JP4278238B2 - Method for measuring pH of test solution - Google Patents

Method for measuring pH of test solution Download PDF

Info

Publication number
JP4278238B2
JP4278238B2 JP22258899A JP22258899A JP4278238B2 JP 4278238 B2 JP4278238 B2 JP 4278238B2 JP 22258899 A JP22258899 A JP 22258899A JP 22258899 A JP22258899 A JP 22258899A JP 4278238 B2 JP4278238 B2 JP 4278238B2
Authority
JP
Japan
Prior art keywords
meter
value
test solution
solution
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22258899A
Other languages
Japanese (ja)
Other versions
JP2001050930A (en
Inventor
省爾 池信
修一 波多江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP22258899A priority Critical patent/JP4278238B2/en
Publication of JP2001050930A publication Critical patent/JP2001050930A/en
Application granted granted Critical
Publication of JP4278238B2 publication Critical patent/JP4278238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、pH計を使用して各種液体の正確なpHを測定するための方法に関し、より詳細には複数のpH計を併用して特にpH計の表示に悪影響を与えやすい高温被検液のpHを正確に測定するための方法に関する。
【0002】
【従来の技術】
液の物性の1種であるpH(水素イオン指数)は、溶液中の水素イオン(H+ )濃度を指数で表した値であり、通常1リットルの溶液中の水素のグラムイオン数の逆数として表示される(pH=−log10 〔H+ 〕)。一般にpH=7の場合(〔H+ 〕=〔OH- 〕)溶液は中性で、pH<7の場合(〔H+ 〕>〔OH- 〕)溶液は酸性で、pH>7の場合(〔H+ 〕<〔OH- 〕)溶液はアルカリ性となる。水素イオン濃度〔H+ 〕はその後水素の相対活量aH+で置き換えられるようになり、従って現在ではpH=−log10 H+と定義されている。
このpHはその溶液の液性を表示する有用な物性値で、大まかな値で良い場合には赤又は青のリトマス試験紙が使用され、正確な値が必要な場合はpH計で測定される。
【0003】
pH計によるpH測定の基本原理は次の通りである。
まず水素電極と飽和塩化カリウムカロメル電極で次の電池を組む。Pt,H2(1atm)/H+ (aH+) //Cl- (飽和KCl)/ Hg2Cl2(s)/Hg。この電池の起電力はE=Eo −(RT/F)log (aH+a Cl- ) で与えられる(Eo は標準起電力、Tは絶対温度、aH+及びaCl- はそれぞれ水素イオンと塩素イオンの相対活量) 。飽和塩化カリウム溶液中の塩素イオンの活量aCl- は一定であるため、Eref =Eo −(RT/F)log a Cl- と仮定すると、pH=−log10 H+=(E−Eref )/0.0591となり、起電力測定によりpHが算出できる。
現在のpH計もこの原理に基づき、2本の電極のうちの1本を標準電極とし、他の電極(測定用電極)を被検液に浸漬して起電力を測定して、その起電力の値をpH値に換算してpH計に表示するようにしている。
【0004】
【発明が解決しようとする課題】
このようなpH計によるpH測定は幅広い用途に使用され、簡便な液性検出の一手段として重用されている。通常は前記測定用電極を被検液中に浸漬し、アナログ表示の場合もデジタル表示の場合も浸漬した瞬間にpH値が振れ、徐々に振れが小さくなって一定値を表示する。この表示値を通常は被検液のpH値として特定している。しかしながら本発明者の経験では、特に比較的不純物が多い被検液ではこのpH値は正確な値でないことが多く、又使用する測定用電極によっては被検液中への浸漬を続けるとpH値が変動することも観察されている。
従って使用する測定用電極、つまり使用するpH計によって同じ被検液を使用しても表示pH値に差異が生ずることになり、当然正確なpH測定ができないことになるが、従来はこの点に関し殆ど配慮されていない。
又pH値は温度に応じて変化するため、従来は例えばE1 =E0 +(RT/nF)lnaH+といった式で補正をして、正確なpH値を表示している。しかしながら、この式が成立するのは比較的低温のある範囲のみで、温度が高温、例えば50℃を越えると、各pH計によってその温度変化が異なり、その変化を予測することができなくなる。
従って室温付近で同じpHを表示する複数のpH計であっても温度が高温になると同じ被検液に浸漬しても、その表示間に差異が生じてしまう。
【0005】
又pH計は単なる一瞬間の溶液のpHを検出するだけでなく、継続的に溶液のpH検出用として使用されることも多い。例えば鉱石から電解製錬により特定の金属を採取する場合には、電解製錬の溶解工程における液のpH変動により金属採取の収率に大きな変動が生じるため、pHを継続して測定することが必要になる。
特に亜鉛の湿式製錬の溶解工程や沈澱工程のような高温でスラッジ等の不純物を含む被検液の場合、pH変動が大きくなる。これは第1に温度によるpH変動である。多くのpH計は温度変動によるpH値変化を修正する機能を有するが、前述の通り高温の液では予測できないpH値の変動が生じ、特に長時間被検液に浸漬して測定を継続すると温度による影響が無視できなくなるほど大きくなり、測定値が真の値からずれてくる。
更に前記スラッジ等が測定用電極表面に付着すると、正確な起電力が測定できなくなり、従って正確なpH値も測定できないことになる。
本発明はこのようなpH計による被検液のpH値の測定における従来の不正確性を排除し、特に溶解液等のpH計の表示に影響を与えやすい被検液の場合にも正確にpH値を測定できる方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、pH値が既知の標準液により表示pH値の校正を行った複数のpH計の各pH測定用電極を被検液中に浸漬して所定の誤差範囲内に維持される2以上のpH計を検定し、該2以上のpH計の中の1台のpH計を被検液pH計測定用として該pH計のpH測定用電極を被検液に浸漬して該被検液のpHを継続的に測定し、前記被検液pH測定用以外の検定されたpH計を参照用pH計とし、該pH計のpH測定用電極を前記被検液中に間欠的に浸漬して前記被検液のpHを測定して、継続測定しているpH値と比較することにより、前記被検液のpHが正確に測定できているか確認することを特徴とする被検液のpH測定方法であり、pH値が既知の標準液による表示pH値の校正は行わなくて良い場合もある。
【0007】
以下本発明を詳細に説明する。
本発明では、第1に複数のpH計を使用しかつ使用前に各pH計の校正を行う。前述した通り、校正しないpH計を使用して被検液のpH測定を行うと、pH計自体の有する個体差等の原因で正確なpH値表示ができないことが多い。従って本発明ではpH値が既知の標準液を使用してpH計の校正を行う。この校正法自体は特に制限されないが、常温付近で行い、pH計の有する誤差を可能な限り小さくして常温において正確なpH値が表示できるようにする。
【0008】
例えば既知pH値が6.86である標準液にpH計の測定用電極を浸漬し数分攪拌し表示値が安定した段階でpH値を読み取り、その表示値が6.56であるとするとその表示値を+0.30上方修正して6.86にする。この修正はpH7付近の修正であって、ある範囲内で正確な表示値を得るためには、他のpHにおける修正も必要になる。従って例えば既知pH値が4.01である他の標準液を準備し、同じpH計の測定用電極をこの標準液に浸漬し、同様に数分攪拌し表示値が安定した段階でpH値を読み取り、その表示値が4.20であるとするとその表示値を−0.19下方修正して4.01とする。
【0009】
この2回の操作でpH7とpH4の間の範囲でのpH修正が完了するが、pH4でのpH計の表示値の修正が、既に修正したpH7における表示値に影響を及ぼすため、pH4の修正時にはpH7の表示値が僅かではあるが正確な値から外れることになる。従ってpH4で修正したpH計の測定用電極を再度pH6.86の標準液に浸漬する。この標準液では一度pH修正を行っているため、pH計の表示は前回のpH6.56より標準液のpHである6.86に近い値になっており、該pH計は例えばpH6.74を表示する。この場合にはその表示値を+0.12上方修正して6.86とする。
【0010】
このpH7付近の修正が前回のpH4付近の修正に影響を及ぼしているため、再度pH計の測定用電極を既知pH4.01の前記標準液に浸漬してpH4付近の修正を行う。これによりpH4付近の表示pH値が正確な値に修正されるとともに、pH7付近の表示pH値がpH6.86の標準液のpH値に更に近づく。
このサイクルを数回繰り返すことにより、pH4とpH7における測定pH値が標準液のpH値とほぼ一致し、pH計の校正が完了する。なお本発明では複数のpH計を使用するため、各pH計についてこの校正操作を行うようにする。
【0011】
次いで校正した複数の好ましくは4台以上のpH計の同時検定を行う。この検定はpH測定の対象である被検液に浸漬してpH値(又は起電力値)を測定する。この検定は、常温の標準液に対しては正確なpH表示を行うpH計でも高温の又はスラッジ等の不純物を含む被検液中では正確な表示を行えない場合があり、そのようなpH計を排除するために行うものである。
前述の校正操作が終了した例えば5台のpH計の測定用電極を同時に亜鉛の電解製錬時の溶解槽内の溶解液に同時に浸漬する。それぞれのpH計の表示値が例えば2.02、1.99、2.78、2.00、1.98であったとすると、2.78を表示したpH計のみを排除し、他の4台のpH計を合格品とし検定済とする。この合格品は、被検液測定時と同じ条件でほぼ正確なpH値を表示できるpH計として保証されたことになる。
【0012】
この場合の許容表示範囲の設定には特別な法則はなく、対象とする被検液、必要とするpH精度等に応じて設定すれば良く、例えば表示値の平均値の標準偏差σの範囲を求め、該平均値より±σを越える表示値のpH計を排除するようしても良い。なお引き続く被検液のpH測定には少なくとも2台のpH計が必要であるため、合格品が2台未満の場合は合格品が2台以上になるまで繰り返して検定操作を行う。
次いでこのような検定合格品のpH計を使用して被検液の継続的なpH測定を行う。ここでは亜鉛の電解製錬時の溶解液を被検液とする場合を説明する。
【0013】
鉱石からの亜鉛製錬の複数の工程のうち溶解工程や沈澱工程では液温が時には約90℃にも及ぶ溶解槽や沈澱槽中で行われ、溶解液中には鉱石に含有されるスラッジが多量に含まれる。この溶解工程や沈澱工程等の湿式工程では最適pHがあり、通常は±0.05、好ましくは±0.02のpH範囲内でpH値が制御されることが望ましい。この液に温度補正を行ったpH計の測定用電極を浸漬してpH値を測定すると、液性に応じたpH値が表示され、数分以内に安定する。その後はそのまま測定用電極を浸漬しておくと、溶解液のpH値が連続的に表示される。
この場合のpH測定は高温であること及びスラッジを多量に含むという点で常温溶液のpH測定と異なっている。温度補正がしてあるpH計を使用しても完全に温度変化に対応できる訳でなく、特に液が高温であると温度補正式の使用は殆ど意味がなくなるほどにpH値の変動が激しくなる。更に測定用電極表面にスラッジが付着すると正確なpH値の測定ができなくなる。仮にスラッジが付着しても正確なpH値が測定できればpH値の変動に対して薬剤の添加等により対応して適切なpH範囲に液性を保持することができる。
【0014】
本発明では、このような場合に、前記測定用電極に加えて他の参照用pH計の測定用電極を同じ溶解液(被検液)中に浸漬する。この参照用pH計は前述した検定合格品から選択され、検定に合格しているため、そしてスラッジ付着等によるpH値への悪影響がないため(僅かな時間だけ被検液に浸漬するため)、その表示は正確である。従って該参照用pH計のpH表示と、pH測定用pH計の表示が一致すれば後者の表示は正確であることになる。
参照用pH計の測定用電極の浸漬は間欠的に行い、1回の浸漬時間もなるべく短くして被検液による悪影響がpH計に及ばないようにする。
この参照用pH計の測定用電極の浸漬を間欠的に、例えば1時間に1回1〜5分間行うと、1時間ごとに被検液のpHがpH測定用pH計により正確に測定できているか確認することができる。正確に測定できている場合でpH値が所望範囲にない場合は酸やアルカリを添加してpH値を所望範囲に戻してpH測定を継続し、正確に測定できている場合でpH値が所望範囲にある場合はそのままpH測定を継続すれば良い。
【0015】
pH測定用pH計と参照用pH計のpH表示が異なる場合は、pH測定用pH計の表示が誤りであり、被検液のpH測定を継続するためには、新たなpH計と交換する必要がある。この新たなpH計は前述した検定合格品を使用することが望ましく、交換後は同様にして参照用pH計によるpH表示と比較して測定用pH計のpH表示が正確であることを確認しながら、湿式亜鉛製錬における溶解等の所望の操作を進行させることができる。
前述の検定不合格品やこの使用中に正確にpHを表示できなくなったpH計は、電極を洗浄して元の状態に戻し、再度校正及び検定を行って合格品をpH測定用として再使用できる。元に戻すための電極洗浄は、例えば亜鉛製錬の各工程に使用するpH計の場合、1N塩酸で4時間以上酸洗し、その後更に4時間以上水洗することが望ましい。
【0016】
本発明方法によるpH測定の対象となる被検液は高温及び/又は多量の不純物を含む液で継続的なpH測定が必要なものであり、例えば亜鉛、コバルト、銅等の金属の湿式製錬やマグネタイトの合成等の各工程における液、工業廃水などがある。
pH測定が常温で不純物を殆ど含まない被検液に対して行う場合は本発明方法を使用する必要はなく、校正のみを行った測定用電極を有するpH計を使用すれば良い。製錬時の溶解液等でも瞬間的なpH測定のみの場合は同様に校正のみを行った測定用電極を有するpH計を使用すれば十分である。
以上の説明では本発明方法では測定用電極の校正及び検定を行うようにしたが、例えば既に十分正確なpH表示を行うようにしたpH計を使用する場合等には測定用電極の校正を行わなくても良いことがある。
【0017】
【発明の実施の形態】
以下に本発明に係る被検液のpH測定方法に係る実施例を記載するが,該実施例は本発明を限定するものではない。
【0018】
実施例1
株式会社堀場製作所製のpHメーターを5台準備した。
次いで市販のpH標準液(pH=6.86、株式会社堀場製作所製)を容量1リットルのビーカーに入れ、ホルダーにセットした前記pH計の各測定用電極を前記ビーカー中のpH標準液に浸漬し、室温下で5分間攪拌した。各pH計の表示はそれぞれ6.44、6.56、6.55、6.66及び6.60であった。それぞれのpH計の表示をpH=6.86になるように修正した。
【0019】
次いで各pH計の測定用電極を、容量1リットルのビーカーに入れた市販のpH標準液(pH=4.01、株式会社堀場製作所製)中に浸漬し、室温下で5分間攪拌した。各pH計の表示はそれぞれ4.10、3.99、3.96、4.01及び4.08であった。それぞれのpH計の表示をpH=4.01になるように修正した。
次いで各pH計の測定用電極を、容量1リットルのビーカーに入れた市販のpH標準液(pH=6.86)中に浸漬し、室温下で5分間攪拌した。各pH計の表示はそれぞれ6.68、6.73、6.73、6.82及び6.80であった。それぞれのpH計の表示をpH=6.86になるように修正した。
次いで各pH計の測定用電極を、容量1リットルのビーカーに入れた市販のpH標準液(pH=4.01)中に浸漬し、室温下で5分間攪拌した。各pH計の表示はそれぞれ4.04、4.00、3.98、4.01及び4.04であった。それぞれのpH計の表示をpH=4.01になるように修正した。
【0020】
次いで各pH計の測定用電極を、容量1リットルのビーカーに入れた市販のpH標準液(pH=6.86)中に浸漬し、室温下で5分間攪拌した。各pH計の表示はそれぞれ6.79、6.83、6.86、6.85及び6.83であった。それぞれのpH計の表示をpH=6.86になるように修正した。
次いで各pH計の測定用電極を、容量1リットルのビーカーに入れた市販のpH標準液(pH=4.01)中に浸漬し、室温下で5分間攪拌した。各pH計の表示はそれぞれ4.02、4.01、4.01、4.02及び4.01であった。それぞれのpH計の表示をpH=4.01になるように修正した。
次いで各pH計の測定用電極を、容量1リットルのビーカーに入れた市販のpH標準液(pH=6.86)中に浸漬し、室温下で5分間攪拌した。各pH計の表示はそれぞれ6.85、6.86、6.86、6.85及び6.85であった。
【0021】
実施例2
実施例1でpH校正を行った5台のpH計を、亜鉛製錬溶解槽内の液温90℃の試験用溶解液に浸漬し、5分間浸漬した後のpH表示は次の通りであった。2.02、2.01、2.01、2.08及び2.02。
このうちpH表示が2.08であるpH計は誤差が標準偏差σを越えるため排除し、他の4台のpH計を検定合格品とした。この排除したpH計はその測定用電極を1Nの塩酸に5時間浸漬しその後水で5時間洗浄した後に、実施例1の校正操作で再使用した。
4台の合格品のうちの1台をpH測定用pH計とし、他の3台の中の1台を参照用pH計とした。
このpH測定用pH計の測定用電極を前記亜鉛製錬溶解槽の試験用溶解液に浸漬し、かつランダムに硫酸添加を行って、pHが不規則に変化するようした。この試験用溶解液のpHを継続して測定し、かつ1時間ごとに参照用pH計の測定用電極を5分間同じ溶解液に浸漬してpHを測定した。pH測定用pH計による30分ごとのpH表示値、及び参照用pH計による1時間ごとのpH測定値を表1に示した。
【0022】
【表1】

Figure 0004278238
【0023】
表1から、参照用pH計により測定されるpH値と測定用pH計により測定されるpH値とは、開始後少なくとも10時間は±0.02の誤差範囲に維持されることが分かった。従って、測定用pH計を高温かつ汚染された亜鉛製錬用溶解液中に浸漬してpHを測定する場合でも参照用pH計を併用することにより正確なpH値が表示されると推測できる。
【0024】
【発明の効果】
本発明は、pH値が既知の標準液により表示pH値の校正を行った複数のpH計の各pH測定用電極を被検液中に浸漬して所定の誤差範囲内に維持される2以上のpH計を検定し、該2以上のpH計の中の1台のpH計を被検液pH計測定用として該pH計のpH測定用電極を被検液に浸漬して該被検液のpHを継続的に測定し、前記被検液pH測定用以外の検定されたpH計を参照用pH計とし、該pH計のpH測定用電極を前記被検液中に間欠的に浸漬して前記被検液のpHを測定して、継続測定しているpH値と比較することにより、前記被検液のpHが正確に測定できているか確認することを特徴とする被検液のpH測定方法(請求項1)である。
【0025】
本発明に従ってpH計の校正及び検定を行い、検定合格品である1台のpH計をpH測定用とし、他の1台を参照用として両者のpH表示を比較すると、前者のpH表示が被検液の影響によらず正確なpH表示が行われていること、あるいは影響を受けて正確なpH表示が行われていないことが的確に把握できる。
本発明方法は、特に高温被検液や粘度の高い不純物を多く含む被検液、例えば高温のスラッジ含有液(請求項2)である亜鉛製錬溶解液の継続的なpH測定に好都合である。
【0026】
本発明方法は、前述した校正及び検定のうち校正は行わず検定のみによりpH測定を行っても良い(請求項3)。この場合にも本発明方法の校正に相当する操作を行うことが望ましいが、該操作はpH値が既知の標準液によるpH計の表示pH値の校正に限定されない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the accurate pH of various liquids using a pH meter, and more specifically, a high-temperature test solution that tends to adversely affect the display of a pH meter in combination with a plurality of pH meters. The present invention relates to a method for accurately measuring the pH of water.
[0002]
[Prior art]
The pH (hydrogen ion index), which is one of the physical properties of the liquid, is a value representing the hydrogen ion (H + ) concentration in the solution as an index, and is usually the reciprocal of the number of gram ions of hydrogen in a 1 liter solution. Is displayed (pH = −log 10 [H + ]). In general, when pH = 7 ([H + ] = [OH ]), the solution is neutral, and when pH <7 ([H + ]> [OH ]), the solution is acidic and when pH> 7 ( [H + ] <[OH ]) solution becomes alkaline. The hydrogen ion concentration [H + ] is then replaced by the relative activity a H + of hydrogen, and is therefore currently defined as pH = −log 10 a H + .
This pH is a useful physical property value indicating the liquid property of the solution. When a rough value is acceptable, red or blue litmus paper is used, and when an accurate value is required, it is measured with a pH meter.
[0003]
The basic principle of pH measurement with a pH meter is as follows.
First, the following battery is assembled with a hydrogen electrode and a saturated potassium chloride calomel electrode. Pt, H 2 (1atm) / H + (a H + ) // Cl (saturated KCl) / Hg 2 Cl 2 (s) / Hg. The electromotive force of this battery is given by E = E o − (RT / F) log (a H + a Cl− ) (E o is the standard electromotive force, T is the absolute temperature, a H + and a Cl− are hydrogen ions, respectively. And relative activity of chloride ions). Since the activity a Cl− of the chlorine ion in the saturated potassium chloride solution is constant, assuming that E ref = E o − (RT / F) log a Cl− , pH = −log 10 a H + = (E− E ref ) /0.0591, and the pH can be calculated by measuring the electromotive force.
Based on this principle, the current pH meter also uses one of the two electrodes as a standard electrode, and measures the electromotive force by immersing the other electrode (measurement electrode) in the test solution. Is converted into a pH value and displayed on the pH meter.
[0004]
[Problems to be solved by the invention]
Such pH measurement using a pH meter is used in a wide range of applications and is used as a simple means for detecting liquidity. Usually, the measurement electrode is immersed in a test solution, and in both analog display and digital display, the pH value fluctuates at the moment of immersion, and the fluctuation gradually decreases and a constant value is displayed. This display value is normally specified as the pH value of the test solution. However, according to the inventor's experience, this pH value is often not an accurate value particularly in a test solution containing a relatively large amount of impurities, and depending on the measurement electrode used, the pH value may be increased if immersion in the test solution is continued. It has also been observed that fluctuates.
Therefore, even if the same test solution is used depending on the measurement electrode used, that is, the pH meter used, the displayed pH value will be different, and naturally, accurate pH measurement cannot be performed. Little consideration is given.
In addition, since the pH value changes according to the temperature, conventionally, an accurate pH value is displayed by correcting with an equation such as E 1 = E 0 + (RT / nF) lna H + . However, this equation holds only in a relatively low temperature range. When the temperature exceeds a high temperature, for example, 50 ° C., the temperature change differs depending on each pH meter, and the change cannot be predicted.
Therefore, even if it is a plurality of pH meters that display the same pH near room temperature, even if they are immersed in the same test solution when the temperature becomes high, a difference occurs between the displays.
[0005]
In addition, the pH meter is not only used to detect a momentary pH of the solution, but is often used continuously for detecting the pH of the solution. For example, when a specific metal is collected from ore by electrolytic smelting, the pH of the metal is greatly changed due to the pH fluctuation of the liquid in the dissolution process of electrolytic smelting. I need it.
In particular, in the case of a test solution containing impurities such as sludge at a high temperature, such as a dissolution process or a precipitation process in the hydrometallurgical smelting process, the pH fluctuation becomes large. This is primarily a pH variation with temperature. Many pH meters have a function to correct changes in pH value due to temperature fluctuations. However, as described above, fluctuations in pH value that cannot be predicted with high-temperature liquids occur, and the temperature is particularly high when immersed in a test liquid for a long period of time. The effect of this becomes so large that it cannot be ignored, and the measured value deviates from the true value.
Further, when the sludge or the like adheres to the surface of the measurement electrode, it is impossible to measure an accurate electromotive force, and therefore an accurate pH value cannot be measured.
The present invention eliminates the conventional inaccuracy in the measurement of the pH value of the test solution by such a pH meter, and particularly accurately in the case of a test solution that tends to affect the display of the pH meter such as a solution. It aims at providing the method which can measure pH value.
[0006]
[Means for Solving the Problems]
In the present invention, the pH measurement electrodes of a plurality of pH meters calibrated with a standard solution having a known pH value are immersed in the test solution and maintained within a predetermined error range. The pH meter is calibrated, and one of the two or more pH meters is used for measuring the test solution pH meter, and the pH measuring electrode of the pH meter is immersed in the test solution. The pH of the pH meter is continuously measured, and the pH meter that has been tested other than for measuring the pH of the test solution is used as a reference pH meter, and the pH measurement electrode of the pH meter is intermittently immersed in the test solution. Measuring the pH of the test solution and comparing it with the continuously measured pH value to confirm whether the pH of the test solution can be accurately measured. This is a measurement method, and there is a case where calibration of the displayed pH value with a standard solution with a known pH value may not be performed.
[0007]
The present invention will be described in detail below.
In the present invention, first, a plurality of pH meters are used and each pH meter is calibrated before use. As described above, when the pH of a test solution is measured using a pH meter that is not calibrated, it is often impossible to display an accurate pH value due to individual differences of the pH meter itself. Therefore, in the present invention, the pH meter is calibrated using a standard solution having a known pH value. The calibration method itself is not particularly limited, but is performed near room temperature, and an error of the pH meter is made as small as possible so that an accurate pH value can be displayed at room temperature.
[0008]
For example, the measurement electrode of a pH meter is immersed in a standard solution having a known pH value of 6.86, stirred for several minutes, and the pH value is read when the displayed value is stable. If the displayed value is 6.56, the displayed value is +0. .30 revised upward to 6.86. This correction is a correction in the vicinity of pH 7. In order to obtain an accurate display value within a certain range, correction at another pH is also required. Therefore, for example, prepare another standard solution having a known pH value of 4.01, immerse the measurement electrode of the same pH meter in this standard solution, stir for several minutes in the same manner, read the pH value when the displayed value is stable, If the display value is 4.20, the display value is revised downward by -0.19 to 4.01.
[0009]
Although the pH correction in the range between pH 7 and pH 4 is completed by these two operations, the correction of the pH meter display value at pH 4 affects the already corrected pH 7 display value. Sometimes the displayed value of pH 7 is slightly but out of the correct value. Therefore, the measurement electrode of the pH meter corrected with pH 4 is immersed again in the standard solution with pH 6.86. Since this standard solution has been pH corrected once, the pH meter display is closer to the standard solution pH 6.86 than the previous pH 6.56, and the pH meter displays, for example, pH 6.74. . In this case, the displayed value is revised upward by +0.12 to 6.86.
[0010]
Since the correction near pH 7 affects the previous correction near pH 4, the pH measuring electrode is again immersed in the standard solution having a known pH of 4.01 to correct the vicinity of pH 4. As a result, the displayed pH value near pH 4 is corrected to an accurate value, and the displayed pH value near pH 7 further approaches the pH value of the standard solution at pH 6.86.
By repeating this cycle several times, the measured pH values at pH 4 and pH 7 almost coincide with the pH value of the standard solution, and the calibration of the pH meter is completed. In the present invention, since a plurality of pH meters are used, this calibration operation is performed for each pH meter.
[0011]
Subsequently, a plurality of calibrated, preferably four or more pH meters are simultaneously tested. In this test, a pH value (or an electromotive force value) is measured by immersing in a test solution which is an object of pH measurement. In this test, even a pH meter that performs accurate pH display for a standard solution at room temperature may not perform accurate display in a test solution that is hot or contains impurities such as sludge. Is to eliminate.
For example, the measurement electrodes of five pH meters after the above-described calibration operation are simultaneously immersed in the dissolution solution in the dissolution tank at the time of electrolytic smelting of zinc. If the displayed value of each pH meter is, for example, 2.02, 1.99, 2.78, 2.00, 1.98, only the pH meter displaying 2.78 is excluded, and the other four pH meters are passed and are verified. This acceptable product is guaranteed as a pH meter that can display a substantially accurate pH value under the same conditions as when measuring the test solution.
[0012]
There is no special rule for setting the allowable display range in this case, and it may be set according to the target test solution, the required pH accuracy, etc.For example, the range of the standard deviation σ of the average value of the display values The pH meter having a displayed value exceeding ± σ from the average value may be excluded. In addition, since at least two pH meters are required for the subsequent pH measurement of the test solution, if the number of acceptable products is less than two, the verification operation is repeated until there are two or more acceptable products.
Subsequently, continuous pH measurement of the test solution is performed using such a pH meter that has passed the test. Here, the case where the solution at the time of electrolytic refining of zinc is used as a test solution will be described.
[0013]
Among the multiple processes of zinc smelting from ore, the dissolution process and the precipitation process are performed in dissolution tanks and precipitation tanks where the liquid temperature sometimes reaches approximately 90 ° C, and sludge contained in the ore is contained in the dissolution liquid. Contained in large quantities. In the wet process such as the dissolution process and the precipitation process, there is an optimum pH, and it is desirable that the pH value is controlled within a pH range of ± 0.05, preferably ± 0.02. When the pH value is measured by immersing the measurement electrode of the pH meter whose temperature has been corrected in this liquid, the pH value corresponding to the liquid property is displayed and stabilized within a few minutes. Thereafter, when the measurement electrode is immersed as it is, the pH value of the solution is continuously displayed.
The pH measurement in this case is different from the pH measurement of a room temperature solution in that it is at a high temperature and contains a large amount of sludge. Even if a pH meter with a temperature correction is used, it is not possible to completely cope with the temperature change, and especially when the liquid is at a high temperature, the use of the temperature correction formula makes the fluctuation of the pH value so that it becomes almost meaningless. . Furthermore, if sludge adheres to the measurement electrode surface, it becomes impossible to accurately measure the pH value. Even if sludge adheres, if an accurate pH value can be measured, the liquidity can be maintained in an appropriate pH range corresponding to the fluctuation of the pH value by adding a chemical or the like.
[0014]
In the present invention, in such a case, in addition to the measurement electrode, the measurement electrode of another reference pH meter is immersed in the same solution (test solution). This reference pH meter is selected from the above-mentioned certified products, and has passed the test, and since there is no adverse effect on the pH value due to sludge adhesion etc. (because it is immersed in the test solution for a short time), The display is accurate. Therefore, if the pH display of the reference pH meter matches the display of the pH measuring pH meter, the latter display is accurate.
The measurement electrode of the reference pH meter is soaked intermittently, so that one soaking time is as short as possible so that the adverse effect of the test solution does not reach the pH meter.
If the electrode for measurement of this reference pH meter is immersed intermittently, for example, once every hour for 1 to 5 minutes, the pH of the test solution can be accurately measured every hour by the pH meter for pH measurement. Can be confirmed. If the pH value is not within the desired range when it can be measured accurately, acid or alkali is added to return the pH value to the desired range, and the pH measurement is continued. If it is within the range, the pH measurement may be continued as it is.
[0015]
If the pH display for the pH measurement and the reference pH meter are different, the display of the pH measurement pH meter is incorrect. To continue measuring the pH of the test solution, replace it with a new pH meter. There is a need. It is desirable to use the new pH meter that has passed the above-mentioned certification. After replacement, it is confirmed that the pH value displayed on the measurement pH meter is accurate compared to the pH value displayed on the reference pH meter. However, desired operations such as dissolution in wet zinc smelting can be advanced.
For products that have failed the above-mentioned certification or pH meter that cannot display the pH accurately during this use, wash the electrode, return it to its original state, perform calibration and verification again, and reuse the accepted product for pH measurement. it can. In the case of a pH meter used for each step of zinc smelting, for example, the electrode cleaning for returning to the original state is preferably performed with 1N hydrochloric acid for 4 hours or more, and then for 4 hours or more.
[0016]
The test solution to be subjected to pH measurement by the method of the present invention is a high temperature and / or liquid containing a large amount of impurities and requires continuous pH measurement. For example, hydrometallurgy of metals such as zinc, cobalt and copper And liquid in each process such as synthesis of magnetite and industrial wastewater.
When the pH measurement is performed on a test solution containing almost no impurities at room temperature, it is not necessary to use the method of the present invention, and a pH meter having a measurement electrode that has only been calibrated may be used. In the case of only a momentary pH measurement even in a solution at the time of smelting, it is sufficient to use a pH meter having a measurement electrode that is similarly calibrated.
In the above description, in the method of the present invention, the measurement electrode is calibrated and verified. However, for example, when using a pH meter that has already made sufficiently accurate pH display, the measurement electrode is calibrated. There may be no need.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Although the Example which concerns on the pH measuring method of the test liquid which concerns on this invention below is described, this Example does not limit this invention.
[0018]
Example 1
Five pH meters manufactured by HORIBA, Ltd. were prepared.
Next, a commercially available pH standard solution (pH = 6.86, manufactured by HORIBA, Ltd.) is placed in a beaker having a capacity of 1 liter, and each measurement electrode of the pH meter set in a holder is immersed in the pH standard solution in the beaker. Stir at room temperature for 5 minutes. The indication of each pH meter was 6.44, 6.56, 6.55, 6.66 and 6.60, respectively. The display of each pH meter was corrected to be pH = 6.86.
[0019]
Subsequently, the measurement electrode of each pH meter was immersed in a commercially available pH standard solution (pH = 4.01, manufactured by Horiba, Ltd.) placed in a beaker having a capacity of 1 liter, and stirred at room temperature for 5 minutes. The indication of each pH meter was 4.10, 3.99, 3.96, 4.01 and 4.08, respectively. The display of each pH meter was corrected to be pH = 4.01.
Next, the measurement electrode of each pH meter was immersed in a commercially available pH standard solution (pH = 6.86) in a beaker having a capacity of 1 liter and stirred at room temperature for 5 minutes. The indication of each pH meter was 6.68, 6.73, 6.73, 6.82 and 6.80, respectively. The display of each pH meter was corrected to be pH = 6.86.
Next, the measurement electrode of each pH meter was immersed in a commercially available pH standard solution (pH = 4.01) in a beaker having a capacity of 1 liter and stirred at room temperature for 5 minutes. The indication of each pH meter was 4.04, 4.00, 3.98, 4.01 and 4.04, respectively. The display of each pH meter was corrected to be pH = 4.01.
[0020]
Next, the measurement electrode of each pH meter was immersed in a commercially available pH standard solution (pH = 6.86) placed in a beaker having a capacity of 1 liter, and stirred at room temperature for 5 minutes. The indication of each pH meter was 6.79, 6.83, 6.86, 6.85 and 6.83, respectively. The display of each pH meter was corrected to be pH = 6.86.
Next, the measurement electrode of each pH meter was immersed in a commercially available pH standard solution (pH = 4.01) in a beaker having a capacity of 1 liter and stirred at room temperature for 5 minutes. The display of each pH meter was 4.02, 4.01, 4.01, 4.02 and 4.01, respectively. The display of each pH meter was corrected to be pH = 4.01.
Next, the measurement electrode of each pH meter was immersed in a commercially available pH standard solution (pH = 6.86) in a beaker having a capacity of 1 liter and stirred at room temperature for 5 minutes. The indication of each pH meter was 6.85, 6.86, 6.86, 6.85 and 6.85, respectively.
[0021]
Example 2
The five pH meters calibrated in Example 1 were immersed in a test solution at a liquid temperature of 90 ° C. in a zinc smelting dissolution tank, and the pH display after immersion for 5 minutes was as follows. It was. 2.02, 2.01, 2.01, 2.08 and 2.02.
Among them, the pH meter with a pH indication of 2.08 was excluded because the error exceeded the standard deviation σ, and the other four pH meters were regarded as certified products. The excluded pH meter was reused in the calibration operation of Example 1 after the measurement electrode was immersed in 1N hydrochloric acid for 5 hours and then washed with water for 5 hours.
One of the four acceptable products was a pH meter for pH measurement, and one of the other three was a pH meter for reference.
The measurement electrode of the pH meter for pH measurement was immersed in the test solution of the zinc smelting dissolution tank, and sulfuric acid was randomly added to change the pH irregularly. The pH of the test solution was continuously measured, and the measurement electrode of the reference pH meter was immersed in the same solution for 5 minutes every hour to measure the pH. Table 1 shows the pH display value every 30 minutes by the pH meter for pH measurement and the pH measurement value every hour by the reference pH meter.
[0022]
[Table 1]
Figure 0004278238
[0023]
From Table 1, it was found that the pH value measured by the reference pH meter and the pH value measured by the measurement pH meter were maintained within an error range of ± 0.02 for at least 10 hours after the start. Therefore, even when the pH meter for measurement is immersed in a hot and contaminated zinc smelting solution to measure pH, it can be assumed that an accurate pH value is displayed by using the reference pH meter in combination.
[0024]
【The invention's effect】
In the present invention, the pH measurement electrodes of a plurality of pH meters calibrated with a standard solution having a known pH value are immersed in the test solution and maintained within a predetermined error range. The pH meter is calibrated, and one of the two or more pH meters is used for measuring the test solution pH meter, and the pH measuring electrode of the pH meter is immersed in the test solution. The pH of the pH meter is continuously measured, and the pH meter that has been tested other than for measuring the pH of the test solution is used as a reference pH meter, and the pH measurement electrode of the pH meter is intermittently immersed in the test solution. Measuring the pH of the test solution and comparing it with the continuously measured pH value to confirm whether the pH of the test solution can be accurately measured. This is a measurement method (claim 1).
[0025]
When the pH meter is calibrated and verified according to the present invention, and one pH meter that is a certified product is used for pH measurement and the other one is used for reference, the pH display of the two is compared. It is possible to accurately grasp that accurate pH display is performed regardless of the influence of the test solution, or that accurate pH display is not performed due to the influence.
The method of the present invention is particularly advantageous for continuous pH measurement of a high-temperature test solution or a test solution containing a large amount of high-viscosity impurities, for example, a zinc smelting solution that is a high-temperature sludge-containing solution (Claim 2). .
[0026]
In the method of the present invention, the pH may be measured only by the calibration without performing calibration among the calibrations and tests described above (Claim 3). In this case as well, it is desirable to perform an operation corresponding to the calibration of the method of the present invention, but the operation is not limited to the calibration of the displayed pH value of the pH meter with a standard solution having a known pH value.

Claims (3)

pH値が既知の標準液により表示pH値の校正を行った複数のpH計の各pH測定用電極を被検液中に浸漬して所定の誤差範囲内に維持される2以上のpH計を検定し、該2以上のpH計の中の1台のpH計を被検液pH計測定用として該pH計のpH測定用電極を被検液に浸漬して該被検液のpHを継続的に測定し、前記被検液pH測定用以外の検定されたpH計を参照用pH計とし、該pH計のpH測定用電極を前記被検液中に間欠的に浸漬して前記被検液のpHを測定して、継続測定しているpH値と比較することにより、前記被検液のpHが正確に測定できているか確認することを特徴とする被検液のpH測定方法。Two or more pH meters that are maintained within a predetermined error range by immersing each pH measurement electrode of a plurality of pH meters that have been calibrated with a standard solution having a known pH value into the test solution. The pH of the test solution is maintained by immersing the pH measurement electrode of the pH meter in the test solution for measuring the pH solution of one of the two or more pH meters. The test pH meter other than for the test solution pH measurement is used as a reference pH meter, and the pH measurement electrode of the pH meter is intermittently immersed in the test solution. A method for measuring the pH of a test liquid, comprising: measuring the pH of the liquid and comparing it with a continuously measured pH value to determine whether the pH of the test liquid is accurately measured. 被検液が高温のスラッジ含有液である請求項1に記載の被検液のpH測定方法。   The method for measuring the pH of a test liquid according to claim 1, wherein the test liquid is a high-temperature sludge-containing liquid. 複数のpH計の各pH測定用電極を被検液中に浸漬して所定の誤差範囲内に維持される2以上のpH計を検定し、該2以上のpH計の中の1台のpH計を被検液pH計測定用として該pH計のpH測定用電極を被検液に浸漬して該被検液のpHを継続的に測定し、前記被検液pH測定用以外の検定されたpH計を参照用pH計とし、該pH計のpH測定用電極を前記被検液中に間欠的に浸漬して前記被検液のpHを測定して、継続測定しているpH値と比較することにより、前記被検液のpHが正確に測定できているか確認することを特徴とする被検液のpH測定方法。Each pH measurement electrode of a plurality of pH meters is immersed in a test solution to test two or more pH meters maintained within a predetermined error range, and one pH in the two or more pH meters is tested. Measuring the pH of the test solution by immersing the pH measurement electrode of the pH meter in the test solution and continuously measuring the pH of the test solution. The pH meter is used as a reference pH meter, and the pH value of the test solution is measured by immersing the pH measurement electrode of the pH meter intermittently in the test solution; A method for measuring the pH of a test liquid, characterized by confirming whether the pH of the test liquid can be accurately measured by comparison.
JP22258899A 1999-08-05 1999-08-05 Method for measuring pH of test solution Expired - Fee Related JP4278238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22258899A JP4278238B2 (en) 1999-08-05 1999-08-05 Method for measuring pH of test solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22258899A JP4278238B2 (en) 1999-08-05 1999-08-05 Method for measuring pH of test solution

Publications (2)

Publication Number Publication Date
JP2001050930A JP2001050930A (en) 2001-02-23
JP4278238B2 true JP4278238B2 (en) 2009-06-10

Family

ID=16784833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22258899A Expired - Fee Related JP4278238B2 (en) 1999-08-05 1999-08-05 Method for measuring pH of test solution

Country Status (1)

Country Link
JP (1) JP4278238B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPS059002A0 (en) * 2002-02-15 2002-03-14 Airservices Australia Determination of solution concentration
JP5024149B2 (en) * 2008-03-26 2012-09-12 Jfeスチール株式会社 Operation method of pH meter for water quality monitoring
CN113295753A (en) * 2021-04-29 2021-08-24 山东非金属材料研究所 Double FIR (finite impulse response) measurement method for voltage error of pH meter

Also Published As

Publication number Publication date
JP2001050930A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
Legin et al. Analytical applications of chalcogenide glass chemical sensors in environmental monitoring and process control
CA1166187A (en) Method for determining current efficiency in galvanic baths
CN108956509A (en) A kind of reagent and its detection method of quick measurement high-chloride wastewater COD
JPS62273444A (en) Method of analyzing additive concentration
US4217189A (en) Method and apparatus for control of electrowinning of zinc
JP4278238B2 (en) Method for measuring pH of test solution
CN113447556B (en) Method for analyzing quality of electrolyte in copper electrolytic refining
Tesařová et al. Potentiometric stripping analysis at antimony film electrodes
US20070102301A1 (en) One-point recalibration method for reducing error in concentration measurements for an electrolytic solution
JP5223783B2 (en) Method for predicting the amount of corrosion of metallic materials in contact with different metals
Asakai et al. Evaluation of certified reference materials for oxidation–reduction titration by precise coulometric titration and volumetric analysis
Bovie A direct reading potentiometer for measuring and recording both the actual and the total reaction of solutions
Ma Determination of the purity of potassium iodate by constant-current coulometry
US2716596A (en) Determination of tin on tinplate
Karimi Shervedani et al. Electrochemical characterization and application of Ni-RuO 2 as a pH sensor for determination of petroleum oil acid number
WO2023010806A1 (en) Method for measuring alkalinity of water sample
JPH01313754A (en) Method of measuring concentration of chlorine
Grajower et al. Corrosion currents of dental amalgams
KR102549712B1 (en) Method for estimating the corrosion rate of metal
US20240175834A1 (en) Method for Measuring Alkalinity of Water Sample
Schrenk et al. Electrolytic Determination of Lead as Lead Dioxide
EP0608037A2 (en) Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
CN115184416A (en) System and method for measuring phosphate ions in bath solution for preparing aluminum electrode foil
JP5261848B2 (en) Electrochemical buffer capacity measuring device
SU1409896A1 (en) Method of determining comparative resistance of corrosion-resistant steels to pitting corrosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees