JP4274849B2 - Tire tread surface molding die and manufacturing method thereof - Google Patents

Tire tread surface molding die and manufacturing method thereof Download PDF

Info

Publication number
JP4274849B2
JP4274849B2 JP2003136198A JP2003136198A JP4274849B2 JP 4274849 B2 JP4274849 B2 JP 4274849B2 JP 2003136198 A JP2003136198 A JP 2003136198A JP 2003136198 A JP2003136198 A JP 2003136198A JP 4274849 B2 JP4274849 B2 JP 4274849B2
Authority
JP
Japan
Prior art keywords
thin plate
tire
mold
tread surface
plate members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003136198A
Other languages
Japanese (ja)
Other versions
JP2004338182A (en
Inventor
力 高木
茂正 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Seiko Co Ltd
Original Assignee
Fuji Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Seiko Co Ltd filed Critical Fuji Seiko Co Ltd
Priority to JP2003136198A priority Critical patent/JP4274849B2/en
Publication of JP2004338182A publication Critical patent/JP2004338182A/en
Application granted granted Critical
Publication of JP4274849B2 publication Critical patent/JP4274849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D2030/0607Constructional features of the moulds
    • B29D2030/0609Constructional features of the moulds the moulds being made of a plurality of laminations, e.g. thin plates, adjacent one another, so as to create the moulding cavity

Description

【0001】
【発明が属する技術分野】
本発明は、薄板部材の積層体の内面に形成したトレッド成形面によりタイヤのトレッド面を成形するタイヤ成形金型及びその製造方法に関するものである。
【0002】
【従来の技術】
ゴムタイヤの製造においては、加硫成形工程では、グリーンタイヤを成形金型内に収納して行われる。このようなタイヤ成形金型は、これまでは、タイヤを円周上で例えば8分割或いは10分割した分割型の1つについて、設計されたトレッドパターンに基づき金型模型を製作し、その模型を石膏で型取りする。その石膏に金型材となる金属を流し込んで成形金型を製作し、角やその他の細部に修正を行い、分割型の1つが完成する。このような分割型を8個或いは10個作成することにより、タイヤ1本分の金型が完成する。
【0003】
また、多数の薄板をタイヤの円周方向に積層してタイヤ成形金型を製造する方法が特許第3241867号公報に記載されている。多数の薄板は、そり変形を有し、隣接する2枚の薄板同士がそり方向を逆にした状態で配置され、円周方向に挿通するベルトに遊嵌して保持される。金型の型締めは、タガの円錐面が円周方向に積層保持した多数の薄板のテーパ状のショルダ部に当接し、多数の薄板のそり変形をなくして隣接する薄板同士を密着させることにより、多数の薄板の内周面で構成される金型内面を縮径した状態でタイヤの成形を行う。金型の型開きは、多数の薄板のショルダ部からタガを外すことにより、多数の薄板のそり変形が弾性により戻り、これにより金型内面が拡径し、タイヤのトレッド面から金型内面を抜くことができる。
【0004】
【特許文献1】
特許第3241867号公報
【0005】
【発明が解決しようとする課題】
然しながら、石膏型への流し込み方式による金型及びその製造方法においては、型模型の製作や石膏型の製作など最終目的物である金型以外の物の製作が必要で、溶湯や鋳込みのための設備も必要とし、製造工程の工程数が多く手間が掛かり、金型の製造所要時間が長く、製造コストが高くなる等の種々の問題がある。また、金型に形成されるスピュー穴と呼ばれるガス抜き穴は、ドリル加工の制約から穴径を小さくすることに限界があり、このため加硫成形時にこのスピュー穴にタイヤのゴムが侵入し、スピュー穴の定期的な清掃が必要となり、また加硫成形されたタイヤからスピュー穴に侵入した突起を除去するなどの手間の掛かる仕上げ工程を必要としていた。
【0006】
また、上述した薄板積層方式による金型及びその製造方法においては、上述した伝統的な金型及びその製造方法の幾多の問題を解消できる利点があるが、次のような問題点を付随している。すなわち、多数の薄板はベルトに保持されているが、薄板間の相対位置は変動が可能であり、特に型締めのための縮径時と型開きのための拡径時との間の金型内径の径変化を利用しているため、薄板の相対位置が不安定である。換言すれば、型締め縮径時における各薄板の固定位置の再現が不安定であり、このため、生産されるタイヤのトレッドパターンが不正確になる。また、そり変形を有する薄板を利用して型抜きを行うように設計されているため、薄板の積層配置は円周方向のみに限定される。さらに、薄板間の隙間からガス抜きを行わせるため、型締め時における薄板間の締めの程度、つまりそり変形の解消具合がガス抜き通路の形成に微妙に影響する。このため、締め付け過ぎの場合にはガス抜き通路が形成されないことになり、成形されるタイヤに悪影響を与える。逆に締め付け過小の場合は、微小厚さの広幅のガス抜き通路が形成され、成形タイヤの外周からは微小厚さの広幅の突起が突出し、タイヤ成形後の最終仕上げに手間がかかることになる。
【0007】
従って、本発明は、伝統的な石膏型への流し込み方式による金型及びその製造方法が持つ欠点を解消でき、かつ上述した薄板積層方式による金型及びその製造方法に伴う問題点を解消することを目的とする。
【0011】
【課題を解決するための手段と作用及び発明の効果】
上述した課題及び目的は、本発明による下記のように構成される解決手段により解決され達成される。
【0012】
すなわち、請求項1に記載の発明は、タイヤトレッド面のクラウンを成形する金型であって、前記タイヤトレッド面を外方から取り囲むため円周方向に所定数に分割された分割体の各々が所定円周長さの弧状をなす複数個の金型部とこの金型部をそれぞれ保持する複数個の保持部材からなり、前記金型部の各々は多数枚の薄板部材を積層して構成され、前記保持部材の各々は対応する前記金型部を構成する前記多数枚の薄板部材を積層状態で固定保持する固定手段を備え、この固定手段により積層状態で固定保持された前記多数枚の薄板部材の内周面にタイヤのトレッド面に成形すべきトレッドパターンに対応する形状が形成されており、前記金型部を構成する多数枚の薄板部材は前記タイヤトレッド面の幅方向長さをカバーして前記タイヤの円周方向に積層されており、さらに、タイヤの円周方向に積層された前記多数枚の薄板部材の各端部にあって前記保持部材に直接固定できない薄板部材は、前記固定手段により前記保持部材に固定された隣接する薄板部材に固着されることにより前記保持部材に間接的に固着されていることを特徴とする。
【0017】
この請求項1の構成によれば、積層体の円周方向の各端部に配置される薄板部材は、積層体の対応する端部近辺に配置されかつ保持部材に固定保持された薄板部材に固定され、保持部材に間接的に固定される。このため、保持部材に直接固定できない両端部の薄板部材を保持部材の円周方向両端面から若干突出させた状態で積層体の一部として強固に保持部材に保持することができる。これにより、前記積層体を構成する薄板部材を全て均一の薄板材で形成することができる。
【0018】
また、請求項に記載の発明は、タイヤトレッド面のクラウンを成形する金型であって、前記タイヤトレッド面を外方から取り囲むため円周方向に所定数に分割された分割体の各々が所定円周長さの弧状をなす複数個の金型部とこの金型部をそれぞれ保持する複数個の保持部材からなり、前記金型部の各々は多数枚の薄板部材を積層して構成され、前記保持部材の各々は対応する前記金型部を構成する前記多数枚の薄板部材を積層状態で固定保持する固定手段を備え、この固定手段により積層状態で固定保持された前記多数枚の薄板部材の内周面にはタイヤのトレッド面に成形すべきトレッドパターンに対応する形状が形成されており、前記金型部を構成する多数枚の薄板部材は前記タイヤトレッド面の幅方向長さをカバーして前記タイヤの円周方向に積層されており、さらに、成形すべきタイヤの円周方向に積層された多数枚の薄板部材の各端部にある薄板部材他の薄板部材よりも肉厚が厚く形成され、これにより前記各端部にある薄板部材固定手段により保持部材に直接固定されていることを特徴とする。
【0019】
この構成によれば、積層体の円周方向の最外端に配置される薄板部材の厚さが他の薄板部材よりも厚くされ、これら最外端の薄板部材も含めて全ての薄板部材が保持部材に直接固定される。これにより、積層体は全体として強固に保持され、両端の薄板部材をこれら近辺に配置される薄板部材に固着するための手段が不要となり、構造を簡単にすることができる。
【0027】
請求項の発明は、請求項1に記載のタイヤトレッド面のクラウンを成形するため円周方向に所定数に分割された分割金型を製造するタイヤトレッド面成形金型の製造方法であって、金属薄板部材を切り出し、所定形状にカットし、それら厚さの薄い金属薄板部材を成形すべきタイヤの円周方向に多数枚積層した状態で保持部材に固定保持し、タイヤの円周方向に積層された前記多数枚の薄板部材の各端部にあって前記保持部材に直接固定できない薄板部材を、固定手段により前記保持部材に固定された隣接する薄板部材に固着することにより前記保持部材に間接的に固着して、前記分割金型を製造することを特徴とする。
この構成によれば、請求項1の発明と同様の作用と効果が達成される。
【0029】
請求項に記載の発明は、請求項に記載のタイヤトレッド面のクラウンを成形するため円周方向に所定数に分割された分割金型を製造するタイヤトレッド面成形金型の製造方法であって、金属薄板部材を切り出し、所定形状にカットし、それら厚さの薄い金属薄板部材を成形すべきタイヤの円周方向に多数枚積層した状態で固定手段により保持部材に固定保持し、この場合タイヤの円周方向に積層された前記多数枚の薄板部材の各端部にある薄板部材を、他の薄板部材よりも肉厚を厚く形成し、これにより前記各端部にある肉厚の厚い薄板部材を前記固定手段により前記保持部材に直接固定して前記分割金型を製造することを特徴とする。
この構成によれば、上述した請求項2の発明と同様の作用と効果が実現される。
【0034】
【発明の実施の形態】
以下、ゴム物品補強用に使用される本発明によるタイヤトレッド面成形金型及び同金型の製造方法の実施の形態について図面を参照して説明する。図1は、第1実施形態における金型を組み込んだ加硫機の要部縦断面図であり、図2は、加硫機内に組み込まれた金型の要部側面図である。図1及び図2において、11L、11Rは、加硫機10の左側ケース及び図示鎖線で示す後退位置へ復帰される可動の右側ケースを示す。サイド金型12は、左右に2分割され、その左サイドウォール金型12Lは、その中心部に配置した図略の金型支持機構により図示左右方向に進退可能である。同様に、右サイドウォール金型12Rは、その中心部に配置した図略の金型支持機構により図示左右方向に進退可能である。これら左右サイドウォール金型12L、12Rの内側面は、加硫機10内に収納したグリーンタイヤTの対応するサイドウォール部を成形すべく形成されている。
【0035】
タイヤトレッド面Trを成形するクラウン金型15がタイヤTの外周面を包囲している。クラウン金型15は、円周方向に例えば8ブロックの分割体16で構成され、これら分割体16の各々は、内方端縁が成形すべきタイヤTのトレッド面Trの幅方向断面と補合形状をなす多数枚の薄板部材17をタイヤTの円周方向に積層した状態で固定保持する保持部材18からなる。これら保持部材18は、それぞれ対応するスライド部材19の内周面に交換のための着脱可能に固定されている。右側ケース11Rには、各分割体16を放射方向に案内する一対のガイドレール20が8対取り付けられている。
【0036】
図2に示すように、各スライド部材19は、対応する一対のガイドレール20に沿って往復移動する一対のベアリングブロック21上に固定され、このベアリングブロック21と共にタイヤの径方向に進退できるように摺動自在に案内されている。各スライド部材19は、ピン25を介してリンク26の一端に枢着され、リンク26の他端は、タイヤTの幅方向に進退運動するように右側ケース11Rに水平配置されたシリンダ装置27のピストンロッド28の先端にピン29を介して枢着されている。従って、シリンダ装置27の動作により、分割体16の各々は放射方向に進退でき、図2の左半分に示す2つの分割体16のように、各分割体16を径方向外方に後退した型開き位置と、右半分に示す2つの分割体16のように、各分割体16を径方向内方に前進した型閉め位置とに選択的に位置決め可能である。
【0037】
図3及び図4は、分割体16の詳細を示す断面図及び斜視図である。各分割体16は、板厚が0.5〜5mm程度の薄板部材17を円周方向に積層し、その積層体の円周方向長さは、成形すべきタイヤの外周を例えば8分割した各分割部の円周方向長さと一致している。各薄板部材17の外周端部は、裁頭三角形状をなし、幅方向中央に平坦部が形成され、この平坦部の両側肩部に斜面が形成されている。各薄板部材17の両側端部は、突出部17aが突設され、これら突出部17aの内方部にテーパ部17bが形成されている。薄板部材17の積層体を保持する保持部材18は、左側部分の一部を除いて、薄板部材17の外周部及び両側部と補合する内周面が形成され、これら薄板部材17の外周部及び両側部を受容している。保持部材18の左側部の外周部近辺には、前記テーパ部17bと協働する別のテーパ部18bが形成され、本発明における固定手段としての固定板18aが内外周部近辺に形成された一対の内側テーパ部を前記テーパ部17b、18bに係合させた状態で、ボルト18cにより固定されている。これにより、後述するように円周方向の各端部に配置される1枚或いは数枚の薄板部材を除いて、薄板部材17の各々は、ボルト18cの螺子込み動作に伴って、一対のテーパ部17b及びテーパ部18bが協働する共締め作用により、保持部材18の内周面に押し付けられながら固定板18aにより保持部材18に一体的に固定できる構成となっている。
【0038】
また、保持部材18の右側面内方部及び固定板18の左側面内方部には、当接面18e、18eが形成され、加硫成形時に型閉め位置へ前進する左右サイドウォール金型12L、12Rの外周内端縁部とそれぞれ当接し、各分割体16と左右サイドウォール金型12L、12Rとの相対位置を位置決め可能としている。さらに、左右サイドウォール金型12L、12Rの内端面の一部は、多数の薄板部材17が構成する積層体の幅方向両端の内方縁部と円周上で密着され、金型空間内を外部に対し密閉し、金型空間内温度の型外への放散を防止するようにしている。なお、図中22は、分割体16をスライド体19の内周面に対し交換のために取り外し可能に装着するボルトを示す。
【0039】
薄板部材17の積層体と保持部材18及び固定板18aとの円周方向の長さ関係について説明すると、これら薄板部材17の積層体、保持部材18及び固定板18aは、図4に示すように、積層体の内周面を成形すべきタイヤの外周面と補合させるように、円弧状に伸長されている。積層体は、成形すべきタイヤの円周を例えば8分割した広がり角度をもつ円弧長とされ、これに対し、保持部材18及び固定板18aは円弧長方向の各端部が積層体の端部よりも1mm程度或いは薄板部材17の1枚分程度短くされ、積層体の端部より円弧長方向内方に引っ込むような円弧長とされている。保持部材18及び固定板18aは略同一円弧長として形成されており、これにより、円弧長方向の各端部においては、最外端に配置された薄板部材17の外端面に対し、保持部材18及び固定板18aの外端面は、長さtだけ後退している。
【0040】
積層体の円弧長方向両端部における1枚或いは数枚を除く薄板部材17の大部分は、前述したように、ボルト18cにより螺子込み固定される固定板18aにより保持部材18に固定保持されている。これに対し、円弧長方向両端部における1枚或いは数枚の薄板部材17は、例えば4本の頭付子螺子17sを挿通し、これら螺子17sを図5に示すように固定板18aにより保持部材18固定されている隣接する1枚或いは数枚の薄板部材17に螺子込むことにより、これら隣接する薄板部材17と一体とされ、これら隣接する薄板部材17を介して間接的に保持部材18に固着されている。各分割体16の円弧長方向の各端面と隣接する各分割体16の薄板部材17積層体の端面には、前記頭付子螺子17sの各々と対向する部位に円穴17hが穿設され、これら円穴17hに隣接する分割体16の積層体端面から突出する螺子17sの頭部を収容するようにしている。これにより、分割体16の型閉め状態においては、図5に示すように、隣接する一方の積層体の端面から突出する子螺子17sが他方の積層体に形成した円穴17h内へ収容され、一方の積層体の端面と他方の積層体の端面とが密着できるようになっている。なお、スライド部材19の円弧長は、保持体18と同長かそれよりも若干短くしてある。
【0041】
さらに、各薄板部材17の円周方向の一方の端面には、内端縁部から外端縁部につらなる複数本(図例では3本)のガス抜き用の溝17gが形成されている。この溝17gの幅及び深さは気体を通過する程度の数ミクロンメートルのものとされ、後述するようにレーザ加工機により形成される。これらガス抜き用の溝17gは、図3に示すように、保持体18の内面の幅方向中央に形成したヌスミ空間18n及び排気穴18mと連通し、さらにスライド部材19の内面の幅方向中央に形成したヌスミ空間19n及び排気穴19mを介してスライド部材19の外周面側の大気に通じている。これにより、加硫成形時に金型内に発生するガスを金型外へ排気するようにしている。
【0042】
次に、上記のように構成された第1実施形態の動作を説明する。加硫成形動作前の原位置状態においては、左右サイドウォール金型12L、12Rは、図1にそれぞれ2点鎖線で示す後退位置に復帰しており、分割体16は、シリンダ装置27が図1で右方に後退した後退端に位置して、図2の左半部に示すように、型開き位置に復帰している。また、右側ケース11Rは、2点鎖線で示す後退位置に復帰し、分割体16を図1において実線で示す加硫位置から大きく後退させ、図1の紙面に垂直方向手前側の搬入領域を大きく開いており、この搬入領域から適宜搬入・搬出装置により未加硫タイヤ(グリーンタイヤ)Tの搬入を可能としている。
【0043】
このような原位置状態において、加硫動作指令が与えられると、未加硫タイヤTが搬入・搬出装置のタイヤ保持ヘッドにより外周を保持されて加硫位置へ搬入され、図略の軸心装置のブラダBLが前進しスチームの供給を受けて一次膨張し、未加硫タイヤTを内周面側から仮受けする。これにより、続いて搬入・搬出装置のタイヤ保持ヘッドが未加硫タイヤTを釈放して加硫機10外へ退去する状態においても、未加硫タイヤTは加硫機10の軸心と同心に仮受けされた状態となる。
【0044】
搬入・搬出装置の保持ヘッドの退去に続いて、右側ケース11Rは、2点鎖線で示す後退位置から左方へ前進し、分割体16を径方向外方の後退位置へ保持したまま加硫位置に整列させる。その後、左右サイドウォール金型12L、12Rが型閉め位置の直前位置に前進して停止すると、分割体16と対をなすシリンダ装置27が前進動作し、各分割体16を一対のガイドレール20に沿って径方向内方へ前進し、薄板部材17の積層体で形成する分割金型を未加硫タイヤTの外周面と対向させる図1実線の型閉め位置直前で停止する。この後、左右サイドウォール金型12L、12Rが図1実線の型閉め位置へ最終前進し、続いて、各分割体16が型閉め位置まで最終前進し、図3に示すように、内側外周縁部を各分割体16の保持部材18の両側面の径方向内方に形成した当接部18e、18eに当接し、分割体16と左右のサイドウォール金型12L、12Rが組み合わされて内方に加硫空間を形成する組み合わせ金型が完成する。これと同時に、薄板部材17の積層体の内方縁部に左右のサイドウォール金型12L、12Rの内側端部が円周上で密着され、金型内の加硫空間が密閉され、加硫空間から外部への温度の放散を防止する。これにより、加硫空間内の温度は均一に保たれる。また、この場合、隣接する分割体16間においては、一方の積層体の各端面部の薄板部材17を固定する子螺子17sの頭部が隣接する他の積層体の円穴17hに収容され、隣接する分割体16の積層体の端面同士は図5に示すように密着される。
【0045】
このようにして組み合わせ金型が完成すると、未加硫タイヤT内で一次膨張されているブラダBL内にスチームがさらに追加供給されてブラダBLがさらに膨張され、未加硫タイヤTの外周クラウン部は例えば8つの分割体16で構成されるクラウン金型の内周面に押し付けられ、クラウン金型の内周面に形成されるトレッドパターンが転写される。また、未加硫タイヤTの左右のサイドウォール部は、左右のサイドウォール金型12L、12Rの内周面に押し付けられ、これら内周面の形状が転写される。このような加硫状態が例えば10数分程度維持され、加硫処理が行われる。この加硫初期及び加硫処理の間、タイヤTの外周面とクラウン金型の内周面間に残されたガス及び発生するガスは、薄板部材17に形成したガス抜き用の溝17gを通って、保持体18の内面の幅方向中央に形成したヌスミ空間18n及び排気穴18mから排出され、さらにスライド部材19の内面の幅方向中央に形成したヌスミ空間19n及び排気穴19mを介してスライド部材19の外周面側の大気へ排出される。これにより、加硫成形時に残留したガス及び金型内に発生するガスが金型外へ排気される。
【0046】
所定の加硫時間が経過した後、ブラダBLへの供給圧が若干減圧され、この状態でシリンダ装置27が後退動作して分割体16が径方向外方に後退端まで後退され、その後、左右のサイドウォール金型12L、12Rが後退される。クラウン金型、つまり分割体16がタイヤから完全に離間された後、ブラダBL内の圧力が排出され、ブラダBLは収縮される。左右のサイドウォール金型12L、12Rは、図1の鎖線位置まで後退して停止し、これと並行して右側ケース11Rが図1の鎖線位置まで退去し、搬入・搬出装置が加硫済みタイヤTを搬出し、次の未加入タイヤTを搬入できるようになる。
【0047】
図6は、薄板部材17にて構成される積層体としての金型部を製造する製造方法を説明するための図である。金型部を構成する薄板部材17は、鉄板或いはスチール板のコイル巻き100を材料とし、図略のアンコイラにて平板に延ばした後、薄板材料17の最終形状より若干大きめの長方形寸法に裁断され、薄板材料片101に形成される。この薄板材料片101は、次に表裏面がテーパ形状に成形され、テーパ付薄板材料片102が製作される。このテーパ角度θは、例えば、N枚の薄板部材17により成形すべきタイヤのクラウン部全周を成形する場合、2πラジャン(360°)を前記枚数Nで除算した角度とする。このテーパ成形は、例えば、精密冷間圧延処理において対向する2つの圧延ローラ間に薄板材料片101を通過させるか、或いは所定のテーパ形状に成形した2つの回転する正面砥石の間に薄板材料片101を通過させるなどの方法により実施される。
【0048】
一方、上記テーパ付薄板材料片102の製作と並行して、数値制御加工のためのNCプログラムの作成が行われる。すなわち、成形すべきトレッドパターンTpをもつタイヤのトレッド面を円周方向厚さdの間隔でタイヤの幅方向にスライスする多数のスライス要素SLのプロファイルPf1、Pf2、Pf3、・・・・PfNをCAD装置(コンピュータ支援設計装置)により設計する。各スライス要素SLは、タイヤの円周方向厚さdの両端の各断面におけるタイヤの径方向座標Yと幅方向座標Xとの2次元座標系での輪郭データにより定義される。このCADデータは、CAM装置(コンピュータ支援加工プログラム生成装置)に投入されてNCデータとして作成され、CNC装置(コンピュータ数値制御装置)に入力され、内部記憶される。これにより、タイヤの円周方向に配列される薄板部材17の枚数N分のNCデータが作成され、CNC装置に投与される。尤も、タイヤのトレッドパターンが、所定円弧角度幅のパターンが何度も繰り返す繰り返しパターンの場合では、1つの所定円弧角度幅のパターンを各スライス要素SLの円周方向厚さdにて除算した数のNCデータが作成される。
【0049】
前記CNC装置は、前記NCデータに基づいて、レーザ加工機110を制御するようにこのレーザ加工機110に付属される。このレーザ加工機は、公知のもので、操作筒111をX、Y及びZ軸からなる直角座標空間に移動でき、また操作筒111をその軸線周りのA軸上で回転でき、さらに操作筒111の先端に設けたヘッド112に対しA軸と直交するB軸周りにレーザトーチ113を揺動可能に支持した5軸制御構成を採用している。そして、レーザ発振器114から発振したレーザビームを操作筒111、ヘッド112を通過させてレーザトーチ113に導入し、トーチの113の先端からレーザビームを照射して金型片を構成するテーパ付薄板材料片102をレーザ加工し、各スライス要素SLのX−Y平面上での輪郭及び厚さd方向の輪郭を成形するように構成されている。
【0050】
すなわち、テーパ付薄板材料片102の各々は、それらが割り当てされたスライス要素SLのX、Y及びZ軸方向の3次元形状を定義するNCデータに基づいてレーザ加工機110により順次加工される。この場合、各テーパ付薄板材料片102のタイヤのクラウン部を成形する内端面の加工においては、トーチ113がB軸周りに旋回されてトレッドパターンの表面高さの変化に忠実に沿うように同時4軸或いは5軸制御により加工される。つまり、各薄板材料片102のタイヤのクラウン部を成形する内端面の加工においては、スライス要素SLの表面から裏面に接続する面が表面の座標位置と裏面の座標位置に基づいて厚さ方向の途中の端面位置の補間点の座標が計算され、これら補間点を結ぶ曲面を形成するようにZ軸移動に関連してB軸旋回のトーチ113の揺動角が制御される。同様にして、各テーパ付薄板材料片102の外端面の加工においては、保持部材18の内周面局面に対応するように曲面加工される。
【0051】
このように順次加工されたN枚の薄板部材17を8グループに分け、グループ毎に保持部材18に密着状態で積層して装着することによりクラウン金型を形成する分割体18が製造される。この場合、各分割体18の積層体が形成する内周面には、成形すべきタイヤのトレッドパターンと補合形状の凹凸形状が形成される。換言すれば、薄板部材17の内端部は、全体としてタイヤに形成すべきトレッドパターンに対し凹凸が補合関係にある逆トレッドパターンが形成され、そして個々の薄板部材17は、逆トレッドパターンの一部を形成している。
【0052】
これにより、本実施形態の方法により製造される積層体の表面は、図7(a)に示すように、隣接する薄板部材17のレーザ加工面が連続的な滑らかな加工面となり、よってこのような積層体により加硫成形されるタイヤ表面のトレッドパターンも滑らかな表面に成形できる。これに対し、上述した従来の製造方法による場合では、多数の薄板部材517の各々のトレッド成形端面が表裏面と垂直に切断されているので、トレッド成形端面が不連続となり、ごつごつしたトレッド成形端面を呈し、この不連続なトレッド成形端面が加硫成形されるタイヤの表面に転写される。この理由により、本実施形態の製造方法を用いて製造された薄板積層金型は、加硫成形されるタイヤの表面を従来の製造方法を用いて製造された薄板積層金型により加硫成形されるタイヤの表面に比べて滑らかに成形でき、これにより加硫成形後のタイヤに亀裂を生じさせにくい等の特長を備える。
【0053】
図8及び図9は、上述した第1実施形態の変形例を示すもので、この変形例においては、タイヤのトレッドパターンを成形する各スライス要素SLに対応する薄板部材17は、左右に2分割されて製作される。これに対応して、薄板部材17を保持する保持部材18も左右に2分割されて製作される。すなわち、各スライス要素SLに対応する薄板部材17は、概ねL字状の左右の薄板半部材171、172として形成され、同様に、保持部材18は、概ねL字状の左右の保持半部材181、182として形成される。各薄板半部材171、172は、タイヤ幅方向の外側面に突出部117aが形成され、これら突出部117aが保持半部材181、182の円弧溝に嵌合された状態で、内方端が円弧状に伸長された断面L字状の固定板181a、182aを介してボルト118Cにより保持半部材181、182にそれぞれ固定されている。この場合、各薄板半部材171、172の肩部テーパ面は、保持半部材181、182のヌスミ空間と対向し、これにより各薄板半部材171、172は、前記突出部117aと径方向外方の平坦部の2点において対応する保持半部材181、182に密着固定されている。
【0054】
また、保持半部材181、182のヌスミ空間は、排気細穴を介して外部と連通し、加硫成形初期に組み合わせ型内に残ったガス及び発生するガスは、ガス抜き用の溝17g、排気細穴を通過して排気される。また、保持半部材181、182は、薄板半部材171、172の幅方向の内側端面を密着させる状態でスライド部材19にボルト22、22により固定されるが、この場合、保持半部材181、182の幅方向の内側端面間に中央空間が形成され、この中央空間がスライド部材19の内面の幅方向中央に形成したヌスミ空間19n及び排気穴19mを介してスライド部材19の外周面側の大気に通じており、加硫成形初期に残ったガス及び発生するガスは、溝17gを通って大気に排出するようにしている。
【0055】
図9は、図8において左側に配置された多数の薄板半部材171と保持半部材181の組み付け状態を示す斜視図であり、保持半部材181及び固定板181aは成形すべきタイヤの外周の略8分割角度の1つに相当する円弧長さを有し、多数の薄板半部材171は突出部117aが保持半部材181の円弧溝に嵌合され、かつ中央側の溝がL字状固定板181aの突出部181に嵌合された状態で、複数のボルト118cにより締め付けられる固定板181aにより保持半部材181に定着される様子が示されている。この変形例の場合においても、前述した第1実施形態と同様に、円周方向の各端部における1枚或いは数枚の薄板半部材171は、図中tにて示すように、保持半部材181の端面から突出しており、保持半部材181と固定板181aにより直接固定されていないが、これらにより直接固定された端部の1枚或いは数枚の薄板半部材181に頭付子螺子17sを用いて固着され、これにより保持半部材181と固定板181aに対し間接的に固着されている。
【0056】
なお、図中17hは、隣接する分割体の端面から突出する子螺子17sの頭部を受け入れる円穴を示し、これにより隣接する2つの分割体の対向端面部の薄板半部材181は、互いに他の分割体から突出する子螺子17sの頭部を円穴17hに受け入れることにより、相互に密着できる。また、図8において右側配置された薄板半部材172、保持半部材182及び固定板182aの組み付け構造は、上述した左側配置の組み付け構造と左右対称で、同一である。
【0057】
上述した第1実施形態及びその変形例においては、多数の薄板部材17及び薄板半部材171、172を全て同一板材料で形成しているが、図10に示すように、円周方向両端部に配置する薄板部材17e及び薄板半部材171e、172eの板厚を他のものの板厚よりも厚くしてもよい。このようにする場合では、上述した子螺子17sや円穴17hを設けずに、全ての薄板部材17及び薄板半部材171、172を保持部材18及び保持半部材181、182に対し、直接固定することができ、これにより円周方向に隣接する分割体の対向する薄板部材17e同士及び薄板半部材171e、172e同士の密着性を向上でき、さらには、円周方向に隣接する分割体の保持部材18(181、182)同士の対向隙間を小さくできる利点が得られる。また、薄板半部材171、172は、左右対称としたが、片側を大きく、他の片側を小さくしてもよい。
【0058】
次に、本発明の第2実施形態を図11及び図12を参照して説明する。この第2実施形態においては、多数の薄板部材217をタイヤの幅方向に積層した状態で、保持部材18に対し固定板18aを介してボルト18cにより固定する組み付け構造が採用される。薄板部材217の各々は、例えば、クラウン金型を8つの分割体16で構成する場合、成形すべきタイヤの外周を8分割した角度範囲に亘る円弧長さを有する。これに対し、保持部材18は、薄板部材217の円周方向の両端縁よりも若干引っ込んだ円弧長さに形成され、成形時に隣接する分割体16の薄板部材217の積層体の円周方向の対向端面が密着できるようにしている。保持部材18の内周面には、円周方向に離間して複数(図例では3つ)のヌスミ溝18nが薄板部材217の積層方向に横断して形成されている。各薄板部材217の少なくとも片面には複数本の溝17gが形成され、加硫成形初期に組み合わせ金型内に残ったガス及び発生するガスをヌスミ溝18nへ導き、そこから保持部材18に形成された排気穴18mへ導き、さらにスライド部材19の内面の幅方向及び円周方向中央に形成したヌスミ空間19n及び排気穴19mを介してスライド部材19の外周面側の大気中に排出するようにしている。
【0059】
各スライド部材19は、上述した第1実施形態と同様に、右側ケース11Rに放射方向に平行配置した一対のガイドレール20に沿ってシリンダ装置27(図1参照)の動作により放射方向に進退可能であり、半径方向内方の型閉め位置では、薄板部材217の積層体の円周方向両端面を隣接する分割体の薄板部材217の積層体の対向端面と密着させる。この型閉め位置では、左右のサイドウォール金型12L、12Rの内側外周縁部がそれぞれ固定板18a及び保持部材18とそれぞれ当接し、同時に積層体の幅方向両側の薄板部材217の側面と密着して、分割体16と左右のサイドウォール金型12L、12Rが組み合わされて形成される金型内部空間を密閉するようにしている。なお、この第2実施形態の動作は、第1実施形態の動作と実質的に同一であるので、説明を割愛する。
【0060】
図13は、第2実施形態の薄板部材217の積層体を製造する製造方法を説明する説明図である。この製造方法は、図6に示す第1実施形態における製造方法と略同一であるが、この第1実施形態における製造方法との違いは以下のようである。すなわち、第2実施形態における製造方法の場合、薄板部材217が製造すべきタイヤの円周の例えば8分割分の1つの円周長さを持つように円周方向に長いので、コイル巻き素材300はそのような円周長さをカバーするように幅広のものが使用される。そして、コイル巻き素材300をアンコイラにより平板に伸ばして適宜切断し、矩形の薄板部材片301を製作する。この場合、薄板部材片301には、第1実施形態の場合と違って、表裏面にテーパ面を形成せず、表裏面は平行面に維持される。必要があれば、薄板部材片301の表裏面を精密冷間圧延処理又は研削加工により加工し、表裏面の平行度を向上させてもよい。
【0061】
一方、この薄板部材片301の製造と並行して、加硫成形すべきタイヤのトレッドパターンTpをタイヤの円周方向に薄板部材片301の厚さdの間隔でスライスし、各スライス要素SLの外周面と補合する内周面と、保持部材18の内周面に整合する外周面と、さらに分割体の円周方向両端面を定義するプロファイル形状をCAD装置により設計する。この場合、各スライス要素SLの厚さ方向のプロファイルは、内周面及び外周面共にスライス要素SLの表裏面の座標から厚さ方向の中間座標の位置を補間演算処理により算出し、タイヤの幅方向のプロファイルに沿うような局面形状とされる。このように各スライス要素SLの3次元形状データが作成され、このデータをCAM装置に入力してこのCAM装置により加工プログラムとしてのNCデータを生成し、レーザ加工機110に付属のCNC装置へ転送する。これにより、レーザ加工機110は、薄板部材片301を各スライス要素SLのプロファイルと同一形状に加工することができる。
【0062】
各スライス要素SLに対応する多数の薄板部材片301を製造し、これら薄板部材片301に各スライス要素SLに対応するプロファイルを成形することにより、分割体16の1つ分の多数の薄板部材217を製造でき、この薄板部材217を別途製作した保持部材18に組み付けることにより、分割体16の1つが製作される。他の分割体16は、上記の手順により同様にして製造できる。
【0063】
上記した第2実施形態においては、タイヤの幅方向に積層される薄板部材217を全て同一厚さとしたが、保持部材18及び固定板18aと当接するタイヤ幅方向両側の薄板部材を他のものより肉厚を厚くしてもよい。このように、タイヤ幅方向両側の薄板部材を他のものより厚くした場合には、薄板部材の積層体のタイヤ幅方向の両側部が広がるのを防止でき、積層体が形成する型の精度を高精度に維持できる利点が得られる。
【0064】
上記した各実施形態においては、薄板材料をレーザ加工により加工するようにしたが、これら薄板材料を数値制御ワイヤカット放電加工機或いは数値制御切削工作機械により切削加工して製作するようにしてもよい。
また、上記した各実施形態においては、薄板部材は鉄材或いはスチール材で形成したが、アルミ材、その他の金属材料或いは非金属材料を用いてもよい。
【0065】
さらに、上記した各実施形態においては、薄板部材の片面にガス抜き用の溝を形成した例を示したが、この溝は、薄板部材の両面に形成してもよく、また積層した薄板部材の全てにガス抜き用の溝を形成する必要はなく、積層された1枚或いは数枚おきの薄板部材にこの溝を形成するようにしてもよい。また、1枚の薄板部材の片面に形成するガス抜き用の溝の数は、図例の3本又は4本に限られず、適宜本数としてもよい。この溝の幅及び深さは、気体を通過させるのに必要な程度の小さなものとされる。この溝の幅及び深さは、タイヤの加硫成形時に溶融ゴムがこの溝に侵入しない程度とすることが望ましい。
【0066】
また、各分割体16の円周方向両端面において保持部材18或いは保持半部材181、182から突出されかつ子螺子17sにより固定される薄板部材17或いは薄板半部材171、172の枚数は、1枚だけでなく数枚としてもよい。
【図面の簡単な説明】
【図1】本発明による第1実施形態におけるタイヤトレッド面成形金型を備えたタイヤ加硫機の要部縦断面図。
【図2】図1に示すタイヤ加硫機の要部側面図。
【図3】第1実施形態におけるタイヤトレッド面成形金型の拡大断面図。
【図4】第1実施形態におけるタイヤトレッド面成形金型の斜視図。
【図5】第1実施形態におけるタイヤトレッド面成形金型の円周方向に隣接する2つの金型の隣接部を拡大して示す断面図。
【図6】第1実施形態におけるタイヤトレッド面成形金型の製造方法を説明するための説明図。
【図7】(a)及び(b)は、それぞれ第1実施形態及び従来の薄板材料積層金型における薄板部材間の積層状態を拡大して示す説明図。
【図8】第1実施形態の変形例におけるタイヤトレッド面成形金型の拡大断面図。
【図9】第1実施形態の変形例におけるタイヤトレッド面成形金型の斜視図。
【図10】第1実施形態及び変形例におけるタイヤトレッド面成形金型の円周方向に隣接する2つの金型の隣接部を拡大して示す断面図。
【図11】本発明による第2実施形態におけるタイヤトレッド面成形金型の拡大断面図。
【図12】第2実施形態におけるタイヤトレッド面成形金型の要部拡大横断面図。
【図13】第2実施形態におけるタイヤトレッド面成形金型の製造方法を説明するための説明図。
【符号の説明】
T・・・タイヤ、Tr・・・トレッド面、10・・・加硫機、11L・・・左側ケース、11R・・・右側ケース、12・・・サイド金型、12L、12R・・・左右のサイドウォール金型、15・・・金型、16・・・分割体、17、217・・・薄板部材、171、172・・・薄板半部材、17e、171e、172e・・・両端の薄板部材、17a・・・突出部、17g・・・ガス抜き用の溝、17s・・・頭付子螺子、17h・・・円穴、18・・・保持部材、18a・・・固定板(固定手段)、18c・・・ボルト、18n、19n・・・ヌスミ空間、18m、19m・・・排気穴、19・・・スライド部材、20・・・ガイドレール、21・・・ベアリングブロック、22・・・ボルト、25、29・・・ピン、26・・・リンク、27・・・シリンダ装置、28・・・ピストンロッド、100、300・・・コイル巻き薄板材、101、301・・・薄板部材片、102・・・両面テーパ成形した薄板部材片、110・・・レーザ加工機、111・・・操作筒、112・・・ヘッド、113・・・レーザトーチ、114・・・レーザ発振器、CAD・・・CAD装置(コンピュータ支援設計装置)、CAM・・・CAM装置(コンピュータ支援加工プログラム生成装置)、CNC・・・CNC装置(コンピュータ制御数値制御装置)、Tp・・・トレッドパターン、SL・・・スライス要素、BL・・・ブラダ。
[0001]
[Technical field to which the invention belongs]
The present invention relates to a tire molding die for molding a tread surface of a tire by a tread molding surface formed on an inner surface of a laminate of thin plate members, and a method for manufacturing the same.
[0002]
[Prior art]
In the production of a rubber tire, the vulcanization molding process is performed by storing a green tire in a molding die. In the past, such a tire molding mold has been manufactured by manufacturing a mold model based on a tread pattern designed for one of the divided molds obtained by dividing the tire into, for example, eight or ten parts on the circumference. Mold with plaster. The metal used as the mold material is poured into the plaster to produce a mold, and the corners and other details are corrected, and one of the split molds is completed. By creating 8 or 10 such divided molds, a mold for one tire is completed.
[0003]
Japanese Patent No. 3241867 discloses a method of manufacturing a tire molding die by laminating a large number of thin plates in the circumferential direction of a tire. A large number of thin plates have warpage deformation, and are arranged in a state where two adjacent thin plates have their warping directions reversed, and are loosely fitted and held on a belt inserted in the circumferential direction. The mold clamping is performed by bringing the conical surface of the tag into contact with the tapered shoulder portions of a large number of thin plates that are laminated and held in the circumferential direction, and by adhering adjacent thin plates together without warping deformation of the large number of thin plates. Then, the tire is molded in a state where the inner diameter of the mold constituted by the inner peripheral surfaces of a large number of thin plates is reduced. In the mold opening, by removing the tags from the shoulders of a large number of thin plates, the warpage deformation of the large number of thin plates is returned elastically, thereby expanding the inner surface of the mold and the inner surface of the mold from the tread surface of the tire. Can be removed.
[0004]
[Patent Document 1]
Japanese Patent No. 3241867
[0005]
[Problems to be solved by the invention]
However, in the mold by the pouring method into the gypsum mold and the manufacturing method thereof, it is necessary to produce the object other than the mold, which is the final object, such as the production of the mold model and the production of the gypsum mold. There are various problems such as requiring equipment, requiring a large number of manufacturing steps, requiring a long time for manufacturing the mold, and increasing the manufacturing cost. In addition, the degassing holes called spew holes formed in the mold have a limit in reducing the hole diameter due to drilling restrictions, so that the rubber of the tire enters the spew holes during vulcanization molding, Regular cleaning of the spew holes is required, and a time-consuming finishing process such as removing protrusions that have entered the spew holes from the vulcanized tire is required.
[0006]
In addition, the above-described mold by the thin plate lamination method and its manufacturing method have advantages that can solve many problems of the above-described traditional mold and its manufacturing method, but are accompanied by the following problems. Yes. That is, a large number of thin plates are held by the belt, but the relative position between the thin plates can be varied, and in particular, a mold between the diameter reduction for mold clamping and the diameter expansion for mold opening. Since the change in the inner diameter is used, the relative position of the thin plate is unstable. In other words, the reproduction of the fixed position of each thin plate at the time of mold clamping reduction is unstable, and therefore the tread pattern of the tire to be produced becomes inaccurate. Moreover, since it is designed to perform die cutting using a thin plate having warpage deformation, the lamination arrangement of the thin plates is limited only in the circumferential direction. Further, since the gas is vented from the gap between the thin plates, the degree of tightening between the thin plates at the time of mold clamping, that is, the degree of elimination of the warp deformation slightly affects the formation of the gas vent passage. For this reason, in the case of excessive tightening, the gas vent passage is not formed, which adversely affects the molded tire. On the other hand, when the tightening is too small, a wide degassing passage with a small thickness is formed, and a wide protrusion with a small thickness protrudes from the outer periphery of the molded tire, which takes time and effort for final finishing after the tire molding. .
[0007]
Therefore, the present invention can eliminate the disadvantages of the mold by the conventional pouring method into the plaster mold and the manufacturing method thereof, and solve the problems associated with the mold by the thin plate lamination method and the manufacturing method thereof. With the goal.
[0011]
[Means and functions for solving the problems and effects of the invention]
The above-described problems and objects are solved and achieved by a solution configured as follows according to the present invention.
[0012]
  That is, the invention according to claim 1 is a mold for molding a crown of a tire tread surface, and each of the divided bodies divided into a predetermined number in the circumferential direction to surround the tire tread surface from the outside. It comprises a plurality of mold parts having an arc shape with a predetermined circumferential length and a plurality of holding members for holding the mold parts, each of which is formed by laminating a plurality of thin plate members. Each of the holding members includes fixing means for fixing and holding the multiple thin plate members constituting the corresponding mold part in a stacked state, and the multiple thin plates fixed and held in a stacked state by the fixing means. A shape corresponding to the tread pattern to be formed on the tread surface of the tire is formed on the inner peripheral surface of the member.A plurality of thin plate members constituting the mold portion are stacked in the circumferential direction of the tire so as to cover the width in the width direction of the tire tread surface, and further stacked in the circumferential direction of the tire. Further, the thin plate member that is at each end of the plurality of thin plate members and cannot be directly fixed to the holding member is fixed to the adjacent thin plate member fixed to the holding member by the fixing means, thereby being attached to the holding member. Indirectly fixedIt is characterized by being.
[0017]
  thisClaim 1According to the configuration, it is arranged at each end in the circumferential direction of the laminate.ThinThe plate member is disposed in the vicinity of the corresponding end of the laminate and is fixedly held by the holding member.ThinIt is fixed to the plate member and indirectly fixed to the holding member. For this reason, the thin plate members at both ends that cannot be directly fixed to the holding member can be firmly held on the holding member as a part of the laminate in a state where the thin plate members are slightly protruded from both circumferential end surfaces of the holding member. Thereby, all the thin plate members which comprise the said laminated body can be formed with a uniform thin plate material.
[0018]
  Claims2The invention described inA mold for forming a crown of a tire tread surface, wherein a plurality of divided bodies divided into a predetermined number in the circumferential direction so as to surround the tire tread surface from the outside form an arc shape having a predetermined circumferential length And a plurality of holding members for holding the mold parts, each of the mold parts is formed by laminating a plurality of thin plate members, and each of the holding members corresponds to the corresponding mold. The tread surface of the tire is provided on an inner peripheral surface of the plurality of thin plate members fixed and held in a laminated state by the fixing means. A shape corresponding to the tread pattern to be molded is formed, and a plurality of thin plate members constituting the mold part are stacked in the circumferential direction of the tire so as to cover the length of the tire tread surface in the width direction. And more ,Each end of a large number of thin plate members laminated in the circumferential direction of the tire to be moldedIt is inThin plate memberIsFormed thicker than other thin plate membersIs, Thereby each said endIt is inThin plate memberIsFixed directly to the holding member by fixing meansHas beenIt is characterized by that.
[0019]
According to this configuration, the thickness of the thin plate member disposed at the outermost end in the circumferential direction of the laminated body is made thicker than other thin plate members, and all the thin plate members including these thin plate members at the outermost end are It is directly fixed to the holding member. As a result, the laminated body is firmly held as a whole, and means for fixing the thin plate members at both ends to the thin plate members disposed in the vicinity thereof becomes unnecessary, and the structure can be simplified.
[0027]
    Claim3The invention ofClaim 1A tire tread surface molding mold manufacturing method for manufacturing a split mold divided into a predetermined number in the circumferential direction in order to mold a crown of a tire tread surface, cutting out a metal sheet member and cutting it into a predetermined shape, These thin metal sheet membersIn the circumferential direction of the tire to be moldedFixed and held on the holding member in a state where many sheets are stackedA thin plate member that cannot be directly fixed to the holding member at each end of the plurality of thin plate members stacked in the circumferential direction of the tire is used as an adjacent thin plate member fixed to the holding member by a fixing means. By fixing to the holding member indirectly,The split mold is manufactured.
  According to this configuration, the same operation and effect as the first aspect of the invention can be achieved.
[0029]
  Claim4The invention described in claim2Described inA tire tread surface molding mold manufacturing method for manufacturing a split mold divided into a predetermined number in the circumferential direction in order to mold a crown of a tire tread surface, cutting out a metal sheet member and cutting it into a predetermined shape, A large number of thin metal thin plate members are laminated in the circumferential direction of the tire to be molded and fixed and held on a holding member by a fixing means. In this case, the multiple thin plates laminated in the circumferential direction of the tire The thin plate member at each end of the member is formed thicker than the other thin plate members, and thereby the thick thin plate member at each end is directly fixed to the holding member by the fixing means. Manufacturing the split moldIt is characterized by doing.
  According to this configuration, the same operation and effect as those of the above-described invention of claim 2 are realized.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a tire tread surface mold according to the present invention used for reinforcing rubber articles and a method for manufacturing the same will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of an essential part of a vulcanizer incorporating a mold in the first embodiment, and FIG. 2 is a side view of an essential part of the mold incorporated in the vulcanizer. 1 and 2, 11L and 11R indicate a left side case of the vulcanizer 10 and a movable right case returned to the retracted position indicated by a chain line in the drawing. The side mold 12 is divided into left and right parts, and the left side wall mold 12L can be advanced and retracted in the horizontal direction in the figure by a not-shown mold support mechanism disposed at the center thereof. Similarly, the right sidewall mold 12R can be moved back and forth in the horizontal direction in the figure by a not-shown mold support mechanism disposed at the center thereof. The inner side surfaces of the left and right sidewall molds 12L and 12R are formed so as to mold the corresponding sidewall portions of the green tire T accommodated in the vulcanizer 10.
[0035]
A crown mold 15 for forming the tire tread surface Tr surrounds the outer peripheral surface of the tire T. The crown mold 15 is composed of, for example, eight blocks of divided bodies 16 in the circumferential direction, and each of these divided bodies 16 complements the cross section in the width direction of the tread surface Tr of the tire T to be molded. The holding member 18 is configured to fix and hold a plurality of thin plate members 17 having a shape stacked in the circumferential direction of the tire T. These holding members 18 are detachably fixed to the inner peripheral surfaces of the corresponding slide members 19 for replacement. Eight pairs of guide rails 20 for guiding each divided body 16 in the radial direction are attached to the right case 11R.
[0036]
As shown in FIG. 2, each slide member 19 is fixed on a pair of bearing blocks 21 that reciprocate along a corresponding pair of guide rails 20, so that the slide members 19 can advance and retreat in the tire radial direction together with the bearing blocks 21. It is slidably guided. Each slide member 19 is pivotally attached to one end of a link 26 via a pin 25, and the other end of the link 26 is a cylinder device 27 horizontally disposed on the right case 11R so as to advance and retreat in the width direction of the tire T. The piston rod 28 is pivotally attached to the tip end via a pin 29. Therefore, each of the divided bodies 16 can advance and retreat in the radial direction by the operation of the cylinder device 27, and a type in which each divided body 16 is retracted radially outward, like the two divided bodies 16 shown in the left half of FIG. Like the two divided bodies 16 shown in the right half, each divided body 16 can be selectively positioned at the mold closing position where the divided bodies 16 are advanced inward in the radial direction.
[0037]
3 and 4 are a sectional view and a perspective view showing details of the divided body 16. Each divided body 16 is formed by laminating thin plate members 17 having a plate thickness of about 0.5 to 5 mm in the circumferential direction. It is the same as the circumferential length of the divided portion. The outer peripheral end of each thin plate member 17 has a truncated triangular shape, a flat portion is formed at the center in the width direction, and slopes are formed on both side shoulders of the flat portion. At both end portions of each thin plate member 17, projecting portions 17a project and taper portions 17b are formed on the inner portions of these projecting portions 17a. The holding member 18 that holds the laminated body of the thin plate members 17 is formed with an inner peripheral surface that complements the outer peripheral portion and both side portions of the thin plate member 17 except for a part of the left side portion. And accepts both sides. Another tapered portion 18b that cooperates with the tapered portion 17b is formed in the vicinity of the outer peripheral portion of the left side portion of the holding member 18, and a pair of fixing plates 18a as fixing means in the present invention are formed in the vicinity of the inner and outer peripheral portions. The inner taper portion is fixed to the taper portions 17b and 18b with bolts 18c. Thus, as will be described later, except for one or several thin plate members arranged at each end in the circumferential direction, each of the thin plate members 17 is provided with a pair of tapers in accordance with the screwing operation of the bolt 18c. Due to the co-tightening action in which the portion 17b and the taper portion 18b cooperate, the fixing plate 18a can be integrally fixed to the holding member 18 while being pressed against the inner peripheral surface of the holding member 18.
[0038]
  Further, contact surfaces 18e and 18e are formed on the right side inner portion of the holding member 18 and the left side inner portion of the fixing plate 18, and the left and right sidewall molds 12L advance to the mold closing position during vulcanization molding. , 12R abuts against the inner peripheral edge of the outer periphery, and the relative position between each divided body 16 and the left and right sidewall molds 12L, 12R can be determined. Further, a part of the inner end surfaces of the left and right sidewall molds 12L and 12R are in close contact with the inner edge portions at both ends in the width direction of the laminate formed by the many thin plate members 17 on the circumference so that the inside of the mold space is filled. Sealed against the outside,Mold spaceThe internal temperature is prevented from escaping out of the mold. In the figure, reference numeral 22 denotes a bolt for detachably attaching the divided body 16 to the inner peripheral surface of the slide body 19 for replacement.
[0039]
The circumferential length relationship between the laminated body of the thin plate member 17 and the holding member 18 and the fixing plate 18a will be described. The laminated body of the thin plate member 17, the holding member 18 and the fixing plate 18a are as shown in FIG. The inner circumferential surface of the laminate is extended in an arc shape so as to complement the outer circumferential surface of the tire to be molded. The laminated body has an arc length having a spread angle obtained by dividing the circumference of a tire to be molded into, for example, eight parts. On the other hand, each end of the holding member 18 and the fixing plate 18a in the arc length direction is an end of the laminated body. The length of the arc is such that it is shortened by about 1 mm or about one thin plate member 17 and retracts inward in the arc length direction from the end of the laminate. The holding member 18 and the fixing plate 18a are formed to have substantially the same arc length, whereby the holding member 18 is opposed to the outer end face of the thin plate member 17 disposed at the outermost end at each end in the arc length direction. And the outer end surface of the fixing plate 18a is retracted by a length t.
[0040]
As described above, most of the thin plate member 17 except for one or several sheets at both ends in the arc length direction of the laminate is fixed and held by the holding member 18 by the fixing plate 18a screwed and fixed by the bolt 18c. . On the other hand, one or several thin plate members 17 at both ends in the arc length direction are inserted through, for example, four headed screw 17s, and these screws 17s are held by a fixing plate 18a as shown in FIG. 18 is screwed into one or several adjacent thin plate members 17 so as to be integrated with the adjacent thin plate members 17 and indirectly fixed to the holding member 18 via these adjacent thin plate members 17. Has been. A circular hole 17h is formed in a portion facing each of the headed screw 17s on the end face of the thin plate member 17 laminated body of each divided body 16 adjacent to each end face in the arc length direction of each divided body 16, The heads of the screws 17s protruding from the end face of the laminated body 16 adjacent to the circular holes 17h are accommodated. Thereby, in the mold closed state of the divided body 16, as shown in FIG. 5, the child screw 17 s protruding from the end face of one adjacent laminated body is accommodated in the circular hole 17 h formed in the other laminated body, The end surface of one laminated body and the end surface of the other laminated body can be closely_contact | adhered. The arc length of the slide member 19 is the same as that of the holding body 18 or slightly shorter than that.
[0041]
Further, a plurality (three in the illustrated example) of degassing grooves 17g extending from the inner end edge portion to the outer end edge portion are formed on one end surface of each thin plate member 17 in the circumferential direction. The groove 17g has a width and depth of several micrometers that allow gas to pass through, and is formed by a laser processing machine as will be described later. As shown in FIG. 3, these gas venting grooves 17 g communicate with the Nusumi space 18 n and the exhaust hole 18 m formed at the center of the inner surface of the holding body 18, and further at the center of the inner surface of the slide member 19 in the width direction. It communicates with the air on the outer peripheral surface side of the slide member 19 through the formed space 19n and the exhaust hole 19m. Thereby, the gas generated in the mold during vulcanization molding is exhausted to the outside of the mold.
[0042]
Next, the operation of the first embodiment configured as described above will be described. In the original position before the vulcanization operation, the left and right sidewall molds 12L and 12R have returned to the retracted positions indicated by the two-dot chain lines in FIG. 2 and is returned to the mold opening position as shown in the left half of FIG. Further, the right case 11R returns to the retracted position indicated by the two-dot chain line, and the divided body 16 is largely retracted from the vulcanization position indicated by the solid line in FIG. 1, so that the carry-in area on the front side in the vertical direction is increased. It is open, and unvulcanized tires (green tires) T can be carried in from this carrying-in area by a carrying-in / out device as appropriate.
[0043]
In such an in-situ state, when a vulcanization operation command is given, the unvulcanized tire T is held at the outer periphery by the tire holding head of the carry-in / carry-out device and carried into the vulcanization position. The bladder BL advances, receives supply of steam, and primarily expands, and temporarily receives the unvulcanized tire T from the inner peripheral surface side. As a result, the unvulcanized tire T is concentric with the axis of the vulcanizer 10 even when the tire holding head of the carry-in / unloader subsequently releases the unvulcanized tire T and moves out of the vulcanizer 10. Is temporarily received.
[0044]
Following the withdrawal of the holding head of the loading / unloading device, the right case 11R moves forward from the retracted position indicated by the two-dot chain line to the left, and the vulcanization position while holding the divided body 16 at the radially outward retracted position. To align. Thereafter, when the left and right sidewall molds 12L and 12R advance to a position immediately before the mold closing position and stop, the cylinder device 27 that makes a pair with the divided body 16 moves forward, and each divided body 16 is moved to the pair of guide rails 20. Advancing inward in the radial direction, stop immediately before the mold closing position shown by the solid line in FIG. 1 where the split mold formed by the laminated body of the thin plate members 17 is opposed to the outer peripheral surface of the unvulcanized tire T. Thereafter, the left and right sidewall molds 12L and 12R are finally advanced to the mold closing position shown by the solid line in FIG. 1, and then each divided body 16 is finally advanced to the mold closing position, and as shown in FIG. The abutment portions 18a and 18e are formed inwardly in the radial direction on both side surfaces of the holding member 18 of each divided body 16, and the divided body 16 and the left and right sidewall molds 12L and 12R are combined to be inward. The combination mold that forms the vulcanization space is completed. At the same time, the inner end portions of the left and right sidewall molds 12L and 12R are in close contact with the inner edge of the laminate of the thin plate members 17 on the circumference, and the vulcanization space in the mold is sealed, and vulcanization is performed. Prevent the dissipation of temperature from space. Thereby, the temperature in the vulcanization space is kept uniform. Further, in this case, between the adjacent divided bodies 16, the heads of the sub-screws 17s for fixing the thin plate member 17 on each end surface portion of one laminated body are accommodated in the circular holes 17h of the other laminated bodies adjacent to each other. The end faces of the laminated body of adjacent divided bodies 16 are in close contact as shown in FIG.
[0045]
When the combination mold is completed in this way, steam is additionally supplied into the bladder BL that is primarily expanded in the unvulcanized tire T, and the bladder BL is further expanded, and the outer crown portion of the unvulcanized tire T is expanded. For example, the tread pattern formed on the inner peripheral surface of the crown mold is transferred by being pressed against the inner peripheral surface of the crown mold composed of eight divided bodies 16. The left and right sidewall portions of the unvulcanized tire T are pressed against the inner peripheral surfaces of the left and right sidewall molds 12L and 12R, and the shapes of these inner peripheral surfaces are transferred. Such a vulcanized state is maintained, for example, for about a few dozen minutes, and vulcanization is performed. During this initial vulcanization and vulcanization process, the gas left between the outer peripheral surface of the tire T and the inner peripheral surface of the crown mold and the generated gas pass through a gas vent groove 17 g formed in the thin plate member 17. Then, the slide member is discharged from the Nusumi space 18n and the exhaust hole 18m formed in the center in the width direction of the inner surface of the holding body 18, and further through the Nusumi space 19n and the exhaust hole 19m formed in the center in the width direction of the inner surface of the slide member 19. 19 is discharged to the atmosphere on the outer peripheral surface side. Thereby, the gas remaining at the time of vulcanization molding and the gas generated in the mold are exhausted out of the mold.
[0046]
After a predetermined vulcanization time has elapsed, the supply pressure to the bladder BL is slightly reduced, and in this state, the cylinder device 27 is retracted to retract the divided body 16 radially outward to the retracted end. The side wall molds 12L and 12R are retracted. After the crown mold, that is, the divided body 16 is completely separated from the tire, the pressure in the bladder BL is discharged, and the bladder BL is contracted. The left and right sidewall molds 12L and 12R are retracted to the position indicated by the chain line in FIG. 1 and stopped. In parallel with this, the right case 11R is retracted to the position indicated by the chain line in FIG. T is carried out, and the next non-participating tire T can be carried in.
[0047]
FIG. 6 is a view for explaining a manufacturing method for manufacturing a mold part as a laminated body constituted by the thin plate members 17. The thin plate member 17 constituting the mold part is made of a coiled coil 100 of an iron plate or a steel plate, and is stretched into a flat plate by an unillustrated uncoiler, and then cut into a rectangular size slightly larger than the final shape of the thin plate material 17. The thin plate material piece 101 is formed. The thin plate material piece 101 is then formed into a tapered shape on the front and back surfaces, and a tapered thin plate material piece 102 is manufactured. The taper angle θ is, for example, an angle obtained by dividing 2π rajan (360 °) by the number N when the entire crown portion of a tire to be molded is molded by N thin plate members 17. In this taper forming, for example, a thin plate material piece 101 is passed between two rolling rollers facing each other in a precision cold rolling process, or a thin plate material piece is formed between two rotating front grindstones formed into a predetermined tapered shape. It is implemented by a method such as passing 101.
[0048]
On the other hand, in parallel with the production of the tapered thin plate material piece 102, an NC program for numerical control processing is created. That is, the profiles Pf1, Pf2, Pf3,... PfN of a number of slice elements SL that slice the tread surface of the tire having the tread pattern Tp to be formed in the tire width direction at intervals of the circumferential thickness d. Designed by a CAD device (computer-aided design device). Each slice element SL is defined by contour data in a two-dimensional coordinate system of the tire radial direction coordinate Y and the width direction coordinate X in each cross section at both ends of the circumferential thickness d of the tire. This CAD data is input to a CAM device (computer-aided machining program generation device), created as NC data, input to a CNC device (computer numerical control device), and stored therein. Thereby, NC data corresponding to the number N of the thin plate members 17 arranged in the circumferential direction of the tire is created and administered to the CNC device. However, when the tire tread pattern is a repeated pattern in which a pattern with a predetermined arc angle width is repeated many times, the number obtained by dividing one pattern with a predetermined arc angle width by the circumferential thickness d of each slice element SL. NC data is created.
[0049]
The CNC device is attached to the laser processing machine 110 so as to control the laser processing machine 110 based on the NC data. This laser processing machine is a well-known machine, and can move the operation cylinder 111 to a rectangular coordinate space composed of the X, Y, and Z axes, and can rotate the operation cylinder 111 on the A axis around the axis. A five-axis control configuration is employed in which a laser torch 113 is swingably supported around a B axis orthogonal to the A axis with respect to a head 112 provided at the tip of the head. Then, the laser beam oscillated from the laser oscillator 114 is introduced into the laser torch 113 through the operation cylinder 111 and the head 112, and the thin plate material piece with taper constituting the mold piece is irradiated with the laser beam from the tip of the torch 113. 102 is laser-processed, and it is comprised so that the outline on the XY plane of each slice element SL and the outline of thickness d direction may be shape | molded.
[0050]
That is, each of the tapered thin plate material pieces 102 is sequentially processed by the laser processing machine 110 based on NC data that defines a three-dimensional shape in the X, Y, and Z axis directions of the slice element SL to which they are assigned. In this case, in the processing of the inner end face that forms the crown portion of the tire of each tapered thin plate material piece 102, the torch 113 is turned around the B axis simultaneously so as to faithfully follow the change in the surface height of the tread pattern. It is processed by 4-axis or 5-axis control. That is, in the processing of the inner end face that forms the crown portion of the tire of each thin plate material piece 102, the surface connecting from the front surface to the back surface of the slice element SL is in the thickness direction based on the front surface coordinate position and the back surface coordinate position. The coordinates of the interpolation points at the end face positions in the middle are calculated, and the swing angle of the B-axis turning torch 113 is controlled in relation to the Z-axis movement so as to form a curved surface connecting these interpolation points. Similarly, in the processing of the outer end surface of each tapered thin plate material piece 102, the curved surface processing is performed so as to correspond to the inner peripheral surface aspect of the holding member 18.
[0051]
The N thin plate members 17 sequentially processed in this way are divided into 8 groups, and the divided body 18 forming the crown mold is manufactured by laminating and attaching to the holding member 18 for each group. In this case, a tread pattern of the tire to be molded and a concavo-convex shape of a complementary shape are formed on the inner peripheral surface formed by the laminated body of the divided bodies 18. In other words, the inner end portion of the thin plate member 17 is formed with a reverse tread pattern in which the unevenness is complementary to the tread pattern to be formed on the tire as a whole, and each thin plate member 17 has a reverse tread pattern. Forming part.
[0052]
Thereby, as shown in FIG. 7A, the surface of the laminate manufactured by the method of the present embodiment becomes a continuous smooth processed surface as the laser processed surface of the adjacent thin plate member 17, thus. The tread pattern on the tire surface that is vulcanized and molded by a simple laminate can also be molded to a smooth surface. On the other hand, in the case of the conventional manufacturing method described above, the tread molding end surfaces of each of the thin plate members 517 are cut perpendicularly to the front and back surfaces, so that the tread molding end surfaces are discontinuous, and the tread molding end surfaces are rugged. The discontinuous tread molding end face is transferred to the surface of the tire to be vulcanized. For this reason, the sheet metal mold manufactured using the manufacturing method of the present embodiment is formed by vulcanizing the surface of a tire to be vulcanized and molded using a sheet metal mold manufactured using a conventional manufacturing method. Compared to the surface of the tire, it can be molded more smoothly, and this provides the advantage that the vulcanized tire is less likely to crack.
[0053]
8 and 9 show a modification of the first embodiment described above. In this modification, the thin plate member 17 corresponding to each slice element SL for forming the tread pattern of the tire is divided into two in the left and right directions. To be produced. Correspondingly, the holding member 18 that holds the thin plate member 17 is also divided into left and right parts. That is, the thin plate member 17 corresponding to each slice element SL is formed as left and right thin plate half members 171 and 172 having a substantially L shape, and similarly, the holding member 18 is a left and right holding half member 181 having a substantially L shape. , 182. Each thin plate half member 171, 172 has a protruding portion 117 a formed on the outer side surface in the tire width direction, and the inner end of the thin plate half member 171, 172 is circular with the protruding portion 117 a fitted in the arc groove of the holding half member 181, 182. It is fixed to the holding half members 181 and 182 by bolts 118C via fixing plates 181a and 182a having an L-shaped cross section extending in an arc shape. In this case, the shoulder taper surface of each thin plate half member 171, 172 faces the Nusumi space of the holding half members 181, 182 so that each thin plate half member 171, 172 is radially outward from the protruding portion 117 a. Are fixed to the corresponding holding half members 181 and 182 at two points of the flat portion.
[0054]
Further, the holding space of the holding half members 181 and 182 communicates with the outside through the exhaust narrow hole, and the gas remaining in the combined mold at the initial stage of vulcanization molding and the generated gas are contained in the gas vent groove 17g, the exhaust gas It exhausts through the narrow hole. The holding half members 181 and 182 are fixed to the slide member 19 with bolts 22 and 22 in a state where the inner end surfaces in the width direction of the thin plate half members 171 and 172 are in close contact with each other. In this case, the holding half members 181 and 182 are fixed. A central space is formed between the inner end surfaces in the width direction, and this central space is exposed to the atmosphere on the outer peripheral surface side of the slide member 19 via the Nusumi space 19n formed in the center of the inner surface of the slide member 19 and the exhaust hole 19m. The gas remaining at the initial stage of vulcanization molding and the generated gas are discharged to the atmosphere through the groove 17g.
[0055]
  FIG. 9 is a perspective view showing an assembled state of a large number of thin plate half members 171 and holding half members 181 arranged on the left side in FIG. 8, and the holding half members 181 and the fixing plate 181a are substantially the outer periphery of the tire to be molded. The thin plate half member 171 has an arc length corresponding to one of eight divided angles, the protrusion 117a is fitted into the arc groove of the holding half member 181 and the central groove is an L-shaped fixing plate. Projection 181 of 181abIn the state of being fitted to the holding half member 181, the fixing plate 181 a fastened by a plurality of bolts 118 c is fixed. Also in the case of this modification, as in the first embodiment described above, one or several thin plate half members 171 at each end in the circumferential direction are provided with holding half members as indicated by t in the figure. The head screw 17 s protrudes from the end face of 181 and is not directly fixed by the holding half member 181 and the fixing plate 181 a, but the head screw 17 s is attached to one or several thin plate half members 181 directly fixed by these. And fixed indirectly to the holding half member 181 and the fixing plate 181a.
[0056]
In addition, 17h in the figure indicates a circular hole for receiving the head of the child screw 17s protruding from the end face of the adjacent divided body, whereby the thin plate half members 181 on the opposing end surface portions of the two adjacent divided bodies are mutually connected. By accepting the heads of the child screws 17s protruding from the divided members in the circular holes 17h, they can be in close contact with each other. Further, the assembly structure of the thin plate half member 172, the holding half member 182 and the fixing plate 182a arranged on the right side in FIG. 8 is the same as the assembly structure of the left arrangement described above in the left-right symmetry.
[0057]
  In the above-described first embodiment and its modification, all the thin plate members 17 and the thin plate half members 171 and 172 are all the same plate.ThicknessAlthough formed of a material, as shown in FIG. 10, the plate thickness of the thin plate member 17e and the thin plate half members 171e and 172e arranged at both ends in the circumferential direction may be made thicker than the plate thicknesses of the other members. In this case, all the thin plate members 17 and the thin plate half members 171 and 172 are directly fixed to the holding member 18 and the holding half members 181 and 182 without providing the above-described screw 17s and the circular hole 17h. This can improve the adhesion between the thin plate members 17e facing each other and the thin plate half members 171e, 172e of the divided members adjacent in the circumferential direction, and further, the holding member of the divided members adjacent in the circumferential direction. 18 (181, 182) is advantageous in that the facing gap between them can be reduced. In addition, the thin plate half members 171 and 172 are bilaterally symmetric, but one side may be large and the other side may be small.
[0058]
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, an assembling structure is employed in which a large number of thin plate members 217 are stacked in the tire width direction and fixed to the holding member 18 by bolts 18c via a fixing plate 18a. Each of the thin plate members 217 has, for example, an arc length over an angular range obtained by dividing the outer periphery of the tire to be molded into eight when the crown mold is configured by the eight divided bodies 16. On the other hand, the holding member 18 is formed in an arc length slightly retracted from both circumferential edges of the thin plate member 217, and in the circumferential direction of the laminated body of the thin plate members 217 of the divided members 16 adjacent at the time of molding. The opposite end face can be in close contact. A plurality of (three in the illustrated example) Nusumi grooves 18n are formed on the inner peripheral surface of the holding member 18 so as to cross in the laminating direction of the thin plate members 217 in the circumferential direction. A plurality of grooves 17g are formed on at least one surface of each thin plate member 217, and the gas remaining in the combination mold and the generated gas are guided to the Nusmi groove 18n at the initial stage of vulcanization molding, and formed in the holding member 18 therefrom. Then, the air is guided to the exhaust hole 18m, and further exhausted to the atmosphere on the outer peripheral surface side of the slide member 19 via the Nusumi space 19n and the exhaust hole 19m formed in the center in the width direction and the circumferential direction of the inner surface of the slide member 19. Yes.
[0059]
Each slide member 19 can advance and retreat in the radial direction by the operation of the cylinder device 27 (see FIG. 1) along the pair of guide rails 20 arranged in parallel to the right case 11R in the radial direction, as in the first embodiment. In the inner mold closing position in the radial direction, both circumferential ends of the laminated body of the thin plate members 217 are brought into close contact with the opposing end faces of the laminated body of the adjacent thin plate members 217. In this mold closing position, the inner peripheral edges of the left and right sidewall molds 12L and 12R are in contact with the fixing plate 18a and the holding member 18, respectively, and are in close contact with the side surfaces of the thin plate members 217 on both sides in the width direction of the laminate. Thus, a mold internal space formed by combining the divided body 16 and the left and right sidewall molds 12L and 12R is sealed. Note that the operation of the second embodiment is substantially the same as the operation of the first embodiment, and a description thereof will be omitted.
[0060]
FIG. 13 is an explanatory diagram for explaining a manufacturing method for manufacturing a laminated body of thin plate members 217 according to the second embodiment. This manufacturing method is substantially the same as the manufacturing method in the first embodiment shown in FIG. 6, but the difference from the manufacturing method in the first embodiment is as follows. That is, in the case of the manufacturing method according to the second embodiment, the thin plate member 217 is long in the circumferential direction so as to have one circumferential length of, for example, eight divisions of the circumference of the tire to be manufactured. A wide one is used so as to cover such a circumferential length. Then, the coil-wound material 300 is stretched to a flat plate by an uncoiler and cut as appropriate to produce a rectangular thin plate member piece 301. In this case, unlike the case of the first embodiment, the thin plate member piece 301 is not formed with a tapered surface on the front and back surfaces, and the front and back surfaces are maintained as parallel surfaces. If necessary, the parallelism of the front and back surfaces may be improved by processing the front and back surfaces of the thin plate member piece 301 by precision cold rolling or grinding.
[0061]
On the other hand, in parallel with the production of the thin plate member piece 301, the tread pattern Tp of the tire to be vulcanized is sliced in the circumferential direction of the tire at intervals of the thickness d of the thin plate member piece 301, and each slice element SL is formed. A CAD device is used to design a profile shape that defines an inner peripheral surface that complements the outer peripheral surface, an outer peripheral surface that aligns with the inner peripheral surface of the holding member 18, and both circumferential end surfaces of the divided body. In this case, the profile in the thickness direction of each slice element SL calculates the position of the intermediate coordinate in the thickness direction from the coordinates of the front and back surfaces of the slice element SL on both the inner peripheral surface and the outer peripheral surface by interpolation processing, and the tire width It is made into the phase shape which follows the profile of a direction. Thus, the three-dimensional shape data of each slice element SL is created, this data is input to the CAM device, NC data as a machining program is generated by this CAM device, and transferred to the CNC device attached to the laser processing machine 110. To do. Thereby, the laser beam machine 110 can process the thin plate member piece 301 into the same shape as the profile of each slice element SL.
[0062]
A large number of thin plate member pieces 301 corresponding to each slice element SL are manufactured, and a profile corresponding to each slice element SL is formed on these thin plate member pieces 301, whereby a large number of thin plate members 217 corresponding to one of the divided bodies 16 are formed. One of the divided bodies 16 is manufactured by assembling the thin plate member 217 to the separately manufactured holding member 18. The other divided body 16 can be manufactured in the same manner by the above procedure.
[0063]
In the second embodiment described above, all the thin plate members 217 laminated in the tire width direction have the same thickness, but the thin plate members on both sides in the tire width direction contacting the holding member 18 and the fixing plate 18a are different from the other members. The wall thickness may be increased. In this way, when the thin plate members on both sides in the tire width direction are made thicker than the others, it is possible to prevent both side portions in the tire width direction of the laminate of the thin plate members from spreading, and the accuracy of the mold formed by the laminate is improved. The advantage that it can be maintained with high accuracy is obtained.
[0064]
In each of the above-described embodiments, the thin plate material is processed by laser processing. However, the thin plate material may be manufactured by cutting using a numerically controlled wire cut electric discharge machine or a numerically controlled cutting machine tool. .
Moreover, in each above-mentioned embodiment, although the thin plate member was formed with the iron material or the steel material, you may use an aluminum material, another metallic material, or a nonmetallic material.
[0065]
Furthermore, in each of the above-described embodiments, an example in which a groove for venting gas is formed on one surface of the thin plate member has been shown. However, this groove may be formed on both surfaces of the thin plate member, or the laminated thin plate member. It is not necessary to form a gas venting groove in all of them, and this groove may be formed in one or several laminated thin plate members. Further, the number of gas venting grooves formed on one surface of one thin plate member is not limited to three or four in the illustrated example, and may be appropriately set. The width and depth of the groove are as small as necessary to allow gas to pass through. It is desirable that the width and depth of the groove be such that molten rubber does not enter the groove during vulcanization molding of the tire.
[0066]
Further, the number of the thin plate members 17 or the thin plate half members 171, 172 that protrude from the holding member 18 or the holding half members 181, 182 and are fixed by the screw 17 s at both circumferential end surfaces of each divided body 16 is only one. Instead, it may be several.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part of a tire vulcanizer provided with a tire tread surface molding die according to a first embodiment of the present invention.
FIG. 2 is a side view of an essential part of the tire vulcanizer shown in FIG.
FIG. 3 is an enlarged cross-sectional view of a tire tread surface molding die in the first embodiment.
FIG. 4 is a perspective view of a tire tread surface molding die in the first embodiment.
FIG. 5 is an enlarged cross-sectional view showing adjacent portions of two dies adjacent to each other in the circumferential direction of the tire tread surface molding die in the first embodiment.
FIG. 6 is an explanatory diagram for explaining a manufacturing method of the tire tread surface molding die in the first embodiment.
FIGS. 7A and 7B are explanatory views showing, in an enlarged manner, the state of lamination between thin plate members in the first embodiment and a conventional thin plate material lamination mold, respectively.
FIG. 8 is an enlarged cross-sectional view of a tire tread surface molding die in a modification of the first embodiment.
FIG. 9 is a perspective view of a tire tread surface molding die according to a modification of the first embodiment.
FIG. 10 is an enlarged cross-sectional view showing adjacent portions of two molds adjacent to each other in the circumferential direction of the tire tread surface molding mold in the first embodiment and the modification.
FIG. 11 is an enlarged cross-sectional view of a tire tread surface molding die according to a second embodiment of the present invention.
FIG. 12 is an enlarged cross-sectional view of a main part of a tire tread surface molding die according to a second embodiment.
FIG. 13 is an explanatory diagram for explaining a manufacturing method of a tire tread surface molding die according to a second embodiment.
[Explanation of symbols]
T ... tyre, Tr ... tread surface, 10 ... vulcanizer, 11L ... left case, 11R ... right case, 12 ... side mold, 12L, 12R ... left and right Side wall molds, 15 ... molds, 16 ... divided bodies, 17, 217 ... thin plate members, 171, 172 ... thin plate half members, 17e, 171e, 172e ... thin plates at both ends Member, 17a ... Projection, 17g ... Gas vent groove, 17s ... Head screw, 17h ... Round hole, 18 ... Holding member, 18a ... Fixing plate (fixed) Means), 18c ... bolts, 18n, 19n ... Nusumi space, 18m, 19m ... exhaust hole, 19 ... slide member, 20 ... guide rail, 21 ... bearing block, 22. ..Bolts, 25, 29 ... pins, 26 ... re , 27 ... cylinder device, 28 ... piston rod, 100, 300 ... coiled thin plate material, 101, 301 ... thin plate member piece, 102 ... thin plate member piece formed by double-side taper molding, 110 ... Laser processing machine, 111 ... Control cylinder, 112 ... Head, 113 ... Laser torch, 114 ... Laser oscillator, CAD ... CAD device (computer-aided design device), CAM ... CAM device (computer-assisted machining program generation device), CNC... CNC device (computer-controlled numerical control device), Tp... Tread pattern, SL.

Claims (4)

タイヤトレッド面のクラウンを成形する金型であって、前記タイヤトレッド面を外方から取り囲むため円周方向に所定数に分割された分割体の各々が所定円周長さの弧状をなす複数個の金型部とこの金型部をそれぞれ保持する複数個の保持部材からなり、前記金型部の各々は多数枚の薄板部材を積層して構成され、前記保持部材の各々は対応する前記金型部を構成する前記多数枚の薄板部材を積層状態で固定保持する固定手段を備え、この固定手段により積層状態で固定保持された前記多数枚の薄板部材の内周面にはタイヤのトレッド面に成形すべきトレッドパターンに対応する形状が形成されており、前記金型部を構成する多数枚の薄板部材は前記タイヤトレッド面の幅方向長さをカバーして前記タイヤの円周方向に積層されており、さらに、タイヤの円周方向に積層された前記多数枚の薄板部材の各端部にあって前記保持部材に直接固定できない薄板部材は、前記固定手段により前記保持部材に固定された隣接する薄板部材に固着されることにより前記保持部材に間接的に固着されていることを特徴とするタイヤトレッド面成形金型。A mold for forming a crown of a tire tread surface, wherein a plurality of divided bodies divided into a predetermined number in the circumferential direction so as to surround the tire tread surface from the outside form an arc shape having a predetermined circumferential length And a plurality of holding members for holding the mold parts, each of the mold parts is formed by laminating a plurality of thin plate members, and each of the holding members corresponds to the corresponding mold. The tread surface of the tire is provided on an inner peripheral surface of the plurality of thin plate members fixed and held in a laminated state by the fixing means. A shape corresponding to the tread pattern to be molded is formed, and a plurality of thin plate members constituting the mold part are stacked in the circumferential direction of the tire so as to cover the length of the tire tread surface in the width direction. And more The thin plate members at the end portions of the plurality of thin plate members stacked in the circumferential direction of the tire and cannot be directly fixed to the holding member are the adjacent thin plate members fixed to the holding member by the fixing means. A tire tread surface molding die characterized by being fixed to the holding member indirectly by being fixed . タイヤトレッド面のクラウンを成形する金型であって、前記タイヤトレッド面を外方から取り囲むため円周方向に所定数に分割された分割体の各々が所定円周長さの弧状をなす複数個の金型部とこの金型部をそれぞれ保持する複数個の保持部材からなり、前記金型部の各々は多数枚の薄板部材を積層して構成され、前記保持部材の各々は対応する前記金型部を構成する前記多数枚の薄板部材を積層状態で固定保持する固定手段を備え、この固定手段により積層状態で固定保持された前記多数枚の薄板部材の内周面にはタイヤのトレッド面に成形すべきトレッドパターンに対応する形状が形成されており、前記金型部を構成する多数枚の薄板部材は前記タイヤトレッド面の幅方向長さをカバーして前記タイヤの円周方向に積層されており、さらに、タイヤの円周方向に積層された前記多数枚の薄板部材の各端部にある薄板部材は、他の薄板部材よりも肉厚が厚く形成され、これにより前記各端部にある薄板部材が前記固定手段により前記保持部材に直接固定されていることを特徴とするタイヤトレッド面成形金型。 A mold for forming a crown of a tire tread surface, wherein a plurality of divided bodies divided into a predetermined number in the circumferential direction so as to surround the tire tread surface from the outside form an arc shape having a predetermined circumferential length And a plurality of holding members for holding the mold parts, each of the mold parts is formed by laminating a plurality of thin plate members, and each of the holding members corresponds to the corresponding mold. The tread surface of the tire is provided on an inner peripheral surface of the plurality of thin plate members fixed and held in a laminated state by the fixing means. A shape corresponding to the tread pattern to be molded is formed, and a plurality of thin plate members constituting the mold part are stacked in the circumferential direction of the tire so as to cover the length of the tire tread surface in the width direction. And more The thin plate members at each end of the plurality of thin plate members stacked in the circumferential direction of the tire are formed to be thicker than the other thin plate members, whereby the thin plate member at each end is formed. tire tread surface molding die characterized that you have been directly fixed to the holding member by the fixing means. 請求項1に記載のタイヤトレッド面のクラウンを成形するため円周方向に所定数に分割された分割金型を製造するタイヤトレッド面成形金型の製造方法であって、金属薄板部材を切り出し、所定形状にカットし、それら厚さの薄い金属薄板部材を成形すべきタイヤの円周方向に多数枚積層した状態で保持部材に固定保持し、タイヤの円周方向に積層された前記多数枚の薄板部材の各端部にあって前記保持部材に直接固定できない薄板部材を、固定手段により前記保持部材に固定された隣接する薄板部材に固着することにより前記保持部材に間接的に固着して前記分割金型を製造することを特徴とするタイヤトレッド面成形金型の製造方法。A method for manufacturing a tire tread surface molding mold for manufacturing a split mold that is divided into a predetermined number in the circumferential direction in order to mold the crown of the tire tread surface according to claim 1, wherein a metal thin plate member is cut out, Cut into a predetermined shape, and hold the thin metal sheet member thin in the circumferential direction of the tire to be molded in a state of being fixed to the holding member, the multiple sheets stacked in the circumferential direction of the tire The thin plate member at each end of the thin plate member that cannot be directly fixed to the holding member is fixed to the holding member indirectly by fixing the thin plate member to the adjacent thin plate member fixed to the holding member by the fixing means. A method for producing a tire tread surface molding die, comprising producing a split die. 請求項2に記載のタイヤトレッド面のクラウンを成形するため円周方向に所定数に分割された分割金型を製造するタイヤトレッド面成形金型の製造方法であって、金属薄板部材を切り出し、所定形状にカットし、それら厚さの薄い金属薄板部材を成形すべきタイヤの円周方向に多数枚積層した状態で固定手段により保持部材に固定保持し、この場合タイヤの円周方向に積層された前記多数枚の薄板部材の各端部にある薄板部材を、他の薄板部材よりも肉厚を厚く形成し、これにより前記各端部にある肉厚の厚い薄板部材を前記固定手段により前記保持部材に直接固定して前記分割金型を製造することを特徴とするタイヤトレッド面成形金型の製造方法。A method for manufacturing a tire tread surface molding mold for manufacturing a split mold that is divided into a predetermined number in the circumferential direction in order to mold the crown of the tire tread surface according to claim 2, wherein a metal thin plate member is cut out. It is cut into a predetermined shape, and a thin metal sheet member having such a small thickness is laminated and fixed to the holding member by a fixing means in a state where a large number of the thin metal plate members are laminated in the circumferential direction of the tire to be molded. Further, the thin plate member at each end of the plurality of thin plate members is formed thicker than the other thin plate members, whereby the thick thin plate member at each end is formed by the fixing means. A method for manufacturing a tire tread surface molding die, wherein the split die is manufactured by being directly fixed to a holding member.
JP2003136198A 2003-05-14 2003-05-14 Tire tread surface molding die and manufacturing method thereof Expired - Fee Related JP4274849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136198A JP4274849B2 (en) 2003-05-14 2003-05-14 Tire tread surface molding die and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136198A JP4274849B2 (en) 2003-05-14 2003-05-14 Tire tread surface molding die and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004338182A JP2004338182A (en) 2004-12-02
JP4274849B2 true JP4274849B2 (en) 2009-06-10

Family

ID=33526238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136198A Expired - Fee Related JP4274849B2 (en) 2003-05-14 2003-05-14 Tire tread surface molding die and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4274849B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329931B2 (en) 2004-02-20 2009-09-09 株式会社ブリヂストン Tire vulcanization mold and manufacturing method thereof
JP5265504B2 (en) * 2009-12-03 2013-08-14 住友ゴム工業株式会社 Mold for tire
JP5254198B2 (en) * 2009-12-28 2013-08-07 住友ゴム工業株式会社 Mold for tire
JP5066220B2 (en) * 2010-05-17 2012-11-07 住友ゴム工業株式会社 Pneumatic tire and manufacturing method thereof
JP5117541B2 (en) * 2010-06-23 2013-01-16 住友ゴム工業株式会社 Mold for tire
JP5591605B2 (en) * 2010-07-02 2014-09-17 東洋ゴム工業株式会社 Tire mold
JP5417493B2 (en) * 2012-07-09 2014-02-12 住友ゴム工業株式会社 Mold for tire
JP6607765B2 (en) * 2015-11-12 2019-11-20 Toyo Tire株式会社 Tire manufacturing method and tire molding apparatus

Also Published As

Publication number Publication date
JP2004338182A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US7402031B2 (en) Piece for tire mold, method of producing the piece, piece-type tire mold and method of producing the piece-type tire mold
US20220258383A1 (en) Creation of injection molds via additive manufacturing
KR20130050025A (en) Mold for hot stamping strip masking
JP4274849B2 (en) Tire tread surface molding die and manufacturing method thereof
CN108723208A (en) The profile-followed water route mold of thermoforming and its processing method
JP2002254478A (en) Worm wheel and method and apparatus for molding the same
JP2009148992A (en) Method for manufacturing mold for tire
Glozer et al. Laminate tooling for injection moulding
JP5698397B2 (en) Jig for pattern block machining in sector mold
JP5534483B1 (en) Sector mold and manufacturing method
CN107498071A (en) A kind of housing machining center
CN206925300U (en) Die casting
CN206662184U (en) A kind of device for processing casting mould
JP2009220274A (en) Method and device for accurately machining resin product
JP2000234103A (en) Manufacture of mold by optical molding
KR20050098857A (en) Tire mold and tread
US20180354160A1 (en) Method for manufacturing mold for rubber article, and mold for rubber article
JP6541305B2 (en) Method of manufacturing tire vulcanized mold
JP5832505B2 (en) Rubber mold core for mold production and method for producing rubber mold for mold production
JPS6097818A (en) Mold for long body molding and manufacture thereof
JP2002103379A (en) Method for manufacturing light guide plate
CN103846689A (en) Jig for machining multi-angle mould and use method thereof
CN114260426A (en) Edge-opening nut die, special sand core for edge-opening nut and casting method of special sand core
KR20200020274A (en) plastic under cut device
JP2003025025A (en) Plate-like work forming device, and plate-like work forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

R150 Certificate of patent or registration of utility model

Ref document number: 4274849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150313

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees