JP4277536B2 - Optical component, method for manufacturing the same, and image projection screen - Google Patents

Optical component, method for manufacturing the same, and image projection screen Download PDF

Info

Publication number
JP4277536B2
JP4277536B2 JP2003045534A JP2003045534A JP4277536B2 JP 4277536 B2 JP4277536 B2 JP 4277536B2 JP 2003045534 A JP2003045534 A JP 2003045534A JP 2003045534 A JP2003045534 A JP 2003045534A JP 4277536 B2 JP4277536 B2 JP 4277536B2
Authority
JP
Japan
Prior art keywords
curable resin
ultraviolet curable
convex pattern
fine concavo
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003045534A
Other languages
Japanese (ja)
Other versions
JP2004258071A (en
Inventor
禎之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2003045534A priority Critical patent/JP4277536B2/en
Publication of JP2004258071A publication Critical patent/JP2004258071A/en
Application granted granted Critical
Publication of JP4277536B2 publication Critical patent/JP4277536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえばLCD(液晶表示装置)やDMD(Digital−Micromirror−Device)等のようなセル構造を有する光学エンジンからの画像を投影するプロジェクションテレビ用のスクリーンもしくは光学要素を有する光学物品に関する。
【0002】
【従来の技術】
光学的に有用な微細凹凸パターンの一例として、フレネルレンズが挙げられる。フレネルレンズの製造方法として、熱プレス成形法、キャスティング法、インジェクション法等がある。ところがこれらの方法によるときは、大型の製品を成型する場合には、加熱ー冷却に要する時間が長くかかり、生産性が上げられない。そこで、最近ではレンズ型と透明樹脂基材との間に紫外線硬化型樹脂を介在させ、紫外線を照射して短時間で硬化させるフォトポリマー法(2P法)が製造サイクルの短さや形状転写性の点から主流となっている(例えば、特許文献1参照)。
【0003】
一方、近年のプロジェクタの輝度向上により、その性能を有効に利用する為に余分な正面の輝度を水平もしくは垂直方向への視野角に振り分けることが可能となり、プロジェクションスクリーンの性能として、さらなる垂直視野角の向上が望まれるようになってきている。このため、片面のみに光学的に有用な微細パターン(例えばフレネルレンズ)をもつだけでは機能として不足し、垂直視野角を拡大させるような機能を持つ微細な凹凸パターン(例えばレンチキュラーレンズ)を押出成形により形成した基板を用いて、2P法によってフレネルレンズを成形する方法が提案されている(例えば、特許文献2参照)。
【0004】
この方法によれば、フレネルレンズ形状とは別のレンチキュラーレンズもしくはプリズムレンズ形状を形成する際に、押し出し成形によって実施するため、大ロットの場合には、レンチキュラーレンズやプリズムレンズ形状のような連続的に規則的なパターンを完全に成形できるため生産性は良好であるという利点がある。
【0005】
しかしながら、プロジェクションテレビ用のフレネルレンズの場合には、小ロット多品種であることも多く、前述のように押し出し成形によってレンチキュラーレンズやプリズムレンズ形状を形成すると生産性が低下する。生産性が低下する理由として、押出成形機で品種(特にピッチ)によってロールを交換する必要があり、交換が煩雑である。また、押出成形機で小ロット多品種を成形する際に、ロール交換毎に樹脂ペレットが無駄になりやすい。また、生産性の低下以外にも押し出し成形のような熱可塑性樹脂を用いた場合、熱プロセスによるため、レンチキュラーレンズやプリズムレンズ形状を成形する際の熱可塑性樹脂特有の熱戻り現象により、微細なピッチ(具体的には0.3mm以下)を深い形状でかつ充分に転写することが困難(転写不足)であるため、観察画面の垂直方向に広視野角を有する高品質なスクリーンを生産するのに好適とは言い難い面がある。
【0006】
【特許文献1】
特開昭61−177215号公報
【特許文献2】
特開平5−177215号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑み考案されたもので、押し出し成形によって小ロット多品種を成形する際の煩雑さや樹脂の無駄、熱プロセスに起因する不正確な微細なピッチの再現性を解決しようとするもので、微細なレンチキュラーレンズあるいはプリズムレンズ形状を有するフレネルレンズ等の光学要素を有する光学物品を高品質にしかも安価に提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に於いて上記課題を達成するために、まず請求項1においては、透光性基材上に光学的に有用な微細凹凸パターンが形成された光学物品において、透光性基材の両面に微細凹凸パターンが紫外線硬化型樹脂で形成されており、前記紫外線硬化型樹脂が両面で異なることを特徴とする光学物品としたものである。
【0009】
また、請求項2においては、前記微細凹凸パターンがレンチキュラーレンズ、プリズムレンズ、フレネルレンズもしくはマイクロレンズアレイ群のいずれかで構成されていることを特徴とする請求項1記載の光学物品としたものである。
【0010】
また、請求項3においては、少なくとも以下の工程を備えていることを特徴とする請求項1または2に記載の光学部品の製造方法としたものである。
(a)前記透光性基材と第1の微細凹凸パターンの反転型が形成された成形型とを準備する工程。
(b)前記透光性基材と前記成形型との間に第1の紫外線硬化型樹脂溶液を満たし、透光性基材側より紫外線を全面露光し、第1の紫外線硬化型樹脂溶液を硬化させる工程。
(c)第1の微細凹凸パターンの反転型が形成された成形型を離型し、透光性基材上の一方の面に第1の微細凹凸パターンを形成する工程。
(d)一方の面に第1の微細凹凸パターンが形成された透光性基材と第2の微細凹凸パターンが形成された成形型とを準備する工程。
(e)一方の面に第1の微細凹凸パターンが形成された透光性基材と第2の微細凹凸パターンの反転型が形成された成形型との間に第2の紫外線硬化型樹脂溶液を満たし、透光性基材側より全面露光し、第2の紫外線硬化型樹脂溶液を硬化させる工程。
(f)第2の微細凹凸パターンの反転型が形成された成形型を離型し、透光性基材上の一方の面に第1の微細凹凸パターンが、他方の面に第1の微細凹凸パターンが形成された光学部品を作製する工程。
【0011】
また、請求項4においては、請求項1または2に記載の光学物品を用いたことを特徴とする画像投影スクリーンとしたものである。
【0012】
【発明の実施の形態】
本発明の光学部品は、図1〜図3に示すように、透光性基材11の両面に第1の微細凹凸パターン(31a、31b及び31c)と第2の微細凹凸パターン(32a)が形成されたもので、第1の微細凹凸パターン(31a、31b及び31c)及び第2の微細凹凸パターン(32a)は異なった紫外線硬化型樹脂から形成されている。第1の微細凹凸パターン(31a、31b及び31c)及び第2の微細凹凸パターン(32a)はレンチキュラーレンズ、プリズムレンズ、フレネルレンズもしくはマイクロレンズアレイ群のいずれかで構成されており、図1の光学部品10は、第1の微細凹凸パターン31aがレンチキュラーレンズと第2の微細凹凸パターン32aがフレネルレンズとの組み合わせの事例で、図2の光学部品20は、第1の微細凹凸パターン31bがプリズムレンズと第2の微細凹凸パターン32aがフレネルレンズとの組み合わせの事例で、図3の光学部品30は、第1の微細凹凸パターン31cがマイクロレンズアレイと第2の微細凹凸パターン32aがフレネルレンズとの組み合わせの事例である。
第1の微細凹凸パターン及び第2の微細凹凸パターンが異なった紫外線硬化型樹脂を用いる理由については後記する。
【0013】
本発明の光学部品は、第1及び第2の微細凹凸パターンの反転型が形成された成形型及び紫外線硬化型樹脂溶液を用いた2P法にて作製される。
図4(a)〜(f)に、本発明の光学部品の製造工程の一例を示す。
以下、第1の微細凹凸パターン31aとしてレンチキュラーレンズ、第2の微細凹凸パターン32aとしてフレネルレンズを使用した本発明の光学部品の製造方法について説明する。
まず、透光性基材11と第1の微細凹凸パターン31aの反転型が形成された成形型21とを準備する(図4(a)参照)。
ここで、透光性基材11としては、例えばアクリル樹脂、MS樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリイミド樹脂、または上記樹脂のブレンドからなるシート及びフィルムやガラス板などが使用できる。成形型21からの離型性の点から、可とう性のあるアクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、MS樹脂などが光透過性や柔軟性の点から好ましい。
成形型21は銅、真鍮等の加工基材をフォエッチング法もしくは機械加工、レーザー加工等にて作製される。
【0014】
次に、透光性基材11と成形型21との間に第1の紫外線硬化型樹脂溶液31を満たし、透光性基材11側よりUVランプによって紫外線を全面露光し、第1の紫外線硬化型樹脂溶液31を硬化させ、型成形を行う(図4(b)参照)。
第1の紫外線硬化型樹脂溶液31としては、ベース樹脂となるウレタン(メタ)アクリレートおよび/またはエポキン(メタ)アクリレートオリゴマーに加えて、ベース樹脂の物性を改善する目的で反応希釈剤を加えて、さらに紫外線によって硬化するように、光重合開始剤成分を含有させた組成物が挙げられる。
また、第1の紫外線硬化型樹脂溶液31が硬化するには、紫外線ランプからの放射波長域と光重合開始剤の官能波長域とが近いことが必要となる。
【0015】
次に、成形型21を離型し、透光性基材11上の一方の面に第1の微細凹凸パターン31a(レンチキュラーレンズ)を形成する(図4(c)参照)。
【0016】
次に、一方の面に第1の微細凹凸パターン31a(レンチキュラーレンズ)が形成された透光性基材11と第2の微細凹凸パターン32aの反転型が形成された成形型22とを準備する(図4(d)参照)。
【0017】
次に、第1の微細凹凸パターン31aが形成された透光性基材11と第2の微細凹凸パターン32aの反転型が形成された成形型22との間に第2の紫外線硬化型樹脂溶液32を満たし、第1の微細凹凸パターン31a側よりUVランプによって紫外線を全面露光し、第2の紫外線硬化型樹脂溶液32を硬化させ、型成形を行う(図4(e)参照)。
【0018】
次に、成形型22を離型し、透光性基材11上の一方の面に第1の微細凹凸パターン31a(レンチキュラーレンズ)が、他方の面に第2の微細凹凸パターン32a(フレネルレンズ)が形成された光学部品10を得る(図4(f)参照)。
【0019】
上記光学物品を製造する際に用いられる第1の紫外線硬化型樹脂溶液及び第2の紫外線硬化型樹脂溶液を選択する際には、官能波長域をそれぞれ異なるようにする必要がある。すなわち、第2の紫外線硬化型樹脂溶液を紫外線によって硬化させる工程では第1の微細凹凸パターン側から紫外線照射することから、第2の紫外線硬化型樹脂溶液の官能波長域は第1の紫外線硬化型樹脂溶液の官能波長域よりも長波長側になるようにする。
【0020】
具体的には、耐久性や強度、硬さなどベース樹脂によって支配されるような物性を透光性基材11両面に形成された第1の微細凹凸パターン面と第2の微細凹凸パターン面とで異なるようにしたい場合には、第1の紫外線硬化型樹脂と第2の紫外線硬化型樹脂とで異なるものを使用するようにし、第2の紫外線硬化型樹脂の官能波長を第1の紫外線硬化型樹脂の官能波長よりも長波長側になるようなものを選択するようにする。
【0021】
一方、耐久性や強度、硬さなどベース樹脂によって支配されるような物性を透光性基材11両面に形成された第1の微細凹凸パターン面と第2の微細凹凸パターン面とで同じにしたい場合には、紫外線硬化型樹脂溶液中の光重合開始剤のみを表裏で異なるものを使用し、第2の紫外線硬化型樹脂溶液中に含まれる光重合開始剤の官能波長を第1の紫外線硬化型樹脂溶液中に含まれる光重合開始剤の官能波長よりも長波長側になるようなものを選択するようにする。
【0022】
さらに、第1の紫外線硬化型樹脂溶液と第2の紫外線硬化型樹脂溶液とを同じ組成物とする場合、長波長側に官能波長域を有する光重合開始剤と短波長側に官能波長領域を有する光重合開始剤とを複数種類混合して使用することで、第1の紫外線硬化型樹脂溶液硬化時には、両方の光重合開始剤が反応し、第2の紫外線硬化型樹脂溶液硬化時には、長波長側に官能波長域を有する光重合開始剤が反応することで両面とも効率的に硬化させることが可能となる。さらに、この場合にはUV樹脂を共通化することができるという利点もあるため好適である。
【0023】
一方、UV樹脂自身にも光吸収作用があり、短波長域の紫外線が吸収されてしまうため、透光性基材11上の第1の微細凹凸パターンに用いられる紫外線硬化型樹脂層が厚かったり、官能波長域の光を吸収してしまうような紫外線硬化型樹脂を使用した場合、第2の微細凹凸パターン面に用いる紫外線硬化型樹脂溶液の硬化が不足する。
【0024】
つまり、透光性基材11の両面の紫外線硬化型樹脂として全く同じものを用いると、紫外線硬化型樹脂自体に紫外線が吸収されてしまい、第2の微細凹凸パターンの紫外線硬化型樹脂層の硬化が不充分になるか、硬化速度がいじるしく低下する。
【0025】
上記のような紫外線硬化型樹脂自体の光吸収作用の違いは、ベース樹脂の種類や光重合開始剤の種類によって異なることから、これらを適宜選択することで光吸収領域をある程度選択でき、硬化速度の低下を防止することが可能となる。
【0026】
光学部品20及び30の製造方法については、光学部品10とほぼ同じ工程で作製されるので、ここでは省略する。
【0027】
本発明の光学部品の製造方法では、紫外線硬化型樹脂溶液を紫外線硬化、型成形してフレネルレンズやレンチキュラーレンズ等の微細凹凸パターンが形成されるため、微細凹凸パターンを再現性良く転写でき、かつ小ロット多品種でも生産性良く製造できるメリットを有する。
【0028】
また、光吸収領域をコントロールし、第1の微細凹凸パターン面の紫外線硬化型樹脂溶液と第2のパターン面の紫外線硬化型樹脂溶液との光吸収領域をずらし、パターン形成の順序を変えることで効率的にパターン形成できる。さらに両面とも紫外線硬化型樹脂を用いた2P法によってパターン形成するため、微細凹凸パターンを正確に転写可能となる。
【0029】
図5〜図7に、本発明の光学物品を用いた画像投影スクリーンの実施例を示す。
図5の画像投影スクリーン100は、透光性基材11の両面にレンチキュラーレンズとフレネルレンズとを形成した本発明の光学部品10とレンチキュラースクリーンとを組み合わせた事例で、垂直方向に光線が拡散するような作用を持つレンチキュラーレンズを光源側にすることで、観察面で垂直方向の視野角を拡大する効果を有する。
【0030】
図6の画像投影スクリーン200は、透光性基材11の両面にプリズムレンズとフレネルレンズとを形成した本発明の光学部品20とレンチキュラースクリーンと組み合わせた事例で、垂直方向に光線が拡散するような作用を持つプリズムレンズを光源側にすることで、観察面で垂直方向の視野角を拡大する効果を有する。
【0031】
図7の画像投影スクリーン300は、透光性基材11の両面にマイクロレンズアレイとフレネルレンズとを形成した本発明の光学部品30とレンチキュラースクリーンとを組み合わせた事例で、第1の微細凹凸パターンをマイクロレンズ形状とすることで、垂直方向のみならず水平方向へも光線が拡散するような作用を持ち、観察面において隅々まで明るい画像投影スクリーンとなる。
【0032】
【発明の効果】
本発明の光学部品は、紫外線硬化型樹脂溶液を紫外線硬化、型成形して作製するため、フレネルレンズやレンチキュラーレンズ等の微細凹凸パターンを高精度に再現できる。
また、本発明の光学部品の製造方法では、光吸収領域をコントロールし、第1の微細凹凸パターン面の紫外線硬化型樹脂溶液と第2のパターン面の紫外線硬化型樹脂溶液との光吸収領域をずらし、パターン形成の順序を変えることで効率的に微細凹凸パターンを形成でき、少ロット多品種生産に容易に対応でき、生産時の材料の無駄が少ない。
さらに、本発明の光学部品を用いた画像投影スクリーンは、観察面で隅々まで明るく、垂直方向の視野角を拡大することができる。
【図面の簡単な説明】
【図1】本発明の光学物品の一実施例を示す模式構成図である。
【図2】本発明の光学物品の一実施例を示す模式構成図である。
【図3】本発明の光学物品の一実施例を示す模式構成図である。
【図4】(a)〜(f)は、本発明光学物品の製造方法の一例を示す模式構成断面図である。
【図5】本発明の画像投影スクリーンの一実施例を示す模式構成図である。
【図6】本発明の画像投影スクリーンの一実施例を示す模式構成図である。
【図7】本発明の画像投影スクリーンの一実施例を示す模式構成図である。
【符号の説明】
10、20、30……光学部品
11……透光性基材
21、22……成形型
31、32……紫外線硬化型樹脂溶液
31a、31b、31c……第1の微細凹凸パターン
32a……第2の微細凹凸パターン
100、200、300……画像投影スクリーン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical article having a screen or an optical element for a projection television for projecting an image from an optical engine having a cell structure such as an LCD (Liquid Crystal Display) or DMD (Digital-Micromirror-Device).
[0002]
[Prior art]
An example of an optically useful fine concavo-convex pattern is a Fresnel lens. As a manufacturing method of the Fresnel lens, there are a hot press molding method, a casting method, an injection method, and the like. However, when these methods are used, when molding a large product, it takes a long time for heating and cooling, and productivity cannot be increased. Therefore, recently, a photopolymer method (2P method) in which an ultraviolet curable resin is interposed between the lens mold and the transparent resin base material and is cured in a short time by irradiating ultraviolet rays has a short manufacturing cycle and shape transferability. From the point, it has become mainstream (for example, refer to Patent Document 1).
[0003]
On the other hand, with the recent improvement in projector brightness, it is possible to distribute the extra front brightness to the horizontal or vertical viewing angle in order to make effective use of its performance. Improvement is becoming desired. For this reason, having an optically useful fine pattern (for example, Fresnel lens) only on one side is insufficient as a function, and a fine uneven pattern (for example, lenticular lens) having the function of expanding the vertical viewing angle is extruded. There has been proposed a method of forming a Fresnel lens by the 2P method using the substrate formed by the above (see Patent Document 2, for example).
[0004]
According to this method, when forming a lenticular lens or prism lens shape different from the Fresnel lens shape, it is performed by extrusion molding. Therefore, in the case of a large lot, a continuous shape such as a lenticular lens or prism lens shape is used. In addition, since a regular pattern can be completely formed, there is an advantage that productivity is good.
[0005]
However, in the case of a Fresnel lens for projection television, it is often a small lot and a wide variety, and if the shape of the lenticular lens or prism lens is formed by extrusion as described above, the productivity is lowered. The reason why productivity is lowered is that it is necessary to exchange rolls depending on the type (especially pitch) in an extruder, and the exchange is complicated. Further, when molding a small lot and a variety of products with an extruder, the resin pellets are likely to be wasted every time the roll is changed. In addition to the decrease in productivity, when a thermoplastic resin such as extrusion molding is used, due to the thermal process, the heat return phenomenon unique to the thermoplastic resin when molding the shape of a lenticular lens or prism lens causes a minute Producing a high-quality screen with a wide viewing angle in the vertical direction of the observation screen because it is difficult to transfer the pitch (specifically 0.3 mm or less) in a deep shape and it is difficult to transfer it sufficiently (insufficient transfer) There are aspects that are difficult to say.
[0006]
[Patent Document 1]
JP-A-61-177215 [Patent Document 2]
Japanese Patent Laid-Open No. 5-177215
[Problems to be solved by the invention]
The present invention has been devised in view of the above-mentioned problems, and is intended to solve the inconvenience when molding small lots of various products by extrusion molding, waste of resin, and inaccurate fine pitch reproducibility due to thermal processes. Therefore, an object of the present invention is to provide an optical article having an optical element such as a fine lenticular lens or a Fresnel lens having a prism lens shape with high quality and at low cost.
[0008]
[Means for Solving the Problems]
In order to achieve the above object in the present invention, first, in claim 1, in an optical article having an optically useful fine concavo-convex pattern formed on a translucent substrate, both surfaces of the translucent substrate are provided. The optical article is characterized in that a fine concavo-convex pattern is formed of an ultraviolet curable resin, and the ultraviolet curable resin is different on both sides.
[0009]
According to a second aspect of the present invention, in the optical article according to the first aspect, the fine concavo-convex pattern is formed of any one of a lenticular lens, a prism lens, a Fresnel lens, and a microlens array group. is there.
[0010]
According to a third aspect of the present invention, at least the following steps are provided. The method for manufacturing an optical component according to the first or second aspect is provided.
(A) The process of preparing the translucent base material and the shaping | molding die in which the inversion type | mold of the 1st fine uneven | corrugated pattern was formed.
(B) A first ultraviolet curable resin solution is filled between the translucent substrate and the mold, and the entire surface is exposed to ultraviolet rays from the translucent substrate side. The process of hardening.
(C) A step of releasing the mold on which the inverted mold of the first fine concavo-convex pattern is formed, and forming the first fine concavo-convex pattern on one surface on the translucent substrate.
(D) The process of preparing the translucent base material in which the 1st fine uneven | corrugated pattern was formed in one surface, and the shaping | molding die in which the 2nd fine uneven | corrugated pattern was formed.
(E) a second ultraviolet curable resin solution between a translucent substrate having a first fine concavo-convex pattern formed on one surface and a mold having an inverted mold of the second fine concavo-convex pattern formed thereon Satisfying the above, exposing the entire surface from the translucent substrate side, and curing the second ultraviolet curable resin solution.
(F) The mold on which the inverted mold of the second fine concavo-convex pattern is formed is released, and the first fine concavo-convex pattern is formed on one surface of the translucent substrate, and the first fine concavo-convex pattern is formed on the other surface. The process of producing the optical component in which the uneven | corrugated pattern was formed.
[0011]
According to a fourth aspect of the present invention, there is provided an image projection screen characterized by using the optical article according to the first or second aspect.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIGS. 1 to 3, in the optical component of the present invention, the first fine concavo-convex pattern (31 a, 31 b and 31 c) and the second fine concavo-convex pattern (32 a) are formed on both surfaces of the translucent substrate 11. The first fine concavo-convex pattern (31a, 31b and 31c) and the second fine concavo-convex pattern (32a) are formed from different ultraviolet curable resins. The first fine concavo-convex pattern (31a, 31b, and 31c) and the second fine concavo-convex pattern (32a) are configured by any of a lenticular lens, a prism lens, a Fresnel lens, or a microlens array group. The component 10 is an example in which the first fine concavo-convex pattern 31a is a combination of a lenticular lens and the second fine concavo-convex pattern 32a is a Fresnel lens. The optical component 20 in FIG. 3 and the second fine concavo-convex pattern 32a in combination with a Fresnel lens. In the optical component 30 of FIG. 3, the first fine concavo-convex pattern 31c is a microlens array and the second fine concavo-convex pattern 32a is a Fresnel lens. This is an example of combination.
The reason why the ultraviolet curable resin in which the first fine uneven pattern and the second fine uneven pattern are different will be described later.
[0013]
The optical component of the present invention is produced by a 2P method using a mold having an inverted mold of the first and second fine concavo-convex patterns and an ultraviolet curable resin solution.
4A to 4F show an example of the manufacturing process of the optical component of the present invention.
Hereinafter, a method for manufacturing an optical component of the present invention using a lenticular lens as the first fine concavo-convex pattern 31a and a Fresnel lens as the second fine concavo-convex pattern 32a will be described.
First, a translucent substrate 11 and a mold 21 on which an inversion mold of the first fine uneven pattern 31a is formed are prepared (see FIG. 4A).
Here, as the translucent substrate 11, for example, an acrylic resin, an MS resin, a polycarbonate resin, a polyester resin, a polystyrene resin, a polyolefin resin, a vinyl chloride resin, a polyimide resin, or a sheet and film or glass made of a blend of the above resins. A board etc. can be used. From the viewpoint of releasability from the mold 21, a flexible acrylic resin, polycarbonate resin, polyester resin, MS resin and the like are preferable from the viewpoint of light transmittance and flexibility.
The molding die 21 is made of a processed base material such as copper or brass by a fo-etching method, mechanical processing, laser processing or the like.
[0014]
Next, the first ultraviolet curable resin solution 31 is filled between the translucent substrate 11 and the mold 21, and the entire surface of the translucent substrate 11 is exposed to ultraviolet rays with a UV lamp, whereby the first ultraviolet rays are exposed. The curable resin solution 31 is cured and molding is performed (see FIG. 4B).
As the first ultraviolet curable resin solution 31, in addition to urethane (meth) acrylate and / or epokin (meth) acrylate oligomer to be a base resin, a reaction diluent is added for the purpose of improving the physical properties of the base resin, Furthermore, the composition containing the photoinitiator component so that it may harden | cure with an ultraviolet-ray is mentioned.
Moreover, in order for the 1st ultraviolet curable resin solution 31 to harden | cure, it is necessary for the radiation wavelength range from an ultraviolet lamp and the functional wavelength range of a photoinitiator to be near.
[0015]
Next, the mold 21 is released to form a first fine concavo-convex pattern 31a (lenticular lens) on one surface of the translucent substrate 11 (see FIG. 4C).
[0016]
Next, the translucent base material 11 on which the first fine concavo-convex pattern 31a (lenticular lens) is formed on one surface and the mold 22 on which the reversal mold of the second fine concavo-convex pattern 32a is formed are prepared. (Refer FIG.4 (d)).
[0017]
Next, a second ultraviolet curable resin solution is formed between the translucent base material 11 on which the first fine concavo-convex pattern 31a is formed and the mold 22 on which the reversal mold of the second fine concavo-convex pattern 32a is formed. 32, and the entire surface of the first fine concavo-convex pattern 31a is exposed to ultraviolet rays with a UV lamp to cure the second ultraviolet curable resin solution 32 and perform molding (see FIG. 4E).
[0018]
Next, the mold 22 is released, and the first fine concavo-convex pattern 31a (lenticular lens) is formed on one surface of the translucent substrate 11, and the second fine concavo-convex pattern 32a (Fresnel lens) is formed on the other surface. ) Is obtained (see FIG. 4F).
[0019]
When selecting the first ultraviolet curable resin solution and the second ultraviolet curable resin solution used in manufacturing the optical article, it is necessary to make the functional wavelength ranges different from each other. That is, in the step of curing the second ultraviolet curable resin solution with ultraviolet rays, ultraviolet light is irradiated from the first fine concavo-convex pattern side, so that the functional wavelength range of the second ultraviolet curable resin solution is the first ultraviolet curable type. The wavelength is longer than the functional wavelength range of the resin solution.
[0020]
Specifically, the first fine concavo-convex pattern surface and the second fine concavo-convex pattern surface formed on both surfaces of the translucent substrate 11 such as durability, strength, and hardness are controlled by the base resin. If it is desired to make the difference between the first ultraviolet curable resin and the second ultraviolet curable resin different, the functional wavelength of the second ultraviolet curable resin is set to the first ultraviolet curable resin. The one that is longer than the functional wavelength of the mold resin is selected.
[0021]
On the other hand, the physical properties governed by the base resin, such as durability, strength, and hardness, are the same on the first fine concavo-convex pattern surface formed on both surfaces of the translucent substrate 11 and the second fine concavo-convex pattern surface. In order to achieve this, only the photopolymerization initiator in the ultraviolet curable resin solution is different from the front and back, and the functional wavelength of the photopolymerization initiator contained in the second ultraviolet curable resin solution is changed to the first ultraviolet light. A material that is longer than the functional wavelength of the photopolymerization initiator contained in the curable resin solution is selected.
[0022]
Further, when the first ultraviolet curable resin solution and the second ultraviolet curable resin solution are made the same composition, a photopolymerization initiator having a functional wavelength region on the long wavelength side and a functional wavelength region on the short wavelength side. By using a mixture of a plurality of types of photopolymerization initiators, both photopolymerization initiators react at the time of curing the first UV curable resin solution, and long at the time of curing the second UV curable resin solution. Both sides can be efficiently cured by the reaction of the photopolymerization initiator having a functional wavelength region on the wavelength side. Further, this case is preferable because there is an advantage that the UV resin can be shared.
[0023]
On the other hand, the UV resin itself has a light absorbing action and absorbs ultraviolet rays in a short wavelength region, so that the ultraviolet curable resin layer used for the first fine uneven pattern on the translucent substrate 11 is thick. When an ultraviolet curable resin that absorbs light in the functional wavelength range is used, curing of the ultraviolet curable resin solution used for the second fine concavo-convex pattern surface is insufficient.
[0024]
That is, if the same UV curable resin on both surfaces of the translucent substrate 11 is used, the ultraviolet curable resin itself absorbs ultraviolet rays, and the ultraviolet curable resin layer having the second fine uneven pattern is cured. Is insufficient or the curing speed is significantly reduced.
[0025]
The difference in the light absorption action of the ultraviolet curable resin itself as described above varies depending on the type of the base resin and the type of the photopolymerization initiator. Therefore, by appropriately selecting these, the light absorption region can be selected to some extent, and the curing rate It is possible to prevent a decrease in the above.
[0026]
About the manufacturing method of the optical components 20 and 30, since it is produced in the almost same process as the optical component 10, it abbreviate | omits here.
[0027]
In the method for producing an optical component of the present invention, an ultraviolet curable resin solution is UV cured and molded to form a fine uneven pattern such as a Fresnel lens or a lenticular lens. Therefore, the fine uneven pattern can be transferred with good reproducibility, and It has the merit that it can be manufactured with high productivity even in small lots and many varieties.
[0028]
In addition, by controlling the light absorption region, shifting the light absorption region between the ultraviolet curable resin solution on the first fine concavo-convex pattern surface and the ultraviolet curable resin solution on the second pattern surface, and changing the order of pattern formation The pattern can be formed efficiently. Furthermore, since the pattern is formed by the 2P method using an ultraviolet curable resin on both sides, the fine concavo-convex pattern can be accurately transferred.
[0029]
5 to 7 show examples of an image projection screen using the optical article of the present invention.
The image projection screen 100 of FIG. 5 is an example in which the optical component 10 of the present invention in which a lenticular lens and a Fresnel lens are formed on both surfaces of a translucent substrate 11 and a lenticular screen are combined, and light rays diffuse in the vertical direction. By having a lenticular lens having such an action on the light source side, the viewing angle in the vertical direction on the observation surface is enlarged.
[0030]
The image projection screen 200 in FIG. 6 is an example in which the optical component 20 of the present invention in which a prism lens and a Fresnel lens are formed on both surfaces of a translucent substrate 11 and a lenticular screen, and the light beam is diffused in the vertical direction. By having a prism lens having an appropriate function on the light source side, the viewing angle in the vertical direction is enlarged on the observation surface.
[0031]
The image projection screen 300 of FIG. 7 is an example in which the optical component 30 of the present invention in which a microlens array and a Fresnel lens are formed on both surfaces of a translucent substrate 11 and a lenticular screen are combined. By using a microlens shape, it has an effect of diffusing light rays not only in the vertical direction but also in the horizontal direction, and an image projection screen that is bright at every corner on the observation surface.
[0032]
【The invention's effect】
Since the optical component of the present invention is produced by ultraviolet curing and mold-molding an ultraviolet curable resin solution, a fine uneven pattern such as a Fresnel lens or a lenticular lens can be reproduced with high accuracy.
Further, in the method of manufacturing an optical component according to the present invention, the light absorption region is controlled, and the light absorption region between the ultraviolet curable resin solution on the first fine uneven pattern surface and the ultraviolet curable resin solution on the second pattern surface is formed. By shifting and changing the order of pattern formation, it is possible to efficiently form a fine uneven pattern, and it is possible to easily cope with the production of many kinds of small lots, and there is little waste of materials during production.
Furthermore, the image projection screen using the optical component of the present invention is bright on every corner on the observation surface, and can enlarge the viewing angle in the vertical direction.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram illustrating an example of an optical article of the present invention.
FIG. 2 is a schematic configuration diagram showing an example of the optical article of the present invention.
FIG. 3 is a schematic configuration diagram showing an example of the optical article of the present invention.
4A to 4F are schematic cross-sectional views showing an example of a method for producing an optical article of the present invention.
FIG. 5 is a schematic configuration diagram showing an embodiment of an image projection screen of the present invention.
FIG. 6 is a schematic configuration diagram showing an embodiment of an image projection screen of the present invention.
FIG. 7 is a schematic configuration diagram showing an embodiment of an image projection screen of the present invention.
[Explanation of symbols]
10, 20, 30: Optical component 11: Translucent base material 21, 22: Mold 31, 32 ... UV curable resin solutions 31a, 31b, 31c: First fine uneven pattern 32a ... Second fine concavo-convex pattern 100, 200, 300... Image projection screen

Claims (1)

透光性基材上に光学的に有用な微細凹凸パターンが形成されたプロジェクションテレビ用途の光学物品において、透光性基材の両面に微細凹凸パターンが紫外線硬化型樹脂で形成されており、前記紫外線硬化型樹脂の官能波長域が両面で異なることを特徴とする光学物品の製造方法であって、
少なくとも以下の工程を備えていることを特徴とする請求項1または2に記載の光学部品の製造方法。
(a)前記透光性基材と第1の微細凹凸パターンの反転型が形成された成形型とを準備する工程。
(b)前記透光性基材と前記成形型との間に第1の紫外線硬化型樹脂溶液を満たし、透光性基材側より全面露光し、第1の紫外線硬化型樹脂溶液を硬化させる工程。
(c)第1の微細凹凸パターンの反転型が形成された成形型を剥離し、透光性基材上の一方の面に第1の微細凹凸パターンを形成する工程。
(d)一方の面に第1の微細凹凸パターンが形成された透光性基材と第2の微細凹凸パターンが形成された成形型とを準備する工程。
(e)一方の面に第1の微細凹凸パターンが形成された透光性基材と第2の微細凹凸パターンの反転型が形成された成形型との間に前記第1の紫外線硬化型樹脂溶液の官能波長領域より長波長側となる官能波長領域を有する第2の紫外線硬化型樹脂溶液を満たし、透光性基材側より全面露光し、第2の紫外線硬化型樹脂溶液を硬化させる工程。
(f)第2の微細凹凸パターンの反転型が形成された成形型を剥離し、透光性基材上の一方の面に第1の微細凹凸パターンが、他方の面に第1の微細凹凸パターンが形成された光学部品を作製する工程。
In an optical article for projection television applications in which an optically useful fine concavo-convex pattern is formed on a translucent substrate, the fine concavo-convex pattern is formed of an ultraviolet curable resin on both surfaces of the translucent substrate, A method for producing an optical article, wherein the functional wavelength range of the ultraviolet curable resin is different on both sides,
The method for manufacturing an optical component according to claim 1, comprising at least the following steps.
(A) The process of preparing the translucent base material and the shaping | molding die in which the inversion type | mold of the 1st fine uneven | corrugated pattern was formed.
(B) The first ultraviolet curable resin solution is filled between the translucent substrate and the mold, and the entire surface is exposed from the translucent substrate side to cure the first ultraviolet curable resin solution. Process.
(C) The process of peeling the shaping | molding die in which the inversion type | mold of the 1st fine uneven | corrugated pattern was formed, and forming a 1st fine uneven | corrugated pattern in one surface on a translucent base material.
(D) The process of preparing the translucent base material in which the 1st fine uneven | corrugated pattern was formed in one surface, and the shaping | molding die in which the 2nd fine uneven | corrugated pattern was formed.
(E) The first ultraviolet curable resin between a translucent substrate having a first fine concavo-convex pattern formed on one surface and a mold having an inverted mold of the second fine concavo-convex pattern. Filling the second ultraviolet curable resin solution having a functional wavelength region longer than the functional wavelength region of the solution, exposing the entire surface from the translucent substrate side, and curing the second ultraviolet curable resin solution .
(F) The mold on which the reversal mold of the second fine concavo-convex pattern is formed is peeled off, and the first fine concavo-convex pattern is formed on one surface of the translucent substrate and the first fine concavo-convex pattern on the other surface. The process of producing the optical component in which the pattern was formed.
JP2003045534A 2003-02-24 2003-02-24 Optical component, method for manufacturing the same, and image projection screen Expired - Fee Related JP4277536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045534A JP4277536B2 (en) 2003-02-24 2003-02-24 Optical component, method for manufacturing the same, and image projection screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045534A JP4277536B2 (en) 2003-02-24 2003-02-24 Optical component, method for manufacturing the same, and image projection screen

Publications (2)

Publication Number Publication Date
JP2004258071A JP2004258071A (en) 2004-09-16
JP4277536B2 true JP4277536B2 (en) 2009-06-10

Family

ID=33112310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045534A Expired - Fee Related JP4277536B2 (en) 2003-02-24 2003-02-24 Optical component, method for manufacturing the same, and image projection screen

Country Status (1)

Country Link
JP (1) JP4277536B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100632917B1 (en) 2005-05-18 2006-10-12 안병학 Stereoscopic sheet having lenticular layer partially coated and formed thereon, and process for preparing the same
JP4654792B2 (en) * 2005-06-24 2011-03-23 セイコーエプソン株式会社 Lens substrate manufacturing method, lens substrate, transmissive screen, and rear projector
CN100412651C (en) * 2005-09-21 2008-08-20 财团法人工业技术研究院 Plane light-source module
NL1034496C2 (en) * 2007-10-10 2009-04-16 Anteryon B V Method for manufacturing an assembly of lenses, as well as a camera provided with such an assembly.
JP5073450B2 (en) * 2007-10-26 2012-11-14 新日鐵化学株式会社 Manufacturing method of heat-resistant compound lens
TWI481496B (en) * 2007-12-19 2015-04-21 Heptagon Micro Optics Pte Ltd Manufacturing optical elements
WO2010119725A1 (en) * 2009-04-13 2010-10-21 コニカミノルタオプト株式会社 Method for manufacturing wafer lens and method for manufacturing wafer lens laminated body
DE102009019762B4 (en) * 2009-05-05 2020-03-12 3D Global Holding Gmbh Process for the production of objects with a defined structured surface
JP5391838B2 (en) * 2009-05-29 2014-01-15 コニカミノルタ株式会社 Wafer lens manufacturing method
US20110165343A1 (en) * 2010-01-04 2011-07-07 Essilor International (Compagnie Generale D'optique) Fresnel lens coating process
US20110164329A1 (en) * 2010-01-04 2011-07-07 Essilor International (Compagnie General D'optique) Fresnel lens coating process
RU2456645C1 (en) * 2011-02-21 2012-07-20 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Method of making fresnel lenses for concentrator photovoltaic module
JP2017078830A (en) * 2015-10-22 2017-04-27 矢崎総業株式会社 Transmissive screen for scanning projector, and scanning projector system
CN108008474A (en) * 2017-11-13 2018-05-08 深圳市光科全息技术有限公司 A kind of optical lens
US10527923B2 (en) 2018-02-07 2020-01-07 Yazaki Corporation Scanning projector transmissive screen, and scanning projector system

Also Published As

Publication number Publication date
JP2004258071A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4277536B2 (en) Optical component, method for manufacturing the same, and image projection screen
JP2009139493A (en) Method of manufacturing optical sheet
JP2007066699A (en) Light guide plate and manufacturing method of the light guide plate
CA2103657C (en) Optical element such as a rear projection screen for an image display device and method of producing same
JP4211474B2 (en) Molded sheet and manufacturing method thereof
JP4218407B2 (en) Manufacturing method of microlens array sheet
TWI430879B (en) Light guide plate and manufacturing method thereof
JP2002268146A (en) Method of manufacturing optical article and projection screen and projection television using these optical articles
JP4997143B2 (en) Lighting device and light control board
JP2005041164A (en) Resin mold for molding, manufacturing method for resin mold for molding and manufacturing method for lens sheet using resin mold for molding
JP2009031807A (en) Manufacturing method for microlens array sheet
JP4810839B2 (en) Transmission screen
JP4574192B2 (en) Optical sheet manufacturing method, optical sheet, and lenticular lens sheet manufacturing method
JP2005066953A (en) Manufacturing method of lenticular lens sheet and lenticular lens sheet
JP2002264140A (en) Resin mold manufacturing method and resin molded article molded using resin mold
JP2005055599A (en) Sheet having minute unevenness formed part
JP2005329696A (en) Light diffusion plate for direct type backlight module, and its manufacturing method
US11644602B2 (en) Optical element, optical element stamper structure, printed article, and method for manufacturing optical element
JP2004252292A (en) Method for molding and processing lens sheet
JP4305090B2 (en) Lens sheet and manufacturing method thereof
JPH09311202A (en) Lenticular lens sheet and its production
JP2004334036A (en) Optical component and its manufacturing method
JP2002062592A (en) Transmission type screen
WO2012153650A1 (en) Method for manufacturing light-guiding plate
KR100434029B1 (en) Light guide panel manufacturing process for LCD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees