JP4277805B2 - Method and apparatus for measuring blood viscosity - Google Patents
Method and apparatus for measuring blood viscosity Download PDFInfo
- Publication number
- JP4277805B2 JP4277805B2 JP2005022513A JP2005022513A JP4277805B2 JP 4277805 B2 JP4277805 B2 JP 4277805B2 JP 2005022513 A JP2005022513 A JP 2005022513A JP 2005022513 A JP2005022513 A JP 2005022513A JP 4277805 B2 JP4277805 B2 JP 4277805B2
- Authority
- JP
- Japan
- Prior art keywords
- blood
- falling
- measurement container
- container
- substantially needle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000008280 blood Substances 0.000 title claims description 154
- 210000004369 blood Anatomy 0.000 title claims description 154
- 238000000034 method Methods 0.000 title description 11
- 238000005259 measurement Methods 0.000 claims description 130
- 238000003756 stirring Methods 0.000 claims description 32
- 229920003002 synthetic resin Polymers 0.000 claims description 13
- 239000000057 synthetic resin Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 229920005672 polyolefin resin Polymers 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims 1
- 239000012530 fluid Substances 0.000 description 56
- 238000011084 recovery Methods 0.000 description 19
- 238000001595 flow curve Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 11
- 238000013019 agitation Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000005195 poor health Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Description
この発明は、血液中に密度の異なる複数の落体を落下させてその落下終端速度又は落下加速度を測定することによって血液の粘度特性を測定する方法及び装置に関する。 The present invention relates to a method and an apparatus for measuring a viscosity characteristic of blood by dropping a plurality of falling bodies having different densities in blood and measuring the falling end velocity or falling acceleration.
近年、人の血液の粘度に関して非常に関心が高まっている。例えば、一般に「ドロドロ血液」では健康状態が良くない状態であるとされ、これを「サラサラ血液」にするために効果のある食品や成分の紹介が新聞やテレビ等で多く行われている。このような血液の粘度特性を把握することができれば、血液疾患の予測が可能になったり、病気を早期に発見することも可能になると言われている。 In recent years, there has been much interest in the viscosity of human blood. For example, it is generally considered that “dull blood” is in a poor health state, and many foods and ingredients that are effective in making this “smooth blood” are introduced in newspapers and television. If such a viscosity characteristic of blood can be grasped, it is said that a blood disease can be predicted or a disease can be detected at an early stage.
従来、流体の粘度を測定する装置としては、流体を満たした円筒状容器内を落下する円柱状落体の落下終端速度を測定することにより流体の粘度を求める落体式粘度測定装置が公知である(特許文献1参照)。この落体式粘度測定装置は、密度の異なる複数の円柱状落体と、被測定物である流体中を落下する前記円柱状落体の落下終端速度Utを検出する検出手段と、円柱状落体が有する密度ρsと被測定物である流体が有する密度ρfとの密度差(ρs−ρf)と、円柱状落体の落下終端速度Utとを座標軸として各円柱状落体毎に得た座標の分布を満足する線分を求め、該線分に近似する流体の流動曲線から流体の種類を特定し、該流体に対応する構成方程式を用いて被測定物である流体の流動曲線を算出する演算手段とを備えている。前記円柱状落体としては、細円筒状のガラス管内に底部側から順に磁石、錘が収納された構成からなる落体が用いられている。 Conventionally, as a device for measuring the viscosity of a fluid, a falling-body viscosity measuring device that obtains the viscosity of a fluid by measuring the falling end velocity of a cylindrical falling body that falls in a cylindrical container filled with fluid is known ( Patent Document 1). This falling body type viscosity measuring apparatus includes a plurality of cylindrical falling bodies having different densities, a detecting means for detecting a falling terminal velocity Ut of the cylindrical falling body falling in a fluid as a measurement object, and a density of the cylindrical falling body A line that satisfies the distribution of coordinates obtained for each cylindrical fallen body using the density difference (ρs−ρf) between ρs and the density ρf of the fluid to be measured and the fall termination velocity Ut of the cylindrical fallen body as coordinate axes. Computing means for calculating a flow curve of a fluid to be measured using a constitutive equation corresponding to the fluid, specifying a fluid type from a fluid flow curve approximating the line segment, Yes. As the columnar falling body, a falling body having a configuration in which a magnet and a weight are accommodated in this order from the bottom side in a thin cylindrical glass tube is used.
この粘度測定装置によれば、被測定物である流体中に密度の異なる複数の円柱状落体を落下して各円柱状落体毎に落下終端速度Utを測定し、円柱状落体が有する密度ρsと被測定物である流体が有する密度ρfとの密度差(ρs−ρf)と、円柱状落体の落下終端速度Utとを座標軸として各円柱状落体毎に得た座標の分布を満足する線分を求め、該線分に近似する流体の流動曲線から流体の種類を特定して該流体の構成方程式を用いることにより被測定物である流体の粘度を求めることができる(特許文献1参照)。
しかしながら、上記従来の落体式粘度測定装置を用いて人の血液の粘度測定を試みた場合には次のような問題があった。即ち、円柱状落体の表面に血液の成分がこびり付きやすく、このために血液の粘度測定を精度高く行うことができないという問題があった。 However, when trying to measure the viscosity of human blood using the conventional falling body type viscosity measuring apparatus, there are the following problems. That is, there is a problem that blood components tend to stick to the surface of the cylindrical fallen body, which makes it impossible to measure blood viscosity with high accuracy.
また、血液の粘度測定を行うためには人等の動物の体から血液を採取しなければならないが、体への負担を配慮してその採取量は極力少なくすることが求められ、従って血液の粘度を測定する装置としては少量の血液採取量でもって精度高く粘度測定できるものであることが望ましいのであるが、上記従来の落体式粘度測定装置では粘度測定には比較的多い量の試料液を必要とした。 In order to measure the viscosity of blood, it is necessary to collect blood from the body of an animal such as a human. However, taking into account the burden on the body, it is required to reduce the amount of blood collected as much as possible. As a device for measuring viscosity, it is desirable that the viscosity can be measured with a small amount of blood with high accuracy. However, in the conventional falling body viscosity measuring device, a relatively large amount of sample liquid is used for viscosity measurement. I needed it.
この発明は、かかる技術的背景に鑑みてなされたものであって、血液の粘度測定を精度高くかつ短時間で行うことができる血液の粘度測定装置を提供することを第1の目的とする。 The present invention has been made in view of such a technical background, and a first object thereof is to provide a blood viscosity measuring apparatus capable of measuring blood viscosity with high accuracy in a short time.
また、この発明は、測定対象の血液量が少量であっても血液の粘度測定を精度高く行うことができる血液粘度測定装置を提供することを第2の目的とする。 A second object of the present invention is to provide a blood viscosity measuring device capable of measuring blood viscosity with high accuracy even when the amount of blood to be measured is small.
前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
[1]密度の異なる複数の略針状落体と、筒状の測定容器と、前記測定容器の上部側に固定されたランチャーと、前記測定容器内を落下する略針状落体の落下終端速度又は落下加速度を検出する検出手段とを備え、前記略針状落体は、錘を中に封入した合成樹脂製の略針状体からなることを特徴とする血液の粘度測定装置。
[1] A plurality of substantially needle-shaped falling bodies having different densities, a cylindrical measurement container, a launcher fixed to the upper side of the measurement container, and a dropping end speed of the substantially needle-shaped falling body falling in the measurement container or A blood viscosity measuring apparatus comprising: a detecting means for detecting a fall acceleration, wherein the substantially needle-like fallen body is a substantially needle-like body made of a synthetic resin in which a weight is enclosed.
[2]前記略針状体を構成する合成樹脂がオレフィン樹脂である前項1に記載の血液の粘度測定装置。 [2] The blood viscosity measuring apparatus according to [1], wherein the synthetic resin constituting the substantially needle-like body is an olefin resin.
[3]前記測定容器の底面の中心部に小孔が設けられ、この小孔の径は、前記略針状落体の外径より大きく且つ4mm以下の範囲に設定され、前記測定容器の下に該測定容器に連接して落体回収容器が配置されている前項1または2に記載の血液の粘度測定装置。 [3] A small hole is provided in the center of the bottom surface of the measurement container, and the diameter of the small hole is set to be in a range larger than the outer diameter of the substantially needle-like falling body and 4 mm or less, and below the measurement container. 3. The blood viscosity measuring apparatus according to 1 or 2 above, wherein a falling body recovery container is arranged in connection with the measurement container.
[4]前記略針状落体中の錘として金属製の錘が用いられると共に、前記測定容器の外側における該測定容器の底面の小孔より低い位置に磁性体が配置され、該磁性体の磁気吸引力によって、前記小孔内に挿通される略針状落体に対して下方への落下を付勢し得るものとなされている前項3に記載の血液の粘度測定装置。 [4] A metal weight is used as the weight in the substantially needle-like falling body, and a magnetic body is disposed at a position lower than a small hole on the bottom surface of the measurement container outside the measurement container. 4. The blood viscosity measuring apparatus according to item 3 above, wherein the blood pressure measuring apparatus is configured to be able to urge the substantially needle-like falling body inserted into the small hole to drop downward by suction force.
[5]前記測定容器の底面は、その周縁側から中心部の小孔に向かって上から下に傾斜する傾斜面に形成されている前項3または4に記載の血液の粘度測定装置。 [5] The blood viscosity measuring apparatus according to item 3 or 4, wherein the bottom surface of the measurement container is formed on an inclined surface that is inclined from top to bottom from a peripheral edge toward a small hole at the center.
[6]前記ランチャーは筒状に形成され、この筒状ランチャーの一部に1ないし複数の開口部が形成されている前項1〜5のいずれか1項に記載の血液の粘度測定装置。 [6] The blood viscosity measuring apparatus according to any one of items 1 to 5, wherein the launcher is formed in a cylindrical shape, and one or more openings are formed in a part of the cylindrical launcher.
[7]前記略針状落体中の錘として金属製の錘が用いられる一方、前記ランチャーは筒状に形成され、この筒状ランチャーの長さは前記略針状落体の長さの2倍以上に設定されると共に、該筒状ランチャーの下方部の外側に一対の磁力発生部が上下方向に離間して配置されている前項1〜6のいずれか1項に記載の血液の粘度測定装置。 [7] While a metal weight is used as the weight in the substantially needle-shaped falling body, the launcher is formed in a cylindrical shape, and the length of the cylindrical launcher is more than twice the length of the substantially needle-shaped falling body. 7. The blood viscosity measurement apparatus according to any one of the preceding items 1 to 6, wherein a pair of magnetic force generation units are arranged apart from each other in the vertical direction outside the lower part of the cylindrical launcher.
[8]前記測定容器内を攪拌する攪拌部材を備えている前項1〜7のいずれか1項に記載の血液の粘度測定装置。 [8] The blood viscosity measuring apparatus according to any one of items 1 to 7, further comprising a stirring member that stirs the inside of the measurement container.
[9]前記攪拌部材は、前記測定容器内に配置された攪拌部と、前記測定容器の外に配置された把持部と、該把持部と前記攪拌部とを繋ぐ連結部とを備えている前項8に記載の血液の粘度測定装置。 [9] The agitation member includes an agitation part disposed in the measurement container, a grip part disposed outside the measurement container, and a connecting part that connects the grip part and the agitation part. 9. The blood viscosity measuring apparatus according to item 8 above.
[10]前記測定容器は恒温槽内に配置され、所定温度に制御された水等の液体が該恒温槽と前記測定容器との空間に送流されるものとなされている前項1〜9のいずれか1項に記載の血液の粘度測定装置。 [10] Any of the preceding items 1 to 9, wherein the measurement container is disposed in a thermostat, and a liquid such as water controlled to a predetermined temperature is sent to a space between the thermostat and the measurement container. The blood viscosity measuring apparatus according to claim 1.
[11]血液を満たした筒状の測定容器内を落下する略針状落体の落下終端速度又は落下加速度を測定することにより血液の粘度を求める方法であって、前記略針状落体として、錘を中に封入した合成樹脂製の略針状体を用いることを特徴とする血液の粘度測定方法。
[11] A method for determining the viscosity of blood by measuring the falling end velocity or the falling acceleration of a substantially needle-shaped falling body falling in a cylindrical measurement container filled with blood , A method for measuring the viscosity of blood, comprising using a substantially needle-shaped body made of a synthetic resin in which is enclosed.
[12]前記略針状体を構成する合成樹脂がオレフィン樹脂である前項11に記載の血液の粘度測定方法。 [12] The blood viscosity measuring method according to item 11, wherein the synthetic resin constituting the substantially needle-like body is an olefin resin.
[1]の発明では、密度の異なる複数の略針状落体と、筒状の測定容器と、前記測定容器の上部側に固定されたランチャーと、前記測定容器内を落下する略針状落体の落下終端速度又は落下加速度を検出する検出手段とを備えているから、密度の異なる複数の略針状落体について、血液を満たした測定容器内を落下する各落体の落下終端速度又は落下加速度を検出することによって血液の粘度を短時間で求めることができる。この時、略針状落体は、錘を中に封入した合成樹脂製の略針状体からなる構成であるので、略針状落体の表面に血液がこびり付くことがなく、従って血液の粘度測定を精度高く行うことができる。
In the invention of [1], a plurality of substantially needle-like falling bodies having different densities, a cylindrical measurement container, a launcher fixed to the upper side of the measurement container, and a substantially needle-like falling body falling in the measurement container Because it has detection means for detecting the fall end speed or fall acceleration, it detects the fall end speed or fall acceleration of each fallen body that falls in a measurement container filled with blood for multiple needle-like fallen bodies with different densities. By doing so, the viscosity of blood can be obtained in a short time. At this time, the substantially needle-like falling body is composed of a synthetic resin-like substantially needle-like body in which a weight is enclosed, so that blood does not stick to the surface of the substantially needle-like falling body, and thus the viscosity of the blood Measurement can be performed with high accuracy.
[2]の発明では、略針状体を構成する合成樹脂としてオレフィン樹脂が用いられているので、落体の表面への血液のこびり付きを確実に防止することができ、これにより血液の粘度測定の精度をさらに向上させることができる。 In the invention of [2], since an olefin resin is used as a synthetic resin constituting a substantially needle-like body, it is possible to reliably prevent blood from sticking to the surface of the fallen body, thereby measuring blood viscosity. The accuracy can be further improved.
[3]の発明では、小孔の径は4mm以下に設定されているから、血液が測定容器から落体回収容器内に流れ込むのを防止することができると共に、小孔の径は、略針状落体の外径より大きく設定されているから、小孔は略針状落体の通過を許容し、測定容器の下に該測定容器に連接して設けた落体回収容器に落体を回収することができる。このような落体回収容器を設けない構成では、落体の測定本数を増やすためには測定容器内にこれら落体を収容するためのスペースが必要となることにより必然的に測定容器の内容量を大きくして投入血液量を多くしなければならず、少量の血液採取量でもって粘度測定することは困難であるが、本構成を採用すれば、落体の測定本数を増やした場合でも、測定が終わった落体を順次落体回収容器内に回収できるので、少量の血液採取量でもって粘度測定することが可能となる。また、落体が測定容器から小孔を介して落体回収容器内に落ちると、落体回収容器内から落体の体積分の気体(空気等)が気泡となって小孔を介して測定容器内に入り込む。本構成では、このように測定容器の底面の小孔を落体が通過して落体回収容器に回収される毎に該小孔を介して気泡が浮上するものとなるが、このような気泡が測定容器内を浮上することで測定容器内の血液を攪拌することができ、これにより、時間の経過と共に血液が分離する傾向を阻止し得て再現性の良い精度高い粘度測定を可能にすることができる。また、落体回収容器内に洗浄液を入れておけば、落体の即時洗浄が可能となり、落体の再利用を図ることもできる。 In the invention of [3], since the diameter of the small hole is set to 4 mm or less, it is possible to prevent blood from flowing into the falling body recovery container from the measurement container, and the diameter of the small hole is substantially needle-shaped. Since it is set larger than the outer diameter of the fallen body, the small hole allows the passage of the substantially needle-like fallen body, and the fallen body can be recovered in a fallen body recovery container provided in connection with the measurement container under the measurement container. . In such a configuration in which no fallen body recovery container is provided, in order to increase the number of fallen bodies to be measured, a space for accommodating these fallen bodies is necessary in the measurement container, and thus the capacity of the measurement container is inevitably increased. However, it is difficult to measure the viscosity with a small amount of blood collected, but if this configuration is adopted, the measurement is completed even when the number of falling bodies is increased. Since the falling bodies can be sequentially collected in the falling body collection container, the viscosity can be measured with a small amount of collected blood. Further, when the fallen body falls from the measurement container into the fallen body recovery container through the small hole, the gas (air, etc.) corresponding to the volume of the fallen body becomes a bubble from the fallen body recovery container and enters the measurement container through the small hole. . In this configuration, each time the falling body passes through the small hole on the bottom surface of the measurement container and is collected in the falling body recovery container, the bubble rises through the small hole. By floating in the container, the blood in the measurement container can be agitated, which can prevent the blood from separating over time and enable highly reproducible and accurate viscosity measurement. it can. Moreover, if a cleaning liquid is put in the fallen body recovery container, the fallen body can be immediately washed, and the fallen body can be reused.
[4]の発明では、測定容器の外側における測定容器の底面の小孔より低い位置に配置された磁性体の磁気吸引力によって、小孔内に挿通された略針状落体に対して下方への落下を付勢することができ、これにより小孔内に略針状落体が停滞してしまうことを防止することができる。 In the invention of [4], the magnetic attraction force of the magnetic body arranged at a position lower than the small hole on the bottom surface of the measurement container outside the measurement container is downward with respect to the substantially needle-like falling body inserted into the small hole. Can be energized to prevent the needle-like fallen body from being stagnated in the small hole.
[5]の発明では、測定容器の底面は、その周縁側から中心部の小孔に向かって上から下に傾斜する傾斜面に形成されているので、測定容器内を落下してきた略針状落体を測定容器底面の小孔にスムーズに誘導案内することができる。 In the invention of [5], the bottom surface of the measurement container is formed in an inclined surface that inclines from top to bottom from the peripheral side toward the small hole in the center portion, so that it has a substantially needle shape that has fallen in the measurement container. The falling body can be guided and guided smoothly into the small hole in the bottom surface of the measurement container.
[6]の発明では、ランチャーは筒状に形成されているから落体を筒状測定容器の中心軸に沿って落下させることができる。更に、筒状ランチャーの一部に1ないし複数の開口部が形成されているから、筒状ランチャー内を略針状落体が落下する際に血液がこの開口部からランチャー外に出て行くものとなることでランチャー内を略針状落体が落下する際の抵抗を低減することができ、ランチャー内を略針状落体が通過する時間を短縮でき、これにより粘度測定に要する時間を短縮することができる。 In the invention of [6], since the launcher is formed in a cylindrical shape, the falling body can be dropped along the central axis of the cylindrical measuring container. Furthermore, since one or a plurality of openings are formed in a part of the cylindrical launcher, when a substantially needle-shaped falling body falls in the cylindrical launcher, blood goes out of the launcher from this opening. Therefore, it is possible to reduce the resistance when the substantially needle-shaped falling body falls within the launcher, and to shorten the time for the substantially needle-like falling body to pass through the launcher, thereby shortening the time required for viscosity measurement. it can.
[7]の発明では、ランチャーは筒状に形成されているから落体を筒状測定容器の中心軸に沿って落下させることができる。また、筒状ランチャーに略針状落体を2以上の複数個装填することができるのであるが、この時、一対の磁力発生部の磁界発生を制御することにより、即ち例えば一対の磁力発生部のうち一方の磁力発生部が磁界を発生した場合に他方の磁力発生部は磁界を発生しない状態に切り替えることにより、筒状ランチャー内に装填された複数個の略針状落体を粘度測定の進行状況に合わせて順次測定容器内に落下せしめることができる。このように筒状ランチャー内に装填された複数個の略針状落体を(手で順次投下するのではなく)連続的に自動投下できる制御システムを構築できるので、血液の粘度測定に要する時間を大幅に短縮できる利点がある。 In the invention of [7], since the launcher is formed in a cylindrical shape, the falling body can be dropped along the central axis of the cylindrical measuring container. In addition, two or more substantially needle-like falling bodies can be loaded on the cylindrical launcher. At this time, by controlling the magnetic field generation of the pair of magnetic force generation units, for example, the pair of magnetic force generation units When one of the magnetic force generation units generates a magnetic field, the other magnetic force generation unit switches to a state in which no magnetic field is generated, so that a plurality of substantially needle-shaped falling bodies loaded in the cylindrical launcher are progressing in viscosity measurement. It can be dropped into the measuring container in order. In this way, it is possible to construct a control system capable of automatically dropping a plurality of substantially needle-shaped falling bodies loaded in the cylindrical launcher (instead of sequentially dropping by hand), so that the time required for measuring blood viscosity can be reduced. There is an advantage that it can be greatly shortened.
[8]の発明では、攪拌部材によって測定容器内を攪拌することができる。従って、例えば1つの落体を落下させて落体の落下終端速度又は落下加速度を測定した後、次の落体を落下させる前に該攪拌部材によって測定容器内を攪拌することによって、時間の経過と共に血液が分離する傾向を阻止し得て再現性の良い精度高い粘度測定をすることができる。 In the invention of [8], the inside of the measurement container can be stirred by the stirring member. Therefore, for example, after dropping one fallen body and measuring the falling end velocity or fall acceleration of the fallen body, and stirring the inside of the measurement container with the stirring member before dropping the next fallen body, It is possible to prevent the tendency to separate and to perform highly accurate viscosity measurement with good reproducibility.
[9]の発明では、攪拌部材は、測定容器内に配置された攪拌部と、測定容器の外に配置された把持部と、該把持部と攪拌部とを繋ぐ連結部とを備えているから、この把持部を手等によって上下に動かす操作を行うだけでこれに伴う攪拌部の上下移動によって測定容器内の血液を十分に攪拌することができ、このように簡単な操作で測定容器内の血液の攪拌を十分に行うことができる利点がある。 In the invention of [9], the stirring member includes a stirring portion disposed in the measurement container, a grip portion disposed outside the measurement container, and a connecting portion that connects the grip portion and the stirring portion. Therefore, the blood in the measurement container can be sufficiently stirred by moving the gripping part up and down by hand or the like, and the stirring part is moved up and down accordingly. There is an advantage that the blood can be sufficiently stirred.
[10]の発明では、測定容器は恒温槽内に配置され、所定温度に制御された水等の液体が該恒温槽と前記測定容器との空間に送流されるものとなされているから、一定の温度条件の中での血液の粘度測定が可能になる。 In the invention of [10], the measurement container is arranged in a thermostat, and a liquid such as water controlled to a predetermined temperature is sent to the space between the thermostat and the measurement container. It is possible to measure the viscosity of blood under the temperature conditions of
[11]の発明(測定方法)によれば、血液を満たした測定容器内を落下させる略針状落体として、錘を中に封入した合成樹脂製の略針状体を用いるので、略針状落体の表面に血液がこびり付くことがなく、従って血液の粘度測定を精度高く行うことができる。
According to the invention (measurement method) of [11], since a substantially needle-like body made of synthetic resin in which a weight is enclosed is used as a substantially needle-like body that drops inside a measurement container filled with blood, The blood does not stick to the surface of the falling body, and therefore the blood viscosity can be measured with high accuracy.
[12]の発明では、略針状体を構成する合成樹脂としてオレフィン樹脂が用いられているので、落体の表面への血液のこびり付きを確実に防止することができ、これにより血液の粘度測定の精度をさらに向上させることができる。 In the invention of [12], since an olefin resin is used as a synthetic resin constituting a substantially needle-like body, it is possible to reliably prevent blood from sticking to the surface of the fallen body, thereby measuring blood viscosity. The accuracy can be further improved.
この発明に係る血液粘度測定装置(1)の一実施形態を図1〜3に示す。図1において、(2)は略針状落体、(10)は装置本体部である。 One Embodiment of the blood viscosity measuring apparatus (1) based on this invention is shown to FIGS. In FIG. 1, (2) is a substantially needle-shaped falling body, and (10) is an apparatus main body.
前記略針状落体(2)は、密度1.0以上の錘(12)を中に封入した合成樹脂製の略針状体(11)からなる。本実施形態では、図2に示すように、有底筒状の合成樹脂製の略針状体(11)の内部に金属製の錘(12)が配置されると共に略針状体(11)の上部開口端にキャップ(13)が嵌合されてなる略針状落体(2)が用いられている。
The substantially needle-like fallen body (2) consists of a substantially needle-like body (11) made of synthetic resin in which a weight (12) having a density of 1.0 or more is enclosed. In the present embodiment, as shown in FIG. 2, a substantially needle-shaped member with metals made of the weight (12) is disposed inside the bottomed cylindrical synthetic resin substantially needle-shaped member (11) (11 A substantially needle-like fallen body (2) is used in which a cap (13) is fitted to the upper opening end.
前記装置本体部(10)は、図1に示すように、測定容器(3)と、ランチャー(4)と、検出手段(5)とを備えている。 As shown in FIG. 1, the apparatus main body (10) includes a measurement container (3), a launcher (4), and detection means (5).
前記測定容器(3)は有底筒状の容器からなる。この測定容器(3)の底面の中心部に小孔(24)が形成され、該測定容器(3)の底面は、その周縁部から中心部の小孔(24)に向かって上から下に傾斜する傾斜面(25)に形成されている(図1参照)。前記小孔(24)の径は、前記略針状落体(2)の外径より大きく設定され、且つ4mm以下に設定されている。このように小孔(24)の径が4mm以下に設定されることで前記測定容器(3)内にある血液がこの小孔(24)を通過して下に落ちてしまうのを効果的に防止することができる。 The measurement container (3) is a bottomed cylindrical container. A small hole (24) is formed at the center of the bottom surface of the measurement container (3), and the bottom surface of the measurement container (3) is directed from the top to the bottom from the peripheral edge toward the small hole (24) at the center. It forms in the inclined surface (25) which inclines (refer FIG. 1). The diameter of the small hole (24) is set larger than the outer diameter of the substantially needle-like falling body (2) and is set to 4 mm or less. By setting the diameter of the small hole (24) to 4 mm or less in this way, it is possible to effectively prevent blood in the measurement container (3) from dropping through the small hole (24). Can be prevented.
前記測定容器(3)の下に該測定容器(3)に連接して筒状の落体回収容器(6)が配置されている。前記落体回収容器(6)の下端は、外形形状が略直方体形状の土台部(17)の上面中央部に設けられた筒状突起部(17a)に外嵌め状態に嵌合されており、こうして土台部(17)の上に筒状の落体回収容器(6)が立設され、該落体回収容器(6)の上端部からさらに上方に向けて筒状測定容器(3)が延設されている。更に、前記落体回収容器(6)および測定容器(3)の外周を取り囲む態様でこれら(6)(3)と離間状態に筒状の恒温槽(8)が配置され、この恒温槽(8)の下端は前記土台部(17)の上面中央部に設けられた嵌合孔に内嵌め状態に嵌合固定されている。 A cylindrical fallen body recovery container (6) is disposed below the measurement container (3) so as to be connected to the measurement container (3). The lower end of the falling body recovery container (6) is fitted into a cylindrical projection (17a) provided at the center of the upper surface of the base (17) whose outer shape is a substantially rectangular parallelepiped, and is thus fitted. A cylindrical falling body recovery container (6) is erected on the base part (17), and the cylindrical measurement container (3) is extended upward from the upper end of the falling body recovery container (6). Yes. Further, a cylindrical thermostat (8) is disposed in a state of being separated from these (6) and (3) so as to surround the outer periphery of the falling body recovery container (6) and the measurement container (3). The lower end of is fitted and fixed in an internally fitted state in a fitting hole provided in the center of the upper surface of the base portion (17).
前記測定容器(3)の上端には略盤状の蓋体(18)が取付固定されており、該蓋体(18)によって前記測定容器(3)の上端および前記恒温槽(8)の上端が封止されている。前記蓋体(18)の中心部には取付穴が形成され、該取付穴に筒状のランチャー(4)が挿通固定されている。このランチャー(4)は、落下する落体(2)が測定容器(3)の中心軸に沿って垂直落下するように誘導するための部材であり、ランチャー(4)の内径は、略針状落体(2)の通過を許容する大きさに設定されている。 A substantially plate-shaped lid (18) is attached and fixed to the upper end of the measurement container (3), and the upper end of the measurement container (3) and the upper end of the constant temperature bath (8) are fixed by the lid (18). Is sealed. An attachment hole is formed in the center of the lid (18), and a cylindrical launcher (4) is inserted and fixed in the attachment hole. This launcher (4) is a member for guiding the falling body (2) to fall vertically along the central axis of the measurement container (3), and the inner diameter of the launcher (4) is substantially a needle-like body. The size is set to allow passage of (2).
前記恒温槽(8)の上端側には排水口(22)が設けられている。また前記土台部(17)の側面には導水口(21)が設けられ、この導水口(21)は、前記土台部(17)の上面中央部の嵌合孔に連通している。しかして、前記土台部(17)の側面の導水口(21)に供給された水等の液体は、前記恒温槽(8)と前記落体回収容器(6)の間の隙間、さらに前記恒温槽(8)と前記測定容器(3)の間の隙間を順次通過した後、前記排水口(22)から出て恒温制御ユニット部(図示しない)に戻る。この恒温制御ユニット部では、加熱装置等により水等の液体を一定温度に制御する。前記恒温制御ユニット部に戻された水等の液体は、ここで所定温度に調整された後、再び前記土台部(17)の側面の導水口(21)に供給されて、これらの間を順に循環することによって前記測定容器(3)内の血液の温度を一定温度に保つことができる。 A drain port (22) is provided on the upper end side of the thermostatic chamber (8). Further, a water inlet (21) is provided on a side surface of the base portion (17), and the water inlet (21) communicates with a fitting hole in a central portion of the upper surface of the base portion (17). Thus, the liquid such as water supplied to the water inlet (21) on the side surface of the base portion (17) is a gap between the thermostat (8) and the falling body recovery container (6), and further the thermostat. After sequentially passing through the gap between (8) and the measurement container (3), the water exits from the drain (22) and returns to the constant temperature control unit (not shown). In this constant temperature control unit, a liquid such as water is controlled at a constant temperature by a heating device or the like. The liquid such as water returned to the constant temperature control unit is adjusted to a predetermined temperature here, and then supplied again to the water inlet (21) on the side surface of the base (17). By circulating, the temperature of the blood in the measurement container (3) can be kept constant.
前記蓋体(18)には、上下方向に貫通する貫通孔(20)が設けられている。これにより前記測定容器(3)の内部空間と外部大気とが該貫通孔(20)を介して連通された状態となるから、落体(2)がランチャー(4)内を通過する際に測定容器(3)内の上部空間に存在する空気等の気体を前記貫通孔(20)を介して外部大気に逃がすことができ、これにより落体(2)がランチャー(4)内を通過する際の抵抗を低減することができ、ランチャー(4)内において落体(2)をスムーズに落下させることができる。 The lid (18) is provided with a through hole (20) penetrating in the vertical direction. As a result, the internal space of the measurement container (3) and the external atmosphere are in communication with each other through the through hole (20), so that the falling container (2) passes through the launcher (4). (3) Gas such as air existing in the upper space inside can be released to the outside atmosphere through the through hole (20), and the resistance when the falling body (2) passes through the launcher (4). The falling body (2) can be smoothly dropped in the launcher (4).
前記ランチャー(4)の下端側には複数の開口部(23)…が形成されている。本実施形態では、軸線方向が上下方向に沿うスリット形状の開口部(23)…が形成されている(図3参照)。なお、ランチャー(4)に設けられる開口部(23)は、図4(イ)に示すように複数個の小穴形状に形成されていても良いし、或いは図4(ロ)に示すように軸線方向が上下方向に沿うスリット状の切欠き部に形成されていても良い。 A plurality of openings (23) are formed on the lower end side of the launcher (4). In the present embodiment, slit-shaped openings (23) in which the axial direction extends in the vertical direction are formed (see FIG. 3). The opening (23) provided in the launcher (4) may be formed in a plurality of small hole shapes as shown in FIG. 4 (a), or an axis line as shown in FIG. 4 (b). The direction may be formed in a slit-shaped notch along the vertical direction.
前記測定容器(3)の内部には攪拌部材(7)が配置されている。この攪拌部材(7)は、測定容器(3)内に配置された攪拌部(14)と、測定容器(3)の外に配置された把持部(15)と、該把持部(15)と前記攪拌部(14)とを繋ぐ連結部(16)とを備えてなる。前記攪拌部(14)はスプリング状(ばね状)に形成されている。前記把持部(15)を手などによって上下に動かす操作を行うだけでこれに伴う攪拌部(14)の上下移動によって測定容器(3)内の血液を十分に攪拌することができる。なお、落体(2)の落下時には、図5に示すように、前記スプリング状の攪拌部(14)を上昇移動して前記ランチャー(4)の下端部と前記測定容器(3)の間の環状スペースに収納した状態に配置せしめる。これにより、攪拌部(14)が存在することによる粘度測定への影響を防止することができ、精度高い粘度測定を行うことができる。 A stirring member (7) is disposed inside the measurement container (3). The stirring member (7) includes a stirring section (14) disposed in the measurement container (3), a gripping section (15) disposed outside the measurement container (3), and the gripping section (15). The connecting part (16) which connects the said stirring part (14) is provided. The stirring portion (14) is formed in a spring shape (spring shape). The blood in the measurement container (3) can be sufficiently stirred by moving the gripping part (15) up and down by hand or the like, and the stirring part (14) moving up and down accordingly. When the falling body (2) is dropped, as shown in FIG. 5, the spring-like stirring section (14) is moved upward to form a ring between the lower end of the launcher (4) and the measurement container (3). Place it in a state of being stored in a space. Thereby, the influence on the viscosity measurement due to the presence of the stirring section (14) can be prevented, and the viscosity measurement with high accuracy can be performed.
前記測定容器(3)の外側、即ち前記恒温槽(8)の外側における前記測定容器(3)の底面の小孔(24)より低い位置に磁性体(30)が配置されている(図1参照)。このような磁性体(30)を配置することで、磁性体(30)の磁気吸引力によって、前記小孔(24)内に挿通された落体(2)に対して下方への落下を付勢することができるので、測定容器(3)底面の小孔(24)内に落体(2)が停滞してしまうことを効果的に防止することができる。 A magnetic body (30) is disposed at a position lower than the small hole (24) on the bottom surface of the measurement container (3) outside the measurement container (3), that is, outside the thermostat (8) (FIG. 1). reference). By disposing such a magnetic body (30), the fall of the fallen body (2) inserted into the small hole (24) is urged downward by the magnetic attraction force of the magnetic body (30). Therefore, it is possible to effectively prevent the falling body (2) from staying in the small hole (24) on the bottom surface of the measurement container (3).
前記測定容器(3)の長手方向(高さ方向)の中間部の外側に、該測定容器(3)内を落下する略針状落体(2)の落下終端速度を検出する検出手段(5)が配置されている。本実施形態では、検出手段(5)として一対の磁気センサー(5A)(5B)及び計測装置(5C)が用いられている。即ち、上側の磁気センサー(5A)は測定容器(3)の高さの二等分位置またはその近傍位置に配置される一方、下側の磁気センサー(5B)は前記上側の磁気センサー(5A)より下の位置で且つ上側の磁気センサー(5A)と所定間隔をあけて配置されている(図1参照)。また前記計測装置(5C)は、上側の磁気センサー(5A)からの検知信号を受けた後、下側の磁気センサー(5B)からの検知信号を受けるまでの時間を計測する装置である。この計測装置(5C)により、落体(2)が上側の磁気センサー(5A)から下側の磁気センサー(5B)の位置まで落下するのに要した時間を各落体(2)毎に得ることができる。 Detecting means (5) for detecting the falling end velocity of the substantially needle-like falling body (2) falling inside the measuring container (3) outside the intermediate portion in the longitudinal direction (height direction) of the measuring container (3) Is arranged. In this embodiment, a pair of magnetic sensors (5A) (5B) and a measuring device (5C) are used as the detection means (5). That is, the upper magnetic sensor (5A) is disposed at a position that is equally divided by the height of the measurement container (3) or in the vicinity thereof, while the lower magnetic sensor (5B) is the upper magnetic sensor (5A). It is arranged at a lower position and at a predetermined interval from the upper magnetic sensor (5A) (see FIG. 1). The measuring device (5C) is a device that measures the time from receiving the detection signal from the upper magnetic sensor (5A) until receiving the detection signal from the lower magnetic sensor (5B). By this measuring device (5C), the time required for the falling body (2) to drop from the upper magnetic sensor (5A) to the position of the lower magnetic sensor (5B) can be obtained for each falling body (2). it can.
しかして、上記構成からなる血液粘度測定装置(1)を用いた血液の粘度測定方法の一例について説明する。まず、恒温槽(8)に連結されている恒温制御ユニット部を運転状態とし、この恒温槽(8)内に所定温度に調整された水等の液体を流す。なお、攪拌部材(7)の攪拌部(14)を上昇移動させてランチャー(4)の下端部と測定容器(3)の間の環状スペースに攪拌部(14)を収納した状態としておく(図5参照)。 Thus, an example of a blood viscosity measuring method using the blood viscosity measuring apparatus (1) having the above configuration will be described. First, the constant temperature control unit connected to the constant temperature bath (8) is set in an operating state, and a liquid such as water adjusted to a predetermined temperature is allowed to flow into the constant temperature bath (8). The stirring portion (14) of the stirring member (7) is moved up so that the stirring portion (14) is housed in the annular space between the lower end portion of the launcher (4) and the measurement container (3) (FIG. 5).
次に、血液を採取し、採取した血液を速やかに測定容器(3)内に投入する。この時、図5に示すように、投入血液(60)の上面がランチャー(4)の下端部にかかる程度まで満たすのが望ましい。なお、本実施形態では、測定容器(3)の下の落体回収容器(6)の内部空間には空気(61)が存在している。採取した血液は約200〜240秒程度で凝固し始めるので以下の操作は極力速やかに行う。 Next, blood is collected, and the collected blood is immediately put into the measurement container (3). At this time, as shown in FIG. 5, it is desirable that the upper surface of the input blood (60) is filled up to the lower end of the launcher (4). In the present embodiment, air (61) exists in the internal space of the falling body recovery container (6) below the measurement container (3). Since the collected blood starts to clot in about 200 to 240 seconds, the following operation is performed as quickly as possible.
次いで、ランチャー(4)内に略針状落体(2)を投入して測定容器(3)内に略針状落体(2)を落下せしめる。この時、ランチャー(4)を介して投入するので、落体(29)を筒状測定容器(3)の中心軸に沿って落下させることができる(図5参照)。落体(2)が上側の磁気センサー(5A)を通過した時に、計測装置(5C)は上側の磁気センサー(5A)からの検知信号を受け、その後落体(2)が下側の磁気センサー(5B)を通過した時に、計測装置(5C)は下側の磁気センサー(5B)からの検知信号を受け、これらにより、計測装置(5C)は、落体(2)が上側の磁気センサー(5A)から下側の磁気センサー(5B)の位置まで落下するのに要した時間を算出する。 Next, the substantially needle-like fallen body (2) is put into the launcher (4), and the substantially needle-like fallen body (2) is dropped into the measurement container (3). At this time, since it is inserted through the launcher (4), the fallen body (29) can be dropped along the central axis of the cylindrical measurement container (3) (see FIG. 5). When the falling body (2) passes the upper magnetic sensor (5A), the measuring device (5C) receives a detection signal from the upper magnetic sensor (5A), and then the falling body (2) is moved to the lower magnetic sensor (5B). ), The measuring device (5C) receives a detection signal from the lower magnetic sensor (5B), so that the measuring device (5C) causes the falling body (2) to move from the upper magnetic sensor (5A). The time required to drop to the position of the lower magnetic sensor (5B) is calculated.
前記落体(2)は、さらに測定容器(3)内を落下し、測定容器(3)の底面の小孔(24)に到達する。この時、測定容器(3)の底面は、その周縁部から小孔(24)に向かって上から下に傾斜する傾斜面に形成されているから、落体(2)の下端はスムーズに小孔(24)内に誘導案内される。 The falling body (2) further falls in the measurement container (3) and reaches the small hole (24) on the bottom surface of the measurement container (3). At this time, since the bottom surface of the measurement container (3) is formed as an inclined surface inclined from top to bottom from the peripheral edge toward the small hole (24), the lower end of the falling body (2) is smoothly formed into the small hole. Guided and guided in (24).
前記小孔(24)内に進入した落体(2)は、磁性体(30)の磁気吸引力によって下方への落下を付勢されるので、落体(2)は小孔(24)内をスムーズに落下して落体回収容器(6)内に落下する(図5参照)。これで1本目の落体(2)についての操作が完了する。 The falling body (2) that has entered the small hole (24) is urged to fall downward by the magnetic attractive force of the magnetic body (30), so the falling body (2) smoothly moves inside the small hole (24). And fall into the falling body collection container (6) (see FIG. 5). This completes the operation for the first fallen body (2).
なお、落体(2)が小孔(24)を通過して落体回収容器(6)内に回収された際に落体(2)の体積分の気泡(空気の気泡)が小孔(24)を介して浮上するが、このような気泡が測定容器(3)内を浮上することで測定容器(3)内の血液(60)が攪拌される。この時の浮上する気泡の大きさは、測定容器(3)底面の傾斜面(25)の傾斜角度によって調整することが可能である。 When the falling body (2) passes through the small hole (24) and is collected in the falling body recovery container (6), bubbles (air bubbles) corresponding to the volume of the falling body (2) pass through the small hole (24). The air (60) in the measurement container (3) is agitated when such bubbles rise in the measurement container (3). The size of the air bubbles rising at this time can be adjusted by the inclination angle of the inclined surface (25) of the bottom surface of the measurement container (3).
次に、攪拌部材(7)の把持部(15)を手で持って上下に動かすことによって攪拌部材(7)の攪拌部(14)を下降移動せしめた後、上昇移動させて再びランチャー(4)の下端部と測定容器(3)の間の環状スペースに収納した状態とする(図5参照)。このように測定容器(3)内で攪拌部(14)を上下移動せしめることによって測定容器(3)内の血液(60)をさらに攪拌する。 Next, the holding part (15) of the stirring member (7) is held by hand and moved up and down to lower the stirring part (14) of the stirring member (7), and then moved up to again launcher (4). ) And the measurement container (3) in an annular space (see FIG. 5). Thus, the blood (60) in the measurement container (3) is further stirred by moving the stirring part (14) up and down in the measurement container (3).
次いで、1本目の略針状落体とは密度の異なる別の略針状落体(2本目の略針状落体)をランチャー(4)内に投入して測定容器(3)内に略針状落体(2)を落下せしめる。以下、前記同様にして、計測装置(5C)により、落体(2)が上側の磁気センサー(5A)から下側の磁気センサー(5B)の位置まで落下するのに要した時間が算出される。また落体(2)は小孔(24)内をスムーズに落下して落体回収容器(6)内に落下する(図5参照)。これで2本目の落体(2)についての操作が完了する。 Next, another substantially needle-like fallen body (second substantially needle-like fallen body) having a density different from that of the first substantially needle-like fallen body is introduced into the launcher (4), and the substantially needle-like fallen body is placed in the measurement container (3). Drop (2). Hereinafter, in the same manner as described above, the time required for the falling body (2) to drop from the upper magnetic sensor (5A) to the position of the lower magnetic sensor (5B) is calculated by the measuring device (5C). The falling body (2) falls smoothly in the small hole (24) and falls into the falling body recovery container (6) (see FIG. 5). This completes the operation for the second fallen body (2).
以下、3本目以上の略針状落体(2)についても同様にして落体(2)が上側の磁気センサー(5A)から下側の磁気センサー(5B)の位置まで落下するのに要した時間を算出する。こうして、落体(2)が上側の磁気センサー(5A)から下側の磁気センサー(5B)の位置まで落下するのに要した時間を各落体(2)毎に求める。求められた時間から各落体(2)の落下終端速度Utを算出する。即ち、相互に密度の異なる複数の落体(2)の落下終端速度Utをそれぞれ算出する。 Hereinafter, the time required for the fallen body (2) to fall from the upper magnetic sensor (5A) to the position of the lower magnetic sensor (5B) is similarly applied to the third or more substantially needle-like fallen bodies (2). calculate. Thus, the time required for the falling body (2) to fall from the upper magnetic sensor (5A) to the position of the lower magnetic sensor (5B) is obtained for each falling body (2). The falling end speed Ut of each falling body (2) is calculated from the obtained time. That is, the falling end speed Ut of the plurality of falling bodies (2) having different densities is calculated.
次に、前記得られた各落体(2)の落下終端速度Utを用いて粘度特性を求める方法について説明する。 Next, a description will be given of a method for obtaining the viscosity characteristics using the fall end velocity Ut of each fallen body (2) obtained.
図8は、略針状落体(2)が落下している時の状態を示す概念図であり、図9は、落下する略針状落体(2)が押し退ける流体(血液)の移動方向を示す速度断面図である。これら図8、図9において、「L」は略針状落体(2)の長さ、「kR」は略針状落体(2)の半径、「R」は円筒状測定容器(3)の半径であり、また(50)は落下する落体により押し退けられる落体周囲の流体要素としての微小円柱殻であり、「r」は微小円柱殻の内半径、「r+dr」は微小円柱殻の外半径、「L」は微小円柱殻の長さである。 FIG. 8 is a conceptual diagram showing a state when the substantially needle-like fallen body (2) is falling, and FIG. 9 shows the moving direction of the fluid (blood) that the falling substantially needle-like fallen body (2) pushes away. It is speed sectional drawing. 8 and 9, “L” is the length of the substantially needle-like body (2), “kR” is the radius of the substantially needle-like body (2), and “R” is the radius of the cylindrical measurement container (3). (50) is a micro-cylindrical shell as a fluid element around the falling body that is displaced by the falling falling body, “r” is the inner radius of the micro-cylindrical shell, “r + dr” is the outer radius of the micro-cylindrical shell, “ “L” is the length of the micro cylindrical shell.
略針状落体(2)の落下速度が0.1×10-3m/s〜0.18m/sと非常に小さく、流体(血液)と落体の間および流体(血液)と測定容器内壁面の間には滑りが発生せず、流体(血液)は非圧縮性であり、管内流動は層流であるという条件(仮定)の下で、円筒状測定容器(3)に満たされた流体(血液)の中央を略針状落体(2)が落下終端速度Utで落下すると、図8に示すように、微小円柱殻(50)の上面及び下面にはそれぞれ圧力p1、p2が働き、内側面及び外側面にはそれぞれ剪断応力τ、τ+dτが働く。また、流体(血液)は等速落下運動をしているので、運動量増加速度は0となる。従って、このときの微小円柱殻(50)に働く力の釣り合いから以下の関係式<1>が成り立つ。 The drop speed of the substantially needle-like fallen body (2) is as low as 0.1 × 10 −3 m / s to 0.18 m / s, and between the fluid (blood) and the fallen body and between the fluid (blood) and the inner wall of the measurement container The fluid (blood) is incompressible, and the fluid (blood) filled in the cylindrical measurement container (3) under the condition (assuming that the flow in the tube is laminar) (assumed) When the needle-like falling body (2) falls at the center of the blood) at the falling end velocity Ut, as shown in FIG. 8, pressures p 1 and p 2 act on the upper and lower surfaces of the micro cylindrical shell (50), respectively. Shear stress τ and τ + dτ act on the inner surface and the outer surface, respectively. Moreover, since the fluid (blood) is moving at a constant velocity, the momentum increasing speed is zero. Therefore, the following relational expression <1> is established from the balance of forces acting on the micro cylindrical shell (50) at this time.
但し、△p=p1−p2 (△p<0)である。 However, Δp = p 1 −p 2 (Δp <0).
また、このとき、図2に示すように、落体(2)の壁面と測定容器(3)の内壁面には滑りが生じないと仮定しているので、速度に関する境界条件として以下の関係式<2>が成り立つ。 At this time, as shown in FIG. 2, since it is assumed that no slip occurs on the wall surface of the fallen body (2) and the inner wall surface of the measurement container (3), the following relational expression < 2> holds.
また、落体(2)の壁面と測定容器(3)の内壁面との間に形成される環状流路を単位時間当たりに通過する流体(血液)の量は落体(2)が押し退ける流体(血液)の量と等しいので、以下の関係式<3>が成り立つ。 Further, the amount of fluid (blood) that passes through the annular flow path formed between the wall surface of the falling body (2) and the inner wall surface of the measurement container (3) per unit time is the fluid (blood) that the falling body (2) pushes away. ), The following relational expression <3> holds.
さらに、落体(2)の壁面において、重力、浮力、圧力及び粘性力が釣り合っているので、以下の関係式<4>が成り立つ。 Furthermore, since gravity, buoyancy, pressure, and viscous force are balanced on the wall surface of the falling body (2), the following relational expression <4> is established.
以上の式<1>〜<4>に、流体(血液)の構成方程式(Newton流体の構成方程式)である式<5>を連立させることによって、流体(血液)の粘度、剪断速度、剪断応力等の流動特性を解析することができる。 Formula (5) which is a constitutive equation of fluid (blood) (constitutive equation of Newtonian fluid) is combined with the above formulas <1> to <4>, whereby the viscosity, shear rate, and shear stress of fluid (blood) Etc. can be analyzed.
なお、式<5>において、τは剪断応力、γ(ガンマ)は剪断速度、μ(ミュー)は流体(血液)の粘度である。 In equation <5>, τ is the shear stress, γ (gamma) is the shear rate, and μ (mu) is the viscosity of the fluid (blood).
解析手順について詳述すると、まず、前記相互に密度の異なる複数の落体(2)毎に算出された落下終端速度UtをX軸、密度差(ρs−ρf)をY軸としてプロットして、(Ut)−(ρs−ρf)線分を得る。なお、「ρs」は略針状落体の密度であり、「ρf」は流体(血液)の密度である。この(Ut)−(ρs−ρf)線分と流体の流動曲線とは相似性を有することから、(Ut)−(ρs−ρf)線分が原点(0,0)を通れば、Newton流体、Pseudoplastic流体またはDilatant流体であると判別できる。 The analysis procedure will be described in detail. First, the falling end velocity Ut calculated for each of the plurality of falling bodies (2) having different densities is plotted as the X axis and the density difference (ρs−ρf) is plotted as the Y axis. Ut)-(ρs-ρf) line segment is obtained. Note that “ρs” is the density of the substantially needle-like falling body, and “ρf” is the density of the fluid (blood). Since this (Ut)-(ρs-ρf) line segment and the fluid flow curve are similar, if the (Ut)-(ρs-ρf) line segment passes through the origin (0, 0), the Newtonian fluid , Pseudoplastic fluid or Dilatant fluid.
ここで、流動指数nの値を知るために、Power Law流体の構成方程式
τ=Kγn
を前記式<1>と式<4>にそれぞれ代入し、
Here, in order to know the value of the flow index n, the constitutive equation τ = Kγ n of the Power Law fluid
Are substituted into the above formula <1> and formula <4>, respectively.
式<6>及び式<7>を得る。次いで、式<6>を無次元化し、簡単にして式<7>に代入すると、 Equations <6> and <7> are obtained. Next, when formula <6> is made dimensionless and simply substituted into formula <7>,
式<8>が得られ、(ρs−ρf)とUtとの関係が示される。但し、C1は積分定数である。 Equation <8> is obtained, which shows the relationship between (ρs−ρf) and Ut. Where C 1 is an integral constant.
次に、流動指数nの意味を明確にするために、式<8>の両辺の対数をとると、 Next, in order to clarify the meaning of the flow index n, the logarithm of both sides of the formula <8> is taken,
式<9>になる。式<9>より明らかなように、流動指数nはlog(Ut)をX軸、log(ρs−ρf)をY軸として得た直線の勾配を表しているので、落下終端速度Utと密度差(ρs−ρf)との対数をとり、落下終端速度Utの対数と密度差(ρs−ρf)の対数とを座標軸とする線分の勾配を調べることにより、流体の種類を明確に判別することができる。即ち、原点(0,0)を通り、且つ勾配が1であれば、Newton流体であると特定できる。血液は、凝固する前の状態であれば、Newton流体である。しかして、式<1>〜<4>にNewton流体の構成方程式である式<5>を連立させることによって、流体(血液)の流動曲線を得ることができ、粘度、剪断速度、剪断応力等の流動特性を解析することができる。 Equation <9> is obtained. As apparent from the formula <9>, the flow index n represents the slope of a straight line obtained with log (Ut) as the X axis and log (ρs−ρf) as the Y axis. Taking the logarithm of (ρs−ρf) and examining the gradient of the line segment with the logarithm of the drop end velocity Ut and the logarithm of the density difference (ρs−ρf) as the coordinate axis, the type of fluid is clearly discriminated. Can do. That is, if it passes through the origin (0, 0) and the gradient is 1, it can be identified as a Newtonian fluid. Blood is a Newtonian fluid if it is in a state prior to clotting. Thus, by combining Formula <1> to <4> with Formula <5> which is a constitutive equation of Newtonian fluid, a fluid (blood) flow curve can be obtained, and viscosity, shear rate, shear stress, etc. The flow characteristics of can be analyzed.
なお、前記「落下終端速度」とは、流体中を等速度落下運動をしているときの速度のことである。また、落下終端速度Utと密度差(ρs−ρf)とを座標軸とする第1の線分が原点(0,0)を通るか否かは、該第1の線分を表す関数の定数項が0であるものの他、計算上の誤差を見越して、−0.07≦(定数項)≦0.07を満足するものも原点(0,0)を通ると判断するのが良い。これは多数の実験結果から統計的に得られたものである。更に、第1の線分がほぼ原点を通り、落下終端速度Utの対数と密度差(ρs−ρf)の対数とを座標軸とする第2の線分がほぼ直線である場合に、該第2の線分の勾配nが1である場合にはNewton流体であると判断できる。この時、勾配nが0.95≦n≦1.05を満足すればNewton流体であると特定するのが良い。これは、多数のNewton流体について検討した結果、統計的に、勾配nが0.95≦n≦1.05を満足すればNewton流体であるとして特定できるという結果に基づいている。 The “falling end velocity” is a velocity when a constant velocity falling motion is performed in the fluid. Further, whether or not the first line segment with the coordinate point of the drop end velocity Ut and the density difference (ρs−ρf) passes through the origin (0, 0) is a constant term of a function representing the first line segment. In addition to the case where 0 is 0, it is better to determine that those satisfying −0.07 ≦ (constant term) ≦ 0.07 pass through the origin (0, 0) in anticipation of calculation errors. This is statistically obtained from a number of experimental results. Further, when the first line segment substantially passes through the origin, and the second line segment having the logarithm of the drop end velocity Ut and the logarithm of the density difference (ρs−ρf) as a coordinate axis is substantially a straight line, When the gradient n of the line segment is 1, it can be determined that the fluid is a Newtonian fluid. At this time, if the gradient n satisfies 0.95 ≦ n ≦ 1.05, it is preferable to identify the fluid as a Newtonian fluid. This is based on the result of examining a large number of Newtonian fluids, and statistically, if the gradient n satisfies 0.95 ≦ n ≦ 1.05, it can be identified as a Newtonian fluid.
次に、この発明に係る血液粘度測定装置(1)の他の実施形態を図6に示す。本実施形態では、筒状ランチャー(4)の長さが前記実施形態のものよりも長く設定されており、この筒状ランチャー(4)の中に4本の略針状落体(2)(2)(2)(2)が装填配置されていると共に、筒状ランチャー(4)の下方部の外側に一対の磁力発生部(31)(32)が上下方向に離間して配置されている。本実施形態では、これら一対の磁力発生部(31)(32)は、一方の磁力発生部が磁界を発生した場合に他方の磁力発生部は磁界を発生しない状態に切り替え可能となされている。具体的には、図7に示すように、上側の磁力発生部(31)は、鉄芯(41)の周囲に金属コイルが捲回されたものからなり、下側の磁力発生部(32)は、棒状の永久磁石(42)の周囲に金属コイルが捲回されたものからなり、これらコイルが直流電源(DC)(43)に接続配線されると共に、配線の途中にスイッチ(44)が設けられた構成が採用されており、該スイッチ(44)のON、OFFを切り替えることにより、一方の磁力発生部が磁界を発生した場合に他方の磁力発生部は磁界を発生しない状態に切り替えることができる。なお、これら以外の構成は、前記図1〜3に示す実施形態と同様であるのでその説明は省略する。 Next, another embodiment of the blood viscosity measuring apparatus (1) according to the present invention is shown in FIG. In this embodiment, the length of the cylindrical launcher (4) is set to be longer than that of the above-described embodiment, and four substantially needle-like falling bodies (2) (2) are formed in the cylindrical launcher (4). ) (2) (2) are loaded and arranged, and a pair of magnetic force generators (31) and (32) are arranged apart from each other in the vertical direction outside the lower part of the cylindrical launcher (4). In the present embodiment, the pair of magnetic force generators (31) and (32) can be switched to a state in which the other magnetic force generator does not generate a magnetic field when one of the magnetic force generators generates a magnetic field. Specifically, as shown in FIG. 7, the upper magnetic force generator (31) is formed by winding a metal coil around the iron core (41), and the lower magnetic force generator (32). Consists of a metal coil wound around a rod-shaped permanent magnet (42). These coils are connected to a direct current power source (DC) (43) and a switch (44) is provided in the middle of the wiring. The provided configuration is adopted, and when one of the magnetic force generators generates a magnetic field by switching ON and OFF of the switch (44), the other magnetic force generator switches to a state in which no magnetic field is generated. Can do. Other configurations are the same as those of the embodiment shown in FIGS.
図6に示す状態では、下側の磁力発生部(32)は磁界を発生した状態にあり、上側の磁力発生部(31)は磁界を発生しない状態になっており、下側の磁力発生部(32)から発せられる磁気吸引力によって最下側の略針状落体(2A)の落下が阻止されている。この状態からスイッチ等による切り替え操作により、上側の磁力発生部(31)は磁界を発生し、下側の磁力発生部(32)は磁界を発生しない状態に設定すると、ランチャー(4)内の最下側の略針状落体(2A)が落下する一方、その直上の略針状落体(2B)は上側の磁力発生部(31)から発せられる磁気吸引力によって落下が阻止された状態となる。しかる後、再びスイッチ等による切り替え操作を行って下側の磁力発生部(32)は磁界を発生した状態に、上側の磁力発生部(31)は磁界を発生しない状態に戻すと、略針状落体(2B)は下側の磁力発生部(32)の高さまで落下して停止し、その直上位置に略針状落体(2C)(2D)が順次載置された状態となる(落下スタンバイ状態となる)。 In the state shown in FIG. 6, the lower magnetic force generation part (32) is in a state where a magnetic field is generated, and the upper magnetic force generation part (31) is in a state where no magnetic field is generated. The lowermost needle-like falling body (2A) is prevented from falling by the magnetic attractive force generated from (32). If the upper magnetic force generation part (31) generates a magnetic field and the lower magnetic force generation part (32) does not generate a magnetic field by a switching operation with a switch or the like from this state, the uppermost magnetic force generation part (31) in the launcher (4) is set. While the lower substantially needle-like fallen body (2A) falls, the substantially needle-like fallen body (2B) immediately above it falls into a state in which the fall is prevented by the magnetic attraction force generated from the upper magnetic force generating part (31). After that, when the switching operation by a switch or the like is performed again to return the lower magnetic force generation part (32) to a state where a magnetic field is generated and the upper magnetic force generation part (31) to a state where no magnetic field is generated, a substantially needle-like shape is obtained. The fallen body (2B) falls to the height of the lower magnetic force generation part (32) and stops, and the substantially needle-like fallen bodies (2C) (2D) are sequentially placed immediately above (falling standby state). Becomes).
しかして、最下側の略針状落体(2A)の測定が終了した後に、上側の磁力発生部(31)は磁界を発生し、下側の磁力発生部(32)は磁界を発生しない状態に設定すると、ランチャー(4)内の略針状落体(2B)が落下する一方、その直上の略針状落体(2C)は上側の磁力発生部(31)から発せられる磁気吸引力によって落下が阻止された状態となる。しかる後、再びスイッチ等による切り替え操作を行って下側の磁力発生部(32)は磁界を発生した状態に、上側の磁力発生部(31)は磁界を発生しない状態に戻すと、略針状落体(2C)は下側の磁力発生部(32)の高さまで落下して停止し、その直上位置に略針状落体(2D)が載置された状態となる(落下スタンバイ状態となる)。 Thus, after the measurement of the lowermost substantially needle-like fallen body (2A) is completed, the upper magnetic force generator (31) generates a magnetic field, and the lower magnetic force generator (32) does not generate a magnetic field. Is set, the substantially needle-like fallen body (2B) in the launcher (4) falls, while the substantially needle-like fallen body (2C) immediately above it falls due to the magnetic attractive force generated from the upper magnetic force generating part (31). It will be blocked. After that, when the switching operation by a switch or the like is performed again to return the lower magnetic force generation part (32) to a state where a magnetic field is generated and the upper magnetic force generation part (31) to a state where no magnetic field is generated, a substantially needle-like shape is obtained. The falling body (2C) drops to the height of the lower magnetic force generation part (32) and stops, and the substantially needle-like falling body (2D) is placed at a position immediately above (falling standby state).
しかして、略針状落体(2B)の測定が終了した後に、上側の磁力発生部(31)は磁界を発生し、下側の磁力発生部(32)は磁界を発生しない状態に切替設定すると、ランチャー(4)内の略針状落体(2C)が落下する一方、その直上の略針状落体(2D)は上側の磁力発生部(31)から発せられる磁気吸引力によって落下が阻止された状態となる。しかる後、再びスイッチ等による切り替え操作を行って下側の磁力発生部(32)は磁界を発生した状態に、上側の磁力発生部(31)は磁界を発生しない状態に戻すと、略針状落体(2D)は下側の磁力発生部(32)の高さまで落下して停止して落下スタンバイ状態となる。 Thus, after the measurement of the substantially needle-like fallen body (2B) is completed, the upper magnetic force generation part (31) generates a magnetic field, and the lower magnetic force generation part (32) is switched to a state in which no magnetic field is generated. The substantially needle-like fallen body (2C) in the launcher (4) falls, while the substantially needle-like fallen body (2D) immediately above the faller is prevented from being dropped by the magnetic attraction force generated from the upper magnetic force generating part (31). It becomes a state. After that, when the switching operation by a switch or the like is performed again to return the lower magnetic force generation part (32) to a state where a magnetic field is generated and the upper magnetic force generation part (31) to a state where no magnetic field is generated, a substantially needle-like shape is obtained. The fallen body (2D) drops to the height of the lower magnetic force generation part (32), stops and enters a fall standby state.
次いで、略針状落体(2C)の測定が終了した後に、上側の磁力発生部(31)は磁界を発生し、下側の磁力発生部(32)は磁界を発生しない状態に設定すると、ランチャー(4)内の略針状落体(2D)が落下する。本実施形態の装置では、このようにして、筒状ランチャー(4)内に装填した4本の略針状落体(2A)(2B)(2C)(2D)を連続的に自動投下することができるので、血液の粘度測定に要する時間を短縮できる利点がある。 Next, after the measurement of the substantially needle-like falling body (2C) is completed, the upper magnetic force generation part (31) generates a magnetic field, and the lower magnetic force generation part (32) is set to a state in which no magnetic field is generated. (4) The substantially needle-like falling body (2D) inside falls. In the apparatus of the present embodiment, the four substantially needle-like falling bodies (2A) (2B) (2C) (2D) loaded in the cylindrical launcher (4) can be automatically dropped in this way. Therefore, there is an advantage that the time required for blood viscosity measurement can be shortened.
この発明において、前記略針状体(11)を構成する合成樹脂としては、特に限定されるものではないが、ポリエチレン、ポリプロピレン等のオレフィン樹脂を用いるのが好ましい。なお、合成樹脂からなる略針状体(11)の表面に、気泡が付着するのを防止するためのコーティング層が形成されても良い。このような気泡付着防止コーティング層としては、例えば親水性コーティング層を例示できる。 In the present invention, the synthetic resin constituting the substantially needle-like body (11) is not particularly limited, but olefin resins such as polyethylene and polypropylene are preferably used. In addition, the coating layer for preventing that a bubble adheres may be formed in the surface of the substantially acicular body (11) which consists of synthetic resins. Examples of such a bubble adhesion preventing coating layer include a hydrophilic coating layer.
また、前記錘(12)としては、その材質は特に限定されないが、金属製の錘が好適である。また、前記錘(12)は、塊状、粒体、粉体等どのような形態であっても良い。このような錘(12)の封入量を変えることで密度の異なる略針状落体(2)を製作することができる。血液の粘度測定を行うには、密度0.7〜2.0g/cm3の範囲で密度の異なる複数個の略針状落体(2)を用いるのが好ましい。また、前記錘(12)は、略針状体(11)の下方部に封入されるのが好ましく、この場合には落体(2)の重心が低くなるので、落下挙動が安定するという効果が得られる。 As the pre Kitsumu (12), the material of that is not particularly limited, a metal weight is preferred. Further, the weight (12) may be in any form such as a lump, granule, powder and the like. By changing the enclosed amount of the weight (12), it is possible to manufacture the substantially needle-like falling bodies (2) having different densities. In order to measure the viscosity of blood, it is preferable to use a plurality of substantially needle-like fallen bodies (2) having different densities in a density range of 0.7 to 2.0 g / cm 3 . Further, the weight (12) is preferably enclosed in the lower part of the substantially needle-like body (11). In this case, the center of gravity of the falling body (2) is lowered, so that the falling behavior is stabilized. can get.
前記略針状落体(2)の大きさとしては、特に限定されないものの、より少量の血液量での粘度測定を可能にすると共に粘度測定の精度を向上させる観点から、外径(m1、m2)が0.5〜3mm、長さ(h)が5〜100mmの範囲に設定されるのが好ましい。図2において、m1=m2、m1>m2、m1<m2、いずれの関係が成立する構成でも良い。なお、前記略針状落体(2)の密度とは、見かけ密度を意味するものであり、落体(2)の質量を落体の体積(空隙部を含めた体積)で除した値である。 The size of the substantially needle-like falling body (2) is not particularly limited, but from the viewpoint of enabling viscosity measurement with a smaller amount of blood and improving the accuracy of viscosity measurement, the outer diameter (m 1 , m 2 ) is preferably set in the range of 0.5 to 3 mm and the length (h) in the range of 5 to 100 mm. In FIG. 2, a configuration in which any relationship of m 1 = m 2 , m 1 > m 2 , m 1 <m 2 is established may be employed. The density of the substantially needle-like falling body (2) means an apparent density, and is a value obtained by dividing the mass of the falling body (2) by the volume of the falling body (the volume including the void).
なお、前記実施形態では、検出手段(5)として、一対の磁気センサー(5A)(5B)及び計測装置(5C)が用いられているが、特にこのような構成のものに限定されるものではなく、落下する略針状落体(2)の落下終端速度を検出できる手段であればどのようなものでも良い。 In the above-described embodiment, a pair of magnetic sensors (5A) (5B) and a measuring device (5C) are used as the detection means (5). However, the detection means (5) is not particularly limited to such a configuration. Any means can be used as long as it can detect the falling end speed of the substantially needle-like falling body (2) that falls.
また、前記実施形態では、各略針状落体(2)の落下終端速度を測定することにより血液の粘度を求めているが、これに代えて各略針状落体(2)の落下加速度を測定することにより血液の粘度を求めるようにしても良い。このような落体(2)の落下加速度を測定する検出手段(5)としては、上下に離間して配置された3つの磁気センサー及び計測装置からなる構成が挙げられる。 Moreover, in the said embodiment, although the viscosity of the blood is calculated | required by measuring the fall termination | terminus velocity of each substantially needle-like fallen body (2), it replaces with this and the fall acceleration of each substantially needle-like fallen body (2) is measured. By doing so, the viscosity of blood may be obtained. As a detection means (5) for measuring the fall acceleration of such a fallen body (2), a configuration comprising three magnetic sensors and a measurement device that are spaced apart in the vertical direction can be mentioned.
また、前記実施形態では、落体回収容器(6)の内部空間に空気(61)が存在する態様が採用されているが、これに代えて窒素ガス等の不活性ガスを落体回収容器(6)内に封入せしめた構成を採用しても良い。この場合には、落体(2)が落体回収容器(6)内に回収される毎に小孔(24)を介して不活性ガスの気泡が測定容器(3)内を浮上することによって血液を攪拌するものとなるので、測定容器(3)内の血液の変質を効果的に防止できると共に血液凝固までの時間も延ばすことができる。 Moreover, in the said embodiment, although the aspect with which air (61) exists in the internal space of a falling body collection | recovery container (6) is employ | adopted, instead of this, inert gas, such as nitrogen gas, is used. You may employ | adopt the structure enclosed with the inside. In this case, every time the falling body (2) is recovered in the falling body recovery container (6), the inert gas bubbles rise through the small holes (24), thereby allowing blood to flow. Since stirring is performed, the blood in the measurement container (3) can be effectively prevented from being altered and the time until blood coagulation can be extended.
次に、この発明の具体的実施例について説明する。 Next, specific examples of the present invention will be described.
<実施例1>
45歳の男性から血液を採取し(以下、この血液を「血液X」と言う)、図1に示す構成からなる血液粘度測定装置(1)を用いて前項で説明した手順に従って血液の粘度測定を行った。採取した血液の密度は1.054g/cm3であった。測定容器(3)の内径は8mm、長さは90mmであり、測定容器(3)の内容量は約3mLであった。略針状落体(2)の長さ(L)は20mm、上方側の外径(m1)は2.0mm、下方側の外径(m2)は1.8mmであった。測定容器(3)内の血液(60)が37.0℃になるように恒温槽(8)を制御して測定を行った。また、密度の異なる複数の略針状落体(2)として、密度1.130、1.165、1.212、1.260、1.280、1.314、1.330、1.397g/cm3の8種類の略針状落体を使用した。各落体(2)が上側の磁気センサー(5A)から下側の磁気センサー(5B)の位置まで落下するのに要した時間と、これより求められた各落体(2)の落下終端速度Utを表1に示す。
<Example 1>
Blood is collected from a 45-year-old man (hereinafter, this blood is referred to as “blood X”), and blood viscosity is measured according to the procedure described in the previous section using the blood viscosity measuring apparatus (1) having the configuration shown in FIG. Went. The density of the collected blood was 1.054 g / cm 3 . The inner diameter of the measurement container (3) was 8 mm, the length was 90 mm, and the inner volume of the measurement container (3) was about 3 mL. The length (L) of the substantially needle-like fallen body (2) was 20 mm, the outer diameter (m 1 ) on the upper side was 2.0 mm, and the outer diameter (m 2 ) on the lower side was 1.8 mm. The measurement was performed by controlling the thermostatic bath (8) so that the blood (60) in the measurement container (3) was 37.0 ° C. Further, as a plurality of substantially needle-like falling bodies (2) having different densities, the density is 1.130, 1.165, 1.212, 1.260, 1.280, 1.314, 1.330, 1.397 g / cm. Three types of approximately needle-shaped falling bodies were used. The time required for each fallen body (2) to drop from the upper magnetic sensor (5A) to the position of the lower magnetic sensor (5B) and the fall termination speed Ut of each fallen body (2) determined from this time are given. Table 1 shows.
表1に示すデータに基づき、落下終端速度Utと密度差(ρs−ρf)とを座標軸としてプロットし(図10参照)、(Ut)−(ρs−ρf)線分を表す関数を算出した結果、(ρs−ρf)=1×10-6(Ut)2+1.93×10-2(Ut)−4×10-4となり、定数項は−0.0004であった。−0.0004は−0.07≦(定数項)≦0.07を満足することから、この定数項の値と線分の形状から、血液XがNewton流体であることを確認し得た。 Based on the data shown in Table 1, the falling end velocity Ut and the density difference (ρs−ρf) are plotted as coordinate axes (see FIG. 10), and the function representing the (Ut) − (ρs−ρf) line segment is calculated. (Ρs−ρf) = 1 × 10 −6 (Ut) 2 + 1.93 × 10 −2 (Ut) −4 × 10 −4 , and the constant term was −0.0004. Since −0.0004 satisfies −0.07 ≦ (constant term) ≦ 0.07, it was confirmed from the value of the constant term and the shape of the line segment that blood X is a Newtonian fluid.
更に、落下終端速度Utの対数と密度差(ρs−ρf)の対数をとった結果を表2に示す。 Furthermore, Table 2 shows the result of taking the logarithm of the drop end velocity Ut and the logarithm of the density difference (ρs−ρf).
表2に示すデータに基づき、落下終端速度の対数ln(Ut)と密度差の対数ln(ρs−ρf)とを座標軸としてプロットし(図11参照)、(Ut)−(ρs−ρf)対数線分を表す関数を算出した結果、ln(ρs−ρf)=1.01ln(Ut)+7.58となり、その勾配nの値は1.01で、0.95≦n≦1.05を満足することから、血液Xが確実にNewton流体であることを確認した。 Based on the data shown in Table 2, the logarithm ln (Ut) of the drop end velocity and the logarithm ln (ρs−ρf) of the density difference are plotted as coordinate axes (see FIG. 11), and (Ut) − (ρs−ρf) logarithm. As a result of calculating the function representing the line segment, ln (ρs−ρf) = 1.01ln (Ut) +7.58, the value of the gradient n is 1.01, and 0.95 ≦ n ≦ 1.05 is satisfied. Therefore, it was confirmed that blood X was surely a Newtonian fluid.
式<1>〜式<4>の4式とNewton流体の構成方程式<5>とを連立させて血液の粘度μを算出し、血液Xの流動曲線を得た(図12参照)。この血液Xの流動曲線は、τ=0.00463γであった。従って、血液Xの粘度μは4.63mPa・secであった。 The blood viscosity μ was calculated by combining the four formulas <1> to <4> and the Newtonian fluid constitutive equation <5> to obtain a blood X flow curve (see FIG. 12). The blood X flow curve was τ = 0.463γ. Therefore, the viscosity μ of blood X was 4.63 mPa · sec.
<実施例2>
24歳の男性から血液を採取し(以下、この血液を「血液Y」と言う)、図1に示す構成からなる血液粘度測定装置(1)を用いて前項で説明した手順に従って血液の粘度測定を行った。採取した血液の密度は1.055g/cm3であった。測定容器(3)の内径は8mm、長さは90mmであり、測定容器(3)の内容量は約3mLであった。略針状落体(2)の長さ(L)は20mm、上方側の外径(m1)は2.0mm、下方側の外径(m2)は1.8mmであった。測定容器(3)内の血液(60)が37.0℃になるように恒温槽(8)を制御して測定を行った。また、密度の異なる複数の略針状落体(2)として、密度1.130、1.138、1.165、1.212、1.260、1.290、1.314、1.330g/cm3の8種類の略針状落体を使用した。各落体(2)が上側の磁気センサー(5A)から下側の磁気センサー(5B)の位置まで落下するのに要した時間と、これより求められた各落体(2)の落下終端速度Utを表3に示す。
<Example 2>
Blood is collected from a 24-year-old man (hereinafter, this blood is referred to as “blood Y”), and blood viscosity is measured according to the procedure described in the previous section using the blood viscosity measuring apparatus (1) having the configuration shown in FIG. Went. The density of the collected blood was 1.055 g / cm 3 . The inner diameter of the measurement container (3) was 8 mm, the length was 90 mm, and the inner volume of the measurement container (3) was about 3 mL. The length (L) of the substantially needle-like fallen body (2) was 20 mm, the outer diameter (m 1 ) on the upper side was 2.0 mm, and the outer diameter (m 2 ) on the lower side was 1.8 mm. The measurement was performed by controlling the thermostatic bath (8) so that the blood (60) in the measurement container (3) was 37.0 ° C. Further, as a plurality of substantially needle-like falling bodies (2) having different densities, the density is 1.130, 1.138, 1.165, 1.212, 1.260, 1.290, 1.314, 1.330 g / cm. Three types of approximately needle-shaped falling bodies were used. The time required for each fallen body (2) to drop from the upper magnetic sensor (5A) to the position of the lower magnetic sensor (5B) and the fall termination speed Ut of each fallen body (2) determined from this time are given. Table 3 shows.
表3に示すデータに基づき、落下終端速度Utと密度差(ρs−ρf)とを座標軸としてプロットし(図13参照)、(Ut)−(ρs−ρf)線分を表す関数を算出した結果、(ρs−ρf)=−1×10-4(Ut)2+2.07×10-2(Ut)−8.7×10-3となり、定数項は−0.0087であった。−0.0087は−0.07≦(定数項)≦0.07を満足することから、この定数項の値と線分の形状から、血液YがNewton流体であることを確認し得た。 Based on the data shown in Table 3, the end point velocity Ut and the density difference (ρs−ρf) are plotted as coordinate axes (see FIG. 13), and the function representing the (Ut) − (ρs−ρf) line segment is calculated. (Ρs−ρf) = − 1 × 10 −4 (Ut) 2 + 2.07 × 10 −2 (Ut) −8.7 × 10 −3 , and the constant term was −0.0087. Since −0.0087 satisfies −0.07 ≦ (constant term) ≦ 0.07, it was confirmed from the value of this constant term and the shape of the line segment that blood Y was a Newtonian fluid.
更に、落下終端速度Utの対数と密度差(ρs−ρf)の対数をとった結果を表4に示す。 Further, Table 4 shows the result of taking the logarithm of the drop end velocity Ut and the logarithm of the density difference (ρs−ρf).
表4に示すデータに基づき、落下終端速度の対数ln(Ut)と密度差の対数ln(ρs−ρf)とを座標軸としてプロットし(図14参照)、(Ut)−(ρs−ρf)対数線分を表す関数を算出した結果、ln(ρs−ρf)=1.02ln(Ut)+7.57となり、その勾配nの値は1.02で、0.95≦n≦1.05を満足することから、血液Yが確実にNewton流体であることを確認した。 Based on the data shown in Table 4, the logarithm ln (Ut) of the drop end velocity and the logarithm ln (ρs−ρf) of the density difference are plotted as coordinate axes (see FIG. 14), and (Ut) − (ρs−ρf) logarithm. As a result of calculating the function representing the line segment, ln (ρs−ρf) = 1.02ln (Ut) +7.57, the value of the gradient n is 1.02, and 0.95 ≦ n ≦ 1.05 is satisfied. Thus, it was confirmed that blood Y was surely a Newtonian fluid.
式<1>〜式<4>の4式とNewton流体の構成方程式<5>とを連立させて血液の粘度μを算出し、血液Yの流動曲線を得た(図15参照)。この血液Yの流動曲線は、τ=0.00450γであった。従って、血液Yの粘度μは4.50mPa・secであった。 Formula 4 from Formula <1> to Formula <4> and the Newtonian fluid constitutive equation <5> were combined to calculate blood viscosity μ, and a blood Y flow curve was obtained (see FIG. 15). The flow curve of this blood Y was τ = 0.00450γ. Therefore, the viscosity μ of blood Y was 4.50 mPa · sec.
<実施例3>
23歳の男性から血液を採取し(以下、この血液を「血液Z」と言う)、図1に示す構成からなる血液粘度測定装置(1)を用いて前項で説明した手順に従って血液の粘度測定を行った。採取した血液の密度は1.058g/cm3であった。測定容器(3)の内径は8mm、長さは90mmであり、測定容器(3)の内容量は約3mLであった。略針状落体(2)の長さ(L)は20mm、上方側の外径(m1)は2.0mm、下方側の外径(m2)は1.8mmであった。測定容器(3)内の血液(60)が37.0℃になるように恒温槽(8)を制御して測定を行った。また、密度の異なる複数の略針状落体(2)として、密度1.078、1.130、1.170、1.212、1.260、1.290、1.330、1.365g/cm3の8種類の略針状落体を使用した。各落体(2)が上側の磁気センサー(5A)から下側の磁気センサー(5B)の位置まで落下するのに要した時間と、これより求められた各落体(2)の落下終端速度Utを表5に示す。
<Example 3>
Blood is collected from a 23-year-old man (hereinafter, this blood is referred to as “blood Z”), and blood viscosity is measured according to the procedure described in the previous section using the blood viscosity measuring apparatus (1) having the configuration shown in FIG. Went. The density of the collected blood was 1.058 g / cm 3 . The inner diameter of the measurement container (3) was 8 mm, the length was 90 mm, and the inner volume of the measurement container (3) was about 3 mL. The length (L) of the substantially needle-like fallen body (2) was 20 mm, the outer diameter (m 1 ) on the upper side was 2.0 mm, and the outer diameter (m 2 ) on the lower side was 1.8 mm. The measurement was performed by controlling the thermostatic bath (8) so that the blood (60) in the measurement container (3) was 37.0 ° C. Further, as a plurality of substantially needle-like falling bodies (2) having different densities, the density is 1.078, 1.130, 1.170, 1.212, 1.260, 1.290, 1.330, 1.365 g / cm. Three types of approximately needle-shaped falling bodies were used. The time required for each fallen body (2) to drop from the upper magnetic sensor (5A) to the position of the lower magnetic sensor (5B) and the fall termination speed Ut of each fallen body (2) determined from this time are given. Table 5 shows.
表5に示すデータに基づき、落下終端速度Utと密度差(ρs−ρf)とを座標軸としてプロットし(図16参照)、(Ut)−(ρs−ρf)線分を表す関数を算出した結果、(ρs−ρf)=7.0×10-5(Ut)2+1.96×10-2(Ut)+2.6×10-3となり、定数項は0.0026であった。0.0026は−0.07≦(定数項)≦0.07を満足することから、この定数項の値と線分の形状から、血液ZがNewton流体であることを確認し得た。 Based on the data shown in Table 5, the end-of-fall velocity Ut and the density difference (ρs−ρf) are plotted as coordinate axes (see FIG. 16), and the function representing the (Ut) − (ρs−ρf) line segment is calculated. (Ρs−ρf) = 7.0 × 10 −5 (Ut) 2 + 1.96 × 10 −2 (Ut) + 2.6 × 10 −3 , and the constant term was 0.0026. Since 0.0026 satisfies −0.07 ≦ (constant term) ≦ 0.07, it was confirmed from the value of this constant term and the shape of the line segment that blood Z is a Newtonian fluid.
更に、落下終端速度Utの対数と密度差(ρs−ρf)の対数をとった結果を表6に示す。 Further, Table 6 shows the result of taking the logarithm of the drop end velocity Ut and the logarithm of the density difference (ρs−ρf).
表6に示すデータに基づき、落下終端速度の対数ln(Ut)と密度差の対数ln(ρs−ρf)とを座標軸としてプロットし(図17参照)、(Ut)−(ρs−ρf)対数線分を表す関数を算出した結果、ln(ρs−ρf)=1.00ln(Ut)+7.64となり、その勾配nの値は1.00で、0.95≦n≦1.05を満足することから、血液Zが確実にNewton流体であることを確認した。 Based on the data shown in Table 6, the logarithm ln (Ut) of the drop end velocity and the logarithm ln (ρs−ρf) of the density difference are plotted as coordinate axes (see FIG. 17), and (Ut) − (ρs−ρf) logarithm. As a result of calculating the function representing the line segment, ln (ρs−ρf) = 1.00ln (Ut) +7.64, the value of the gradient n is 1.00, and 0.95 ≦ n ≦ 1.05 is satisfied. Therefore, it was confirmed that blood Z was surely a Newtonian fluid.
式<1>〜式<4>の4式とNewton流体の構成方程式<5>とを連立させて血液の粘度μを算出し、血液Yの流動曲線を得た(図18参照)。この血液Zの流動曲線は、τ=0.00458γであった。従って、血液Zの粘度μは4.58mPa・secであった。 The blood viscosity μ was calculated by combining the four formulas <1> to <4> and the Newtonian fluid constitutive equation <5> to obtain a blood Y flow curve (see FIG. 18). The flow curve of this blood Z was τ = 0.00458γ. Therefore, the viscosity μ of blood Z was 4.58 mPa · sec.
<実施例4>
25歳の男性から血液を採取し、実施例1と同様にして測定を行ったところ、この血液の粘度μは4.20mPa・secであった。
<Example 4>
When blood was collected from a 25-year-old man and measured in the same manner as in Example 1, the viscosity μ of this blood was 4.20 mPa · sec.
<実施例5>
24歳の男性(実施例2の男性とは異なる人)から血液を採取し、実施例1と同様にして測定を行ったところ、この血液の粘度μは4.19mPa・secであった。
<Example 5>
When blood was collected from a 24-year-old male (a person different from the male of Example 2) and measured in the same manner as in Example 1, the viscosity μ of this blood was 4.19 mPa · sec.
<実施例6>
23歳の男性(実施例3の男性とは異なる人)から血液を採取し、実施例1と同様にして測定を行ったところ、この血液の粘度μは4.40mPa・secであった。
<Example 6>
When blood was collected from a 23-year-old male (a person different from the male of Example 3) and measured in the same manner as in Example 1, the viscosity μ of this blood was 4.40 mPa · sec.
<実施例7>
22歳の男性から血液を採取し、実施例1と同様にして測定を行ったところ、この血液の粘度μは4.41mPa・secであった。
<Example 7>
When blood was collected from a 22-year-old man and measured in the same manner as in Example 1, the viscosity μ of this blood was 4.41 mPa · sec.
<実施例8>
24歳の女性から血液を採取し、実施例1と同様にして測定を行ったところ、この血液の粘度μは3.05mPa・secであった。
<Example 8>
When blood was collected from a 24-year-old woman and measured in the same manner as in Example 1, the viscosity μ of this blood was 3.05 mPa · sec.
1…血液粘度測定装置
2…略針状落体
3…測定容器
4…ランチャー
5…検出手段
6…落体回収容器
7…攪拌部材
8…恒温槽
10…装置本体部
11…略針状体
12…錘
13…キャップ
14…攪拌部
15…把持部
16…連結部
23…開口部
24…小孔
25…傾斜面
30…磁性体
31…磁力発生部
32…磁力発生部
60…血液
DESCRIPTION OF SYMBOLS 1 ... Blood viscosity measuring apparatus 2 ... Substantially needle-shaped falling body 3 ... Measurement container 4 ... Launcher 5 ... Detection means 6 ... Falling body collection container 7 ... Stirring member 8 ... Constant temperature bath 10 ... Apparatus main-body part 11 ... Substantially needle-like body 12 ... Weight DESCRIPTION OF SYMBOLS 13 ... Cap 14 ... Stirring part 15 ... Gripping part 16 ... Connection part 23 ... Opening part 24 ... Small hole 25 ... Inclined surface 30 ... Magnetic body 31 ... Magnetic force generation part 32 ... Magnetic force generation part 60 ... Blood
Claims (10)
筒状の測定容器と、
前記測定容器の上部側に固定されたランチャーと、
前記測定容器内を落下する略針状落体の落下終端速度又は落下加速度を検出する検出手段とを備え、
前記略針状落体は、錘を中に封入した合成樹脂製の略針状体からなり、
前記測定容器の底面の中心部に小孔が設けられ、この小孔の径は、前記略針状落体の外径より大きく且つ4mm以下の範囲に設定され、前記測定容器の下に該測定容器に連接して落体回収容器が配置されていることを特徴とする血液の粘度測定装置。 A plurality of substantially needle-shaped falling bodies having different densities;
A cylindrical measuring container;
A launcher fixed to the upper side of the measurement container;
A detecting means for detecting a falling end speed or a falling acceleration of a substantially needle-like falling body falling in the measurement container;
The substantially acicular falling body is Ri Do a substantially needle-shaped body made encapsulated synthetic resin in the weight,
A small hole is provided in the center of the bottom surface of the measurement container, and the diameter of the small hole is set in a range larger than the outer diameter of the substantially needle-like falling body and 4 mm or less, and the measurement container is located under the measurement container. the viscosity measuring apparatus of the blood, characterized in Rukoto falling body collection container and connected is not disposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005022513A JP4277805B2 (en) | 2005-01-31 | 2005-01-31 | Method and apparatus for measuring blood viscosity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005022513A JP4277805B2 (en) | 2005-01-31 | 2005-01-31 | Method and apparatus for measuring blood viscosity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006208260A JP2006208260A (en) | 2006-08-10 |
JP4277805B2 true JP4277805B2 (en) | 2009-06-10 |
Family
ID=36965281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005022513A Active JP4277805B2 (en) | 2005-01-31 | 2005-01-31 | Method and apparatus for measuring blood viscosity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4277805B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105021792A (en) * | 2014-04-23 | 2015-11-04 | 中煤科工集团武汉设计研究院有限公司 | Device for measuring stability and PH value of coal water slurry |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007127469A (en) * | 2005-11-02 | 2007-05-24 | Univ Kansai | Falling body blood viscosity measuring method and device therefor |
JP4669953B2 (en) * | 2005-11-02 | 2011-04-13 | 学校法人 関西大学 | Blood sampling device for measuring viscosity and blood viscosity measuring device |
JP4701442B2 (en) * | 2005-11-02 | 2011-06-15 | 学校法人 関西大学 | Blood viscosity measuring device |
JP4701441B2 (en) * | 2005-11-02 | 2011-06-15 | 学校法人 関西大学 | Blood collection tube for blood viscosity measurement |
US7614285B2 (en) * | 2007-03-27 | 2009-11-10 | Cambridge Viscosity, Inc. | Dynamic reciprocating-bob rheometry |
US8555706B2 (en) | 2008-09-26 | 2013-10-15 | Asahi Group Holdings, Ltd. | Falling speed measuring sensor for falling body viscometer and falling speed measuring method |
EP2472246B1 (en) | 2009-10-03 | 2019-07-24 | Asahi Group Holdings, Ltd. | Method of determining falling state of falling body for viscometer of falling body type and viscometer of falling body type |
US8573029B2 (en) | 2009-10-03 | 2013-11-05 | Asahi Group Holdings, Ltd. | Method for sending a falling body in a falling-body viscometer, falling-body sending device, and falling-body viscometer provided therewith |
CN102331387B (en) * | 2011-05-18 | 2013-01-23 | 张家港金米兰德龙机械有限公司 | Viscosimeter for ink-jet printing machine |
JP7407430B2 (en) * | 2019-12-27 | 2024-01-04 | メディカル ユニバーシティ オブ ヴィエナ | Blood viscosity measurement blood collection tube, blood viscosity measurement device, and blood viscosity measurement blood collection tube enclosure pack |
EP4083600A4 (en) * | 2019-12-27 | 2023-08-09 | Medical University of Vienna | Blood-viscosity measurement method |
-
2005
- 2005-01-31 JP JP2005022513A patent/JP4277805B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105021792A (en) * | 2014-04-23 | 2015-11-04 | 中煤科工集团武汉设计研究院有限公司 | Device for measuring stability and PH value of coal water slurry |
Also Published As
Publication number | Publication date |
---|---|
JP2006208260A (en) | 2006-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4277805B2 (en) | Method and apparatus for measuring blood viscosity | |
Zhang et al. | Measurement of dynamic surface tension by a growing drop technique | |
JP4669953B2 (en) | Blood sampling device for measuring viscosity and blood viscosity measuring device | |
RU2002116220A (en) | VISCOSIMETER WITH TWO RISING TUBES AND ONE CAPILLARY | |
ES2898649T3 (en) | Procedure for pipetting liquids in an automatic analyzer apparatus | |
JP2021001762A (en) | Liquid sampling device, micro fluid chip, viscosity measuring method and surface tension measuring method | |
JP4288667B2 (en) | Milking pump usage | |
JPH09506167A (en) | Improved method and capacitance probe device | |
JP4630053B2 (en) | Cartridge for monitoring the function of a device for testing the function of platelets, method for monitoring function and use of test fluid | |
Yamamoto et al. | Development of a compact-sized falling needle rheometer for measurement of flow properties of fresh human blood | |
RU2460987C1 (en) | Method of determining surface tension coefficient and wetting angle | |
JP4701442B2 (en) | Blood viscosity measuring device | |
US4972844A (en) | Sampling chamber assembly for in-line measurements of fluid within a collection system | |
JP2007127469A (en) | Falling body blood viscosity measuring method and device therefor | |
JPH08219973A (en) | Method and apparatus for measuring viscosity by using falling body | |
KR101308655B1 (en) | Viscosity measurements method using a disposable viscosity measurement apparatus | |
JP4701441B2 (en) | Blood collection tube for blood viscosity measurement | |
RU2493551C2 (en) | Device to identify density of fluid media | |
CA2166914C (en) | Single sensor density measuring apparatus and method | |
JP7407430B2 (en) | Blood viscosity measurement blood collection tube, blood viscosity measurement device, and blood viscosity measurement blood collection tube enclosure pack | |
SU968704A1 (en) | Method of investigating coalescence of emulsions and device for effecting the same | |
JP2023172601A (en) | Analysis device and analysis method | |
JP7407431B2 (en) | Blood viscosity measurement method | |
CN109060594B (en) | Liquid density measuring method | |
US11821907B2 (en) | Buoyometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090302 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4277805 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |