JPH1143516A - Chloroprene rubber for chloroprene rubber composition having excellent dynamic fatigue resistance, chloroprene rubber composition and boots made thereof - Google Patents

Chloroprene rubber for chloroprene rubber composition having excellent dynamic fatigue resistance, chloroprene rubber composition and boots made thereof

Info

Publication number
JPH1143516A
JPH1143516A JP9201296A JP20129697A JPH1143516A JP H1143516 A JPH1143516 A JP H1143516A JP 9201296 A JP9201296 A JP 9201296A JP 20129697 A JP20129697 A JP 20129697A JP H1143516 A JPH1143516 A JP H1143516A
Authority
JP
Japan
Prior art keywords
chloroprene rubber
chloroprene
rubber
fatigue resistance
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9201296A
Other languages
Japanese (ja)
Other versions
JP3858365B2 (en
Inventor
Shinji Tanaka
真二 田中
Tamotsu Sato
保 佐藤
Seiji Matsumoto
清児 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP20129697A priority Critical patent/JP3858365B2/en
Publication of JPH1143516A publication Critical patent/JPH1143516A/en
Application granted granted Critical
Publication of JP3858365B2 publication Critical patent/JP3858365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject chloroprene rubber for chloroprene rubber composition having excellent dynamic fatigue resistance without deteriorating the scorch time of unvulcanized compound or the mechanical properties of vulcanized product by polymerizing chloroprene in such a manner as to get an elastic stress fall-ing within a prescribed range. SOLUTION: The objective chloroprene rubber is produced by carrying out emulsion polymerization of 2-chloro-1,3-butadiene and <=50 wt.% of a comonomer copolymerizable therewith such as 2,3-dichloro-1,3-butadiene at a palymerization temperature of 5-50 deg.C while controlling the Mooney viscosity using ndodecyl- mercaptan as a molecular weight controlling agent and suppressing the formation of branched structure in the presence of an emulsifier such as rosic acid potassium salt under a condition to get an elastic stress Y satisfying the formula Y>=0.023X+5.28 (X is Mooney viscosity; 55<=X<=85). The chloroprene rubber is useful e.g. for a uniform velocity joint boot of automobile.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐動的疲労性に優れ
たクロロプレンゴム組成物用クロロプレンゴム及びクロ
ロプレンゴム組成物に関する。さらに詳しくは、従来の
クロロプレンゴム組成物より優れた耐動的疲労性を有す
るクロロプレンゴム組成物用クロロプレンゴム及びそれ
を用いたクロロプレンゴム組成物に関するものである。
The present invention relates to a chloroprene rubber for a chloroprene rubber composition and a chloroprene rubber composition having excellent dynamic fatigue resistance. More specifically, the present invention relates to a chloroprene rubber for a chloroprene rubber composition having better dynamic fatigue resistance than a conventional chloroprene rubber composition, and a chloroprene rubber composition using the same.

【0002】[0002]

【従来の技術】クロロプレンゴムは、加工性、機械的強
度、耐候性、耐油性、難燃性、接着性などにおいてバラ
ンスがとれているため、自動車部品をはじめとするその
他工業部品の素材として幅広く用いられている。しかし
ながら近年、自動車用ゴム材料は特に品質要求が厳し
く、自動車の性能に対する信頼性の向上が求められてい
る。自動車用ブーツの一つである等速ジョイントブーツ
(以下、CVJブーツと呼ぶ)は、最も過酷なストレス
を受ける重要部品で、性能及び寿命を向上させるため種
々の改良が行なわれてきた。
2. Description of the Related Art Chloroprene rubber is well-balanced in workability, mechanical strength, weather resistance, oil resistance, flame retardancy, adhesiveness, etc., and is widely used as a material for automobile parts and other industrial parts. Used. However, in recent years, quality requirements of rubber materials for automobiles are particularly severe, and there is a demand for improvement in reliability of automobile performance. BACKGROUND ART Constant velocity joint boots (hereinafter referred to as CVJ boots), which are one type of automobile boots, are important components that are subjected to the most severe stress, and various improvements have been made to improve performance and life.

【0003】CVJブーツの破壊については、疲労によ
る破壊、低温硬化による破壊、負圧による変形、あるい
はオゾン劣化によるもの等様々な要因がある。それらの
うち疲労破壊を例にとると、破壊核の存在、とりわけカ
ーボンブラックの分散不良による破壊核の存在がその原
因として挙げられる。カーボンブラックの分散不良によ
りゴム製品の性能、特に耐動的疲労性を著しく損なうこ
とは広く知られており、カーボンブラックの分散性を向
上させることにより、耐動的疲労性を改良しようと種々
の試みがなされてきた。しかし、カーボンブラックの分
散不良を起こさないように混練を十分行なうと混練時の
発熱が大きくなり、未加硫配合物のスコーチタイムの短
い、いわゆる焼けが発生し、製品の成型に支障をきた
す。たとえ成型加硫を行ったとしても、力学物性及び耐
動的疲労性が劣る。また十分混練したうえでさらに焼け
を防止する目的で加硫遅延剤を添加すると耐動的疲労性
は優れるが、加硫物の力学物性が低下するといった問題
があり、これまで加硫物の力学物性を損なわず優れた耐
動的疲労性を有するクロロプレンゴム組成物は提供され
ていない。
There are various factors regarding the destruction of CVJ boots, such as destruction due to fatigue, destruction due to low-temperature curing, deformation due to negative pressure, or ozone deterioration. Taking fatigue fracture as an example, the cause is the presence of fracture nuclei, especially the presence of fracture nuclei due to poor dispersion of carbon black. It is widely known that poor dispersion of carbon black significantly impairs the performance of rubber products, particularly dynamic fatigue resistance, and various attempts have been made to improve the dynamic fatigue resistance by improving the dispersibility of carbon black. It has been done. However, if kneading is carried out sufficiently so as not to cause carbon black dispersion failure, the heat generated during kneading increases, causing a short scorch time of the unvulcanized compound, that is, so-called burning, which hinders the molding of the product. Even if molding vulcanization is performed, mechanical properties and dynamic fatigue resistance are inferior. Addition of a vulcanization retarder for the purpose of further preventing burning after kneading sufficiently improves the dynamic fatigue resistance, but has the problem that the mechanical properties of the vulcanizate are reduced. No chloroprene rubber composition having excellent dynamic fatigue resistance without impairing the rubber composition has not been provided.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の問題点
に鑑みてなされたものであり、その目的は従来のクロロ
プレンゴム組成物では達成できなかった、未加硫配合物
のスコーチタイム及び加硫物の力学物性を損なわず、優
れた耐動的疲労性を有するクロロプレンゴム組成物用ク
ロロプレンゴム及びクロロプレンゴム組成物を提供する
ことである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its object has been to achieve the scorch time and vulcanization of an unvulcanized compound which could not be achieved by the conventional chloroprene rubber composition. An object of the present invention is to provide a chloroprene rubber and a chloroprene rubber composition for a chloroprene rubber composition having excellent dynamic fatigue resistance without impairing the mechanical properties of the sulphate.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討した結果、クロロプレン原
料ゴムの弾性応力Yが特定の範囲にあるクロロプレンゴ
ムを用いてなるクロロプレンゴム組成物は優れた耐動的
疲労性を有することを見出し本発明に至った。即ち、本
発明は、クロロプレン原料ゴムの弾性応力Yが下式
(1)で示される範囲にある耐動的疲労性に優れたクロ
ロプレンゴム組成物用クロロプレンゴムである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a chloroprene rubber composition using chloroprene rubber having an elastic stress Y of a chloroprene raw rubber within a specific range. The product was found to have excellent dynamic fatigue resistance, which led to the present invention. That is, the present invention is a chloroprene rubber for a chloroprene rubber composition having excellent dynamic fatigue resistance in which the elastic stress Y of the chloroprene raw rubber is in the range represented by the following formula (1).

【0006】Y≧0.023X+5.28 (1) (式中、Xはクロロプレン原料ゴムのムーニー粘度、Y
はクロロプレン原料ゴムの弾性応力を示す。ただし、5
5≦X≦85である。) 以下、本発明について詳細に説明する。
Y ≧ 0.023X + 5.28 (1) (where X is the Mooney viscosity of chloroprene raw material rubber, Y
Indicates the elastic stress of chloroprene raw rubber. However, 5
5 ≦ X ≦ 85. Hereinafter, the present invention will be described in detail.

【0007】本発明のクロロプレンゴムは、クロロプレ
ン原料ゴムの弾性応力Yが上記(1)式で示される範囲
にあるクロロプレンゴムである。
The chloroprene rubber of the present invention is a chloroprene rubber in which the elastic stress Y of the chloroprene raw rubber is in the range represented by the above formula (1).

【0008】クロロプレンゴム原料ゴムのムーニー粘度
は、JIS K6388のB法(1996年版)に従
い、角形溝のダイを使用し、測定温度100℃における
ML(1+4)の値である。本発明のクロロプレンゴム
原料ゴムのムーニー粘度は、55〜85であり、ムーニ
ー粘度が85を越える場合、混練時にカーボンブラック
の分散不良を生じ満足な耐動的疲労性が得られない。ま
た、ムーニー粘度が55未満の場合、加硫物性の引張応
力が低下し満足な耐動的疲労性が得られない。このうち
好ましくはムーニー粘度が60〜80である。
The Mooney viscosity of chloroprene rubber raw material rubber is a value of ML (1 + 4) at a measuring temperature of 100 ° C. using a square groove die in accordance with JIS K6388 method B (1996 edition). The Mooney viscosity of the chloroprene rubber raw material rubber of the present invention is 55 to 85. If the Mooney viscosity exceeds 85, poor dispersion of carbon black occurs during kneading and satisfactory dynamic fatigue resistance cannot be obtained. On the other hand, if the Mooney viscosity is less than 55, the tensile stress of the vulcanized material is reduced, and satisfactory dynamic fatigue resistance cannot be obtained. Among them, the Mooney viscosity is preferably from 60 to 80.

【0009】本発明のクロロプレンゴムよりなるクロロ
プレンゴム組成物は、同一配合及び同一混練条件におい
て、従来のクロロプレンゴムよりなる組成物より、耐動
的疲労特性が優れるものである。具体例を挙げると、例
えばクロロプレン原料ゴム100重量部に対して酸化マ
グネシウム4重量部、ステアリン酸0.5重量部、パラ
フィンワックス1重量部、4,4´−ビス(α,α−ジ
メチルベンジル)ジフェニルアミン3重量部、N−
(1,3−ジメチルブチル)−N´−フェニル−p−フ
ェニレンジアミン1重量部、FEFカーボンブラック6
0重量部、ジ−(2−エチルヘキシル)セバケート30
重量部を配合し、OOC型3.6 lバンバリーで、ケ
ーシングとローターのクリアランス2.50mm、ロー
ターの回転数55〜63rpm、ラム圧力3.0kg/
cm2、混練前のケーシング温度を25℃に条件設定
し、充填率60%でアップサイドダウン方式で混練を行
う。混練過程は2段階ある。まず、第一段階として上記
配合薬品のみをバンバリーへ投入し、60秒間撹拌後ク
ロロプレン原料ゴムを投入する。それから150秒間混
練を行い、120℃以下の温度でダンプし、クロロプレ
ンゴム未加硫物を取り出す。第二段階として、12イン
チロールで促進剤を投入する。設定条件としては、前ロ
ール回転数15rpm、後ロール回転数16.5rp
m、ニップ厚4mm、ガイド幅500mm、ロール温度
40〜50℃である。バンバリーダンプ後のクロロプレ
ンゴム未加硫物をロールに巻き付け、酸化亜鉛5重量
部、エチレンチオウレア1重量部、テトラメチルチウラ
ムジスルフィド0.5重量部を添加する。添加終了後、
切り返し3回、ニップ厚1mmで丸目通し3回、ニップ
厚2mmでシートを分出しし、クロロプレンゴム組成物
を得る。さらに、得られたクロロプレンゴム組成物を1
60℃×20分プレス加硫を行うことにより、加硫ゴム
が得られる。この様にすれば、本発明のクロロプレンゴ
ム組成物を得ることができる。耐動的疲労特性を、例え
ばクロロプレンゴム加硫物の100%伸張の定伸張疲労
試験において、デマッチア式疲労試験機を用い、試験片
が破断するまでの回数を測定することにより評価したと
ころ、耐動的疲労特性が優れたクロロプレンゴム組成物
を得ることができた。すなわち、例えば定伸張疲労試験
において平均寿命(MTBF)が70000回以上、m
値(破断回数のバラツキ程度を示すパラメーター)が
1.0以上である組成物を得ることができた。
The chloroprene rubber composition of the present invention comprising chloroprene rubber is superior in dynamic fatigue resistance to a conventional chloroprene rubber composition under the same compounding and kneading conditions. Specific examples include, for example, 4 parts by weight of magnesium oxide, 0.5 parts by weight of stearic acid, 1 part by weight of paraffin wax, 4,4'-bis (α, α-dimethylbenzyl) based on 100 parts by weight of chloroprene raw rubber. 3 parts by weight of diphenylamine, N-
1 part by weight of (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, FEF carbon black 6
0 parts by weight, di- (2-ethylhexyl) sebacate 30
Parts by weight, in an OOC type 3.6 l Banbury, the clearance between the casing and the rotor is 2.50 mm, the rotation number of the rotor is 55 to 63 rpm, and the ram pressure is 3.0 kg /.
cm 2 , the temperature of the casing before kneading is set to 25 ° C., and kneading is performed by an upside-down method at a filling rate of 60%. The kneading process has two stages. First, as a first step, only the above compounded chemicals are charged into the Banbury, and after stirring for 60 seconds, chloroprene raw rubber is charged. Then, the mixture is kneaded for 150 seconds, dumped at a temperature of 120 ° C. or lower, and the unvulcanized chloroprene rubber is taken out. As a second step, the accelerator is charged on a 12 inch roll. The setting conditions include a front roll rotation speed of 15 rpm and a rear roll rotation speed of 16.5 rpm.
m, nip thickness 4 mm, guide width 500 mm, roll temperature 40 to 50 ° C. The unvulcanized chloroprene rubber after the Banbury dump is wound around a roll, and 5 parts by weight of zinc oxide, 1 part by weight of ethylenethiourea, and 0.5 part by weight of tetramethylthiuram disulfide are added. After the addition,
Sheets are cut out three times with a nip thickness of 1 mm and three times with a nip thickness of 2 mm to obtain a chloroprene rubber composition. Further, the obtained chloroprene rubber composition was
By performing press vulcanization at 60 ° C. for 20 minutes, a vulcanized rubber can be obtained. By doing so, the chloroprene rubber composition of the present invention can be obtained. The dynamic fatigue resistance was evaluated, for example, in a constant elongation fatigue test of 100% elongation of the vulcanized chloroprene rubber by measuring the number of times until the test piece fractured using a dematcher type fatigue tester. A chloroprene rubber composition having excellent fatigue properties was obtained. That is, for example, in a constant elongation fatigue test, the average life (MTBF) is 70,000 times or more, and m
A composition having a value (a parameter indicating the degree of variation in the number of breaks) of 1.0 or more could be obtained.

【0010】本発明におけるクロロプレン原料ゴムの弾
性応力Yは、モンサント社製ムービングダイレオメータ
(MDR−2000)を用いて、設定条件をダイねじり
振動数1.66Hz、振幅角度±1度、測定温度60
℃、予熱なしの測定条件で測定開始5分後のトルク値
(dNm)である。本発明におけるクロロプレン原料ゴ
ムの弾性応力Yは、0.023X+5.28以上であ
り、Yが0.023X+5.28未満であると、原料ゴ
ムの弾性項の比率が小さいため混練時にカーボンブラッ
クの分散が劣り、満足な耐動的疲労性が得られない。
The elastic stress Y of the chloroprene raw material rubber in the present invention was set using a moving die rheometer (MDR-2000) manufactured by Monsanto Co., Ltd. under the following conditions: die torsion frequency 1.66 Hz, amplitude angle ± 1 degree, measurement temperature 60.
It is a torque value (dNm) 5 minutes after the start of measurement under the measurement conditions of ° C. and no preheating. The elastic stress Y of the chloroprene raw material rubber in the present invention is 0.023X + 5.28 or more. When Y is less than 0.023X + 5.28, the dispersion of carbon black during kneading is small because the ratio of the elasticity term of the raw rubber is small. Poor, satisfactory dynamic fatigue resistance cannot be obtained.

【0011】さらに、本発明のクロロプレンゴムは、ク
ロロプレンと共重合可能なコモノマーを50重量%以下
含有している2−クロロ−1,3−ブタジエンの重合に
より得られるゴムである。ここで言うコモノマーとは、
2−クロロ−1,3−ブタジエンと共重合可能な単量体
であれば特に限定するものではなく、例えば、アクリロ
ニトリル、メタクリロニトリル、塩化ビニリデン等のモ
ノビニル化合物、アクリル酸エステル類、メタクリル酸
エステル類、スチレン、α−メチルスチレン等の芳香族
ビニル化合物、1,3−ブタジエン、1−クロロ−1,
3−ブタジエン、2,3−ジクロロ−1,3−ブタジエ
ン等の共役ジエン化合物、硫黄等が挙げられ、単独また
は2種以上を組み合わせて用いることができる。これら
のうち、1−クロロ−1,3−ブタジエン、2,3−ジ
クロロ−1,3−ブタジエンが特に好ましい。
Further, the chloroprene rubber of the present invention is a rubber obtained by polymerization of 2-chloro-1,3-butadiene containing 50% by weight or less of a comonomer copolymerizable with chloroprene. The comonomer referred to here is
The monomer is not particularly limited as long as it is a monomer copolymerizable with 2-chloro-1,3-butadiene. Examples thereof include monovinyl compounds such as acrylonitrile, methacrylonitrile, and vinylidene chloride, acrylates, and methacrylates. , Aromatic vinyl compounds such as styrene and α-methylstyrene, 1,3-butadiene, 1-chloro-1,
Examples thereof include conjugated diene compounds such as 3-butadiene and 2,3-dichloro-1,3-butadiene, and sulfur, and these can be used alone or in combination of two or more. Of these, 1-chloro-1,3-butadiene and 2,3-dichloro-1,3-butadiene are particularly preferred.

【0012】さらに、本発明のクロロプレンゴムは、分
岐構造生成を抑制した重合方法により製造され、例え
ば、乳化重合、溶液重合、塊状重合等の方法が挙げられ
る。このうち乳化重合で、分岐構造生成を抑える方法と
しては、重合転化率を低くする方法、重合速度を遅くす
る方法、重合温度を下げる方法、分子量調節剤を重合中
に分割して投入する方法、連鎖移動剤としてクロロホル
ム、ヨードホルム等を用いる方法などがある。
Further, the chloroprene rubber of the present invention is produced by a polymerization method in which the formation of a branched structure is suppressed, and examples thereof include methods such as emulsion polymerization, solution polymerization, and bulk polymerization. Among them, emulsion polymerization, as a method of suppressing the formation of a branched structure, a method of lowering the polymerization conversion rate, a method of lowering the polymerization rate, a method of lowering the polymerization temperature, a method of dividing and adding a molecular weight regulator during the polymerization, There is a method using chloroform, iodoform or the like as a chain transfer agent.

【0013】本発明において、重合に用いる乳化剤とし
ては特に限定するものではなく、例えば、アビエチン酸
アルカリ金属塩、不均化アビエチン酸アルカリ金属塩、
アルキル硫酸アルカリ金属塩、アルキルベンゼンスルホ
ン酸アルカリ金属塩、ポリオキシエチレンアルキルフェ
ニルエーテル硫酸アルカリ金属塩、高級脂肪酸アルカリ
金属塩、ナフタリンスルホン酸ホルマリン縮合物のアル
カリ金属塩、高級脂肪酸スルホン化物のアルカリ金属塩
等のアニオン系、またはポリオキシエチレンアルキルエ
ーテル、ポリオキシエチレンアルキルフェニルエーテル
等のノニオン系いずれの界面活性剤も使用可能である。
In the present invention, the emulsifier used for the polymerization is not particularly restricted but includes, for example, alkali metal abietic acid, disproportionated alkali metal abietic acid,
Alkali metal salts of alkyl sulfates, alkali metal salts of alkyl benzene sulfonic acid, alkali metal salts of polyoxyethylene alkyl phenyl ether sulfate, alkali metal salts of higher fatty acids, alkali metal salts of naphthalene sulfonic acid formalin condensates, alkali metal salts of higher fatty acid sulfonates, etc. Any anionic surfactant or a nonionic surfactant such as polyoxyethylene alkyl ether and polyoxyethylene alkyl phenyl ether can be used.

【0014】本発明において、重合開始剤としては特に
限定するものではなく、例えば、過硫酸カリウム、過硫
酸アンモニウム、パラメンタンハイドロパーオキサイ
ド、クメンハイドロパーオキサイド、tert−ブチル
ハイドロパーオキサイド等の無機または有機の過酸化
物、または上記過酸化物と硫酸第一鉄、ハイドロサルフ
ァイトナトリウム、ナトリウムホルムアルデヒドスルホ
キシレート等の還元剤を併用したレドックス系等が使用
される。
In the present invention, the polymerization initiator is not particularly limited, and examples thereof include inorganic or organic initiators such as potassium persulfate, ammonium persulfate, paramenthane hydroperoxide, cumene hydroperoxide and tert-butyl hydroperoxide. Or a redox system using the above peroxide in combination with a reducing agent such as ferrous sulfate, sodium hydrosulfite, and sodium formaldehyde sulfoxylate.

【0015】本発明において、重合に用いる停止剤とし
ては特に限定するものではなく、例えば、フェノチアジ
ン、2,2−メチレンビス−(4−メチル−6−ter
t−ブチルフェノール)、2,2−メチレンビス−(4
−エチル−6−tert−ブチルフェノール)、2,6
−ジ−tert−ブチル−4−メチルフェノール、ハイ
ドロキノン、4−メトキシフェノール、N,N−ジエチ
ルヒドロキシルアミン等のラジカル禁止剤が使用され
る。
In the present invention, the terminator used for the polymerization is not particularly limited. For example, phenothiazine, 2,2-methylenebis- (4-methyl-6-ter
t-butylphenol), 2,2-methylenebis- (4
-Ethyl-6-tert-butylphenol), 2,6
Radical inhibitors such as -di-tert-butyl-4-methylphenol, hydroquinone, 4-methoxyphenol, N, N-diethylhydroxylamine are used.

【0016】本発明において、重合の温度は特に限定す
るものではないが0〜60℃の温度が好ましく、さらに
5〜50℃の温度が好ましい。重合時の発熱が大きく温
度の制御が困難な場合は、乳化剤水溶液に単量体混合物
を少量ずつ分割または連続で添加しながら重合すること
もできる。重合停止後、ラテックス中の未反応単量体を
減圧スチームストリッピング等の方法により除去した
後、中和、凍結凝固又は塩析等によりポリマーを単離
し、水洗、乾燥を経て重合体を得る。
In the present invention, the temperature of polymerization is not particularly limited, but is preferably from 0 to 60 ° C, more preferably from 5 to 50 ° C. When the heat generation during the polymerization is so large that it is difficult to control the temperature, the polymerization can be carried out while the monomer mixture is added little by little or continuously to the aqueous emulsifier solution. After terminating the polymerization, the unreacted monomers in the latex are removed by a method such as steam stripping under reduced pressure, and then the polymer is isolated by neutralization, freeze coagulation or salting out, etc., washed with water and dried to obtain a polymer.

【0017】本発明のクロロプレンゴムの分岐構造生成
を抑制した乳化重合方法のーつである重合転化率を低く
し、かつ重合速度を遅くする方法について詳細に代表例
を示す。重合温度30℃〜50℃の条件下、クロロプレ
ン重合体の単量体成分および所定のムーニー粘度が得ら
れるような量の分子量調節剤n−ドデシルメルカプタン
の混合物を乳化剤ロジン酸カリウム塩水溶液3〜5重量
%(クロロプレン重合体の単量体に対する重量%)と混
合して乳化する。この乳化液に過硫酸カリウム水溶液を
重合開始より連続的に添加し、1時間あたりの重合転化
率の増加が9.0%以下になるように重合を行い、57
%以下の重合転化率でN,N−ジエチルヒドロキシルア
ミンを停止剤として0.02重量%(クロロプレン重合
体の単量体に対する重量%)添加し重合を停止させる。
重合停止後、ラテックス中の未反応単量体を減圧スチー
ムストリッピング法により除去した後、希酢酸により中
和、凍結凝固によりポリマーを単離し、水洗、熱風乾燥
を経て重合体を得る。なお本発明のクロロプレンゴムの
重合方法は、請求項第1項記載のクロロプレンゴムを得
られる方法であれば特に限定されない。
Representative examples of the emulsion polymerization method of the present invention in which the formation of a branched structure of the chloroprene rubber is suppressed, which is a method of lowering the polymerization conversion rate and lowering the polymerization rate, will be described in detail. At a polymerization temperature of 30 ° C. to 50 ° C., a mixture of a monomer component of the chloroprene polymer and n-dodecyl mercaptan, a molecular weight regulator in such an amount as to obtain a predetermined Mooney viscosity, is used. And then emulsified by mixing with the chloroprene polymer by weight. An aqueous solution of potassium persulfate was continuously added to this emulsion from the start of polymerization, and polymerization was carried out so that the rate of polymerization conversion per hour became 9.0% or less.
The polymerization is terminated by adding 0.02% by weight (% by weight based on the monomer of the chloroprene polymer) of N, N-diethylhydroxylamine as a terminator at a polymerization conversion rate of not more than%.
After terminating the polymerization, unreacted monomers in the latex are removed by a steam stripping method under reduced pressure, neutralized with dilute acetic acid, and the polymer is isolated by freeze-coagulation, washed with water and dried with hot air to obtain a polymer. The method of polymerizing the chloroprene rubber of the present invention is not particularly limited as long as the chloroprene rubber described in claim 1 can be obtained.

【0018】本発明のクロロプレンゴム組成物中のゴム
用配合薬品としては、充填剤として、カーボンブラッ
ク、クレー、タルク、けい藻土、炭酸カルシウム、炭酸
マグネシウム、けい酸及びけい酸化合物、ホワイトカー
ボン等が挙げられ、このうち、カーボンブラックが好ま
しい。カーボンブラックの種類としては特に限定するも
のではなく、例えばSRF、FEF、MAF、HAF、
FT、MT等が使用可能である。その添加量としては、
破断伸びあるいは引張応力等の力学物性を維持するため
に、15〜70重量部が好ましく、特に好ましくは、カ
ーボンブラックが30〜65重量部である。
The compounding agent for rubber in the chloroprene rubber composition of the present invention includes, as fillers, carbon black, clay, talc, diatomaceous earth, calcium carbonate, magnesium carbonate, silicic acid and silicate compounds, white carbon and the like. Of these, carbon black is preferred. The type of carbon black is not particularly limited. For example, SRF, FEF, MAF, HAF,
FT, MT, etc. can be used. As the addition amount,
In order to maintain mechanical properties such as elongation at break or tensile stress, the amount is preferably 15 to 70 parts by weight, and particularly preferably 30 to 65 parts by weight of carbon black.

【0019】本発明において使用される可塑剤及び/又
はゴム軟化剤は、その種類としては特に限定するもので
はなく、例えば植物油としての菜種油、あまに油、大豆
油、エステル系可塑剤としてのジ−(2−エチルヘキシ
ル)アジペート、ジ−(2−エチルヘキシル)セバケー
ト、ジ−(2−エチルヘキシル)フタレート、ジ−(2
−エチルヘキシル)アゼレート、鉱物油系軟化剤として
のプロセス油等が使用可能である。その添加量として
は、引張応力や破断伸びを維持するために、5〜40重
量部が好ましく、特に好ましくは、可塑剤及び/又はゴ
ム軟化剤が10〜30重量部である。
The type of the plasticizer and / or the rubber softener used in the present invention is not particularly limited. For example, rapeseed oil as vegetable oil, linseed oil, soybean oil, and diester as ester plasticizer. -(2-ethylhexyl) adipate, di- (2-ethylhexyl) sebacate, di- (2-ethylhexyl) phthalate, di- (2
-Ethylhexyl) azelate, a process oil as a mineral oil-based softener, and the like can be used. The addition amount is preferably 5 to 40 parts by weight, particularly preferably 10 to 30 parts by weight of a plasticizer and / or a rubber softener in order to maintain tensile stress and elongation at break.

【0020】また、その他の添加剤、例えば、老化防止
剤、加工助剤、滑剤、難燃剤、加硫剤、加硫促進剤、加
硫遅延剤等は必要に応じて用いることができる。
Further, other additives such as an antioxidant, a processing aid, a lubricant, a flame retardant, a vulcanizing agent, a vulcanization accelerator, and a vulcanization retarder can be used as required.

【0021】本発明のクロロプレンゴム組成物は、通常
知られているクロロプレンゴムと同様の方法でロール又
はバンバリー等の混練機によって混合し、目的に応じた
形状に成型加工し成型加硫物を得ることができる。
The chloroprene rubber composition of the present invention is mixed with a kneading machine such as a roll or a Banbury in the same manner as a commonly known chloroprene rubber, and molded into a desired shape to obtain a molded vulcanizate. be able to.

【0022】得られたクロロプレンゴム成型加硫物は優
れた力学物性及び優れた耐動的疲労性を有しているので
各種ベルト、空気バネやブーツといった動的用途をはじ
めとする各用途に幅広く使用可能である。ここでいうブ
ーツには、自動車用のCVJブーツ、ステアリングブー
ツ、ダストブーツ等を含む。
Since the obtained chloroprene rubber molded vulcanizate has excellent mechanical properties and excellent dynamic fatigue resistance, it can be widely used for various applications including dynamic applications such as various belts, air springs and boots. It is possible. The boots here include CVJ boots for automobiles, steering boots, dust boots, and the like.

【0023】[0023]

【実施例】以下に本発明を実施例によってさらに具体的
に示すが、本発明はこれら実施例のみにより限定される
ことはない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.

【0024】クロロプレン原料ゴムのムーニー粘度はJ
IS K6388のB法(1996年版)に従い、角形
溝のダイを使用して評価した。加硫ゴムの力学物性は、
JIS K6251(1996年版)に従い、ダンベル
状3号形の試験片を用い、引張速度500mm/min
にて評価した。クロロプレンゴム組成物のムーニースコ
ーチタイムはJIS K6300(1996年版)に従
い、角形溝のダイを使用して評価した。耐動的疲労性の
評価は、クロロプレンゴム加硫物の100%伸張の定伸
長疲労試験においてデマッチア式屈曲疲労試験機を用
い、延伸率が秤線間隔に対して100%になるように調
整し、23℃、300rpmの条件でダンベル状3号形
の試験片を繰り返し延伸し、試験片が破断するに至る回
数を測定することにより行った。この測定は各々n=2
0とし、破断回数がワイブル分布に従うとして平均寿命
(MTBF)及び直線の傾きmを求めた。m値は破断回
数のバラツキ程度を表現するパラメーターであり、mが
1より小さいときは初期故障を、mが1より大きいとき
は摩耗故障を、そしてmが1のときは偶発故障を表すこ
とになる。クロロプレン原料ゴムの弾性応力は、モンサ
ント社製ムービングダイレオメータ(MDR−200
0)を用いて、設定条件をダイねじり振動数1.66H
z、振幅角度±1度、測定温度60℃、予熱なしの測定
条件で測定開始5分後のトルク値(dNm)を測定値と
した。
The Mooney viscosity of chloroprene raw rubber is J
Evaluation was performed using a square groove die according to the IS K6388 B method (1996 version). The mechanical properties of vulcanized rubber
According to JIS K6251 (1996 version), a dumbbell-shaped No. 3 test piece was used, and the tensile speed was 500 mm / min.
Was evaluated. The Mooney scorch time of the chloroprene rubber composition was evaluated using a square groove die in accordance with JIS K6300 (1996). Evaluation of dynamic fatigue resistance is performed by using a dematcher-type bending fatigue tester in a constant elongation fatigue test of 100% elongation of the chloroprene rubber vulcanizate, and adjusting the elongation ratio to 100% with respect to the wire spacing. The test was performed by repeatedly stretching a dumbbell-shaped No. 3 test piece under the conditions of 23 ° C. and 300 rpm, and measuring the number of times the test piece was broken. The measurements were each n = 2
The average life (MTBF) and the slope m of the straight line were determined on the assumption that the number of breaks followed the Weibull distribution. The m value is a parameter that expresses the degree of variation in the number of breaks. When m is less than 1, an initial failure, when m is greater than 1, a wear failure, and when m is 1, a random failure is represented. Become. The elastic stress of the chloroprene raw rubber is determined by a moving die rheometer (MDR-200 manufactured by Monsanto Co.).
0), the set condition was changed to die torsional frequency 1.66H.
The torque value (dNm) 5 minutes after the start of the measurement under the measurement conditions of z, an amplitude angle of ± 1 degree, a measurement temperature of 60 ° C., and no preheating was used as a measurement value.

【0025】なお、以下の記述で重量部とは原料ゴム1
00重量部に対する重量比を表す。 実施例1〜実施例3 表1の重合処方Aに従い10 lの撹拌機つきオートク
レーブに仕込み十分に窒素置換し乳化させた。その後5
0℃に保持し、重合開始約5時間後、重合転化率が約4
0%になるように過硫酸カリウム水溶液を連続的に適当
量に制御しながら滴下し重合を行なった。重合転化率が
約40%になった時点で停止剤を添加し重合を停止させ
た。
In the following description, parts by weight means raw rubber 1
Represents the weight ratio to 00 parts by weight. Examples 1 to 3 According to the polymerization formula A in Table 1, 10 l of an autoclave equipped with a stirrer was charged and sufficiently replaced with nitrogen to emulsify. Then 5
The temperature was kept at 0 ° C., and after about 5 hours from the start of polymerization, the polymerization conversion was about 4 hours.
An aqueous solution of potassium persulfate was continuously added dropwise while controlling the amount so as to be 0%, and polymerization was carried out. When the polymerization conversion reached about 40%, a terminator was added to terminate the polymerization.

【0026】[0026]

【表1】 [Table 1]

【0027】次に残存する未反応のモノマーを減圧スチ
ームストリッピング法により除去しラテックスを得た。
その後、凍結凝固、水洗、熱風乾燥し、目的としたクロ
ロプレンゴムを得た。その原料ゴムのムーニー粘度およ
び原料ゴムの弾性応力を表3に示した。
Next, the remaining unreacted monomers were removed by a reduced pressure steam stripping method to obtain a latex.
Then, it freeze-coagulated, washed with water, and dried with hot air to obtain the desired chloroprene rubber. Table 3 shows the Mooney viscosity of the raw rubber and the elastic stress of the raw rubber.

【0028】次に、神戸製鋼製OOC型3.6 lバン
バリーで、アップサイドダウン方式で混練を行った。バ
ンバリーは回転数55〜65rpm、ケーシングとロー
ターのクリアランス2.50mm、ラム圧力3.0kg
/cm2に条件を設定し、混練前のケーシング温度を2
5℃、充填率を60%とした。表2に示す配合Aのうち
酸化亜鉛、エチレンチオウレア、テトラメチルチウラム
ジスルフィドを除く配合薬品をバンバリーへ投入した。
60秒間撹拌後クロロプレン原料ゴムを投入し、150
秒間混練を行い、120℃以下の温度でダンプして、ク
ロロプレンゴム未加硫物を取り出した。次に、西村工機
製12インチロールで促進剤を投入した。まず、前ロー
ル回転数15rpm、後ロール16.5rpm、ニップ
厚4mm、ガイド幅500mm、ロール温度40〜50
℃にロール条件を設定し、バンバリー混練後のクロロプ
レンゴム未加硫物をロールに巻き付け、酸化亜鉛、エチ
レンチオウレア、テトラメチルチウラムジスルフィドを
添加した。添加終了後、切返し3回、ニップ厚1mmで
丸目通し3回、ニップ厚2mmでシートを分出しし、ク
ロロプレンゴム組成物を得た。
Next, kneading was carried out in an upside-down system with a 3.6 L Banbury, OOC type manufactured by Kobe Steel. Banbury is 55-65 rpm, clearance between casing and rotor is 2.50 mm, ram pressure is 3.0 kg
/ Cm 2 and set the casing temperature before kneading to 2
The filling rate was 5 ° C. and the filling rate was 60%. In Formula A shown in Table 2, the compounding chemicals except zinc oxide, ethylene thiourea, and tetramethylthiuram disulfide were introduced into Banbury.
After stirring for 60 seconds, the chloroprene raw rubber was charged, and
The mixture was kneaded for 2 seconds, dumped at a temperature of 120 ° C. or lower, and an unvulcanized chloroprene rubber was taken out. Next, the accelerator was charged with a 12-inch roll manufactured by Nishimura Koki. First, the front roll rotation speed is 15 rpm, the rear roll is 16.5 rpm, the nip thickness is 4 mm, the guide width is 500 mm, and the roll temperature is 40 to 50.
The roll conditions were set to ° C., the unvulcanized chloroprene rubber after kneading the Banbury was wound around a roll, and zinc oxide, ethylenethiourea, and tetramethylthiuram disulfide were added. After the addition was completed, the sheet was cut out three times, cut through a round three times with a nip thickness of 1 mm and three times with a nip thickness of 2 mm to obtain a chloroprene rubber composition.

【0029】[0029]

【表2】 [Table 2]

【0030】得られたクロロプレンゴム組成物のスコー
チタイムを表3に示した。さらにその組成物を160℃
で20分プレス加硫を行なうことにより加硫ゴムを作成
し、力学物性並びに定伸長疲労性(平均寿命MTBF値
及びm値)を測定し、これらの結果を表3に示した。そ
の結果、良好な力学物性及び優れた耐動的疲労性を有す
るクロロプレンゴム組成物が得られた。
Table 3 shows the scorch time of the obtained chloroprene rubber composition. Further, the composition is heated to 160 ° C.
A vulcanized rubber was prepared by performing press vulcanization for 20 minutes, and the mechanical properties and the constant elongation fatigue properties (average life MTBF value and m value) were measured. The results are shown in Table 3. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0031】[0031]

【表3】 [Table 3]

【0032】実施例4〜実施例6 表1の重合処方Bに従い10 lの撹拌機つきオートク
レーブに仕込み十分に窒素置換し乳化させた。その後4
0℃に保持し、重合開始約10時間後、重合転化率が約
60%になるように過硫酸カリウム水溶液を連続的に適
当量に制御しながら滴下し重合を行なった。重合転化率
が約55%になった時点で停止剤を添加し重合を停止さ
せた。この重合結果を表3に示した。以下実施例1と同
様の方法で、原料ゴムのムーニー粘度および原料ゴムの
弾性応力、スコーチタイム、力学物性及び定伸長疲労性
(平均寿命MTBF値及びm値)を測定し、これらの結
果を表3に示した。その結果、良好な力学物性及び優れ
た耐動的疲労性を有するクロロプレンゴム組成物が得ら
れた。
Examples 4 to 6 According to the polymerization recipe B in Table 1, 10 liters of an autoclave equipped with a stirrer were charged and sufficiently purged with nitrogen and emulsified. Then 4
The temperature was kept at 0 ° C., and about 10 hours after the start of the polymerization, the aqueous solution of potassium persulfate was continuously added dropwise and controlled so as to have a polymerization conversion of about 60%. When the polymerization conversion reached about 55%, a terminator was added to terminate the polymerization. Table 3 shows the polymerization results. Thereafter, the Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) of the raw rubber were measured in the same manner as in Example 1, and the results were tabulated. 3 is shown. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0033】実施例7、実施例8 表1の重合処方Cに従い10 lの撹拌機つきオートク
レーブに仕込み十分に窒素置換し乳化させた。その後3
0℃に保持し、重合開始約8時間後、重合転化率が約5
0%になるように過硫酸カリウム水溶液を連続的に適当
量に制御しながら滴下し重合を行なった。重合転化率が
約50%になった時点で停止剤を添加し重合を停止させ
た。この重合結果を表3に示した。以下実施例1と同様
の方法で、原料ゴムのムーニー粘度および原料ゴムの弾
性応力、スコーチタイム、力学物性及び定伸長疲労性
(平均寿命MTBF値及びm値)を測定し、これらの結
果を表3に示した。その結果、良好な力学物性及び優れ
た耐動的疲労性を有するクロロプレンゴム組成物が得ら
れた。
Examples 7 and 8 According to the polymerization formula C shown in Table 1, 10 liters of an autoclave equipped with a stirrer were charged and sufficiently replaced with nitrogen to emulsify. Then 3
At 0 ° C., about 8 hours after the start of the polymerization, the polymerization conversion was about 5 hours.
An aqueous solution of potassium persulfate was continuously added dropwise while controlling the amount so as to be 0%, and polymerization was carried out. When the polymerization conversion reached about 50%, a terminator was added to terminate the polymerization. Table 3 shows the polymerization results. Thereafter, the Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) of the raw rubber were measured in the same manner as in Example 1, and the results were tabulated. 3 is shown. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0034】実施例9 実施例7と同様の方法でクロロプレンゴムを得た後、同
様の方法で、原料ゴムのムーニー粘度および原料ゴムの
弾性応力、スコーチタイム、力学物性及び定伸長疲労性
(平均寿命MTBF値及びm値)を測定し、これらの結
果を表4に示した。その結果、良好な力学物性及び優れ
た耐動的疲労性を有するクロロプレンゴム組成物が得ら
れた。
Example 9 After chloroprene rubber was obtained in the same manner as in Example 7, Mooney viscosity of the raw rubber, elastic stress of the raw rubber, scorch time, mechanical properties and constant elongation fatigue (average) were obtained in the same manner. Life MTBF value and m value) were measured, and the results are shown in Table 4. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0035】[0035]

【表4】 [Table 4]

【0036】実施例10 実施例2で得られたクロロプレンゴムを用い、表2に示
す配合Bに従いカーボンブラック量を10重量部に変更
した以外は、実施例2と同様の方法で、原料ゴムのムー
ニー粘度および原料ゴムの弾性応力、スコーチタイム、
力学物性及び定伸長疲労性(平均寿命MTBF値及びm
値)を測定し、これらの結果を表4に示した。その結
果、良好な力学物性及び優れた耐動的疲労性を有するク
ロロプレンゴム組成物が得られた。
Example 10 The same procedure as in Example 2 was repeated except that the chloroprene rubber obtained in Example 2 was used and the amount of carbon black was changed to 10 parts by weight in accordance with Formulation B shown in Table 2. Mooney viscosity and elastic stress of raw rubber, scorch time,
Mechanical properties and constant elongation fatigue (average life MTBF value and m
) Were measured and the results are shown in Table 4. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0037】実施例11 実施例2で得られたクロロプレンゴムを用い、表2に示
す配合Cに従いカーボンブラック量を40重量部に変更
した以外は、実施例2と同様の方法で、原料ゴムのムー
ニー粘度および原料ゴムの弾性応力、スコーチタイム、
力学物性及び定伸長疲労性(平均寿命MTBF値及びm
値)を測定し、これらの結果を表4に示した。その結
果、良好な力学物性及び優れた耐動的疲労性を有するク
ロロプレンゴム組成物が得られた。
Example 11 The same procedure as in Example 2 was repeated except that the chloroprene rubber obtained in Example 2 was used and the amount of carbon black was changed to 40 parts by weight in accordance with the composition C shown in Table 2. Mooney viscosity and elastic stress of raw rubber, scorch time,
Mechanical properties and constant elongation fatigue (average life MTBF value and m
) Were measured and the results are shown in Table 4. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0038】実施例12 実施例2で得られたクロロプレンゴムを用い、表2に示
す配合Dに従いカーボンブラック量を90重量部に変更
した以外は、実施例2と同様の方法で、原料ゴムのムー
ニー粘度および原料ゴムの弾性応力、スコーチタイム、
力学物性及び定伸長疲労性(平均寿命MTBF値及びm
値)を測定し、これらの結果を表4に示した。その結
果、良好な力学物性及び優れた耐動的疲労性を有するク
ロロプレンゴム組成物が得られた。
Example 12 The same procedure as in Example 2 was repeated except that the chloroprene rubber obtained in Example 2 was used and the amount of carbon black was changed to 90 parts by weight in accordance with Formulation D shown in Table 2. Mooney viscosity and elastic stress of raw rubber, scorch time,
Mechanical properties and constant elongation fatigue (average life MTBF value and m
) Were measured and the results are shown in Table 4. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0039】実施例13 実施例2で得られたクロロプレンゴムを用い、表2に示
す配合Eに従いジ−(2−エチルヘキシル)セバケート
量を3重量部に変更した以外は、実施例2と同様の方法
で、原料ゴムのムーニー粘度および原料ゴムの弾性応
力、スコーチタイム、力学物性及び定伸長疲労性(平均
寿命MTBF値及びm値)を測定し、これらの結果を表
4に示した。その結果、良好な力学物性及び優れた耐動
的疲労性を有するクロロプレンゴム組成物が得られた。
Example 13 The same procedure as in Example 2 was carried out except that the amount of di- (2-ethylhexyl) sebacate was changed to 3 parts by weight in accordance with Formulation E shown in Table 2 using the chloroprene rubber obtained in Example 2. The Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue property (average life MTBF value and m value) of the raw rubber were measured by the method. The results are shown in Table 4. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0040】実施例14 実施例2で得られたクロロプレンゴムを用い、表2に示
す配合Fに従いジ−(2−エチルヘキシル)セバケート
量を15重量部に変更した以外は、実施例2と同様の方
法で、原料ゴムのムーニー粘度および原料ゴムの弾性応
力、スコーチタイム、力学物性及び定伸長疲労性(平均
寿命MTBF値及びm値)を測定し、これらの結果を表
4に示した。その結果、良好な力学物性及び優れた耐動
的疲労性を有するクロロプレンゴム組成物が得られた。
Example 14 The same procedure as in Example 2 was carried out except that the amount of di- (2-ethylhexyl) sebacate was changed to 15 parts by weight in accordance with the composition F shown in Table 2 using the chloroprene rubber obtained in Example 2. The Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue property (average life MTBF value and m value) of the raw rubber were measured by the method. The results are shown in Table 4. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0041】実施例15 実施例2で得られたクロロプレンゴムを用い、表2に示
す配合Gに従いジ−(2−エチルヘキシル)セバケート
量を50重量部に変更した以外は、実施例2と同様の方
法で原料ゴムのムーニー粘度および原料ゴムの弾性応
力、スコーチタイム、力学物性及び定伸長疲労性(平均
寿命MTBF値及びm値)を測定し、これらの結果を表
4に示した。その結果、良好な力学物性及び優れた耐動
的疲労性を有するクロロプレンゴム組成物が得られた。
Example 15 The same procedure as in Example 2 was carried out except that the amount of di- (2-ethylhexyl) sebacate was changed to 50 parts by weight according to the formulation G shown in Table 2 using the chloroprene rubber obtained in Example 2. The Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue properties (average life MTBF value and m value) of the raw rubber were measured by the method. The results are shown in Table 4. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0042】実施例16 実施例2で得られたクロロプレンゴムを用い、表2に示
す配合Hに従いカーボンブラック量を10重量部、ジ−
(2−エチルヘキシル)セバケート量を3重量部に変更
した以外は、実施例2と同様の方法で原料ゴムのムーニ
ー粘度および原料ゴムの弾性応力、スコーチタイム、力
学物性及び定伸長疲労性(平均寿命MTBF値及びm
値)を測定し、これらの結果を表4に示した。その結
果、良好な力学物性及び優れた耐動的疲労性を有するク
ロロプレンゴム組成物が得られた。
Example 16 Using the chloroprene rubber obtained in Example 2, the amount of carbon black was adjusted to 10 parts by weight, and
Except that the amount of (2-ethylhexyl) sebacate was changed to 3 parts by weight, Mooney viscosity of raw rubber and elastic stress of raw rubber, scorch time, mechanical properties and constant elongation fatigue property (average life) in the same manner as in Example 2. MTBF value and m
) Were measured and the results are shown in Table 4. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0043】実施例17 実施例2で得られたクロロプレンゴムを用い、表2に示
す配合Iに従いカーボンブラック量を90重量部、ジ−
(2−エチルヘキシル)セバケート量を50重量部に変
更した以外は、実施例2と同様方法で原料ゴムのムーニ
ー粘度および原料ゴムの弾性応力、スコーチタイム、力
学物性及び定伸長疲労性(平均寿命MTBF値及びm
値)を測定し、これらの結果を表5に示した。その結
果、良好な力学物性及び優れた耐動的疲労性を有するク
ロロプレンゴム組成物が得られた。
Example 17 Using the chloroprene rubber obtained in Example 2, according to Formulation I shown in Table 2, the amount of carbon black was 90 parts by weight, and
Except that the amount of (2-ethylhexyl) sebacate was changed to 50 parts by weight, the Mooney viscosity of the raw rubber, the elastic stress of the raw rubber, scorch time, mechanical properties and constant elongation fatigue (average life MTBF) were the same as in Example 2. Value and m
Values) were measured and the results are shown in Table 5. As a result, a chloroprene rubber composition having good mechanical properties and excellent dynamic fatigue resistance was obtained.

【0044】[0044]

【表5】 [Table 5]

【0045】比較例1 実施例1と同様にしてクロロプレンゴムを得た。ただし
ムーニー粘度を変更した。次に実施例1と同様の方法
で、原料ゴムのムーニー粘度および原料ゴムの弾性応
力、スコーチタイム、力学物性及び定伸長疲労性(平均
寿命MTBF値及びm値)を測定し、これらの結果を表
5に示した。その結果、原料ゴムの弾性応力Yは、0.
023X+5.28以上であるものの引張物性と耐動的
疲労性が劣っていた。
Comparative Example 1 A chloroprene rubber was obtained in the same manner as in Example 1. However, the Mooney viscosity was changed. Next, in the same manner as in Example 1, the Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) of the raw rubber were measured. The results are shown in Table 5. As a result, the elastic stress Y of the raw rubber becomes 0.
Although it was 023X + 5.28 or more, the tensile properties and dynamic fatigue resistance were inferior.

【0046】比較例2 実施例1と同様にしてクロロプレンゴムを得た。ただし
ムーニー粘度を変更した。次に実施例1と同様の方法
で、原料ゴムのムーニー粘度および原料ゴムの弾性応
力、スコーチタイム、力学物性及び定伸長疲労性(平均
寿命MTBF値及びm値)を測定し、これらの結果を表
5に示した。その結果、原料ゴムの弾性応力Yは、0.
023X+5.28以上であるものの耐動的疲労性が劣
っていた。
Comparative Example 2 A chloroprene rubber was obtained in the same manner as in Example 1. However, the Mooney viscosity was changed. Next, in the same manner as in Example 1, the Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) of the raw rubber were measured. The results are shown in Table 5. As a result, the elastic stress Y of the raw rubber becomes 0.
Although it was 023X + 5.28 or more, the dynamic fatigue resistance was inferior.

【0047】比較例3〜比較例5 表1の重合処方Aに従い10 lの攪拌機つきオートク
レーブに仕込み十分に窒素置換し乳化させた。その後5
0℃に保持し、重合開始約5時間後、重合転化率が約7
0%になるように過硫酸カリウム水溶液を連続的に適当
量に制御しながら滴下し重合を行なった。重合転化率が
約70%になった時点で停止剤を添加し重合を停止させ
た。この重合結果を表5に示した。以下実施例1と同様
の方法で、原料ゴムのムーニー粘度および原料ゴムの弾
性応力、スコーチタイム、力学物性及び定伸長疲労性
(平均寿命MTBF値及びm値)を測定し、これらの結
果を表5に示した。その結果、原料ゴムの弾性応力Y
は、0.023X+5.28未満で引張物性と耐動的疲
労性が劣っていた。
Comparative Examples 3 to 5 In accordance with the polymerization recipe A in Table 1, 10 liters of an autoclave equipped with a stirrer were charged and sufficiently replaced with nitrogen to emulsify. Then 5
At 0 ° C., about 5 hours after the start of the polymerization, the polymerization conversion was about 7 hours.
An aqueous solution of potassium persulfate was continuously added dropwise while controlling the amount so as to be 0%, and polymerization was carried out. When the polymerization conversion reached about 70%, a terminator was added to terminate the polymerization. The results of the polymerization are shown in Table 5. Thereafter, the Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) of the raw rubber were measured in the same manner as in Example 1, and the results were tabulated. 5 is shown. As a result, the elastic stress Y of the raw rubber
Was less than 0.023X + 5.28, resulting in inferior tensile properties and dynamic fatigue resistance.

【0048】比較例6 実施例4と同様にしてクロロプレンゴムを得た。ただし
ムーニー粘度を変更した。次に実施例4と同様の方法
で、原料ゴムのムーニー粘度および原料ゴムの弾性応
力、スコーチタイム、力学物性及び定伸長疲労性(平均
寿命MTBF値及びm値)を測定し、これらの結果を表
5に示した。その結果、原料ゴムの弾性応力Yは、0.
023X+5.28以上であるものの引張物性と耐動的
疲労性が劣っていた。
Comparative Example 6 A chloroprene rubber was obtained in the same manner as in Example 4. However, the Mooney viscosity was changed. Next, in the same manner as in Example 4, the Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) of the raw rubber were measured. The results are shown in Table 5. As a result, the elastic stress Y of the raw rubber becomes 0.
Although it was 023X + 5.28 or more, the tensile properties and dynamic fatigue resistance were inferior.

【0049】比較例7 実施例4と同様にしてクロロプレンゴムを得た。ただし
ムーニー粘度を変更した。次に実施例4と同様の方法
で、原料ゴムのムーニー粘度および原料ゴムの弾性応
力、スコーチタイム、力学物性及び定伸長疲労性(平均
寿命MTBF値及びm値)を測定し、これらの結果を表
5に示した。その結果、原料ゴムの弾性応力Yは、0.
023X+5.28以上であるものの耐動的疲労性が劣
っていた。
Comparative Example 7 A chloroprene rubber was obtained in the same manner as in Example 4. However, the Mooney viscosity was changed. Next, in the same manner as in Example 4, the Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) of the raw rubber were measured. The results are shown in Table 5. As a result, the elastic stress Y of the raw rubber becomes 0.
Although it was 023X + 5.28 or more, the dynamic fatigue resistance was inferior.

【0050】比較例8 実施例7と同様にしてクロロプレンゴムを得た。ただし
ムーニー粘度を変更した。次に実施例7と同様の方法
で、原料ゴムのムーニー粘度および原料ゴムの弾性応
力、スコーチタイム、力学物性及び定伸長疲労性(平均
寿命MTBF値及びm値)を測定し、これらの結果を表
6に示した。その結果、原料ゴムの弾性応力Yは、0.
023X+5.28以上であるものの引張物性と耐動的
疲労性が劣っていた。
Comparative Example 8 A chloroprene rubber was obtained in the same manner as in Example 7. However, the Mooney viscosity was changed. Next, in the same manner as in Example 7, the Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) of the raw rubber were measured. The results are shown in Table 6. As a result, the elastic stress Y of the raw rubber becomes 0.
Although it was 023X + 5.28 or more, the tensile properties and dynamic fatigue resistance were inferior.

【0051】[0051]

【表6】 [Table 6]

【0052】比較例9 実施例7と同様にしてクロロプレンゴムを得た。ただし
ムーニー粘度を変更した。次に実施例7と同様の方法
で、原料ゴムのムーニー粘度および原料ゴムの弾性応
力、スコーチタイム、力学物性及び定伸長疲労性(平均
寿命MTBF値及びm値)を測定し、これらの結果を表
6に示した。その結果、原料ゴムの弾性応力Yは、0.
023X+5.28以上であるものの耐動的疲労性が劣
っていた。
Comparative Example 9 A chloroprene rubber was obtained in the same manner as in Example 7. However, the Mooney viscosity was changed. Next, in the same manner as in Example 7, the Mooney viscosity of the raw rubber and the elastic stress, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) of the raw rubber were measured. The results are shown in Table 6. As a result, the elastic stress Y of the raw rubber becomes 0.
Although it was 023X + 5.28 or more, the dynamic fatigue resistance was inferior.

【0053】比較例10 比較例4で得られたクロロプレンゴムを用い、バンバリ
ーでの混練時間を10分とした以外は比較例4と同様の
方法でスコーチタイム、力学物性及び定伸長疲労性(平
均寿命MTBF値及びm値)を測定し、これらの結果を
表6に示した。その結果、原料ゴムの弾性応力Yは、
0.023X+5.28未満となり、スコーチタイム、
引張強度及び耐動的疲労性が劣っていた。
Comparative Example 10 The scorch time, mechanical properties and constant elongation fatigue (average) were determined in the same manner as in Comparative Example 4 except that the kneading time in the Banbury was 10 minutes using the chloroprene rubber obtained in Comparative Example 4. Life MTBF value and m value) were measured, and these results are shown in Table 6. As a result, the elastic stress Y of the raw rubber is
0.023X + less than 5.28, scorch time,
Tensile strength and dynamic fatigue resistance were inferior.

【0054】比較例11 比較例4で得られたクロロプレンゴムを用い、表2に示
す配合Jに従い、バンバリーでの混練時間を10分とし
た以外は比較例4と同様の方法でスコーチタイム、力学
物性及び定伸長疲労性(平均寿命MTBF値及びm値)
を測定し、これらの結果を表6に示した。その結果、原
料ゴムの弾性応力Yは、0.023X+5.28未満と
なり、引張強度が劣っていた。
Comparative Example 11 Using the chloroprene rubber obtained in Comparative Example 4, according to Formulation J shown in Table 2, the scorch time and mechanical properties were the same as in Comparative Example 4 except that the kneading time in Banbury was 10 minutes. Physical properties and constant elongation fatigue (average life MTBF value and m value)
Was measured, and these results are shown in Table 6. As a result, the elastic stress Y of the raw rubber was less than 0.023X + 5.28, and the tensile strength was poor.

【0055】比較例12 比較例4で得られたクロロプレンゴムを用い、表2に示
す配合Fに従い、比較例4と同様の方法でスコーチタイ
ム、力学物性及び定伸長疲労性(平均寿命MTBF値及
びm値)を測定し、これらの結果を表6に示した。その
結果、原料ゴムの弾性応力Yは、0.023X+5.2
8未満となり、破断伸び及び耐動的疲労性が劣ってい
た。
Comparative Example 12 Using the chloroprene rubber obtained in Comparative Example 4, according to Formulation F shown in Table 2, scorch time, mechanical properties and constant elongation fatigue properties (average life MTBF value and m value) were measured and the results are shown in Table 6. As a result, the elastic stress Y of the raw rubber is 0.023X + 5.2.
It was less than 8, and elongation at break and dynamic fatigue resistance were inferior.

【0056】比較例13 比較例4で得られたクロロプレンゴムを用い、表2に示
す配合Cに従い、比較例4と同様の方法でスコーチタイ
ム、力学物性及び定伸長疲労性(平均寿命MTBF値及
びm値)を測定し、これらの結果を表6に示した。その
結果、原料ゴムの弾性応力Yは、0.023X+5.2
8未満となり、引張応力及び耐動的疲労性が劣ってい
た。
Comparative Example 13 Using the chloroprene rubber obtained in Comparative Example 4, according to Formulation C shown in Table 2, in the same manner as in Comparative Example 4, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) were measured and the results are shown in Table 6. As a result, the elastic stress Y of the raw rubber is 0.023X + 5.2.
It was less than 8, resulting in inferior tensile stress and dynamic fatigue resistance.

【0057】比較例14 比較例4で得られたクロロプレンゴムを用い、表2に示
す配合Hに従い、比較例4と同様の方法でスコーチタイ
ム、力学物性及び定伸長疲労性(平均寿命MTBF値及
びm値)を測定し、これらの結果を表6に示した。その
結果、原料ゴムの弾性応力Yは、0.023X+5.2
8未満となり、引張応力及び耐動的疲労性が劣ってい
た。
Comparative Example 14 Using the chloroprene rubber obtained in Comparative Example 4, according to the formulation H shown in Table 2, in the same manner as in Comparative Example 4, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) were measured and the results are shown in Table 6. As a result, the elastic stress Y of the raw rubber is 0.023X + 5.2.
It was less than 8, resulting in inferior tensile stress and dynamic fatigue resistance.

【0058】比較例15 比較例4で得られたクロロプレンゴムを用い、表2に示
す配合Iに従い、比較例4と同様の方法でスコーチタイ
ム、力学物性及び定伸長疲労性(平均寿命MTBF値及
びm値)を測定し、これらの結果を表6に示した。その
結果、原料ゴムの弾性応力Yは、0.023X+5.2
8未満となり、引張応力及び耐動的疲労性が劣ってい
た。
Comparative Example 15 Using the chloroprene rubber obtained in Comparative Example 4, according to Formulation I shown in Table 2, scorch time, mechanical properties and constant elongation fatigue (average life MTBF value and m value) were measured and the results are shown in Table 6. As a result, the elastic stress Y of the raw rubber is 0.023X + 5.2.
It was less than 8, resulting in inferior tensile stress and dynamic fatigue resistance.

【0059】[0059]

【発明の効果】以上の結果から、本発明により得られる
クロロプレンゴム組成物用クロロプレンゴム及びクロロ
プレンゴム組成物が、スコーチタイム及び加硫物の力学
特性を損なわず、従来クロロプレンゴム組成物より優れ
た耐動的疲労性を有することが明らかであり、自動車用
のCVJブーツ、ステアリングブーツ、ダストブーツ等
に有用である。
From the above results, the chloroprene rubber for the chloroprene rubber composition and the chloroprene rubber composition obtained by the present invention do not impair the mechanical properties of scorch time and vulcanizate, and are superior to the conventional chloroprene rubber composition. It is clear that it has dynamic fatigue resistance, and is useful for CVJ boots, steering boots, dust boots and the like for automobiles.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】クロロプレン原料ゴムの弾性応力Yが下式
(1)で示される範囲にある耐動的疲労性に優れたクロ
ロプレンゴム組成物用クロロプレンゴム。 Y≧0.023X+5.28 (1) (式中、Xはクロロプレン原料ゴムのムーニー粘度、Y
はクロロプレン原料ゴムの弾性応力を示す。ただし、5
5≦X≦85である。)
1. A chloroprene rubber for a chloroprene rubber composition having excellent dynamic fatigue resistance, wherein the elastic stress Y of the chloroprene raw rubber is in the range represented by the following formula (1). Y ≧ 0.023X + 5.28 (1) (where X is Mooney viscosity of chloroprene raw rubber, Y
Indicates the elastic stress of chloroprene raw rubber. However, 5
5 ≦ X ≦ 85. )
【請求項2】請求項1に記載のクロロプレンゴムとゴム
用配合薬品からなることを特徴とする耐動的疲労性に優
れたクロロプレンゴム組成物。
2. A chloroprene rubber composition having excellent dynamic fatigue resistance, comprising the chloroprene rubber according to claim 1 and a compounding agent for rubber.
【請求項3】ゴム用配合薬品がカーボンブラック並びに
可塑剤及び/又はゴム軟化剤であることを特徴とする請
求項2に記載の耐動的疲労性に優れたクロロプレンゴム
組成物。
3. The chloroprene rubber composition having excellent dynamic fatigue resistance according to claim 2, wherein the compounding chemical for rubber is carbon black and a plasticizer and / or a rubber softener.
【請求項4】請求項1に記載のクロロプレンゴム100
重量部に対してカーボンブラック15〜70重量部並び
に可塑剤及び/又はゴム軟化剤5〜40重量部からなる
ことを特徴とする請求項3に記載の耐動的疲労性に優れ
たクロロプレンゴム組成物。
4. The chloroprene rubber 100 according to claim 1,
The chloroprene rubber composition having excellent dynamic fatigue resistance according to claim 3, comprising 15 to 70 parts by weight of carbon black and 5 to 40 parts by weight of a plasticizer and / or a rubber softener with respect to parts by weight. .
【請求項5】請求項2〜請求項4いずれかに記載の耐動
的疲労性に優れたクロロプレンゴム組成物を用いてなる
ことを特徴とするブーツ。
5. A boot using the chloroprene rubber composition excellent in dynamic fatigue resistance according to any one of claims 2 to 4.
JP20129697A 1997-07-28 1997-07-28 Chloroprene rubber for chloroprene rubber composition excellent in dynamic fatigue resistance, chloroprene rubber composition, and automobile boot using the same Expired - Fee Related JP3858365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20129697A JP3858365B2 (en) 1997-07-28 1997-07-28 Chloroprene rubber for chloroprene rubber composition excellent in dynamic fatigue resistance, chloroprene rubber composition, and automobile boot using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20129697A JP3858365B2 (en) 1997-07-28 1997-07-28 Chloroprene rubber for chloroprene rubber composition excellent in dynamic fatigue resistance, chloroprene rubber composition, and automobile boot using the same

Publications (2)

Publication Number Publication Date
JPH1143516A true JPH1143516A (en) 1999-02-16
JP3858365B2 JP3858365B2 (en) 2006-12-13

Family

ID=16438644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20129697A Expired - Fee Related JP3858365B2 (en) 1997-07-28 1997-07-28 Chloroprene rubber for chloroprene rubber composition excellent in dynamic fatigue resistance, chloroprene rubber composition, and automobile boot using the same

Country Status (1)

Country Link
JP (1) JP3858365B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064480A1 (en) * 2002-01-30 2003-08-07 Zeon Corporation Polymers, process for production thereof and process for production of hydrogenated polymers
JP2009029994A (en) * 2007-07-30 2009-02-12 Toyo Tire & Rubber Co Ltd Rubber composition for use in air spring, and air spring
JP2009197121A (en) * 2008-02-21 2009-09-03 Denki Kagaku Kogyo Kk Chloroprene rubber composition and chloroprene rubber molded article formed from the chloroprene rubber composition
JP2012211345A (en) * 2005-01-28 2012-11-01 Showa Denko Kk Chloroprene-based composition for vulcanized rubber and chloroprene-based vulcanized rubber
KR102177162B1 (en) 2020-03-16 2020-11-12 최영옥 Method for manufacturing beverage using Cudrania

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064480A1 (en) * 2002-01-30 2003-08-07 Zeon Corporation Polymers, process for production thereof and process for production of hydrogenated polymers
JP2012211345A (en) * 2005-01-28 2012-11-01 Showa Denko Kk Chloroprene-based composition for vulcanized rubber and chloroprene-based vulcanized rubber
JP2009029994A (en) * 2007-07-30 2009-02-12 Toyo Tire & Rubber Co Ltd Rubber composition for use in air spring, and air spring
JP2009197121A (en) * 2008-02-21 2009-09-03 Denki Kagaku Kogyo Kk Chloroprene rubber composition and chloroprene rubber molded article formed from the chloroprene rubber composition
KR102177162B1 (en) 2020-03-16 2020-11-12 최영옥 Method for manufacturing beverage using Cudrania

Also Published As

Publication number Publication date
JP3858365B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
CN111372986B (en) Sulfur-modified chloroprene rubber composition, vulcanizate, molded article using same, and method for producing sulfur-modified chloroprene rubber composition
JP5078057B2 (en) Polymer for chloroprene vulcanized rubber and method for producing the same
JP5428305B2 (en) Method for producing chloroprene polymer latex for vulcanized rubber production
JP3411127B2 (en) Method for producing sulfur-modified chloroprene polymer
JPH11116622A (en) Production of sulfur-modified chloroprene polymer
JPS6031510A (en) Production of sulfur-modified chloroprene polymer
JPH0420535A (en) Vulcanization of polychloroprene
JP6340905B2 (en) Xanthogen-modified chloroprene rubber and method for producing the same
JP6229446B2 (en) Xanthogen-modified chloroprene rubber and method for producing the same
JP5459882B2 (en) Chloroprene-based vulcanized rubber composition and chloroprene-based vulcanized rubber
JPH1143516A (en) Chloroprene rubber for chloroprene rubber composition having excellent dynamic fatigue resistance, chloroprene rubber composition and boots made thereof
JPH11323020A (en) Chloroprene rubber composition
JP4428209B2 (en) Chloroprene rubber, method for producing the same, and chloroprene rubber composition
JP4273538B2 (en) Chloroprene rubber composition and support using the same
KR101731745B1 (en) Xanthogen-modified chloroprene rubber and production method therefor
JP2009108195A (en) Chloroprene polymer latex composition for manufacturing vulcanized rubber and manufacturing method of the same
JP4665273B2 (en) High elasticity sulfur modified chloroprene rubber
JP4273711B2 (en) Chloroprene rubber composition with excellent processing stability
JPS6140241B2 (en)
JP7422266B1 (en) Rubber composition and tire bladder
JP2008063588A (en) Chloroprene rubber
WO2012157658A1 (en) Sulfur-modified chloroprene rubber, molded article, and method for producing sulfur-modified chloroprene rubber
JP3593769B2 (en) Chloroprene rubber composition and chloroprene rubber composition for extrusion molding
JP2005307111A (en) Conjugated diene-based rubber composition
JP2002338745A (en) High modulus sulfur modified chloroprene rubber mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees