 parts by weight / minute, and it is clear that the productivity is inferior to the polymerization method of the present invention.

得られたクロロプレンゴムの原料ゴムムーニー粘度を表5に示す。連鎖移動剤を多く使用したため本発明の各実施例よりも小さな値となったが、クロロプレンゴムの範疇であり、連鎖移動剤の減量により調整可能と判断した。   Table 5 shows the raw rubber Mooney viscosity of the obtained chloroprene rubber. Since a large amount of chain transfer agent was used, the value was smaller than in each example of the present invention, but it was in the category of chloroprene rubber, and it was determined that adjustment was possible by reducing the amount of chain transfer agent.

得られたクロロプレンゴムを実施例1と同様の方法にて評価したところ、参考例1により得られたクロロプレンゴムと何ら変わらない物性を有していた。加硫物の特性値を表5に示す。   When the obtained chloroprene rubber was evaluated in the same manner as in Example 1, it had physical properties that were not different from those of the chloroprene rubber obtained in Reference Example 1. Table 5 shows the characteristic values of the vulcanizates.

Figure 0004281587
Figure 0004281587

Claims (3)

クロロプレンゴムの乳化重合において、重合開始時の単量体混合物に対する重合転化率が15〜60%の時点で、2−クロロ−1,3−ブタジエンおよび連鎖移動剤からなる単量体混合物、または2−クロロ−1,3−ブタジエン、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーおよび連鎖移動剤からなる単量体混合物を添加するものであり、かつ、重合途中に添加する当該単量体混合物は、重合開始時の単量体混合物100重量部に対し、2〜20重量部であり、0.02〜2重量部/分の速度で添加することを特徴とするクロロプレンゴムの製造方法。 In the emulsion polymerization of chloroprene rubber, when the polymerization conversion rate relative to the monomer mixture at the start of polymerization is 15 to 60%, a monomer mixture comprising 2-chloro-1,3-butadiene and a chain transfer agent, or 2 A monomer mixture comprising at least one comonomer copolymerizable with chloro-1,3-butadiene, 2-chloro-1,3-butadiene and a chain transfer agent, and during polymerization The monomer mixture to be added is 2 to 20 parts by weight with respect to 100 parts by weight of the monomer mixture at the start of polymerization, and is added at a rate of 0.02 to 2 parts by weight / minute. A method for producing chloroprene rubber. 重合途中に添加する2−クロロ−1,3−ブタジエン、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーおよび連鎖移動剤からなる単量体混合物における、2−クロロ−1,3−ブタジエンと、2−クロロ−1,3−ブタジエンと共重合可能な少なくとも1種のコモノマーとの割合が重量比で25/75〜99/1であることを特徴とする請求項1記載のクロロプレンゴムの製造方法。 2-chloro- in a monomer mixture comprising 2-chloro-1,3-butadiene, at least one comonomer copolymerizable with 2-chloro-1,3-butadiene and a chain transfer agent added during polymerization The ratio of 1,3-butadiene to at least one comonomer copolymerizable with 2-chloro-1,3-butadiene is 25/75 to 99/1 by weight. The manufacturing method of chloroprene rubber of description. 全単量体に対する重合転化率が60〜85%にて重合を停止させることを特徴とする請求項1又は請求項2に記載のクロロプレンゴムの製造方法。
The method for producing a chloroprene rubber according to claim 1 or 2, wherein the polymerization is stopped at a polymerization conversion ratio of 60 to 85% with respect to all monomers.
JP2004068787A 2004-03-11 2004-03-11 Production method of chloroprene rubber Expired - Fee Related JP4281587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068787A JP4281587B2 (en) 2004-03-11 2004-03-11 Production method of chloroprene rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068787A JP4281587B2 (en) 2004-03-11 2004-03-11 Production method of chloroprene rubber

Publications (2)

Publication Number Publication Date
JP2005255831A JP2005255831A (en) 2005-09-22
JP4281587B2 true JP4281587B2 (en) 2009-06-17

Family

ID=35081886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068787A Expired - Fee Related JP4281587B2 (en) 2004-03-11 2004-03-11 Production method of chloroprene rubber

Country Status (1)

Country Link
JP (1) JP4281587B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309725B2 (en) * 2008-06-25 2013-10-09 東ソー株式会社 Chloroprene latex and method for producing the same
JP5585368B2 (en) * 2010-10-08 2014-09-10 東ソー株式会社 Chloroprene latex and method for producing the same

Also Published As

Publication number Publication date
JP2005255831A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
CN111372986B (en) Sulfur-modified chloroprene rubber composition, vulcanizate, molded article using same, and method for producing sulfur-modified chloroprene rubber composition
JP3445615B2 (en) Unsaturated nitrile-conjugated diene copolymer, method for producing the same, and rubber composition
US9475895B2 (en) Sulfur-modified chloroprene rubber composition and molded body
JPH11116622A (en) Production of sulfur-modified chloroprene polymer
JPH093120A (en) Production of sulfur-modified chloroprene polymer
WO2013105370A1 (en) Sulfur modified chloroprene rubber and method for producing same, and molded body
JP2007332206A (en) Chloroprene-based polymer latex and application thereof
JP4281587B2 (en) Production method of chloroprene rubber
JP2006143826A (en) Chloroprene rubber, method for producing the same, and chloroprene rubber composition
JP7336221B2 (en) Sulfur-modified chloroprene rubber, vulcanizate, molded article using the vulcanizate, and method for producing sulfur-modified chloroprene rubber
JPH1112427A (en) Acrylic rubber composition
JP4014663B2 (en) (Co) Polychloroprene rubber production method
JP2009108195A (en) Chloroprene polymer latex composition for manufacturing vulcanized rubber and manufacturing method of the same
JP7367702B2 (en) Chloroprene polymer latex and its manufacturing method
JP5549856B2 (en) Method for producing highly elastic sulfur-modified chloroprene rubber
JP4665273B2 (en) High elasticity sulfur modified chloroprene rubber
JP7293719B2 (en) Rubber foam, its manufacturing method and its use
JP4238686B2 (en) Production method of chloroprene latex and chloroprene rubber
US3775388A (en) Odor improvement of xanthogen-modified chloroprene polymers
JP2008169310A (en) Production method of chloroprene rubber
JPH1143516A (en) Chloroprene rubber for chloroprene rubber composition having excellent dynamic fatigue resistance, chloroprene rubber composition and boots made thereof
WO2012157658A1 (en) Sulfur-modified chloroprene rubber, molded article, and method for producing sulfur-modified chloroprene rubber
JP3400862B2 (en) Anti-vibration rubber
JP4273711B2 (en) Chloroprene rubber composition with excellent processing stability
JP3593769B2 (en) Chloroprene rubber composition and chloroprene rubber composition for extrusion molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R151 Written notification of patent or utility model registration

Ref document number: 4281587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees