JP4277376B2 - Electric heating glass and its manufacturing method - Google Patents

Electric heating glass and its manufacturing method Download PDF

Info

Publication number
JP4277376B2
JP4277376B2 JP23006799A JP23006799A JP4277376B2 JP 4277376 B2 JP4277376 B2 JP 4277376B2 JP 23006799 A JP23006799 A JP 23006799A JP 23006799 A JP23006799 A JP 23006799A JP 4277376 B2 JP4277376 B2 JP 4277376B2
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
glass plate
glass
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23006799A
Other languages
Japanese (ja)
Other versions
JP2001048602A (en
Inventor
和良 野田
文明 郡司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP23006799A priority Critical patent/JP4277376B2/en
Publication of JP2001048602A publication Critical patent/JP2001048602A/en
Application granted granted Critical
Publication of JP4277376B2 publication Critical patent/JP4277376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal

Description

【0001】
【発明の属する技術分野】
本発明は通電加熱ガラスとその製造方法に関し、さらに詳しくは、たとえば、自動車などの車両用窓ガラス、建材用ガラス板などに有用な通電加熱ガラスとその製造方法に関する。
【0002】
【従来の技術】
従来、厳冬期や寒冷地などにおいては、汽車、電車、トラック、乗用車などの車両のフロントガラスやリアガラスなどに、あるいは建物の窓ガラスに、積雪、着氷、着霜あるいは曇りなどが生じ、視界が妨げられるなどの問題があるが、これらの曇りなどの迅速な除去は困難である。このような事情から、窓ガラスに通電加熱ガラスを使用することが提案され、かつ実施されている。
【0003】
従来の通電加熱ガラスは、たとえば、自動車の窓ガラスであれば、一般に窓枠に対応した略台形状の二枚のガラス板と、この二枚のガラス板間に挟持されたポリビニルブチラールなどからなる中間膜(以下単に「中間膜」という)と、上記二枚のガラス板間のガラス板面にあって、窓ガラスの周辺部の上下または左右の位置に、一対で設けられたバスバー(通電用電極)と、これらのバスバーに接続されて設けられた透明導電膜とから構成されている。
【0004】
上記透明導電膜としては、たとえば、ITO(インジウムと錫の複合酸化物)、金、銀などの薄膜が使用され、バスバーを経由してバッテリーなどから透明導電膜に通電が行われて窓ガラスなどを発熱させ、この熱によって、融雪、融氷、防曇などが迅速に行われる。通電加熱ガラスに使用される透明導電膜も、近年、種々のものが開発されてきており、より迅速にガラス板を加熱することが可能な、たとえば、280V以上の高電圧を印加して加熱するGZO膜(ガリウムを含有する酸化亜鉛膜)、膜抵抗が6Ω/□以下で100V以下の低電圧を印加して加熱する銀系の薄膜などが知られている。
【0005】
これらの通電加熱ガラスの製造に際しては、通常、バスバーを形成するために銀とガラスフリットを主成分とする所謂銀ペーストをガラス板上に印刷し、ガラス板の曲げ成形と同時に焼き付けた後、マスキングにより部分的に所要の非被覆領域がガラス板に設けられるようにして、ガラス板表面にスパッタリング法、蒸着法あるいはスプレー法などにより透明導電膜を形成し、所望の通電加熱ガラスが製造されている。
【0006】
通常、自動車用窓ガラスは、平らなガラス板を600〜700℃のガラス軟化点以上の温度に加熱して所定の形状に曲げ成形し、必要に応じて急冷物理強化処理を施すことにより製造される。ところが、近年、ガラス板の加熱曲げ成形時の加熱および曲げ成形に耐える透明導電膜(以下単に「加熱処理可能な透明導電膜」という)が開発され、該透明導電膜を用いることにより、平板ガラス専用の被覆装置を用い、予め大版サイズの加熱処理可能な透明導電膜をガラス板表面に被覆し、その被覆ガラス板を用いて、自動車用窓ガラスを成形する工程が可能になった。
【0007】
平板ガラス専用の被覆装置は、通常低コストで透明導電膜の被覆が可能であり、自動車用通電加熱ガラスを安価に提供することが可能になってきた。特に膜抵抗が2〜10Ω/□の加熱処理可能な銀系の透明導電膜を用いれば、比較的低い電圧による通電加熱が可能である。また、SnO2系透明導電膜も加熱処理可能な透明導電膜であって、CVD法の確立により50Ω/□以下の膜が安価に製造可能になってきた。
【0008】
【発明が解決しようとする課題】
しかしながら、加熱処理可能な透明導電膜が全面に被覆されたガラス板を、通電加熱ガラスに適用する場合、相対向する二辺に沿ったバスバー間に設けられた透明導電膜の通電加熱領域以外の不要部分(以下単に「不要部分」という)を、除去あるいは被覆する必要がある。何故ならば、不要部分を除去あるいは被覆しない場合には、通電により適正な発熱分布が得られないばかりか、バスバーの配線取り回しが不可能であったり、周辺部からの漏電・感電の危険性が生じるからである。
従って本発明の目的は、通電加熱可能な透明導電膜が全面に被覆されたガラス板を用いて容易に形成できる通電加熱ガラスとその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、少なくとも1枚のガラス板と、その一方の面に設けられた透明導電膜と、該透明導電膜に通電する少なくとも一対のバスバーと、ガラス板の周辺部を隠蔽している絶縁性着色セラミックス層とからなる通電加熱ガラスにおいて、上記透明導電膜は、上記ガラス板の面の全面に形成され、上記絶縁性着色セラミックス層は、上記透明導電膜上で且つ該透明導電膜の少なくとも一部の周辺部に帯状に設けられ、上記少なくとも一対のバスバーは、上記透明導電膜の通電加熱が可能となるように、上記透明導電膜上および絶縁性着色セラミックス層上に形成され、かつバスバーが透明導電膜を間に挟んで対向して設けられていることを特徴とする通電加熱ガラスとその製造方法を提供する。
【0010】
本発明によれば、全面に透明導電膜を設けたガラス板を用いた場合にも、不要部分の透明導電膜とバスバーとは絶縁されているので、導電膜上に導電膜を挟んで形成された一対のバスバーに通電することによって、バスバー間を均一に通電加熱することが可能で、異常発熱、漏電、感電などの危険が回避される。また、バスバーのレイアウトの自由度も大きくなる。
【0011】
また、本発明においては、ガラス板が、室内側と室外側の二枚であり、室内側のガラス板が前記本発明の通電加熱ガラス板であり、該通電加熱ガラス板の透明導電膜を有する面に、室外側のガラス板が中間膜を介して接着されている通電加熱ガラスを提供する。
また、本発明においては、上記通電加熱ガラスにおいて、透明導電膜が形成されているガラス板は、室内側のガラス板であり、室外側のガラス板の中間膜側表面および/または室内側のガラス板の室内側表面に、前記バスバーの隠蔽が可能な着色隠蔽層が設けられていることが好ましい。
【0012】
また、加熱処理可能な透明導電膜付きガラス板を通電加熱ガラスに適用し、周辺部の不要な透明導電膜を被覆するために絶縁性着色セラミックス層をこの部分に設けると、セラミックス材料と透明導電膜との組み合わせによっては、透明導電膜と絶縁性着色セラミックス層とが反応し、不快な色を呈し、車の内外側から観察した際の見栄えが非常に悪くなる場合もあるので、自動車の内外から観察した際の見映えの観点からは、室外側のガラス板の中間膜側表面および/または室内側のガラス板の室内側表面に着色隠蔽層を設けることが好ましい。このような着色隠蔽層形成材料としては、たとえば、ブラックセラミックスなどが挙げられる。
【0013】
【発明の実施の形態】
つぎに好ましい実施の形態として合わせガラスの例を挙げて本発明をさらに詳しく説明する。
通常、通電加熱ガラスは、二枚のガラス板と、該二枚のガラス板に挟持された中間膜と、いずれか一方のガラス板表面に設けられた少なくとも一対のバスバーと、この一対のバスバー間を接続するように設けられた透明導電膜とから構成されているが、かかる構成は本発明の通電加熱ガラスにおいても同様である。
【0014】
本発明の通電加熱ガラスの特徴は、透明導電膜がいずれか一方のガラス板の全面に形成されていること、透明導電膜の周辺部には帯状の絶縁性着色セラミックス層が設けられていること、および図1(A)に示すように、少なくとも一対のバスバーは、それぞれ透明導電膜に直接接続されて透明導電膜に通電する部分(バスバーの通電部)Bが、透明導電膜上で対向する二辺に対として形成され、各バスバーの通電部Bと端子部16とを結ぶ配線となる配線部(バスバーの配線部)Cは、上記の絶縁性着色セラミックス層上に設けられていることが特徴である。
【0015】
従って、通電加熱ガラスの材料として、全面に透明導電膜を設けたガラス板を用いた場合にも、不要部分の透明導電膜とバスバーの配線部Cとは絶縁されているので、透明導電膜上に透明導電膜を挟んで形成された一対のバスバーに通電することによって、バスバー間(B−B間)を均一に通電加熱することが可能で、異常発熱、漏電、感電などの危険が回避される。また、バスバーのレイアウトの自由度も大きくなる。
【0016】
本発明において使用されるガラス板は、特に制限されず、たとえば、普通ガラス板、強化ガラス板、部分強化ガラス板などが挙げられる。これらのガラス板は透明性が損なわれない程度に着色されたものであってもよい。また、これらのガラス板の形状は、建材用ガラス板などのような平板状のものに限られず、種々の形状および曲率に加工された曲面状であってもよく、たとえば、各種車両のフロントガラスに使用されているような曲面を有する略台形状のものであってもよい。また、使用されるガラス板の厚みは特に限定されないが、通常は約1.5〜5mm程度の厚みである。
【0017】
本発明において使用される中間膜とは、合わせガラスにした場合において、その両面に配設される二枚のガラス板を強固に接着させるとともに、合わせガラスが破損した場合にも、ガラスの破片が飛び散らない作用を有するものであって、通常は、接着性、耐候性および耐熱性などの諸物性が改良されたポリビニルブチラール樹脂膜が好ましく用いられる。この中間膜の厚みも特に限定されないが、通常は約0.2〜0.9mm程度の厚みである。
【0018】
合わせガラスの製造方法自体は、特に制限されず、従来公知の方法でよい。たとえば、二枚のガラス板を中間膜を挟持するように貼り合わせ、予備接着、オートクレーブ処理などの工程によって所望の合わせガラスが製造される。
【0019】
本発明の通電加熱ガラスは、たとえば、合せガラスを構成する二枚のガラス板の一方の全面に透明導電膜を被覆した透明導電膜付きガラス板を、好ましくは室内側のガラス板として用い、該透明導電膜の周辺上に絶縁性の着色セラミックス層および少なくとも一対のバスバーを設け、この透明導電膜付きガラス板と他方のガラス板とを中間膜を介して、前記透明導電膜が中間膜と接するように接着することによって製造される。
【0020】
本発明で使用される透明導電膜としては、導電材料からなる従来公知の各種の透明導電膜がいずれも使用でき、通電加熱ガラスの使用目的に応じて最適な膜が選択される。また、透明導電膜の種類により印加される電圧が異なるため、透明導電膜に接続されるバスバーはこれらに適合し得るように形成される。本発明においては、600〜700℃の熱処理に耐える透明導電膜、特に加熱処理可能な透明導電膜を用いることが好ましい。600〜700℃の熱処理に耐える透明導電膜を用いることで、平板ガラス専用の被覆装置を用い、予め大版サイズの加熱処理可能な透明導電膜をガラス板表面に被覆し、その被覆ガラス板を用いて、自動車用窓ガラスを成形する工程が可能になる。
【0021】
加熱処理可能な透明導電膜の具体例は、比較的低電圧(高電流)で使用される透明導電膜として、たとえば、基板側から誘電体膜(酸化物など)と貴金属膜(Ag、Au、Pdなど)とが交互に(2n+1)層(n≧1)積層され、基板と誘電体膜の間および/または最上層の誘電体膜の上に保護膜(窒化物膜など)が形成された多層膜(必要に応じて貴金属膜上下に貴金属膜の酸化を防止する薄膜を設け得る)などが挙げられる。また、高電圧(低電流)で使用される透明導電膜としては、たとえば、バスバーに288Vの電圧を印加して使用されるITO膜、酸化スズ膜、GZO膜などが挙げられる。本発明においては、低電圧および高電圧が印加される透明導電膜のいずれも使用することができる。
【0022】
本発明で使用されるバスバー形成材料としては、従来公知のバスバー形成材料がいずれも使用でき、特に限定されないが、透明導電膜の印加電圧に適したものを選択して使用することが好ましい。
【0023】
本発明で使用される絶縁性着色セラミックス層形成材料としては、該層上に形成されるバスバーを透明導電膜から絶縁できるものであれば、自動車用ガラス板の周辺部にプリント、焼き付け法により隠蔽部を形成するために、従来から使用されている材料がいずれも使用でき、特に制限されず、たとえば、絶縁性ブラックセラミックスペーストなどが挙げられる。
【0024】
つぎに本発明の好ましい態様について説明する。まず、ガラス板上に加熱処理可能な透明導電膜を形成する。透明導電膜を形成する方法としては、従来公知の方法がいずれも使用でき、特に制限されず、たとえば、真空蒸着法、スパッタリング法、電子線ビーム式加熱蒸着法、スプレー法、CVD方法などが挙げられる。透明導電膜はガラス板の片面の全面に形成され、その膜厚は、通常、20〜500nm程度である。
加熱処理可能な透明導電膜を用いることで、該透明導電膜が形成されたガラス板を熱処理して所定の形状に曲げ成形することことができる。
【0025】
ついで、ガラス板全面に被覆された透明導電膜の周辺部には、透明導電膜の不要部分と、この上に形成されるバスバーの配線部とを絶縁する目的で、該不要部分とバスバー配線部との間に、絶縁性着色セラミックス層を印刷および焼き付けなどの方法で形成する。ついで透明導電膜に接続され、該透明導電膜に通電(給電)するための少なくとも一対のバスバー(前記のバスバー配線部を含む)が、たとえば、銀ペーストの印刷および焼き付けなどの方法で、透明導電膜上および上記の絶縁性着色セラミックス層上に連続して形成される。
【0026】
なお、本発明においては、室外側のガラス板の中間樹脂膜側表面および/または室内側のガラス板の室内側表面に、着色隠蔽層を設けることにより、室内および/または室外から絶縁性着色セラミックス層やバスバーなどを見えなくすることが好ましい。このようにすれば、ガラス板周辺の絶縁性着色セラミックス層からの特有な反射色も運転者の視界に入らなくなるので、安全運転上も外観品質上も商品性がさらに向上するので好ましい。
【0027】
また、必要に応じて、絶縁性着色セラミックス層上に割れ検知導線を配置することで、ガラス板割れなどの異常の検知が可能になり、さらに安全性を向上させることができる。
【0028】
以下に本発明の通電加熱ガラスを、車両用として自動車用窓ガラスを例として図面を参照して説明する。まず、従来の通電加熱ガラスとして、自動車用フロントガラスの一例の概略平面図を図5に示す。以下では、たとえば、図5に示すような略台形状のガラス板において、「ガラス板の上辺」は図面上ガラス板の上辺部分を意味し、「ガラス板の下辺」は図面上ガラス板の下辺部分を、また、「ガラス板の右辺および左辺」は図面上台形状の等脚部分をそれぞれ意味する。
【0029】
図5においては、略台形状のガラス板Aには、これと略相似形の透明導電膜5(破線内部分)と、2組のバスバー(バスバー3はバスバー1および2に共通の対極バスバーである)が形成されている。バスバー1の通電部Bは透明導電膜5の上端部の内側に、バスバー2の通電部Bは透明導電膜5の上端部とガラス板Aとの境界部分を跨いで形成されており、バスバー3の通電部Bは透明導電膜5の下端部とガラス板Aとの境界部分を跨いで形成されている。バスバー1、2および3の他の部分である配線部Cは、いずれも透明導電膜5の外側に形成されている。各バスバーの端子部6は、いずれも近接してガラス板下辺の中央部に形成され、電源からの導電線(不図示)と接続される。
【0030】
図6は、2組のバスバー1〜4を設けた場合であり、バスバー1、2の通電部Bの透明導電膜5上の配置は、図5の場合と同じであるが、バスバー3の通電部Bは透明導電膜5の下端部の内側に、バスバー4の通電部Bは透明導電膜5の下端部とガラス板Aとの境界部分を跨いで形成されている。各配線部Cは、何れも透明導電膜5の外側に形成されている。また、端子部6は、ガラス板下辺の左右2箇所に形成されている。以上の図5及び図6は夫々従来例を示している。
【0031】
本発明の自動車窓ガラス用の通電加熱ガラスの1例を図1に示す。図1(A)は概略平面図であり、図1(B)は図1(A)のa−a′断面の分解図である。図1(A)において、10は略台形状のガラス板の全面に透明導電膜15が形成されたガラス板であり、透明導電膜15の全周辺には、ガラス板10と略相似形になるように絶縁性着色セラミックス層14が帯状に形成されている。バスバーは11〜13の2組(バスバー13はバスバー11および12に共通の対極である)が設けられており、各バスバーはガラス板10の各辺と略平行に形成され、バスバー11および12の通電部Bは、透明導電膜15の上端部の内側に、また、バスバー13の通電部Bは透明導電膜15の下端部の内側にそれぞれ形成されている。これらのバスバーの通電部B以外の配線部Cはいずれも絶縁性着色セラミックス層14の上に設けられており、室内側からは見えないように遮蔽されている。各バスバーは、端子部16で電源からの導電線(不図示)と接続している。
【0032】
なお、各バスバーの通電部Bの長さは、絶縁性着色セラミックス層14によって包囲されている透明導電膜15の上下の辺の長さとほぼ同じ、好ましくは若干長くなるようにする。このようにすれば、バスバーに通電した場合に、絶縁性着色セラミックス層が形成された周辺部を除いた透明導電膜の全面が均一に加熱される。この例では、バスバーの通電部Bは透明導電膜の対向する上下辺に対として形成されているが、このような対は、対向する左右辺に形成することもできる。
【0033】
また、図1(B)に示すように、好ましくは車外側ガラス板10′の内側面の周辺部には、車内側ガラス板10に設けられた絶縁性着色セラミックス層14およびバスバー11〜13を隠蔽するように着色隠蔽層18が設けられ、車外側から絶縁性着色セラミックス層14およびバスバー11〜13が見えないようにする。同様に、好ましくは車内側ガラス板10の車内側の面の周辺部には、車内側ガラス板10に設けられた絶縁性着色セラミックス層14およびバスバー11〜13を隠蔽するように着色隠蔽層17を設け、車内側からこれらのバスバーおよび絶縁性着色セラミックス層を見えないようにする。
【0034】
図2には、透明導電膜付きガラス板(車内側ガラス板)の車内側の面に印刷された着色隠蔽層17のパターンの一例を、また、図3には外側のガラス板10′の内側の面(中間膜側の面)に印刷された着色隠蔽層18のパターンの一例をそれぞれ示している。図3に示すパターンでは、下辺部に端子取り出し用の切り欠けが設けてある。
【0035】
つぎに上記の例に、さらにガラス板の割れ検知手段を設け、より安全性を高めた例について説明する。すなわち、ガラス板のクラック検知手段として、割れ検知導線を適当な位置に設けることによって、バスバーまたは透明導電膜5で生じる電圧の変動を迅速に検知し、この検知結果に対応させて透明導電膜への通電を遮断することが可能となる。
【0036】
図4に1例を示すが、この例は図1(A)に示した例に、さらにバスバー11および12の端子の近傍に割れ検知導線19を接続し、また、バスバー13の端子の近傍に割れ検知導線20を接続し、これらの割れ検知導線を図示のようにガラス板の全ての周辺部近傍に配置した例である。この割れ検知導線は絶縁性着色セラミック層上に設けられており、導電膜とは接していない。このようにすることによって、透明導電膜15に通電している状態でガラス板の4辺のいずれかにクラックが発生した場合にも、検知導線の電圧、抵抗値の測定値の変動状態を測定することによって、この割れ検知導線によってクラックの発生を知ることができる。また、クラック発生の検知と透明導電膜15への通電の制御と連動させることによって、より安全な通電加熱ガラスを提供することができる。
【0037】
【実施例】
つぎに実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
(1)透明導電膜の成膜
板厚2.3mm、縦2m、横3mのクリアフロートガラス板上にスパッタリングによって加熱処理可能な銀系の透明導電膜(以下単に「銀系導電膜」という)を被覆した。この銀系導電膜の膜構成は、ガラス板側から順に、SiNx(10nm厚)/ZnAlxy(23nm厚)/AgPd(10nm厚)/ZnAl(2nm厚)/ZnAlxy(76nm厚)/AgPd(10nm厚)/ZnAl(2nm厚)/ZnAlxy(18nm厚)/SiNx(10nm厚)である。
【0038】
SiNx膜は、Siターゲットを用いてAr/N2スパッタガス雰囲気中で反応性スパッタにより成膜した。ZnAlxy膜は、Al添加量がZnに対するモル比率で5%であるZnAlメタルターゲットを用いてAr/O2スパッタガス雰囲気中で反応性スパッタにより成膜した。ZnAl膜は、Al添加量がZnに対するモル比率で5%であるZnAlメタルターゲットを用いてAr100%スパッタガス雰囲気中で成膜した。AgPd膜は、Pd添加量がAgに対するモル比率で0. 5%であるAgPdメタルターゲットを用いてAr100%スパッタガス雰囲気中で成膜した。なお、ZnAl膜は貴金属であるAgPd膜が酸化されるのを防止する薄膜である。上記銀系導電膜の成膜直後の膜抵抗値は、5.5Ω/□、可視光線透過率は60%であった。
【0039】
(2)切り出し
上記の全面被覆されたガラス板の被覆面にダイヤモンドガラスカッターで所定のガラス板形状に切り目を入れ、不要な耳の部分を切り落として所定の略台形状のガラス板形状に仕上げた。切落とした縁をダイヤモンド面取りローラーで面取りを行った後、純水洗浄、エアナイフ乾燥を行って通電加熱ガラスの基板を作製した。
【0040】
(3)絶縁性着色セラミックス層形成のためのプリント
つぎに上記被覆ガラス板の透明導電膜周辺部(幅:上辺及び左右辺2.6cm、下辺11.0cm)に絶縁性着色セラミックス層を形成するため、絶縁性着色セラミックスペーストを印刷し、120℃で5分間乾燥した。印刷は250メッシュ(250本/インチ)のスクリーン版を用いたスクリーン印刷法を用いた。絶縁性着色セラミックスペーストは、絶縁性ブラックセラミックスペーストを使用した。
【0041】
(4)バスバーおよび端子形成のためのプリント
バスバーを形成するために、上記ガラス板の絶縁性着色セラミックス層上に、端子及びバスバーの通電部以外の配線部となる部分を、また、透明導電膜の上辺端部および下辺端部の内側に、これらの端部に平行に各バスバーの導電膜への通電部を形成するために、銀ペーストをスクリーン印刷法で一括印刷し、120℃で5分間乾燥した。印刷は250メッシュ(250本/インチ)のスクリーン版を用いたスクリーン印刷法を用いた。銀ペーストは銀粒子とガラスフリットとを含み、銀とガラスフリット成分の比率は重量比で95:5であり、焼成後にもほぼ同等の比率となる。
【0042】
(5)仮焼成
上記着色セラミックスペーストおよび銀ペーストが印刷されたガラス板を平ローラー炉で、550℃で5分間仮焼成した。
(6)内側着色隠蔽層の形成
さらに、上記銀系導電膜被覆面の反対面に着色隠蔽膜を形成するためのスクリーン印刷法で着色セラミックペーストを印刷し、120℃で5分間乾燥した。印刷は250メッシュ(250本/インチ)のスクリーン版を用いたスクリーン印刷法を用いた。着色セラミックペーストはブラックセラミックスペーストを使用した。
【0043】
(7)外側ガラス板の作製
上記導電膜被覆ガラス板(内側ガラス板)とほぼ同一形状にガラス板を切り出し、縁を面取りし、さらに洗浄して合わせガラスの外側ガラス板とした。但し、導電膜被覆ガラス板の端子となる部分は導電膜被覆ガラス板よりも小さくして端子が取り出せるようにした。上記ガラス板の周辺部(幅:上辺及び左右辺2.8cm、下辺11.5cm)に、導電膜被覆ガラス板に印刷されたバスバーと絶縁性着色セラミックス層を覆うように若干広めに隠蔽着色層形成のための着色セラミックスペーストを印刷し、120℃で5分間乾燥した。印刷は250メッシュ(250本/インチ)のスクリーン版を用いたスクリーン印刷法を用いた。着色セラミックスペーストはブラックセラミックスペーストを使用した。
【0044】
(8)仮焼成
上記ペーストを印刷された外ガラス板を平ローラー炉で550℃で5分間仮焼成した。
(9)曲げ成形
仮焼成により絶縁性着色セラミックス層およびバスバーが形成され、その反対の面には隠蔽着色層が印刷された導電膜被覆ガラス板(内側ガラス板)と、該導電膜被覆ガラス板と同一形状で、片面に着色隠蔽層が仮焼成により形成された外側ガラス板とを、該導電膜被覆ガラス板の被覆面と外側ガラス板の絶縁性着色セラミックス層とが向かい合うように重ね、自着防止用の粒子の細かい粉をガラス板全面にまぶした後ガラス成形金枠に載せ、ガラス成形炉に投入して自重曲げ成形を行い、金型形状に曲げた。成形条件は炉の温度650℃で5分間とした。
【0045】
(10)合せ
曲げ成形された二枚のガラス板を冷却後引き離し、純水ブラシ洗浄機で汚れ、ホコリを洗い流した後、エアナイフ乾燥させた。つぎに、二枚のガラス板の間にポリビニルブチラール(PVB)フィルム(厚み0.76mm)を挟み込み、仮圧着を行った。仮圧着の条件は、真空60mmHg、135℃で30分間とした。仮圧着されたガラス板をオートクレーブ装置に投入し、通電ガラス板を得た。オートクレーブの条件は、13気圧、135℃で60分間とした。
上記で製造された通電加熱ガラスの特性を測定したところ、透過率は75%、反射率は8%、日射透過率は45%であり、膜抵抗は3.0Ω/□、上下バスバー間抵抗は2.0Ωであった。
【0046】
通電テスト
上記通電加熱ガラスの上辺および下辺のバスバーの端子に42Vの直流電流を印加して発熱させたところ、電流量は20Aに達し、発熱電力は面積計算から1200kW/m2となり、接触式温度計で測定した面内発熱温度は室温に比較しておよそ+40℃の上昇であった。
過電圧テスト
上記通電加熱ガラスの上辺および下辺のバスバーの端子に定格の二倍の60Vの電圧を5分間印加したところ、ガラス板割れ、導電膜の破断などの異常は全く見られなかった。
【0047】
霜氷の融解性
通電加熱ガラスを−20℃の低温室に24時間放置した後、霧吹きで水をかけ、表面に厚さ2mmの霜氷を付着させた。その後、+極と−極との間に42Vの直流電圧を印加し発熱させたところ、ガラス板表面の氷は1分間で溶け始め、5分間で完全に溶け切った。
耐久試験
上記の通電加熱ガラスを100℃の恒温槽に放置し、劣化試験を行った。10ヶ月間経過した時点のバスバー間抵抗の上昇率は初期値に比較して+5%であり、42V、20分間の通電を行っても異常は全く見られなかった。
【0048】
【発明の効果】
以上の本発明によれば、通電加熱可能な透明導電膜が全面に被覆されたガラス板を用いて、透明導電膜上に導電膜を挟んで形成された一対のバスバーに通電することによって、バスバー間を均一に通電加熱することが可能で、異常発熱、漏電、感電などの危険が回避され、また、バスバーのレイアウトの自由度も大きい通電加熱ガラスを容易に提供できる。
【図面の簡単な説明】
【図1】 本発明の車両用通電加熱ガラスの一例を説明する図。(A)は概略平面図、(B)は(A)のa−a′断面の分解図。
【図2】 本発明の通電加熱ガラスを構成する車内側ガラス板の車内側面に形成される着色隠蔽層のパターンを説明する図。
【図3】 本発明の通電加熱ガラスを構成する車外側ガラス板の車内側面に形成される着色隠蔽層のパターンを説明する図。
【図4】 割れ検知導線を設けた本発明の車両用通電加熱ガラスの一例を説明する図。
【図5】 従来の車両用通電加熱ガラスの一例を説明する概略平面図。
【図6】 従来の車両用通電加熱ガラスの一例を説明する概略平面図。
【符号の説明】
A:ガラス板
1、2、3、4、11、12、13:バスバー
5、15:透明導電膜
6、16:端子部
10:ガラス板(車内側)
10′:ガラス板(車外側)
14:絶縁性着色セラミックス層
17、18:着色隠蔽層
19、20:割れ検知導線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrically heated glass and a method for producing the same, and more particularly to an electrically heated glass useful for, for example, a window glass for vehicles such as an automobile and a glass plate for building materials, and a method for producing the same.
[0002]
[Prior art]
Conventionally, snowfall, icing, frost formation, or cloudiness has occurred in windshields, rear windows, etc. of vehicles such as trains, trains, trucks, passenger cars, etc., or in window windows of buildings in severe winters and cold regions. However, it is difficult to quickly remove such fogging. Under such circumstances, it has been proposed and implemented to use an electrically heated glass for the window glass.
[0003]
Conventional electric heating glass is, for example, an automobile window glass, and generally comprises two substantially trapezoidal glass plates corresponding to a window frame and polyvinyl butyral sandwiched between the two glass plates. A pair of bus bars (for energization) provided on the glass plate surface between the intermediate film (hereinafter simply referred to as “intermediate film”) and the two glass plates, and above and below or on the left and right of the periphery of the window glass Electrode) and a transparent conductive film connected to these bus bars.
[0004]
As the transparent conductive film, for example, a thin film of ITO (complex oxide of indium and tin), gold, silver, or the like is used. The transparent conductive film is energized from a battery or the like via a bus bar, and a window glass or the like. This heat causes snow melting, ice melting, anti-fogging, etc. to occur quickly. In recent years, various transparent conductive films used for the electrically heated glass have been developed, and can heat a glass plate more quickly, for example, by applying a high voltage of 280 V or more and heating it. A GZO film (zinc oxide film containing gallium), a silver-based thin film heated by applying a low voltage of 100 V or less and a film resistance of 6 Ω / □ or less are known.
[0005]
In the production of these energized and heated glasses, a so-called silver paste mainly composed of silver and glass frit is usually printed on a glass plate to form a bus bar, and baked simultaneously with the bending of the glass plate, followed by masking. Thus, the desired unheated glass is manufactured by forming a transparent conductive film on the surface of the glass plate by sputtering, vapor deposition, spraying, or the like so that a required non-covered region is partially provided on the glass plate. .
[0006]
In general, window glass for automobiles is manufactured by heating a flat glass plate to a temperature of 600 to 700 ° C. or more at a glass softening point or higher, bending it into a predetermined shape, and applying a quenching physical strengthening treatment as necessary. The However, in recent years, a transparent conductive film (hereinafter simply referred to as “a heat-treatable transparent conductive film”) that can withstand the heating and bending of a glass plate has been developed. Using a dedicated coating apparatus, a large-size heat-treatable transparent conductive film is coated on the surface of the glass plate in advance, and a process for forming an automotive window glass using the coated glass plate is now possible.
[0007]
A coating apparatus dedicated to flat glass is usually capable of coating a transparent conductive film at a low cost, and it has become possible to provide an electrically heated glass for automobiles at a low cost. In particular, if a silver-based transparent conductive film having a film resistance of 2 to 10 Ω / □ is used, current heating with a relatively low voltage is possible. SnO 2 The transparent transparent conductive film is also a heat conductive transparent conductive film, and with the establishment of the CVD method, a film of 50Ω / □ or less can be manufactured at low cost.
[0008]
[Problems to be solved by the invention]
However, when a glass plate coated with a heat-treatable transparent conductive film is applied to the electrically heated glass, other than the electrically heated region of the transparent conductive film provided between the bus bars along the two opposite sides. It is necessary to remove or cover unnecessary portions (hereinafter simply referred to as “unnecessary portions”). This is because if you do not remove or cover unnecessary parts, you will not be able to obtain a proper heat distribution by energization, you will not be able to route the bus bars, and there is a risk of electrical leakage or electric shock from the surrounding area. Because it occurs.
Accordingly, an object of the present invention is to provide an electrically heated glass that can be easily formed using a glass plate having a transparent conductive film that can be electrically heated and coated on the entire surface, and a method for producing the electrically heated glass.
[0009]
[Means for Solving the Problems]
The present invention provides at least one glass plate, a transparent conductive film provided on one surface thereof, at least a pair of bus bars for energizing the transparent conductive film, and an insulating property concealing the periphery of the glass plate In the electrically heated glass comprising a colored ceramic layer, the transparent conductive film is formed on the entire surface of the glass plate, and the insulating colored ceramic layer is formed on the transparent conductive film and at least one of the transparent conductive films. The at least a pair of bus bars is formed on the transparent conductive film and the insulating colored ceramic layer so that the transparent conductive film can be energized and heated. Provided is an electrically heated glass characterized by being provided to face each other with a transparent conductive film interposed therebetween, and a method for producing the same.
[0010]
According to the present invention, even when a glass plate provided with a transparent conductive film on the entire surface is used, an unnecessary portion of the transparent conductive film and the bus bar are insulated, so that the conductive film is formed on the conductive film. By energizing the pair of bus bars, it is possible to uniformly energize and heat between the bus bars, thereby avoiding dangers such as abnormal heat generation, electric leakage, and electric shock. In addition, the degree of freedom in the layout of the bus bar is increased.
[0011]
Moreover, in this invention, a glass plate is two sheets of an indoor side and an outdoor side, the glass plate of an indoor side is the electrically heated glass plate of the said invention, and has the transparent conductive film of this electrically heated glass plate Energized with an outdoor glass plate bonded to the surface through an intermediate film heating Provide glass.
In the present invention, in the energization heating glass, the glass plate on which the transparent conductive film is formed is a glass plate on the indoor side, the intermediate film side surface of the outdoor glass plate and / or the glass on the indoor side. It is preferable that a colored concealing layer capable of concealing the bus bar is provided on the indoor surface of the plate.
[0012]
In addition, when a glass plate with a transparent conductive film that can be heat-treated is applied to energized heated glass and an insulating colored ceramic layer is provided on this portion to cover the unnecessary transparent conductive film on the periphery, the ceramic material and the transparent conductive film Depending on the combination with the film, the transparent conductive film and the insulative colored ceramic layer may react, exhibit an unpleasant color, and may look very bad when viewed from the inside and outside of the car. From the viewpoint of appearance when observed from above, it is preferable to provide a colored concealing layer on the intermediate film side surface of the outdoor glass plate and / or the indoor side surface of the indoor glass plate. Examples of such a coloring hiding layer forming material include black ceramics.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to an example of laminated glass as a preferred embodiment.
Usually, the electrically heated glass is composed of two glass plates, an intermediate film sandwiched between the two glass plates, at least a pair of bus bars provided on the surface of one of the glass plates, and a space between the pair of bus bars. The transparent conductive film provided so as to connect the two is also the same in the electrically heated glass of the present invention.
[0014]
A feature of the electrically heated glass of the present invention is that a transparent conductive film is formed on the entire surface of one of the glass plates, and a strip-shaped insulating colored ceramic layer is provided on the periphery of the transparent conductive film. As shown in FIG. 1A and FIG. 1A, at least a pair of bus bars are directly connected to the transparent conductive film and a portion B (a current-carrying portion of the bus bar) B is electrically connected to the transparent conductive film. A wiring part (bus bar wiring part) C that is formed as a pair on two sides and serves as a wiring connecting the energization part B of each bus bar and the terminal part 16 is provided on the insulating colored ceramic layer. It is a feature.
[0015]
Therefore, even when a glass plate provided with a transparent conductive film on the entire surface is used as the material for the electrically heated glass, the unnecessary transparent conductive film and the wiring portion C of the bus bar are insulated. By energizing a pair of bus bars formed with a transparent conductive film sandwiched between them, it is possible to uniformly energize and heat between the bus bars (between BB), avoiding dangers such as abnormal heat generation, electric leakage, and electric shock. The In addition, the degree of freedom in the layout of the bus bar is increased.
[0016]
The glass plate used in the present invention is not particularly limited, and examples thereof include a normal glass plate, a tempered glass plate, and a partially tempered glass plate. These glass plates may be colored to such an extent that transparency is not impaired. Further, the shape of these glass plates is not limited to a flat plate shape such as a glass plate for building materials, but may be a curved surface processed into various shapes and curvatures. For example, windshields of various vehicles It may be a substantially trapezoidal shape having a curved surface as used in the above. The thickness of the glass plate to be used is not particularly limited, but is usually about 1.5 to 5 mm.
[0017]
The intermediate film used in the present invention is a laminated glass, and firmly adheres two glass plates disposed on both sides thereof, and even when the laminated glass is broken, glass fragments are A polyvinyl butyral resin film having an action that does not scatter and having improved various physical properties such as adhesiveness, weather resistance and heat resistance is usually preferably used. The thickness of the intermediate film is not particularly limited, but is usually about 0.2 to 0.9 mm.
[0018]
The manufacturing method itself of the laminated glass is not particularly limited, and may be a conventionally known method. For example, two glass plates are bonded together so as to sandwich an intermediate film, and a desired laminated glass is manufactured by processes such as pre-adhesion and autoclave treatment.
[0019]
The electrically heated glass of the present invention uses, for example, a glass plate with a transparent conductive film in which one entire surface of two glass plates constituting a laminated glass is coated with a transparent conductive film, preferably as an indoor glass plate, An insulating colored ceramic layer and at least a pair of bus bars are provided on the periphery of the transparent conductive film, and the transparent conductive film is in contact with the intermediate film through the intermediate film between the glass plate with the transparent conductive film and the other glass plate. It is manufactured by bonding.
[0020]
As the transparent conductive film used in the present invention, any of various conventionally known transparent conductive films made of a conductive material can be used, and an optimum film is selected according to the purpose of use of the electrically heated glass. Further, since the applied voltage differs depending on the type of the transparent conductive film, the bus bar connected to the transparent conductive film is formed so as to be compatible with these. In the present invention, it is preferable to use a transparent conductive film that can withstand heat treatment at 600 to 700 ° C., particularly a heat conductive transparent conductive film. By using a transparent conductive film that can withstand heat treatment at 600 to 700 ° C., using a coating device dedicated to flat glass, a transparent conductive film that can be heat-treated in large size is coated on the surface of the glass plate in advance, Use to enable the process of forming automotive window glass.
[0021]
Specific examples of the transparent conductive film that can be heat-treated include, as a transparent conductive film used at a relatively low voltage (high current), for example, a dielectric film (such as an oxide) and a noble metal film (Ag, Au, etc.) from the substrate side. (2n + 1) layers (n ≧ 1) are alternately stacked, and a protective film (such as a nitride film) is formed between the substrate and the dielectric film and / or on the uppermost dielectric film. A multilayer film (if necessary, a thin film for preventing oxidation of the noble metal film may be provided above and below the noble metal film) and the like. Examples of the transparent conductive film used at a high voltage (low current) include an ITO film, a tin oxide film, and a GZO film that are used by applying a voltage of 288 V to the bus bar. In the present invention, any of transparent conductive films to which a low voltage and a high voltage are applied can be used.
[0022]
As the bus bar forming material used in the present invention, any conventionally known bus bar forming material can be used and is not particularly limited. However, it is preferable to select and use a material suitable for the applied voltage of the transparent conductive film.
[0023]
As the insulating colored ceramic layer forming material used in the present invention, if the bus bar formed on the layer can be insulated from the transparent conductive film, it is concealed by printing and baking on the periphery of the glass plate for automobiles. For forming the part, any conventionally used material can be used and is not particularly limited, and examples thereof include an insulating black ceramic paste.
[0024]
Next, a preferred embodiment of the present invention will be described. First, a transparent conductive film capable of heat treatment is formed on a glass plate. As a method for forming the transparent conductive film, any conventionally known method can be used, and is not particularly limited. Examples thereof include a vacuum deposition method, a sputtering method, an electron beam heating deposition method, a spray method, and a CVD method. It is done. The transparent conductive film is formed on the entire surface of one side of the glass plate, and the film thickness is usually about 20 to 500 nm.
By using a heat conductive transparent conductive film, the glass plate on which the transparent conductive film is formed can be heat-treated and bent into a predetermined shape.
[0025]
Next, in the peripheral portion of the transparent conductive film coated on the entire surface of the glass plate, the unnecessary portion and the bus bar wiring portion are insulated from the unnecessary portion of the transparent conductive film and the wiring portion of the bus bar formed thereon. Between them, an insulating colored ceramic layer is formed by a method such as printing and baking. Next, at least a pair of bus bars (including the bus bar wiring portion) connected to the transparent conductive film and energized (powered) to the transparent conductive film are formed by, for example, silver paste printing and baking. It is continuously formed on the film and the insulating colored ceramic layer.
[0026]
In the present invention, insulating colored ceramics are provided indoors and / or outdoors by providing a colored concealment layer on the intermediate resin film side surface of the outdoor glass plate and / or the indoor side surface of the indoor glass plate. It is preferable to hide the layer and bus bar. This is preferable because the characteristic reflection color from the insulating colored ceramic layer around the glass plate does not enter the driver's field of view, which further improves the commerciality in terms of safe driving and appearance quality.
[0027]
Further, if necessary, by disposing a crack detection lead on the insulating colored ceramic layer, it is possible to detect abnormalities such as glass plate cracks, and safety can be further improved.
[0028]
In the following, the electrically heated glass of the present invention will be described with reference to the drawings, taking an automotive window glass as an example for a vehicle. First, FIG. 5 shows a schematic plan view of an example of an automotive windshield as a conventional electrically heated glass. In the following, for example, in a substantially trapezoidal glass plate as shown in FIG. 5, the “upper side of the glass plate” means the upper side portion of the glass plate on the drawing, and the “lower side of the glass plate” means the lower side of the glass plate on the drawing. The parts and the “right side and left side of the glass plate” mean trapezoidal isosceles parts in the drawing.
[0029]
In FIG. 5, a substantially trapezoidal glass plate A has a transparent conductive film 5 (inside the broken line) and a pair of bus bars (the bus bar 3 is a counter electrode bus bar common to the bus bars 1 and 2). Is formed). The energization part B of the bus bar 1 is formed inside the upper end part of the transparent conductive film 5, and the energization part B of the bus bar 2 is formed across the boundary part between the upper end part of the transparent conductive film 5 and the glass plate A. The energization part B is formed across the boundary part between the lower end part of the transparent conductive film 5 and the glass plate A. The wiring part C, which is the other part of the bus bars 1, 2 and 3, is formed outside the transparent conductive film 5. The terminal portions 6 of the respective bus bars are all formed close to the central portion of the lower side of the glass plate and connected to a conductive line (not shown) from the power source.
[0030]
FIG. 6 shows a case where two sets of bus bars 1 to 4 are provided, and the arrangement of the energization portions B of the bus bars 1 and 2 on the transparent conductive film 5 is the same as in FIG. The portion B is formed inside the lower end portion of the transparent conductive film 5, and the energization portion B of the bus bar 4 is formed across the boundary portion between the lower end portion of the transparent conductive film 5 and the glass plate A. Each wiring part C is formed outside the transparent conductive film 5. Moreover, the terminal part 6 is formed in two places of right and left of a glass plate lower side. FIGS. 5 and 6 show conventional examples.
[0031]
One example of the electrically heated glass for automobile window glass of the present invention is shown in FIG. FIG. 1A is a schematic plan view, and FIG. 1B is an exploded view taken along the line aa ′ of FIG. In FIG. 1A, reference numeral 10 denotes a glass plate in which a transparent conductive film 15 is formed on the entire surface of a substantially trapezoidal glass plate. The entire periphery of the transparent conductive film 15 is substantially similar to the glass plate 10. Thus, the insulating colored ceramic layer 14 is formed in a strip shape. Two sets of bus bars 11 to 13 (the bus bar 13 is a counter electrode common to the bus bars 11 and 12) are provided, each bus bar is formed substantially parallel to each side of the glass plate 10, and the bus bars 11 and 12 The energization portion B is formed inside the upper end portion of the transparent conductive film 15, and the energization portion B of the bus bar 13 is formed inside the lower end portion of the transparent conductive film 15. All of the wiring parts C other than the energizing part B of these bus bars are provided on the insulating colored ceramic layer 14 and are shielded from view from the indoor side. Each bus bar is connected to a conductive line (not shown) from a power source at the terminal portion 16.
[0032]
In addition, the length of the energization part B of each bus bar is set to be substantially the same as the length of the upper and lower sides of the transparent conductive film 15 surrounded by the insulating colored ceramic layer 14, preferably slightly longer. If it does in this way, when it supplies with electricity to a bus-bar, the whole surface of the transparent conductive film except the peripheral part in which the insulating coloring ceramic layer was formed will be heated uniformly. In this example, the energization part B of the bus bar is formed as a pair on the opposite upper and lower sides of the transparent conductive film, but such a pair can also be formed on the opposite left and right sides.
[0033]
Further, as shown in FIG. 1 (B), an insulating colored ceramic layer 14 and bus bars 11 to 13 provided on the inner glass plate 10 are preferably provided around the inner side surface of the outer glass plate 10 '. The colored concealment layer 18 is provided so as to conceal, so that the insulating colored ceramic layer 14 and the bus bars 11 to 13 cannot be seen from the outside of the vehicle. Similarly, the colored concealment layer 17 is preferably formed so as to conceal the insulating colored ceramic layer 14 and the bus bars 11 to 13 provided on the vehicle interior glass plate 10 in the periphery of the vehicle interior surface of the vehicle interior glass plate 10. So that these bus bars and the insulating colored ceramic layer are not visible from the inside of the vehicle.
[0034]
FIG. 2 shows an example of the pattern of the colored concealment layer 17 printed on the inner surface of the glass plate with a transparent conductive film (vehicle inner glass plate), and FIG. 3 shows the inner side of the outer glass plate 10 ′. One example of the pattern of the colored masking layer 18 printed on the surface (surface on the intermediate film side) is shown. In the pattern shown in FIG. 3, a notch for taking out a terminal is provided on the lower side.
[0035]
Next, an example in which a glass plate crack detection means is further provided in the above example to further improve safety will be described. That is, by providing a crack detection conductor at an appropriate position as a crack detection means for the glass plate, voltage fluctuations generated in the bus bar or the transparent conductive film 5 can be quickly detected, and the transparent conductive film can be made corresponding to the detection result. It becomes possible to cut off energization.
[0036]
FIG. 4 shows an example. In this example, in addition to the example shown in FIG. 1 (A), a crack detecting conductor 19 is further connected in the vicinity of the terminals of the bus bars 11 and 12, and the terminal of the bus bar 13 is also connected. It is the example which connected the crack detection conducting wire 20 and has arrange | positioned these crack detection conducting wires in the vicinity of all the peripheral parts of a glass plate like illustration. The crack detection lead is provided on the insulating colored ceramic layer and is not in contact with the conductive film. In this way, even when a crack occurs in any of the four sides of the glass plate while the transparent conductive film 15 is energized, the fluctuation state of the measured values of the voltage and resistance of the detection conductor is measured. By doing this, it is possible to know the occurrence of cracks by this crack detection lead. Further, by interlocking with the detection of the occurrence of cracks and the control of energization to the transparent conductive film 15, a safer energized heated glass can be provided.
[0037]
【Example】
EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.
Example 1
(1) Formation of transparent conductive film
A clear float glass plate having a plate thickness of 2.3 mm, a length of 2 m, and a width of 3 m was coated with a silver-based transparent conductive film (hereinafter simply referred to as “silver-based conductive film”) that can be heat-treated by sputtering. The film structure of the silver-based conductive film is SiN in order from the glass plate side x (10nm thickness) / ZnAl x O y (23 nm thickness) / AgPd (10 nm thickness) / ZnAl (2 nm thickness) / ZnAl x O y (76 nm thickness) / AgPd (10 nm thickness) / ZnAl (2 nm thickness) / ZnAl x O y (18nm thickness) / SiN x (10 nm thickness).
[0038]
SiN x The film is made of Ar / N using a Si target. 2 A film was formed by reactive sputtering in a sputtering gas atmosphere. ZnAl x O y The film is made of Ar / O using a ZnAl metal target having an Al addition amount of 5% in terms of molar ratio to Zn. 2 A film was formed by reactive sputtering in a sputtering gas atmosphere. The ZnAl film was formed in an Ar 100% sputtering gas atmosphere using a ZnAl metal target having an Al addition amount of 5% in terms of a molar ratio to Zn. The AgPd film was formed in an Ar 100% sputtering gas atmosphere using an AgPd metal target having a Pd addition amount of 0.5% in terms of a molar ratio to Ag. The ZnAl film is a thin film that prevents the AgPd film, which is a noble metal, from being oxidized. The film resistance value immediately after film formation of the silver-based conductive film was 5.5Ω / □, and the visible light transmittance was 60%.
[0039]
(2) Cutting out
A cut surface was cut into a predetermined glass plate shape with a diamond glass cutter on the coated surface of the above-mentioned glass plate coated on the entire surface, and unnecessary ear portions were cut off to finish a predetermined substantially trapezoidal glass plate shape. After chamfering the trimmed edge with a diamond chamfering roller, pure water cleaning and air knife drying were performed to produce a substrate of electrically heated glass.
[0040]
(3) Print for forming an insulating colored ceramic layer
Next, in order to form an insulating colored ceramic layer on the transparent conductive film peripheral part (width: upper side and left and right sides 2.6 cm, lower side 11.0 cm) of the coated glass plate, an insulating colored ceramic paste is printed at 120 ° C. For 5 minutes. For printing, a screen printing method using a screen plate of 250 mesh (250 lines / inch) was used. An insulating black ceramic paste was used as the insulating colored ceramic paste.
[0041]
(4) Print for busbar and terminal formation
In order to form a bus bar, on the insulating colored ceramic layer of the glass plate, a portion to be a wiring portion other than the terminals and the current-carrying portion of the bus bar, and inside the upper edge portion and the lower edge portion of the transparent conductive film In order to form an energization portion to the conductive film of each bus bar in parallel with these end portions, silver paste was collectively printed by a screen printing method and dried at 120 ° C. for 5 minutes. For printing, a screen printing method using a screen plate of 250 mesh (250 lines / inch) was used. The silver paste contains silver particles and glass frit, and the ratio of silver to glass frit component is 95: 5 by weight, and is almost the same after firing.
[0042]
(5) Temporary firing
The glass plate on which the colored ceramic paste and the silver paste were printed was temporarily fired at 550 ° C. for 5 minutes in a flat roller furnace.
(6) Formation of inner colored hiding layer
Furthermore, a colored ceramic paste was printed by a screen printing method for forming a colored hiding film on the surface opposite to the silver-based conductive film-coated surface, and dried at 120 ° C. for 5 minutes. For printing, a screen printing method using a screen plate of 250 mesh (250 lines / inch) was used. Black ceramic paste was used as the colored ceramic paste.
[0043]
(7) Production of outer glass plate
A glass plate was cut out in substantially the same shape as the conductive film-coated glass plate (inner glass plate), the edges were chamfered, and further washed to obtain an outer glass plate of laminated glass. However, the portion to be a terminal of the conductive film-coated glass plate was made smaller than the conductive film-coated glass plate so that the terminal could be taken out. A concealed colored layer slightly wider so as to cover the bus bar printed on the conductive film-coated glass plate and the insulating colored ceramic layer on the periphery of the glass plate (width: upper and left and right sides 2.8 cm, lower side 11.5 cm) A colored ceramic paste for formation was printed and dried at 120 ° C. for 5 minutes. For printing, a screen printing method using a screen plate of 250 mesh (250 lines / inch) was used. A black ceramic paste was used as the colored ceramic paste.
[0044]
(8) Temporary firing
The outer glass plate on which the paste was printed was calcined at 550 ° C. for 5 minutes in a flat roller furnace.
(9) Bending molding
An electrically conductive colored ceramic layer and a bus bar are formed by pre-firing, and a conductive film-coated glass plate (inner glass plate) on which the concealed colored layer is printed on the opposite surface, and the same shape as the conductive film-coated glass plate, Particles for preventing self-adhesion by stacking an outer glass plate having a colored concealment layer formed on one side by pre-firing so that the coated surface of the conductive film-coated glass plate and the insulating colored ceramic layer of the outer glass plate face each other. The fine powder was coated on the entire surface of the glass plate, placed on a glass forming metal frame, put into a glass forming furnace, subjected to self-weight bending, and bent into a mold shape. The molding conditions were a furnace temperature of 650 ° C. and 5 minutes.
[0045]
(10) Matching
The two glass plates formed by bending were separated after cooling, washed away dirt and dust with a pure water brush washer, and then air knife dried. Next, a polyvinyl butyral (PVB) film (thickness 0.76 mm) was sandwiched between the two glass plates, and temporary pressure bonding was performed. The conditions for temporary pressure bonding were set to a vacuum of 60 mmHg and 135 ° C. for 30 minutes. The temporarily pressed glass plate was put into an autoclave apparatus to obtain an energized glass plate. Autoclave conditions were 13 atm and 135 ° C. for 60 minutes.
When the characteristics of the electrically heated glass manufactured above were measured, the transmittance was 75%, the reflectance was 8%, the solar radiation transmittance was 45%, the film resistance was 3.0Ω / □, and the resistance between the upper and lower busbars was It was 2.0Ω.
[0046]
Energization test
When a direct current of 42 V was applied to the upper and lower bus bar terminals of the energized heated glass to generate heat, the amount of current reached 20 A, and the generated power was 1200 kW / m from area calculation. 2 Thus, the in-plane heat generation temperature measured with a contact thermometer was about + 40 ° C. higher than room temperature.
Overvoltage test
When a voltage of 60 V, which is twice the rating, was applied to the terminals of the upper and lower busbars for 5 minutes, no abnormalities such as glass plate breakage and conductive film breakage were found.
[0047]
Melting properties of frost ice
The electrically heated glass was left in a low temperature room at -20 ° C. for 24 hours, and then sprayed with water to make frost ice having a thickness of 2 mm adhere to the surface. After that, when a direct current voltage of 42 V was applied between the positive electrode and the negative electrode to generate heat, the ice on the surface of the glass plate started to melt in 1 minute and completely melted in 5 minutes.
An endurance test
The above-mentioned electrically heated glass was left in a constant temperature bath at 100 ° C. to conduct a deterioration test. The increase rate of the resistance between the bus bars at the time when 10 months passed was + 5% compared to the initial value, and no abnormality was observed even when energization was performed at 42 V for 20 minutes.
[0048]
【The invention's effect】
According to the present invention, a bus bar is formed by energizing a pair of bus bars formed by sandwiching a conductive film on a transparent conductive film by using a glass plate having a transparent conductive film that can be heated and energized. It is possible to uniformly heat and heat the gap, avoiding dangers such as abnormal heat generation, electric leakage, and electric shock, and easily providing the electric heating glass with a large degree of freedom in the layout of the bus bar.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of an electrically heated glass for a vehicle according to the present invention. (A) is a schematic plan view, (B) is an exploded view of a cross section aa ′ of (A).
FIG. 2 is a diagram for explaining a pattern of a colored concealing layer formed on an inner surface of a vehicle inner side glass plate that constitutes the electrically heated glass of the present invention.
FIG. 3 is a diagram for explaining a pattern of a colored concealing layer formed on the inner side surface of the vehicle outer side glass plate constituting the electrically heated glass of the present invention.
FIG. 4 is a view for explaining an example of a vehicle heating glass for use in the present invention provided with a crack detection lead wire.
FIG. 5 is a schematic plan view illustrating an example of a conventional vehicle energization heating glass.
FIG. 6 is a schematic plan view illustrating an example of a conventional vehicle energization heating glass.
[Explanation of symbols]
A: Glass plate
1, 2, 3, 4, 11, 12, 13: Bus bar
5, 15: Transparent conductive film
6, 16: Terminal part
10: Glass plate (inside the car)
10 ': Glass plate (vehicle outside)
14: Insulating colored ceramic layer
17, 18: Colored concealment layer
19, 20: Crack detection lead

Claims (6)

少なくとも1枚のガラス板と、その一方の面に設けられた透明導電膜と、該透明導電膜に通電する少なくとも一対のバスバーと、ガラス板の周辺部を隠蔽している絶縁性着色セラミックス層とからなる通電加熱ガラスにおいて、
上記透明導電膜は、上記ガラス板の面の全面に形成され、上記絶縁性着色セラミックス層は、上記透明導電膜上で且つ該透明導電膜の少なくとも一部の周辺部に帯状に設けられ、上記少なくとも一対のバスバーは、上記透明導電膜の通電加熱が可能となるように、上記透明導電膜上および絶縁性着色セラミックス層上に形成され、かつバスバーが透明導電膜を間に挟んで対向して設けられていることを特徴とする通電加熱ガラス。
At least one glass plate, a transparent conductive film provided on one surface thereof, at least a pair of bus bars for energizing the transparent conductive film, and an insulating colored ceramic layer concealing the periphery of the glass plate; In the electric heating glass consisting of
The transparent conductive film is formed on the entire surface of the glass plate, and the insulating colored ceramic layer is provided in a strip shape on the transparent conductive film and around at least a part of the transparent conductive film, At least a pair of bus bars are formed on the transparent conductive film and the insulating colored ceramic layer so that the transparent conductive film can be energized and heated, and the bus bars face each other with the transparent conductive film interposed therebetween. An electrically heated glass characterized by being provided.
ガラス板が室内側と室外側の二枚であり、室内側のガラス板が請求項1に記載の通電加熱ガラス板であり、該通電加熱ガラス板の透明導電膜を有する面に、室外側のガラス板が中間膜を介して接着されている請求項1に記載の通電加熱ガラス。The glass plate is two pieces of the indoor side and the outdoor side, and the glass plate on the indoor side is the electrically heated glass plate according to claim 1. The electrically heated glass according to claim 1, wherein the glass plate is bonded via an intermediate film. バスバーの透明導電膜への通電部が透明導電膜に接して形成され、かつバスバーの配線部が絶縁性着色セラミックス層上に形成されている請求項1に記載の通電加熱ガラス。The energization heating glass of Claim 1 in which the electricity supply part to the transparent conductive film of a bus bar is formed in contact with a transparent conductive film, and the wiring part of a bus bar is formed on the insulating coloring ceramic layer. 透明導電膜が形成されているガラス板は、室内側のガラス板であり、室外側のガラス板の中間膜側表面および/または室内側のガラス板の室内側表面に、前記バスバーの隠蔽が可能な着色隠蔽層が設けられている請求項2に記載の通電加熱ガラス。The glass plate on which the transparent conductive film is formed is a glass plate on the indoor side, and the bus bar can be concealed on the intermediate film side surface of the outdoor glass plate and / or the indoor side surface of the indoor glass plate. The electrically heated glass according to claim 2, further comprising a colored concealing layer. 透明導電膜が、600〜700℃の熱処理に耐える透明導電膜である請求項1〜4のいずれか1項に記載の通電加熱ガラス。The electrically heated glass according to any one of claims 1 to 4, wherein the transparent conductive film is a transparent conductive film that can withstand heat treatment at 600 to 700 ° C. 少なくとも1枚のガラス板と、その一方の面に設けられた透明導電膜と、該透明導電膜に通電する少なくとも一対のバスバーと、ガラス板の周辺部を隠蔽している絶縁性着色セラミックス層とからなる通電加熱ガラスの製造方法において、少なくとも1枚のガラス板の一方の表面に透明導電膜を形成する工程と、ガラス板の周辺部を隠蔽する絶縁性着色セラミックス層を形成する工程と、上記透明導電膜に通電する少なくとも一対のバスバーを形成する工程とを有し、上記透明導電膜を上記ガラス板の面の全面に形成し、上記絶縁性着色セラミックス層を、上記透明導電膜上で且つ該透明導電膜の周辺部の少なくとも一部に帯状に設け、上記少なくとも一対のバスバーを、上記透明導電膜上および絶縁性着色セラミックス層上に、バスバーが透明導電膜を間に挟んで対向し、上記透明導電膜の通電加熱が可能となるように設けることを特徴とする通電加熱ガラスの製造方法。At least one glass plate, a transparent conductive film provided on one surface thereof, at least a pair of bus bars for energizing the transparent conductive film, and an insulating colored ceramic layer concealing the periphery of the glass plate; In the method for producing an electrically heated glass comprising: a step of forming a transparent conductive film on one surface of at least one glass plate; a step of forming an insulating colored ceramic layer that conceals the periphery of the glass plate; and Forming at least a pair of bus bars for energizing the transparent conductive film, forming the transparent conductive film on the entire surface of the glass plate, and forming the insulating colored ceramic layer on the transparent conductive film and Provided in at least a part of the periphery of the transparent conductive film in a strip shape, the at least one pair of bus bars is provided on the transparent conductive film and the insulating colored ceramic layer. Face each other across between the transparent conductive film, method of manufacturing the electrical heating glass, characterized in that provided as electrical heating of the transparent conductive film becomes possible.
JP23006799A 1999-08-16 1999-08-16 Electric heating glass and its manufacturing method Expired - Lifetime JP4277376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23006799A JP4277376B2 (en) 1999-08-16 1999-08-16 Electric heating glass and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23006799A JP4277376B2 (en) 1999-08-16 1999-08-16 Electric heating glass and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001048602A JP2001048602A (en) 2001-02-20
JP4277376B2 true JP4277376B2 (en) 2009-06-10

Family

ID=16902033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23006799A Expired - Lifetime JP4277376B2 (en) 1999-08-16 1999-08-16 Electric heating glass and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4277376B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849533B2 (en) * 2002-01-25 2006-11-22 日本板硝子株式会社 Laminated glass for windshield
EP2399735A1 (en) * 2010-06-22 2011-12-28 Saint-Gobain Glass France Laminated glass pane with electrical function and connecting element
CN105189399B (en) * 2013-02-05 2017-08-15 日本板硝子株式会社 Laminating glass
GB201309549D0 (en) * 2013-05-29 2013-07-10 Pilkington Group Ltd Glazing
JP6780247B2 (en) * 2016-01-22 2020-11-04 大日本印刷株式会社 Energized heating glass and vehicles
FR3050730B1 (en) * 2016-04-27 2018-04-13 Saint-Gobain Glass France ENAMEL PRINTING METHOD FOR FUNCTIONAL LAYERED SHEET GLAZING
FR3056147B1 (en) * 2016-09-21 2021-02-12 Saint Gobain PRINTING PROCESS ON AN EXTERNAL FACE OF A LAMINATED WINDOW
CN109986934A (en) * 2017-12-29 2019-07-09 法国圣戈班玻璃公司 Vehicle windscreen and its preparation process with two dimensional code
JP7090126B2 (en) * 2020-07-15 2022-06-23 日本板硝子株式会社 Laminated glass

Also Published As

Publication number Publication date
JP2001048602A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JP6526863B2 (en) Glass plate provided with electric heating layer and method of manufacturing the same
KR102067023B1 (en) Transparent panel
JP5372372B2 (en) Transparent glazing with resistive heating coating
JP6133437B2 (en) Glass plate with electric heating layer
JP4511928B2 (en) Eliminates hot spots at the end of heatable transparency bus bars with conductive members
JP6871928B2 (en) Laminated vehicle glazing
JP6381780B2 (en) Transparent window plate with electric heating layer, method for manufacturing transparent window plate and use of transparent window plate
CN107432059B (en) Heatable glazing panel
JP6351826B2 (en) Transparent window plate with electric heating layer, method for manufacturing transparent window plate and use of transparent window plate
US6995339B2 (en) Heatable wiper rest area for a transparency
JP3994259B2 (en) Automotive window glass with conductive film and radio wave transmission / reception structure for automobile
MXPA01011041A (en) Heated glass panes, in particular for vehicles.
JP4277376B2 (en) Electric heating glass and its manufacturing method
CN113302069A (en) Conductive bus for electrical connection on vehicle window
JP2001122643A (en) Electrical heating glass and method for manufacturing the same
JP2003176154A (en) Electric-heating glass
JPH08253107A (en) Current-carrying heating glass
CN115461217A (en) Bus hiding method for laminated glazing
CN115956397A (en) Heatable vehicle glazing
CN115003640A (en) Glazing with a coated printed portion, method for the production thereof and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4277376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term