JP5428305B2 - Method for producing chloroprene polymer latex for vulcanized rubber production - Google Patents

Method for producing chloroprene polymer latex for vulcanized rubber production Download PDF

Info

Publication number
JP5428305B2
JP5428305B2 JP2008301106A JP2008301106A JP5428305B2 JP 5428305 B2 JP5428305 B2 JP 5428305B2 JP 2008301106 A JP2008301106 A JP 2008301106A JP 2008301106 A JP2008301106 A JP 2008301106A JP 5428305 B2 JP5428305 B2 JP 5428305B2
Authority
JP
Japan
Prior art keywords
weight
polymer latex
parts
chloroprene polymer
vulcanized rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008301106A
Other languages
Japanese (ja)
Other versions
JP2010126586A (en
Inventor
清児 松本
典正 山本
保 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008301106A priority Critical patent/JP5428305B2/en
Publication of JP2010126586A publication Critical patent/JP2010126586A/en
Application granted granted Critical
Publication of JP5428305B2 publication Critical patent/JP5428305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は加硫ゴム製造用クロロプレン重合体ラテックス及びその製造方法に関するものであり、詳しくは優れた力学特性と耐摩耗性を有する加硫ゴム製品を浸漬成型により得ることのできる加硫ゴム製造用クロロプレン重合体ラテックス及びその製造方法に関するものである。   The present invention relates to a chloroprene polymer latex for producing a vulcanized rubber and a method for producing the same, and more specifically, for producing a vulcanized rubber capable of obtaining a vulcanized rubber product having excellent mechanical properties and wear resistance by immersion molding. The present invention relates to a chloroprene polymer latex and a method for producing the latex.

クロロプレンゴムは各種合成ゴムの中でも、力学物性、耐熱老化性、耐候性、耐オゾン性、耐油性、耐薬品性等のバランスが良好であるため、各種産業用ゴム部品や接着剤等の幅広い用途に使用されている。それらのうち水系接着剤用途、アスファルト改質剤用途、浸漬成型用途にはチップ状の原料ゴムとしてではなく、クロロプレン重合体ラテックスとして多く使用されている。中でも浸漬成型用途においては、家庭用、産業用、手術用等の手袋の主原料のひとつとしてクロロプレン重合体ラテックスが位置付けられている。   Among various synthetic rubbers, chloroprene rubber has a good balance of mechanical properties, heat aging resistance, weather resistance, ozone resistance, oil resistance, chemical resistance, etc., so it can be used in a wide range of applications such as various industrial rubber parts and adhesives. Is used. Among them, they are often used as chloroprene polymer latex, not as a chip-like raw material rubber, in water-based adhesive applications, asphalt modifier applications, and immersion molding applications. In particular, in dip molding applications, chloroprene polymer latex is positioned as one of the main raw materials for gloves for household use, industrial use, and surgical use.

手袋として使用される加硫ゴムには破断伸びや破断強度等の力学特性および耐摩耗性が優れることが要求される。特に産業用手袋の場合、過酷な作業による手袋の裂けや穴開きに耐え得る優れた上記特性が必須であり、合わせて耐薬品性や耐油性も要求されている。   Vulcanized rubber used as gloves is required to have excellent mechanical properties such as elongation at break and strength at break and abrasion resistance. In particular, in the case of industrial gloves, the above-described characteristics that can withstand the tearing and opening of gloves due to harsh work are essential, and in addition, chemical resistance and oil resistance are also required.

一般にクロロプレン重合体ラテックスを使用した浸漬成型にて加硫ゴム製品を製造するには、クロロプレン重合体ラテックスに、充填剤、補強剤、老化防止剤、可塑剤、酸化亜鉛、加硫促進剤、硫黄等を水に分散させた懸濁液、さらに必要により乳化剤、粘度調整剤およびpH調整剤を添加したラテックス組成物を作製し、その中へ凝集剤を含浸させた鋳型を浸漬することでゴム膜を形成させ、そのままオーブン等で加熱し、乾燥および加硫するという手法が採られる。ここで浸漬成型により希望とする膜厚の加硫ゴムを得るためには、ラテックスの固形分含量を少なくとも50%以上とする必要があり、通常のクロロプレン乳化重合方法にてこれを達成するには、重合転化率を高くする必要がある。このようにして得られるクロロプレン重合体ラテックスは、単離したポリマーを1重量%トルエン溶液にした際の不溶分量が90%を超えるまでラテックス粒子内で高度に架橋しており、ポリマーのムーニー粘度(ML(1+4)100℃)が200を超えるゲル構造となっている(例えば非特許文献1参照)。さらにこのようなゲル構造のラテックスから得られるゴム膜は適度な強度を有していることから、未加硫状態でダレ変形が無く、作業性が優れるという利点を有している。   In general, to produce vulcanized rubber products by immersion molding using chloroprene polymer latex, filler, reinforcing agent, anti-aging agent, plasticizer, zinc oxide, vulcanization accelerator, sulfur are added to chloroprene polymer latex. Etc., and a latex composition to which an emulsifier, a viscosity modifier and a pH adjuster are added if necessary, and a rubber film is immersed in a mold impregnated with a flocculant Is formed, heated as it is in an oven or the like, dried and vulcanized. Here, in order to obtain a vulcanized rubber having a desired film thickness by immersion molding, the solids content of the latex needs to be at least 50%, and this can be achieved by a normal chloroprene emulsion polymerization method. It is necessary to increase the polymerization conversion rate. The chloroprene polymer latex thus obtained is highly crosslinked in the latex particles until the insoluble content when the isolated polymer is made into a 1% by weight toluene solution exceeds 90%, and the Mooney viscosity ( ML (1 + 4) 100 ° C.) has a gel structure exceeding 200 (for example, see Non-Patent Document 1). Furthermore, since the rubber film obtained from the latex having such a gel structure has an appropriate strength, there is an advantage that there is no sagging deformation in an unvulcanized state and the workability is excellent.

しかし、高度に架橋したゲル状態のクロロプレン重合体ラテックスを使用し、浸漬成型により加硫ゴムを製造した場合、元来のラテックス粒子中ポリマーの架橋密度とラテックス粒子間の架橋密度の差が大きいため、低架橋度となっている粒子間に変形時の応力が集中し、破断伸びや破断強度等の力学特性が十分でないという欠点を有しており、それを改良するために粒子間の架橋密度をさらに低減し破断伸びなどを向上させた場合は、著しく耐摩耗性を損なうという課題を有している。   However, when using chloroprene polymer latex in a highly crosslinked gel state and producing vulcanized rubber by immersion molding, there is a large difference between the crosslinking density of the polymer in the original latex particles and the crosslinking density between latex particles. , The stress at the time of deformation is concentrated between the particles having a low degree of crosslinking, and the mechanical properties such as elongation at break and strength at break are not sufficient. When the resistance is further reduced and the elongation at break is improved, there is a problem that the wear resistance is remarkably impaired.

エマルジョン・ラテックスハンドブック編集委員会編、「エマルジョン・ラテックスハンドブック」、初版、株式会社大成社、昭和50年3月、p.151〜p.155Emulsion Latex Handbook Editorial Committee, “Emulsion Latex Handbook”, first edition, Taiseisha Co., Ltd., March 1975, p. 151-p. 155

本発明は、上記した問題点に鑑みてなされたものであり、その目的は、浸漬成型により加硫ゴム製品を与え得るクロロプレン重合体ラテックスであり、破断強度等の力学特性を改善し、優れた耐摩耗性との両立を可能とした加硫ゴムを与えうるクロロプレン重合体ラテックスを提供することである。   The present invention has been made in view of the above-described problems, and its purpose is a chloroprene polymer latex capable of giving a vulcanized rubber product by immersion molding, which has improved mechanical properties such as breaking strength and is excellent. It is an object of the present invention to provide a chloroprene polymer latex capable of providing a vulcanized rubber that can be compatible with wear resistance.

本発明者らは、上記した課題を解決するために鋭意検討を重ねた結果、ラテックス粒子内のゲル構造となっているポリマーの架橋を低減し、浸漬成型により作製する加硫ゴムとした際の架橋密度の偏りを低減することで、優れた力学特性と耐摩耗性を有することを見出し、本発明に至った。すなわち、本発明は、2−クロロ−1,3−ブタジエン由来の構造91〜100重量%及び2,3−ジクロロ−1,3−ブタジエン由来の構造0〜9重量%であるクロロプレンポリマーを含有し、当該クロロプレンポリマーの1重量%トルエン不溶分量が20〜85重量%であることを特徴とする加硫ゴム製造用クロロプレン重合体ラテックス及びその製造方法である。   As a result of intensive studies in order to solve the above-mentioned problems, the present inventors have reduced the cross-linking of the polymer having a gel structure in the latex particles, and obtained a vulcanized rubber produced by immersion molding. By reducing the unevenness of the crosslink density, it was found that it has excellent mechanical properties and wear resistance, and has led to the present invention. That is, the present invention contains a chloroprene polymer having a structure derived from 2-chloro-1,3-butadiene derived from 91 to 100% by weight and a structure derived from 2,3-dichloro-1,3-butadiene derived from 0 to 9% by weight. A chloroprene polymer latex for producing vulcanized rubber, wherein the chloroprene polymer has a 1% by weight toluene insoluble content of 20 to 85% by weight, and a method for producing the latex.

以下に、本発明について詳細に説明する。   The present invention is described in detail below.

本発明のクロロプレン重合体ラテックスが含有するクロロプレンポリマーは、2−クロロ−1,3−ブタジエン(クロロプレン)由来の構造91〜100重量%及び2,3−ジクロロ−1,3−ブタジエン由来の構造0〜9重量%からなる。クロロプレンポリマーにおける2,3−ジクロロ−1,3−ブタジエン由来の構造が9重量%を超えると、浸漬成型により得られる加硫ゴムの耐寒性が損なわれ、低温環境下での柔軟性が著しく損なわれる。9重量%であれば低温環境下での柔軟性が優れる。   The chloroprene polymer contained in the chloroprene polymer latex of the present invention has a structure of 91 to 100% by weight derived from 2-chloro-1,3-butadiene (chloroprene) and a structure derived from 2,3-dichloro-1,3-butadiene. ~ 9% by weight. When the structure derived from 2,3-dichloro-1,3-butadiene in the chloroprene polymer exceeds 9% by weight, the cold resistance of the vulcanized rubber obtained by immersion molding is impaired, and the flexibility in a low temperature environment is significantly impaired. It is. If it is 9% by weight, the flexibility in a low temperature environment is excellent.

また、本発明のクロロプレン重合体ラテックスが含有するクロロプレンポリマーは、2−クロロ−1,3−ブタジエン由来の構造及び2,3−ジクロロ−1,3−ブタジエン由来の構造、並びに2−クロロ−1,3−ブタジエン及び2,3−ジクロロ−1,3−ブタジエンと共重合可能なコモノマー由来の構造からなっていても良い。ここに、2−クロロ−1,3−ブタジエン及び2,3−ジクロロ−1,3−ブタジエンと共重合可能なコモノマーとしてはラジカル重合可能な単量体に基づくものであれば特に限定するものではなく、例えば、アクリロニトリル、メタクリロニトリル、塩化ビニリデン等のモノビニル化合物、スチレン、α−メチルスチレン等の芳香族ビニル化合物、アクリル酸、メタクリル酸等の不飽和基含有カルボン酸類、アクリル酸エステル、メタクリル酸エステル等の不飽和基含有カルボン酸エステル類、イソプレン、1,3−ブタジエン、1−クロロ−1,3−ブタジエン等の共役ジエン化合物等があげられ、単独または2種以上を組み合わせたものでも良い。当該コモノマー由来の構造を有する場合の組成割合は、浸漬成型により得られる加硫ゴムがクロロプレンゴムとして特性を発揮するために、2−クロロ−1,3−ブタジエン由来の構造及び2,3−ジクロロ−1,3−ブタジエン由来の構造が88重量%以上100重量%未満、当該コモノマー由来の構造が0重量%を超えて12重量%以下が好ましい。さらにクロロプレンゴムとしての特徴を強く発揮させるためには、0重量%を超えて8重量%以下が特に好ましい。   The chloroprene polymer contained in the chloroprene polymer latex of the present invention includes a structure derived from 2-chloro-1,3-butadiene, a structure derived from 2,3-dichloro-1,3-butadiene, and 2-chloro-1 , 3-butadiene and a structure derived from a comonomer copolymerizable with 2,3-dichloro-1,3-butadiene. The comonomer copolymerizable with 2-chloro-1,3-butadiene and 2,3-dichloro-1,3-butadiene is not particularly limited as long as it is based on a monomer capable of radical polymerization. For example, monovinyl compounds such as acrylonitrile, methacrylonitrile and vinylidene chloride, aromatic vinyl compounds such as styrene and α-methylstyrene, unsaturated group-containing carboxylic acids such as acrylic acid and methacrylic acid, acrylic acid esters and methacrylic acid Examples thereof include unsaturated group-containing carboxylic acid esters such as esters, conjugated diene compounds such as isoprene, 1,3-butadiene, and 1-chloro-1,3-butadiene, and may be used alone or in combination of two or more. . The composition ratio in the case of having the structure derived from the comonomer is such that the vulcanized rubber obtained by immersion molding exhibits characteristics as a chloroprene rubber, and the structure derived from 2-chloro-1,3-butadiene and 2,3-dichloro The structure derived from -1,3-butadiene is preferably 88% by weight or more and less than 100% by weight, and the structure derived from the comonomer is more than 0% by weight and 12% by weight or less. Furthermore, in order to exert the characteristics as a chloroprene rubber strongly, it is particularly preferably more than 0% by weight and 8% by weight or less.

本発明のクロロプレン重合体ラテックスから単離したクロロプレンポリマーを1重量%トルエン溶液とした際の不溶分量は、20〜85重量%である。1重量%トルエン不溶分量が20重量%未満の場合は、ラテックス粒子中のポリマー架橋密度が低く、浸漬成型により得られる加硫ゴムの架橋密度が十分に高くならず、モジュラス(伸長応力)が低くなり、耐摩耗性を損なう。また85重量%を超えると、ラテックス粒子中のポリマー架橋密度が高くなり過ぎ、浸漬成型により加硫ゴムを製造した場合、元来のラテックス粒子中ポリマーの架橋密度とラテックス粒子間の架橋密度の差が大きいため、低架橋度となっている粒子間に変形時の応力が集中し、破断伸びや破断強度等の力学特性を損なう。さらに加硫剤減量等により粒子間の架橋密度を低減し破断伸びを向上させた場合は、著しくモジュラスを損なう。ポリマーの1重量%トルエン不溶分量が20〜85重量%であれば、浸漬成型により得られる加硫ゴムが良好な力学特性と耐摩耗性を有しているが、1重量%トルエン不溶分量が40〜80重量%であれば、さらに優れた力学特性を有する加硫ゴムが得られ、特に好ましい。ここで耐摩耗性の測定方法としては、テーバー摩耗試験の場合は厚さ0.5mmの加硫シートを作製し、テーバー摩耗試験機に取り付け、23℃、250gの荷重条件で摩耗輪を規定回数走行させた際の摩耗減量で示される。同条件で3,000回走行後の摩耗減量が0.4g未満であれば、耐摩耗性が良好と判定でき、0.3g未満であると特に優れており、さらに好ましい。   The amount of insoluble matter when the chloroprene polymer isolated from the chloroprene polymer latex of the present invention is made into a 1% by weight toluene solution is 20 to 85% by weight. When the 1% by weight toluene insoluble content is less than 20% by weight, the polymer crosslinking density in the latex particles is low, the crosslinking density of the vulcanized rubber obtained by immersion molding is not sufficiently high, and the modulus (extension stress) is low. And impairs wear resistance. If it exceeds 85% by weight, the polymer crosslinking density in the latex particles becomes too high, and when vulcanized rubber is produced by dip molding, the difference between the crosslinking density of the polymer in the latex particles and the crosslinking density between the latex particles is inherent. Therefore, the stress at the time of deformation is concentrated between the particles having a low degree of crosslinking, and mechanical properties such as elongation at break and strength at break are impaired. Furthermore, when the crosslink density between particles is reduced by reducing the vulcanizing agent and the elongation at break is improved, the modulus is remarkably impaired. If the 1% by weight toluene insoluble content of the polymer is 20 to 85% by weight, the vulcanized rubber obtained by immersion molding has good mechanical properties and wear resistance, but the 1% by weight toluene insoluble content is 40%. If it is -80 weight%, the vulcanized rubber which has the further outstanding mechanical characteristic will be obtained, and it is especially preferable. Here, as a method of measuring the wear resistance, in the case of the Taber abrasion test, a vulcanized sheet having a thickness of 0.5 mm is prepared and attached to the Taber abrasion tester, and the wear wheel is specified times under a load condition of 23 ° C. and 250 g. It is shown by wear loss when running. If the weight loss after running 3,000 times under the same conditions is less than 0.4 g, it can be determined that the wear resistance is good, and if it is less than 0.3 g, it is particularly excellent and more preferred.

本発明のクロロプレン重合体ラテックスは、必要に応じて種々の添加剤を含有してもかまわない。添加剤としては、例えば、酸化防止剤、防腐剤、pH安定剤、乳化安定剤、粘度調整剤、凍結防止剤等が挙げられる。   The chloroprene polymer latex of the present invention may contain various additives as required. Examples of the additive include an antioxidant, an antiseptic, a pH stabilizer, an emulsion stabilizer, a viscosity modifier, and an antifreezing agent.

本発明のクロロプレン重合体ラテックスは、2−クロロ−1,3−ブタジエン92.5〜100重量部及び2,3−ジクロロ−1,3−ブタジエン0〜7.5重量部を20〜55℃の温度にて、重合転化率85〜95%まで乳化重合することにより製造することができる。さらに、2−クロロ−1,3−ブタジエン及び2,3−ジクロロ−1,3−ブタジエンと共重合可能なコモノマー0重量部を超えて12重量部以下を使用して製造しても良い。   The chloroprene polymer latex of the present invention contains 92.5 to 100 parts by weight of 2-chloro-1,3-butadiene and 0 to 7.5 parts by weight of 2,3-dichloro-1,3-butadiene at 20 to 55 ° C. It can manufacture by carrying out emulsion polymerization to polymerization conversion rate 85-95% at temperature. Further, it may be produced using more than 0 parts by weight of a comonomer copolymerizable with 2-chloro-1,3-butadiene and 2,3-dichloro-1,3-butadiene and not more than 12 parts by weight.

本発明のクロロプレン重合体ラテックスを得るための重合において、連鎖移動剤を使用しても良い。連鎖移動剤としては、一般のラジカル重合に用いられる化合物であれば、特に限定するものではなく、例えば、n−ドデシルメルカプタン、t−ドデシルメルカプタン、オクチルメルカプタン等のアルキルメルカプタン類、ジエチルキサントゲンジスルフィド、ジブチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲンスルフィド類、ヨウ化ベンジル、ヨードホルム等が挙げられ、単独または2種以上で使用される。連鎖移動剤の量としては、特に限定するものではないが、得られる重合体ラテックスから単離したポリマーの1重量%トルエン不溶分を目的通りにするために、連鎖移動剤以外のモノマー100重量部に対して0.05〜0.2重量部であることが好ましい。   In the polymerization for obtaining the chloroprene polymer latex of the present invention, a chain transfer agent may be used. The chain transfer agent is not particularly limited as long as it is a compound used for general radical polymerization. For example, alkyl mercaptans such as n-dodecyl mercaptan, t-dodecyl mercaptan, octyl mercaptan, diethyl xanthogen disulfide, dibutyl Examples thereof include xanthogen sulfides such as xanthogen disulfide and diisopropylxanthogen disulfide, benzyl iodide, iodoform, and the like, which are used alone or in combination of two or more. The amount of the chain transfer agent is not particularly limited, but in order to achieve a 1% by weight toluene-insoluble content of the polymer isolated from the resulting polymer latex as intended, 100 parts by weight of monomers other than the chain transfer agent It is preferable that it is 0.05-0.2 weight part with respect to this.

本発明のクロロプレン重合体ラテックスを得るための重合において、乳化剤としては、一般に乳化重合に用いられる界面活性剤であれば、特に限定するものではなく、カルボン酸塩型、スルホン酸塩型、硫酸塩型等のアニオン型乳化剤及びノニオン型乳化剤等が用いられ、具体的には、不均化ロジン酸のアルカリ金属塩、ロジン酸のアルカリ金属塩、高級脂肪酸アルカリ金属塩、アルキルスルホン酸塩、アルキルアリールスルホン酸塩、アルキル硫酸塩、アルキルアリール硫酸塩、ナフタレンスルホン酸ナトリウムとホルムアルデヒドとの縮合物、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンアシルエステル等が挙げられ、単独または2種以上の併用が可能である。各乳化分散剤の添加量はその種類により最適範囲は異なるが、乳化重合を安定に実施でき、さらに浸漬成型により加硫ゴムを得る範囲として、アニオン型乳化剤の場合はモノマー混合物100重量部に対して1〜8重量部が好ましく、2〜6重量部が特に好ましい。ノニオン型乳化剤は凝固剤によるラテックス凝集が起こりにくいため、使用量は限られ、モノマー混合物100重量部に対して、2重量部以下が好ましい。   In the polymerization for obtaining the chloroprene polymer latex of the present invention, the emulsifier is not particularly limited as long as it is a surfactant generally used for emulsion polymerization. Carboxylate type, sulfonate type, sulfate Type anionic emulsifiers and nonionic emulsifiers, etc., specifically, alkali metal salts of disproportionated rosin acid, alkali metal salts of rosin acid, higher fatty acid alkali metal salts, alkyl sulfonates, alkyl aryls Examples include sulfonates, alkyl sulfates, alkylaryl sulfates, condensates of sodium naphthalenesulfonate and formaldehyde, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, sorbitan fatty acid esters, polyoxyethylene acyl esters, etc. , Alone or in combination of two or more It is possible. Although the optimum range of the amount of each emulsifying dispersant added varies depending on the type, the emulsion polymerization can be carried out stably, and as a range for obtaining vulcanized rubber by immersion molding, in the case of an anionic emulsifier, 100 parts by weight of the monomer mixture 1 to 8 parts by weight is preferable, and 2 to 6 parts by weight is particularly preferable. Since the nonionic emulsifier hardly causes latex aggregation due to the coagulant, the amount used is limited, and it is preferably 2 parts by weight or less based on 100 parts by weight of the monomer mixture.

本発明のクロロプレン重合体ラテックスを得るための重合において、重合開始剤としては、フリーラジカル生成物質であれば、特に限定するものではなく、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸化物、過酸化水素、パラメンタンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の無機又は有機過酸化物等が挙げられ、これら単独または上記化合物と硫酸第一鉄、ハイドロサルファイトナトリウム、ナトリウムホルムアルデヒドスルホキシレート、チオ硫酸塩、チオ亜硫酸塩、有機アミン等の還元性物質を併用したレドックス系が使用される。   In the polymerization for obtaining the chloroprene polymer latex of the present invention, the polymerization initiator is not particularly limited as long as it is a free radical generating substance, and examples thereof include persulfates such as potassium persulfate and ammonium persulfate, Examples include inorganic or organic peroxides such as hydrogen oxide, paramentane hydroperoxide, t-butyl hydroperoxide, cumene hydroperoxide, and the like alone or with the above compounds and ferrous sulfate, hydrosulfite sodium, sodium A redox system using a reducing substance such as formaldehyde sulfoxylate, thiosulfate, thiosulfite, and organic amine is used.

本発明のクロロプレン重合体ラテックスを得るための重合において、重合温度は25〜55℃である。25℃より低い重合温度の場合は、ラテックスの浸漬成型により得られる加硫ゴムの結晶化速度が速く、低温雰囲気下での放置において加硫ゴム製品が硬くなる。また55℃を超える重合温度の場合は、重合中のポリマーゲル化が進み、ポリマーの1重量%トルエン不溶分量が高くなりすぎる。このうち30〜53℃が好ましい。   In the polymerization for obtaining the chloroprene polymer latex of the present invention, the polymerization temperature is 25 to 55 ° C. When the polymerization temperature is lower than 25 ° C., the vulcanized rubber obtained by dip molding of latex has a high crystallization rate, and the vulcanized rubber product becomes hard when left in a low temperature atmosphere. On the other hand, when the polymerization temperature exceeds 55 ° C., the gelation of the polymer proceeds during the polymerization, and the 1% by weight toluene-insoluble content of the polymer becomes too high. Among these, 30-53 degreeC is preferable.

本発明のクロロプレン重合体ラテックスを得るための重合において、重合停止転化率は、85〜95%である。重合停止転化率が85%より低いと、ラテックスの固形分量が低くなり、浸漬成型において目標とする厚みの製品を得るための浸漬時間が長く必要となり、生産性を損なうため好ましくない。重合停止転化率が95%を超えると、重合中のポリマーゲル化が進み、ポリマーの1重量%トルエン不溶分量が高くなりすぎる。このうち重合停止転化率は87〜94%が好ましい。   In the polymerization for obtaining the chloroprene polymer latex of the present invention, the polymerization termination conversion is 85 to 95%. When the polymerization stop conversion is lower than 85%, the solid content of the latex is low, so that a long immersion time is required to obtain a product having a target thickness in the immersion molding, which is not preferable. When the polymerization stop conversion rate exceeds 95%, the gelation of the polymer proceeds during the polymerization, and the 1% by weight toluene-insoluble content of the polymer becomes too high. Among these, the polymerization termination conversion is preferably 87 to 94%.

本発明のクロロプレン重合体ラテックスを得るための重合において、重合を停止する際に必要に応じて重合停止剤を添加することも可能である。重合停止剤としては、ラジカルを捕捉する化合物であれば特に限定するものではなく、例えば、フェノチアジン、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−メチルフェノール、ハイドロキノン、4−メトキシハイドロキノン、N,N−ジエチルヒドロキシルアミン等のラジカル禁止剤等が挙げられ、単独または2種以上が使用できる。各重合停止剤の添加量はその種類により最適範囲は異なるが、重合を確実に停止でき、かつ得られたクロロプレンポリマーの安定性を確保できる範囲として、モノマー100重量部に対して0.01〜5重量部が好ましく、0.02〜2重量部が特に好ましい。   In the polymerization for obtaining the chloroprene polymer latex of the present invention, it is possible to add a polymerization terminator as necessary when the polymerization is terminated. The polymerization terminator is not particularly limited as long as it is a compound that traps radicals. For example, phenothiazine, 2,2′-methylenebis- (4-methyl-6-tert-butylphenol), 2,2′-methylenebis -Radical inhibitors such as-(4-ethyl-6-t-butylphenol), 2,6-di-t-butyl-4-methylphenol, hydroquinone, 4-methoxyhydroquinone, N, N-diethylhydroxylamine and the like. These can be used alone or in combination of two or more. Although the optimum range of the addition amount of each polymerization terminator varies depending on the type, 0.01 to 100 parts by weight of the monomer as a range in which the polymerization can be surely stopped and the stability of the obtained chloroprene polymer can be secured. 5 parts by weight is preferable, and 0.02 to 2 parts by weight is particularly preferable.

本発明のクロロプレン重合体ラテックスを得るための重合において、重合終了後に実施する未反応単量体の除去方法としては、特に限定はしないが、例えば減圧下スチームストリッピングが挙げられる。   In the polymerization for obtaining the chloroprene polymer latex of the present invention, the method for removing the unreacted monomer carried out after completion of the polymerization is not particularly limited, and examples thereof include steam stripping under reduced pressure.

本発明のクロロプレン重合体ラテックスを用いて浸漬成型にて加硫ゴム製品を製造するためには、通常の浸漬成型の手法が利用できる。例えば、本発明のクロロプレン重合体ラテックスに必要に応じて受酸剤、充填剤、補強剤、老化防止剤、可塑剤、滑剤、酸化亜鉛、加硫促進剤、硫黄等を水に分散させた懸濁液、さらに必要により乳化剤、粘度調節剤、pH調節剤を添加したラテックス組成物を作製し、その中へ硝酸カルシウム等の凝固剤を含浸させた目的とする加硫ゴム成型物の鋳型を浸漬することで、鋳型上にゴム膜を形成させる。さらにゴム膜を鋳型とともに水に浸け、余分な乳化剤などを水洗除去した後、鋳型とともにオーブン等で加熱し、乾燥および加硫するという手法等が挙げられる。   In order to produce a vulcanized rubber product by immersion molding using the chloroprene polymer latex of the present invention, a normal immersion molding technique can be used. For example, the chloroprene polymer latex of the present invention may be prepared by dispersing an acid acceptor, a filler, a reinforcing agent, an anti-aging agent, a plasticizer, a lubricant, zinc oxide, a vulcanization accelerator, sulfur, etc. in water as necessary. A latex composition is prepared by adding a turbid liquid and, if necessary, an emulsifier, a viscosity modifier, and a pH regulator, and the mold of the desired vulcanized rubber molding impregnated with a coagulant such as calcium nitrate is immersed therein. As a result, a rubber film is formed on the mold. Furthermore, after the rubber film is soaked in water together with the mold, excess emulsifier and the like are washed away and then heated in an oven or the like together with the mold, dried and vulcanized.

本発明のクロロプレン重合体ラテックスはラテックス粒子内のポリマー架橋密度が低減されており、浸漬成型により優れた力学特性と耐摩耗性を有する加硫ゴムを製造することができる。   The chloroprene polymer latex of the present invention has a reduced polymer crosslinking density in the latex particles, and can produce a vulcanized rubber having excellent mechanical properties and wear resistance by immersion molding.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.

<ポリマー組成>
クロロプレン重合体ラテックス中のポリマー組成は、クロロプレン重合体ラテックスをシャーレ上に広げて凍結させ、真空乾燥機による凍結乾燥により得たポリマーの熱分解ガスクロマトグラフィーにより求めた。測定はFRONTIER LAB製PY−2010Dを用い590℃で熱分解し、DB−5カラムにて40℃から300℃への15℃/分の昇温条件にて実施した。別途C13−NMRにて組成を求めたモデルポリマーにより作成した検量線を使用し、定量した。
<Polymer composition>
The polymer composition in the chloroprene polymer latex was determined by pyrolysis gas chromatography of the polymer obtained by spreading the chloroprene polymer latex on a petri dish and freezing it, and then lyophilizing with a vacuum dryer. The measurement was performed using a PY-2010D manufactured by FRONTIER LAB, thermally decomposed at 590 ° C., and performed at a temperature rising condition of 15 ° C./min from 40 ° C. to 300 ° C. using a DB-5 column. It quantified using the analytical curve created with the model polymer which calculated | required the composition separately by C13-NMR.

<1重量%トルエン不溶分量>
ポリマー中の1重量%トルエン不溶分量は、クロロプレン重合体ラテックスをシャーレ上に広げて凍結させ、真空乾燥機による凍結乾燥により得たポリマーを1%の濃度でトルエンに溶解し、100メッシュの金網にて濾別される不溶分量として求めた。
<1% by weight toluene insoluble content>
The amount of 1% by weight toluene insoluble in the polymer was determined by spreading the chloroprene polymer latex on a petri dish and freezing it, dissolving the polymer obtained by lyophilization with a vacuum dryer in toluene at a concentration of 1%, and adding it to a 100 mesh wire mesh. It was determined as the amount of insoluble matter filtered off.

<固形分>
クロロプレン重合体ラテックスの固形分は、クロロプレン重合体ラテックス2gを105℃熱風乾燥機において2時間乾燥させた際の、乾燥前後の重量変化より評価した。
<Solid content>
The solid content of the chloroprene polymer latex was evaluated from the weight change before and after drying when 2 g of chloroprene polymer latex was dried in a hot air dryer at 105 ° C. for 2 hours.

<常態特性>
加硫物の常態特性は、JIS K6251(1993年度版)に従い、ダンベル状4号型の試験片を用い、引張り速度500mm/分、23℃の条件により、破断伸び、破断強度、200%伸長応力、500%伸長応力を評価した。
<Normal characteristics>
The normal properties of the vulcanizate are as follows: JIS K6251 (1993 version), using dumbbell-shaped No. 4 type test pieces, tensile speed 500 mm / min, conditions of 23 ° C., elongation at break, strength at break, 200% elongation stress 500% elongation stress was evaluated.

<テーバー摩耗減量>
加硫物のテーバー摩耗減量は、厚さ0.5mmの加硫シートを作製し、両面テープを用いてテーバー摩耗試験機の試料テーブルに固定し、23℃において、250gの荷重にて摩耗輪を3,000回走行させた後の重量減量を測定し評価した。
<Taber wear reduction>
To reduce the Taber abrasion of the vulcanizate, prepare a vulcanized sheet with a thickness of 0.5 mm, fix it to the sample table of the Taber abrasion tester using double-sided tape, and wear the wear wheel with a load of 250 g at 23 ° C. The weight loss after running 3,000 times was measured and evaluated.

<低温特性>
加硫物の低温特性は、上島製作所製粘弾性アナライザーVR−7120にて、厚さ0.5mm、幅4mmの加硫シートを用い、周波数10Hz、初期歪1%、振幅0.1%の引張歪での温度分散スペクトルを測定し、tanδのピーク温度として評価した。
<Low temperature characteristics>
The low temperature characteristics of the vulcanizate were measured using a viscoelasticity analyzer VR-7120 manufactured by Ueshima Seisakusho, using a vulcanized sheet with a thickness of 0.5 mm and a width of 4 mm, and a tensile strength of 10 Hz, initial strain of 1%, and amplitude of 0.1%. A temperature dispersion spectrum at strain was measured and evaluated as a peak temperature of tan δ.

実施例1
2−クロロ−1,3−ブタジエン100重量部、n−ドデシルメルカプタン0.10重量部を10Lの撹拌機付きオートクレーブに仕込み、ロジン酸カリウム3.5重量部、ナフタレンスルホン酸ナトリウムのホルムアルデヒド縮合物0.7重量部、水酸化ナトリウム0.4重量部、蒸留水80重量部からなる乳化液をそれに添加し、充分に窒素置換した後、撹拌により乳化させた。3重量%ハイドロサルファイトナトリウム水溶液を添加し、重合器内が40℃一定となるようにジャケット温度を制御しながら、0.2重量%過硫酸カリウム水溶液の連続滴下により重合を開始した。
Example 1
100 parts by weight of 2-chloro-1,3-butadiene and 0.10 parts by weight of n-dodecyl mercaptan were charged into a 10 L autoclave equipped with a stirrer, and 3.5 parts by weight of potassium rosinate and formaldehyde condensate of sodium naphthalenesulfonate 0 An emulsion comprising 0.7 parts by weight, 0.4 parts by weight of sodium hydroxide and 80 parts by weight of distilled water was added thereto, and after sufficiently purging with nitrogen, the mixture was emulsified by stirring. Polymerization was started by continuously dropping a 0.2 wt% aqueous potassium persulfate solution while adding a 3 wt% aqueous sodium hydrosulfite solution and controlling the jacket temperature so that the inside of the polymerization vessel was kept constant at 40 ° C.

単量体に対する転化率が93%となった時点で、フェノチアジン0.03重量部をトルエンに溶解しドデシルベンゼンスルホン酸ナトリウム水溶液にて乳化したものを重合停止剤として添加し重合を終了させた。減圧スチームストリッピング法により残存する未反応単量体を除去し、クロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表1に示す。   When the conversion ratio with respect to the monomer reached 93%, 0.03 part by weight of phenothiazine was dissolved in toluene and emulsified with an aqueous sodium dodecylbenzenesulfonate solution as a polymerization terminator to complete the polymerization. The remaining unreacted monomer was removed by a vacuum steam stripping method to obtain a chloroprene polymer latex. Table 1 shows the polymer composition, toluene-insoluble content, and solid content in the polymer latex.

Figure 0005428305
一方、酸化亜鉛、硫黄、加硫促進剤CA(N,N‘−ジフェニルチオウレア)、加硫促進剤ZnEDC(ジエチルジチオカルバミン酸亜鉛)それぞれを100重量部として、アンモニウムガゼイン3重量部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物3重量部、蒸留水100重量部をそれぞれ混合し、ボールミルにて1日撹拌することにより、各配合剤の安定な懸濁液を作製した。
Figure 0005428305
On the other hand, zinc oxide, sulfur, vulcanization accelerator CA (N, N'-diphenylthiourea), vulcanization accelerator ZnEDC (diethyldithiocarbamate) 100 parts by weight, ammonium gazein 3 parts by weight, sodium naphthalene sulfonate 3 parts by weight of the formalin condensate and 100 parts by weight of distilled water were mixed and stirred for 1 day in a ball mill to prepare a stable suspension of each compounding agent.

クロロプレン重合体ラテックス中の固形分量を100重量部として、酸化亜鉛5重量部、硫黄2重量部、加硫促進剤CA2.5重量部、加硫促進剤ZnEDC1重量部となるように各配合剤の懸濁液をクロロプレン重合体ラテックスへ添加し、1時間撹拌することによりラテックス組成物を作製した。   Assuming that the solid content in the chloroprene polymer latex is 100 parts by weight, 5 parts by weight of zinc oxide, 2 parts by weight of sulfur, 2.5 parts by weight of vulcanization accelerator CA, and 1 part by weight of vulcanization accelerator ZnEDC are added. The suspension was added to the chloroprene polymer latex and stirred for 1 hour to prepare a latex composition.

25%硝酸カルシウム水溶液に浸漬し、乾燥させた平板状の鋳型をクロロプレン重合体ラテックス組成物に浸漬することで、平板上にゴムフィルムを凝集形成させた。鋳型とともに30℃温水に浸し、水溶性の不純物を溶出させた後、120℃の熱風乾燥機にて30分間加熱し、乾燥および加硫を行い厚さ0.25mmの加硫ゴムシートを得た。常態特性を測定した。同様の手法にて浸漬時間を長くすることで0.5mmの加硫ゴムシートを別途作製し、テーバー摩耗減量および低温特性を測定した。これら加硫物特性を表1に示す。破断強度およびモジュラスが高く、耐摩耗性と低温特性が優れる加硫ゴムが得られた。   A rubber plate was agglomerated and formed on the flat plate by dipping the flat plate mold dipped in a 25% calcium nitrate aqueous solution and dried in a chloroprene polymer latex composition. It was immersed in warm water at 30 ° C. together with the mold to elute water-soluble impurities, then heated for 30 minutes in a 120 ° C. hot air dryer, dried and vulcanized to obtain a 0.25 mm thick vulcanized rubber sheet. . Normal characteristics were measured. A 0.5 mm vulcanized rubber sheet was separately prepared by extending the immersion time in the same manner, and the Taber abrasion loss and low temperature characteristics were measured. These vulcanizate properties are shown in Table 1. A vulcanized rubber having high breaking strength and modulus, and excellent wear resistance and low temperature characteristics was obtained.

実施例2
n−ドデシルメルカプタンを0.08重量部、重合温度を30℃とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表1に合わせて示す。
Example 2
A chloroprene polymer latex was obtained in the same manner as in Example 1 except that 0.08 parts by weight of n-dodecyl mercaptan and a polymerization temperature of 30 ° C. were used. Table 1 shows the polymer composition, the amount of insoluble toluene, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表1に合わせて示す。破断強度およびモジュラスが高く、耐摩耗性と低温特性が優れる加硫ゴムが得られた。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was produced in the same manner as in Example 1, and the normal characteristics, Taber abrasion loss, and low temperature characteristics were measured. These vulcanizate characteristics are shown in Table 1. A vulcanized rubber having high breaking strength and modulus, and excellent wear resistance and low temperature characteristics was obtained.

実施例3
n−ドデシルメルカプタンを0.18重量部、重合温度を50℃、重合停止転化率を89%とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表1に合わせて示す。
Example 3
A chloroprene polymer latex was obtained in the same manner as in Example 1 except that 0.18 parts by weight of n-dodecyl mercaptan, a polymerization temperature of 50 ° C., and a polymerization termination conversion rate of 89% were used. Table 1 shows the polymer composition, the amount of insoluble toluene, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表1に合わせて示す。破断強度およびモジュラスが高く、耐摩耗性と低温特性が優れる加硫ゴムが得られた。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was produced in the same manner as in Example 1, and the normal characteristics, Taber abrasion loss, and low temperature characteristics were measured. These vulcanizate characteristics are shown in Table 1. A vulcanized rubber having high breaking strength and modulus, and excellent wear resistance and low temperature characteristics was obtained.

実施例4
n−ドデシルメルカプタンを0.12重量部、重合停止転化率を88%とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表1に合わせて示す。
Example 4
A chloroprene polymer latex was obtained in the same manner as in Example 1 except that 0.12 parts by weight of n-dodecyl mercaptan and a polymerization termination conversion rate of 88% were used. Table 1 shows the polymer composition, the amount of insoluble toluene, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表1に合わせて示す。破断強度およびモジュラスが高く、耐摩耗性と低温特性が優れる加硫ゴムが得られた。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was produced in the same manner as in Example 1, and the normal characteristics, Taber abrasion loss, and low temperature characteristics were measured. These vulcanizate characteristics are shown in Table 1. A vulcanized rubber having high breaking strength and modulus, and excellent wear resistance and low temperature characteristics was obtained.

実施例5
2−クロロ−1,3−ブタジエンを93重量部、2,3−ジクロロ−1,3−ブタジエンを7重量部、重合停止転化率を92%とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表1に合わせて示す。
Example 5
The same method as in Example 1 except that 93 parts by weight of 2-chloro-1,3-butadiene, 7 parts by weight of 2,3-dichloro-1,3-butadiene, and 92% conversion to polymerization termination were used. A chloroprene polymer latex was obtained. Table 1 shows the polymer composition, the amount of insoluble toluene, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表1に合わせて示す。破断強度およびモジュラスが高く、耐摩耗性と低温特性が優れる加硫ゴムが得られた。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was produced in the same manner as in Example 1, and the normal characteristics, Taber abrasion loss, and low temperature characteristics were measured. These vulcanizate characteristics are shown in Table 1. A vulcanized rubber having high breaking strength and modulus, and excellent wear resistance and low temperature characteristics was obtained.

実施例6
2−クロロ−1,3−ブタジエンを92.5重量部、2,3−ジクロロ−1,3−ブタジエンを7.5重量部、n−ドデシルメルカプタンを0.08重量部、重合温度を30℃、重合停止転化率を90%とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表1に合わせて示す。
Example 6
92.5 parts by weight of 2-chloro-1,3-butadiene, 7.5 parts by weight of 2,3-dichloro-1,3-butadiene, 0.08 parts by weight of n-dodecyl mercaptan, and a polymerization temperature of 30 ° C. A chloroprene polymer latex was obtained in the same manner as in Example 1 except that the polymerization termination conversion rate was 90%. Table 1 shows the polymer composition, the amount of insoluble toluene, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表1に合わせて示す。破断強度およびモジュラスが高く、耐摩耗性と低温特性が優れる加硫ゴムが得られた。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was produced in the same manner as in Example 1, and the normal characteristics, Taber abrasion loss, and low temperature characteristics were measured. These vulcanizate characteristics are shown in Table 1. A vulcanized rubber having high breaking strength and modulus, and excellent wear resistance and low temperature characteristics was obtained.

実施例7
2−クロロ−1,3−ブタジエンを96.5重量部、2,3−ジクロロ−1,3−ブタジエンを3.5重量部、n−ドデシルメルカプタンを0.09重量部、重合温度を35℃、重合停止転化率を92%とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表1に合わせて示す。
Example 7
96.5 parts by weight of 2-chloro-1,3-butadiene, 3.5 parts by weight of 2,3-dichloro-1,3-butadiene, 0.09 parts by weight of n-dodecyl mercaptan, and a polymerization temperature of 35 ° C. A chloroprene polymer latex was obtained in the same manner as in Example 1 except that the polymerization termination conversion rate was 92%. Table 1 shows the polymer composition, the amount of insoluble toluene, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表1に合わせて示す。破断強度およびモジュラスが高く、耐摩耗性と低温特性が優れる加硫ゴムが得られた。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was produced in the same manner as in Example 1, and the normal characteristics, Taber abrasion loss, and low temperature characteristics were measured. These vulcanizate characteristics are shown in Table 1. A vulcanized rubber having high breaking strength and modulus, and excellent wear resistance and low temperature characteristics was obtained.

比較例1
2−クロロ−1,3−ブタジエンを85重量部、2,3−ジクロロ−1,3−ブタジエンを15重量部、n−ドデシルメルカプタンを0.15重量部とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表2に示す。
Comparative Example 1
Example 1 except that 85 parts by weight of 2-chloro-1,3-butadiene, 15 parts by weight of 2,3-dichloro-1,3-butadiene, and 0.15 parts by weight of n-dodecyl mercaptan were used. A chloroprene polymer latex was obtained by this method. Table 2 shows the polymer composition, toluene-insoluble content, and solid content in the polymer latex.

Figure 0005428305
実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、加硫物の常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表2に示す。破断強度およびモジュラスが高く、耐摩耗性に優れたが、ポリマー中の2,3−ジクロロ−1,3−ブタジエン量が多いため、低温特性が劣った。
Figure 0005428305
A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was prepared in the same manner as in Example 1, and the normal characteristics, the Taber abrasion loss, and the low temperature characteristics of the vulcanizate were measured. These vulcanized properties are shown in Table 2. Although the breaking strength and modulus were high and the wear resistance was excellent, the low temperature characteristics were inferior due to the large amount of 2,3-dichloro-1,3-butadiene in the polymer.

比較例2
n−ドデシルメルカプタンを0.07重量部、重合温度を50℃、重合停止転化率を98%とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表2に合わせて示す。
Comparative Example 2
A chloroprene polymer latex was obtained in the same manner as in Example 1 except that 0.07 part by weight of n-dodecyl mercaptan, the polymerization temperature was 50 ° C., and the polymerization termination conversion was 98%. Table 2 shows the polymer composition, the toluene insoluble content, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、加硫物の常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表2に合わせて示す。モジュラスが高く、耐摩耗性が優れていたが、ポリマーのトルエン不溶分が多過ぎるため、破断伸びが低下し破断強度が劣った。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was prepared in the same manner as in Example 1, and the normal characteristics, the Taber abrasion loss, and the low temperature characteristics of the vulcanizate were measured. These vulcanizate characteristics are shown in Table 2. The modulus was high and the wear resistance was excellent, but the polymer had too much toluene insolubles, so the elongation at break was reduced and the strength at break was poor.

比較例3
2−クロロ−1,3−ブタジエンを96.5重量部、2,3−ジクロロ−1,3−ブタジエンを3.5重量部、n−ドデシルメルカプタンを0.18重量部、重合温度を56℃、重合停止転化率を92%とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表2に合わせて示す。
Comparative Example 3
96.5 parts by weight of 2-chloro-1,3-butadiene, 3.5 parts by weight of 2,3-dichloro-1,3-butadiene, 0.18 parts by weight of n-dodecyl mercaptan, and a polymerization temperature of 56 ° C. A chloroprene polymer latex was obtained in the same manner as in Example 1 except that the polymerization termination conversion rate was 92%. Table 2 shows the polymer composition, the toluene insoluble content, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、加硫物の常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表2に合わせて示す。モジュラスが高く、耐摩耗性が優れていたが、ポリマーのトルエン不溶分が多過ぎるため、破断伸びが低下し破断強度が劣った。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was prepared in the same manner as in Example 1, and the normal characteristics, the Taber abrasion loss, and the low temperature characteristics of the vulcanizate were measured. These vulcanizate characteristics are shown in Table 2. The modulus was high and the wear resistance was excellent, but the polymer had too much toluene insolubles, so the elongation at break was reduced and the strength at break was poor.

比較例4
2−クロロ−1,3−ブタジエンを93重量部、2,3−ジクロロ−1,3−ブタジエンを7重量部、重合温度を20℃、重合停止転化率を90%とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表2に合わせて示す。
Comparative Example 4
Example 1 except that 93 parts by weight of 2-chloro-1,3-butadiene, 7 parts by weight of 2,3-dichloro-1,3-butadiene, a polymerization temperature of 20 ° C., and a polymerization termination conversion rate of 90% were used. A chloroprene polymer latex was obtained in the same manner as above. Table 2 shows the polymer composition, the toluene insoluble content, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表2に合わせて示す。ポリマーのトルエン不溶分が少ないため、モジュラスが劣り、耐摩耗性も劣った。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was produced in the same manner as in Example 1, and the normal characteristics, Taber abrasion loss, and low temperature characteristics were measured. These vulcanizate characteristics are shown in Table 2. Since the polymer had little toluene-insoluble content, the modulus was inferior and the wear resistance was also inferior.

比較例5
2−クロロ−1,3−ブタジエンを94重量部、2,3−ジクロロ−1,3−ブタジエンを6重量部、n−ドデシルメルカプタンを0.12重量部、重合停止転化率を70%とした以外は実施例1と同様の方法にてクロロプレン重合体ラテックスを得た。重合体ラテックス中のポリマー組成、トルエン不溶分量、固形分を表2に合わせて示す。
Comparative Example 5
94 parts by weight of 2-chloro-1,3-butadiene, 6 parts by weight of 2,3-dichloro-1,3-butadiene, 0.12 parts by weight of n-dodecyl mercaptan, and 70% polymerization termination conversion Except for the above, a chloroprene polymer latex was obtained in the same manner as in Example 1. Table 2 shows the polymer composition, the toluene insoluble content, and the solid content in the polymer latex.

実施例1と同様の配合および手法にて、クロロプレン重合体ラテックス組成物を作製した。さらに実施例1と同様の方法にて加硫ゴムシートを作製し、常態特性、テーバー摩耗減量、低温特性を測定した。これら加硫物特性を表2に合わせて示す。ポリマーのトルエン不溶分が少ないため、モジュラスが劣り、耐摩耗性も劣った。   A chloroprene polymer latex composition was prepared in the same formulation and procedure as in Example 1. Further, a vulcanized rubber sheet was produced in the same manner as in Example 1, and the normal characteristics, Taber abrasion loss, and low temperature characteristics were measured. These vulcanizate characteristics are shown in Table 2. Since the polymer had little toluene-insoluble content, the modulus was inferior and the wear resistance was also inferior.

Claims (1)

2−クロロ−1,3−ブタジエン92.5〜100重量部及び2,3−ジクロロ−1,3−ブタジエン0〜7.5重量部を25〜55℃の温度にて、連鎖移動剤以外のモノマー100重量部に対して連鎖移動剤0.05〜0.2重量部を使用して、重合転化率85〜95%まで乳化重合することを特徴とする、2−クロロ−1,3−ブタジエン由来の構造91〜100重量%及び2,3−ジクロロ−1,3−ブタジエン由来の構造0〜9重量%であるクロロプレンポリマーを含有し、当該クロロプレンポリマーの1重量%トルエン不溶分量が20〜85重量%である加硫ゴム製造用クロロプレン重合体ラテックスの製造方法。 92.5-100 parts by weight of 2-chloro-1,3-butadiene and 0-7.5 parts by weight of 2,3-dichloro-1,3-butadiene at a temperature of 25-55 ° C. other than the chain transfer agent 2-chloro-1,3-butadiene is characterized in that emulsion polymerization is carried out to a polymerization conversion rate of 85 to 95% using 0.05 to 0.2 parts by weight of a chain transfer agent with respect to 100 parts by weight of the monomer. A chloroprene polymer having a structure derived from 91 to 100% by weight and a structure derived from 2,3-dichloro-1,3-butadiene derived from 0 to 9% by weight, wherein the 1% by weight toluene-insoluble content of the chloroprene polymer is 20 to 85%. The manufacturing method of the chloroprene polymer latex for vulcanized rubber manufacture which is weight% .
JP2008301106A 2008-11-26 2008-11-26 Method for producing chloroprene polymer latex for vulcanized rubber production Active JP5428305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008301106A JP5428305B2 (en) 2008-11-26 2008-11-26 Method for producing chloroprene polymer latex for vulcanized rubber production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008301106A JP5428305B2 (en) 2008-11-26 2008-11-26 Method for producing chloroprene polymer latex for vulcanized rubber production

Publications (2)

Publication Number Publication Date
JP2010126586A JP2010126586A (en) 2010-06-10
JP5428305B2 true JP5428305B2 (en) 2014-02-26

Family

ID=42327199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301106A Active JP5428305B2 (en) 2008-11-26 2008-11-26 Method for producing chloroprene polymer latex for vulcanized rubber production

Country Status (1)

Country Link
JP (1) JP5428305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122141A (en) * 2009-11-10 2011-06-23 Showa Denko Kk Chloroprene polymer latex and method of manufacturing the same
DE112012001604T5 (en) 2011-04-06 2014-01-09 Denki Kagaku Kogyo Kabushiki Kaisha Polychloroprene latex, rubber composition and dip molded article
MY163283A (en) * 2011-07-25 2017-08-30 Denka Company Ltd Polychloroprene latex composition and dip-molded article
JP6130352B2 (en) * 2012-03-02 2017-05-17 デンカ株式会社 Polychloroprene latex, polychloroprene latex composition and molded article
JP7014792B2 (en) * 2017-07-04 2022-02-01 デンカ株式会社 Mercaptan-modified polychloroprene latex and its manufacturing method
JP7207095B2 (en) * 2019-03-29 2023-01-18 東ソー株式会社 Chloroprene-based polymer latex and method for producing the same
WO2021006118A1 (en) * 2019-07-05 2021-01-14 デンカ株式会社 Chloroprene copolymer latex, method for producing same, vulcanized product, dip molded article and method for producing same
JP7396011B2 (en) 2019-12-12 2023-12-12 株式会社レゾナック Screening method
CN116348507A (en) 2020-11-10 2023-06-27 电化株式会社 Chloroprene polymer composition, process for producing the same, and impregnated molded article
CN116264828A (en) * 2021-03-23 2023-06-16 电化株式会社 Chloroprene polymer latex composition and dip-molded article
WO2022202253A1 (en) * 2021-03-23 2022-09-29 デンカ株式会社 Chloroprene polymer latex and manufacturing method therefor, and dip molded body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4390321B2 (en) * 1999-07-22 2009-12-24 電気化学工業株式会社 Laminated body
JP4841747B2 (en) * 2001-05-22 2011-12-21 電気化学工業株式会社 Latex composition
JP2007106994A (en) * 2005-09-15 2007-04-26 Showa Denko Kk Chloroprene-based polymer latex and method for producing the same
JP5043423B2 (en) * 2005-12-22 2012-10-10 昭和電工株式会社 Chloroprene-based copolymer latex, production method and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
US10377893B2 (en) 2013-07-16 2019-08-13 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film

Also Published As

Publication number Publication date
JP2010126586A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5428305B2 (en) Method for producing chloroprene polymer latex for vulcanized rubber production
CN104662079B (en) Sulfur modified chloroprene rubber composition and molded body
CN111372986A (en) Sulfur-modified chloroprene rubber composition, vulcanizate, molded article using the vulcanizate, and method for producing sulfur-modified chloroprene rubber composition
JP2019143002A (en) Chloroprene polymer latex and manufacturing method therefor
EP2824121B1 (en) Polychloroprene latex, polychloroprene latex composition, and molded article
US10414901B2 (en) Stabilized rubbers
KR102394281B1 (en) Nitrile copolymer rubber and production method for same
JP6340905B2 (en) Xanthogen-modified chloroprene rubber and method for producing the same
JP4428209B2 (en) Chloroprene rubber, method for producing the same, and chloroprene rubber composition
JP6229446B2 (en) Xanthogen-modified chloroprene rubber and method for producing the same
JP5485342B2 (en) Chloroprene rubber, production method thereof, chloroprene rubber composition and vulcanized product thereof
JP2009108195A (en) Chloroprene polymer latex composition for manufacturing vulcanized rubber and manufacturing method of the same
WO2014077236A1 (en) Xanthogen-modified chloroprene rubber and production method therefor
JP3858365B2 (en) Chloroprene rubber for chloroprene rubber composition excellent in dynamic fatigue resistance, chloroprene rubber composition, and automobile boot using the same
TWI537326B (en) Chloroprene rubber, chloroprene rubber composition and vulcanizate thereof, and molded article
WO2021079981A1 (en) Chloroprene copolymer latex and production method therefor
JP5549856B2 (en) Method for producing highly elastic sulfur-modified chloroprene rubber
WO2015159587A1 (en) Rubber latex, rubber latex composition, and molded article
JP7207095B2 (en) Chloroprene-based polymer latex and method for producing the same
JP2001342299A (en) Chloroprene-based rubber composition
JPH08100080A (en) Rubber composition comprising unsaturated nitrile/ conjugated diene copolymer and nonblack reinforcing filler
JP6891396B2 (en) Xanthate-modified chloroprene rubber and its manufacturing method
JP5813043B2 (en) Production method of chloroprene rubber
WO2021141012A1 (en) Composition containing chloroprene polymer, molded body and method for producing molded body
JP2001279022A (en) Chloroprene-based rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151