JP4274461B2 - Electrolytic dressing method using universal electrode for electrolytic dressing - Google Patents

Electrolytic dressing method using universal electrode for electrolytic dressing Download PDF

Info

Publication number
JP4274461B2
JP4274461B2 JP2003322948A JP2003322948A JP4274461B2 JP 4274461 B2 JP4274461 B2 JP 4274461B2 JP 2003322948 A JP2003322948 A JP 2003322948A JP 2003322948 A JP2003322948 A JP 2003322948A JP 4274461 B2 JP4274461 B2 JP 4274461B2
Authority
JP
Japan
Prior art keywords
electrode
grindstone
electrolytic
bar
electrolytic dressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003322948A
Other languages
Japanese (ja)
Other versions
JP2005088105A (en
Inventor
整 大森
嘉宏 上原
憲英 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSEDAI KAKOSHISUTEMU CO.,LTD.
RIKEN Institute of Physical and Chemical Research
Original Assignee
SHINSEDAI KAKOSHISUTEMU CO.,LTD.
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSEDAI KAKOSHISUTEMU CO.,LTD., RIKEN Institute of Physical and Chemical Research filed Critical SHINSEDAI KAKOSHISUTEMU CO.,LTD.
Priority to JP2003322948A priority Critical patent/JP4274461B2/en
Publication of JP2005088105A publication Critical patent/JP2005088105A/en
Application granted granted Critical
Publication of JP4274461B2 publication Critical patent/JP4274461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

本発明は、電解ドレッシング用自在電極を用いた電解ドレッシング方法に関する。 The present invention relates to an electrolytic dressing method using a universal electrode for electrolytic dressing.

特許文献1に電解インプロセスドレッシング研削法(Electrolytic Inprocess Dressing:以下「ELID研削法」という)と呼ばれる電解ドレッシング手段が本願出願人により開示されている。
このELID研削法は、ワークとの接触面を有する砥石と、接触面に対向する電極と、砥石と電極との間に導電性液を流すノズルと、砥石と電極との間に電圧を印加する電源及び給電体とからなる装置を用い、砥石と電極との間に導電性液を流しながら、砥石と電極との間に電圧を印加し、砥石を電解によりドレッシングするものである。
Patent Document 1 discloses an electrolytic dressing means called an electrolytic in-process dressing method (hereinafter referred to as “ELID grinding method”) by the applicant of the present application.
This ELID grinding method applies a voltage between a grindstone having a contact surface with a workpiece, an electrode facing the contact surface, a nozzle for flowing a conductive liquid between the grindstone and the electrode, and the grindstone and the electrode. A device comprising a power source and a power feeder is used to apply a voltage between the grindstone and the electrode while flowing a conductive liquid between the grindstone and the electrode, thereby dressing the grindstone by electrolysis.

このELID研削法によるドレッシングの機構を図7に示す。砥石の目立て開始時(A)には、砥石と電極との間の電気抵抗が少なく比較的大きい電流(5〜10A)が流れる。これにより、電解効果により砥石表面の金属部(ボンド)が溶解し、非導電性のダイヤモンド砥粒が突出する。更に、通電を続けると、酸化鉄(Fe23)を主とした絶縁被膜が砥石表面に形成され、砥石の電気抵抗が大きくなる。これにより、電流が低下し、ボンドの溶解が減り、砥粒の突出(砥石の目立て)が実質的に終了する(B)。この状態で研削を開始する(C)と、被膜が研削屑を遊離しつつ、ワークの研削につれてダイヤモンド砥粒が磨耗していく。更に研削を続けると(D)、砥石表面の絶縁被膜が磨耗により除去され、砥石の電気抵抗が低下し、砥石と電極間の電流が増大し、ボンドの溶解が増し、砥粒の突出(砥石の目立て)が再開される。従って、ELID研削法による研削中には、(B)〜(D)のように被膜の形成・除去によりボンドの過溶出が抑えられ、砥粒の突出(砥石の目立て)が自動的に調整される。(B)〜(D)に示したサイクルを以下「ELIDサイクル」と呼ぶ。 The dressing mechanism by this ELID grinding method is shown in FIG. At the start of sharpening the grinding wheel (A), a relatively large current (5 to 10 A) flows with little electrical resistance between the grinding wheel and the electrode. Thereby, the metal part (bond) on the surface of the grindstone is dissolved by the electrolytic effect, and non-conductive diamond abrasive grains protrude. Further, when energization is continued, an insulating film mainly composed of iron oxide (Fe 2 O 3 ) is formed on the surface of the grindstone, and the electric resistance of the grindstone increases. As a result, the current is decreased, the dissolution of the bond is reduced, and the protrusion of the abrasive grains (sharpening of the grindstone) is substantially finished (B). When grinding is started in this state (C), the diamond abrasive grains are worn as the workpiece is ground while the coating releases the grinding waste. When grinding continues (D), the insulating coating on the surface of the grindstone is removed by abrasion, the electric resistance of the grindstone decreases, the current between the grindstone and the electrode increases, the dissolution of the bond increases, and the protrusion of the grindstone (grindstone) Will be resumed. Therefore, during grinding by ELID grinding method, as shown in (B) to (D), excessive elution of bonds is suppressed by forming and removing the coating, and the protrusion of the abrasive grains (sharpening of the grinding stone) is automatically adjusted. The The cycle shown in (B) to (D) is hereinafter referred to as “ELID cycle”.

上述したELID研削法では砥粒を細かくしてもELIDサイクルによる砥石の目立てにより砥石に目詰まりが生じないので、砥粒を細かくすれば鏡面のような極めて優れた加工面を研削加工により得ることができる。従って、ELID研削法は、高能率研削から鏡面研削に至るまで砥石の切れ味を維持できる特徴を有する。   In the ELID grinding method described above, even if the abrasive grains are made fine, clogging of the grinding stone does not occur due to the sharpening of the grinding stone by the ELID cycle, so if the abrasive grains are made fine, an extremely excellent machining surface such as a mirror surface can be obtained by grinding. Can do. Therefore, the ELID grinding method has a feature that the sharpness of the grindstone can be maintained from high efficiency grinding to mirror grinding.

また、上述したELID研削には、砥粒、メタルボンド等の混合物を成形し焼結させた高強度のメタルボンド超砥粒砥石を用いるため、砥石を必要な形状に仕上げるのが困難であり、砥石形状に対応した電極を製作し、これを放電加工により転写して砥石を加工するため、放電加工用電極を含めた砥石の製作に時間と費用がかかる問題点があり、この問題点を解決するために特許文献2が提案されている。   In addition, since the ELID grinding described above uses a high-strength metal-bond superabrasive grindstone formed by sintering a mixture of abrasive grains, metal bonds, etc., it is difficult to finish the grindstone into the required shape, Since an electrode corresponding to the shape of the grinding wheel is manufactured and this is transferred by electric discharge machining to process the grinding wheel, there is a problem that it takes time and money to manufacture the grinding wheel including the electrode for electric discharge machining, and this problem is solved. For this purpose, Patent Document 2 has been proposed.

特許文献2の「自在総型砥石を用いた電解ドレッシング方法」は、図8に示すように、回転するスピンドル52に固定されるようになった複数の砥石エレメント56からなる自在総型砥石50を備え、自在総型砥石50によりグラファイト材53を研削して自在総型砥石の外周面と同一の断面形状を有する電解ドレッシング用電極53を成形し、自在総型砥石でワーク51を研削しながら、自在総型砥石と電極との間に導電性液を流して電解ドレッシングするものである。   As shown in FIG. 8, the “electrolytic dressing method using a universal grinding wheel” in Patent Document 2 includes a universal grinding wheel 50 composed of a plurality of grinding wheel elements 56 that are fixed to a rotating spindle 52. And forming an electrode 53 for electrolytic dressing having the same cross-sectional shape as the outer peripheral surface of the free-form grindstone by grinding the graphite material 53 with the free-form grindstone 50, and grinding the workpiece 51 with the free-form grindstone, Electrolytic dressing is performed by flowing a conductive liquid between the universal grindstone and the electrode.

特許第1947329号明細書Japanese Patent No. 1947329 特許第3295896号公報Japanese Patent No. 3295896

上述した特許文献2における電解ドレッシング用電極12は、自在総型砥石で研削したグラファイト材であるため、通常の金属材料と比較して脆く、使用中に欠けやすい問題点があった。
また従来の電解ドレッシング用電極は、砥石との隙間調整が困難であった。例えば上述の自在総型砥石で研削した電極の場合、砥石の外周面と同一の表面形状を形成できるが、砥石外周面との間で電解強度に不均一が生じやすく、例えば電解領域の中心部が強く、外縁部が弱くなりやすく、かつこの不均一を調整することができない問題点があった。
さらに、従来の電解ドレッシング用電極は、砥石の寸法・形状変化量の測定や電極表面のクリーニングへの適用が困難な問題点があった。
Since the electrode 12 for electrolytic dressing in Patent Document 2 described above is a graphite material ground with a universal grindstone, it is brittle compared to a normal metal material and has a problem that it is easily chipped during use.
Further, it has been difficult to adjust the gap between the conventional electrode for electrolytic dressing and the grindstone. For example, in the case of an electrode ground with the above-mentioned universal type grindstone, the same surface shape as the outer peripheral surface of the grindstone can be formed, but unevenness in electrolytic strength easily occurs between the outer peripheral surface of the grindstone, for example, the central portion of the electrolytic region However, there is a problem that the outer edge portion tends to be weak and the unevenness cannot be adjusted.
Furthermore, the conventional electrode for electrolytic dressing has a problem that it is difficult to apply to the measurement of the dimensional / shape change amount of the grindstone and the cleaning of the electrode surface.

本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、砥石形状に合わせてその外周面と同一の表面形状を容易に形成でき、電解強度に不均一性に対応して電解表面の微調整ができ、かつ砥石の寸法・形状変化量の測定と、電極表面のクリーニングへの適用が可能な電解ドレッシング用自在電極を用いた電解ドレッシング方法を提供することにある。 The present invention has been made to solve such problems. That is, the object of the present invention is to easily form the same surface shape as the outer peripheral surface in accordance with the shape of the grindstone, fine adjustment of the electrolytic surface corresponding to the non-uniformity of the electrolytic strength, and the size and size of the grindstone An object of the present invention is to provide an electrolytic dressing method using a free electrode for electrolytic dressing that can be applied to measurement of the amount of shape change and cleaning of the electrode surface.

参考例によれば、同一断面形状を有する複数の細長い導電性棒材からなり、互いに密着して対応する電解ドレッシング砥石の電解面の少なくとも一部を覆う大きさの断面形状に積層された棒材集合電極部と、
該棒材集合電極部の前記断面形状を保持し、かつ隣接する導電性棒材間の摩擦力を大または小に切替え、摩擦力が大のときに各棒材の長さ方向の摺動を防止し、摩擦力が小のときに各棒材の長さ方向の摺動を可能にする電極ホルダーと、を備えることを特徴とする電解ドレッシング用自在電極が提供される。
According to the reference example , a bar made of a plurality of elongated conductive bars having the same cross-sectional shape and stacked in a cross-sectional shape having a size covering at least a part of the electrolytic surface of the corresponding electrolytic dressing grindstone in close contact with each other. A collecting electrode part;
Maintaining the cross-sectional shape of the bar material collecting electrode part, and switching the friction force between adjacent conductive bar materials to large or small, and sliding each bar material in the length direction when the friction force is large An electrode holder for electrolytic dressing is provided, comprising: an electrode holder that prevents sliding of each bar when the frictional force is small.

本発明によれば、同一断面形状を有する複数の細長い導電性棒材からなり、互いに密着して対応する電解ドレッシング砥石の電解面の少なくとも一部を覆う大きさの断面形状に積層された棒材集合電極部と、該棒材集合電極部の前記断面形状を保持し、かつ隣接する導電性棒材間の摩擦力を大または小に切替え、摩擦力が大のときに各棒材の長さ方向の摺動を防止し、摩擦力が小のときに各棒材の長さ方向の摺動を可能にする電極ホルダーと、を有する電解ドレッシング用自在電極を備え、導電性棒材間の摩擦力を小に切替え、前記電解ドレッシング砥石の電解面に棒材集合電極部を長さ方向に押し付けて、前記電解ドレッシング砥石の電解面と同一の表面形状を有する電解ドレッシング用電極を成形する電極成形ステップと、導電性棒材間の摩擦力を大に切替え、電極と砥石表面間に間隙を設け、前記砥石でワークを研削しながら、前記砥石と電極との間に導電性液を流して電解ドレッシングする電解ドレッシングステップとを有し、前記電解ドレッシングステップの後に、導電性棒材間の摩擦力を大に保持したまま、前記電極成形ステップにおける電極位置に棒材集合電極部を位置決めし、次いで、導電性棒材間の摩擦力を小に切替え、各導電性棒材を個別に長さ方向に摺動させて砥石の電解面に各導電性棒材を長さ方向に押し付け、その移動量から砥石の寸法・形状変化量を測定する、ことを特徴とする電解ドレッシング用自在電極を用いた電解ドレッシング方法が提供される。
また、本発明によれば、同一断面形状を有する複数の細長い導電性棒材からなり、互いに密着して対応する電解ドレッシング砥石の電解面の少なくとも一部を覆う大きさの断面形状に積層された棒材集合電極部と、該棒材集合電極部の前記断面形状を保持し、かつ隣接する導電性棒材間の摩擦力を大または小に切替え、摩擦力が大のときに各棒材の長さ方向の摺動を防止し、摩擦力が小のときに各棒材の長さ方向の摺動を可能にする電極ホルダーと、を有する電解ドレッシング用自在電極を備え、導電性棒材間の摩擦力を小に切替え、前記電解ドレッシング砥石の電解面に棒材集合電極部を長さ方向に押し付けて、前記電解ドレッシング砥石の電解面と同一の表面形状を有する電解ドレッシング用電極を成形する電極成形ステップと、導電性棒材間の摩擦力を大に切替え、電極と砥石表面間に間隙を設け、前記砥石でワークを研削しながら、前記砥石と電極との間に導電性液を流して電解ドレッシングする電解ドレッシングステップとを有し、前記砥石と電極との間に電解ドレッシングと逆の電圧を印加し、逆電解の時に、導電性棒材間の摩擦力を小に切替え、各棒材を個別に摺動させて砥石面に押し付け、その移動量から砥石と電極表面間における電解強度の分布を測定し、適切かつ均一な電解強度に間隙を設定する、ことを特徴とする電解ドレッシング用自在電極を用いた電解ドレッシング方法が提供される。
According to the present invention, a bar made of a plurality of elongated conductive bars having the same cross-sectional shape and stacked in a cross-sectional shape having a size covering at least a part of the electrolytic surface of the corresponding electrolytic dressing grindstone in close contact with each other. The cross-sectional shape of the collective electrode portion and the rod collective electrode portion is maintained, and the frictional force between adjacent conductive rods is switched between large and small, and the length of each bar when the frictional force is large The electrode holder has an electrode holder that prevents sliding in the direction and allows sliding in the length direction of each bar when the frictional force is small, and friction between the conductive bars Electrode forming that switches the force to a small size and presses the bar aggregate electrode portion in the length direction against the electrolytic surface of the electrolytic dressing grindstone to form an electrode for electrolytic dressing having the same surface shape as the electrolytic surface of the electrolytic dressing grindstone Between step and conductive bar Switches the frictional force large, a gap is provided between the electrode and the grindstone surface, while grinding the workpiece by the grindstone, possess the electrolytic dressing step for electrolytic dressing by passing a conductive liquid between the grindstone and the electrode After the electrolytic dressing step, the bar assembly electrode portion is positioned at the electrode position in the electrode forming step while maintaining a large frictional force between the conductive bars, and then the frictional force between the conductive bars , Slide each conductive bar individually in the length direction and press each conductive bar in the length direction against the electrolytic surface of the grindstone. There is provided an electrolytic dressing method using a universal electrode for electrolytic dressing characterized by measuring .
Further, according to the present invention, a plurality of elongated conductive bars having the same cross-sectional shape are stacked in a cross-sectional shape having a size covering at least part of the electrolytic surface of the corresponding electrolytic dressing grindstone in close contact with each other. Maintaining the cross-sectional shape of the bar assembly electrode section and the bar assembly electrode section, and switching the frictional force between adjacent conductive bars to large or small, and when the frictional force is large, An electrode holder for preventing the sliding in the length direction and enabling the sliding in the length direction of each bar when the frictional force is small, between the conductive bars The electrode is used for electrolytic dressing having the same surface shape as the electrolytic surface of the electrolytic dressing grindstone by switching the frictional force to a small amount and pressing the bar aggregate electrode portion in the length direction against the electrolytic surface of the electrolytic dressing grindstone. Electrode forming step and conductivity An electrolytic dressing step in which the frictional force between the materials is largely switched, a gap is provided between the electrode and the grindstone surface, and an electrolytic dressing is performed by flowing a conductive liquid between the grindstone and the electrode while grinding a workpiece with the grindstone. have a said applied to electrolytic dressing and reverse voltage between the grindstone and the electrode, when the reverse electrolysis, switches the frictional force between the conductive bars to the small and each bar is individually slide Electrolytic dressing using a universal electrode for electrolytic dressing, characterized in that it is pressed against the grinding wheel surface and the distribution of the electrolytic strength between the grinding wheel and the electrode surface is measured from the amount of movement and the gap is set to an appropriate and uniform electrolytic strength. A method is provided.

上記参考例の自在電極及び上記本発明の電解ドレッシング方法によれば、電極成形ステップにおいて電極ホルダーにより導電性棒材間の摩擦力を小に切替え、対応する電解ドレッシング砥石の電解面に棒材集合電極部を長さ方向に押し付けるだけで、各導電性棒材が個別に砥石の電解面にならい、電解ドレッシング砥石の電解面と同一の表面形状を有する電解ドレッシング用電極を成形することができる。
次いで、電解ドレッシングステップにおいて、電極ホルダーにより導電性棒材間の摩擦力を大に切替え、電極と砥石表面間に間隙を設け、砥石でワークを研削しながら、砥石と電極との間に導電性液を流して電解ドレッシングすることができる。
従って、砥石形状に合わせてその外周面と同一の表面形状を有する電極を容易に形成でき、これを用いて砥石を電解ドレッシングしながらワークを研削することができる。
また、前記電解ドレッシングステップの後に、導電性棒材間の摩擦力を大に保持したまま、前記電極成形ステップにおける電極位置に棒材集合電極部を位置決めし、次いで、導電性棒材間の摩擦力を小に切替え、各導電性棒材を個別に長さ方向に摺動させて砥石の電解面に各導電性棒材を長さ方向に押し付け、その移動量から砥石の寸法・形状変化量を測定することにより、棒材集合電極部の表面位置は電解ドレッシングでほとんど変化しないことから、遠隔操作で、砥石の寸法・形状変化量(例えば砥石磨耗量)を測定することができる。
さらに、前記砥石と電極との間に電解ドレッシングと逆の電圧を印加し、逆電解の時に、導電性棒材間の摩擦力を小に切替え、各棒材を個別に摺動させて砥石面に押し付け、その移動量から砥石と電極表面間における電解強度の分布を測定し、適切かつ均一な電解強度に間隙を設定することにより、移動量が大きい棒材が対向する砥石部分は電解が強いことを意味するため、砥石と電極の間隙は短く、その逆は広く、個々の棒状電極を摺動させた後に、砥石と電極全体との間隙をセットすることができる。
According to the universal electrode of the reference example and the electrolytic dressing method of the present invention, the friction force between the conductive rods is switched to a small value by the electrode holder in the electrode forming step, and the rods are assembled on the electrolytic surface of the corresponding electrolytic dressing grindstone. By simply pressing the electrode part in the length direction, each conductive bar individually follows the electrolytic surface of the grindstone, and an electrolytic dressing electrode having the same surface shape as the electrolytic surface of the electrolytic dressing grindstone can be formed.
Next, in the electrolytic dressing step, the frictional force between the conductive bars is switched to a large value by the electrode holder, a gap is provided between the electrode and the grindstone surface, and the work is ground between the grindstone and the conductive material between the grindstone and the electrode. Electrolytic dressing can be performed by flowing a liquid.
Therefore, an electrode having the same surface shape as the outer peripheral surface can be easily formed in accordance with the shape of the grindstone, and the workpiece can be ground while using the electrode to electrolytically dress the grindstone.
In addition, after the electrolytic dressing step, the bar assembly electrode portion is positioned at the electrode position in the electrode forming step while maintaining a large frictional force between the conductive rods, and then the friction between the conductive rods Switch the force to small, slide each conductive bar individually in the length direction, and press each conductive bar in the length direction against the electrolytic surface of the grindstone. Since the surface position of the bar aggregate electrode portion hardly changes by electrolytic dressing, the dimensional / shape change amount of the grindstone (for example, the grindstone wear amount) can be measured by remote control.
Further, a voltage opposite to that of the electrolytic dressing is applied between the grindstone and the electrode, and during reverse electrolysis, the frictional force between the conductive bars is switched to a small level, and each bar is individually slid to grindstone surface. By measuring the distribution of the electrolytic strength between the grinding wheel and the electrode surface from the amount of movement, and setting a gap to an appropriate and uniform electrolytic strength, the grinding stone part facing the bar with a large amount of movement is highly electrolyzed This means that the gap between the grindstone and the electrode is short, and vice versa, and after sliding the individual rod-shaped electrodes, the gap between the grindstone and the entire electrode can be set.

前記電極ホルダーは、前記棒材集合電極部を前記断面形状に保持する保持部材と、該保持部材に保持された棒材集合電極部を構成する複数の導電性棒材間の摩擦力を変化させる押圧装置とからなる。
この構成により、押圧装置(例えば、押板と電磁チャック)により、保持部材に保持された棒材集合電極部への押圧を変化させて、各導電性棒材間の摩擦力を大または小に切り替えることができる。
The electrode holder changes a frictional force between a holding member that holds the bar aggregate electrode part in the cross-sectional shape and a plurality of conductive bar members that constitute the bar aggregate electrode part held by the holding member. It consists of a pressing device.
With this configuration, the pressing force (for example, a pressing plate and an electromagnetic chuck) is used to change the pressing force applied to the bar assembly electrode portion held by the holding member, thereby increasing or decreasing the frictional force between the conductive bar members. Can be switched.

また、前記棒材集合電極部を構成する複数の導電性棒材の端面に密着し、各棒材を個別に長さ方向に摺動する複数のアクチュエータを備える。この構成により、導電性棒材間の摩擦力を小に切替え、複数のアクチュエータ(例えば圧電素子)を個別に制御して、遠隔操作により、各棒材を個別に長さ方向に摺動することができる。   In addition, a plurality of actuators are provided that are in close contact with the end faces of the plurality of conductive rods constituting the rod-collecting electrode portion and individually slide the rods in the length direction. With this configuration, the frictional force between the conductive bars is switched to a small level, and a plurality of actuators (for example, piezoelectric elements) are individually controlled, and each bar is individually slid in the length direction by remote control. Can do.

また、前記電極成形ステップと電解ドレッシングステップとの間、または電解ドレッシングステップの後に、導電性棒材間の摩擦力を小に切替え、各導電性棒材を個別に長さ方向に摺動させて電極形状を修正する電極修正ステップを有する。
この方法により、砥石外周面との間で電解強度に不均一が生じている場合(例えば電解領域の中心部が強く、外縁部が弱くなりやすい)、この不均一を表面の変色又は電解による消耗量から判断して、各導電性棒材の位置を調整することができる。
In addition, the frictional force between the conductive rods is switched to small between the electrode forming step and the electrolytic dressing step or after the electrolytic dressing step, and each conductive rod is individually slid in the length direction. An electrode correcting step of correcting the electrode shape;
In this way, when the electrolytic strength is uneven with the outer peripheral surface of the grindstone (for example, the central portion of the electrolysis region is strong and the outer edge portion tends to be weak), this unevenness is caused by surface discoloration or electrolysis. Judging from the amount, the position of each conductive bar can be adjusted.

また、前記電解ドレッシングステップの後に、前記砥石と電極との間に電解ドレッシングと逆の電圧を印加し、逆電解により電極表面をクリーニングする。
この方法により、電解ドレッシングにより導電性砥石から電解した金属イオンが電極表面にメッキのように付着するが、これを逆電解によりクリーニングすることができる。
In addition, after the electrolytic dressing step, a voltage opposite to the electrolytic dressing is applied between the grindstone and the electrode, and the electrode surface is cleaned by reverse electrolysis.
According to this method, metal ions electrolyzed from the conductive grindstone by electrolytic dressing adhere to the electrode surface like plating, but this can be cleaned by reverse electrolysis.

上述したように、参考例の電解ドレッシング用自在電極とこれを用いた電解ドレッシング方法は、砥石形状に合わせてその外周面と同一の表面形状を容易に形成でき、電解強度に不均一性に対応して電解表面の微調整ができ、かつ砥石の寸法・形状変化量の測定と、電極表面のクリーニングへの適用が可能である、等の優れた効果を有する。 As described above, the electrode for electrolytic dressing of the reference example and the electrolytic dressing method using the same can easily form the same surface shape as the outer peripheral surface according to the shape of the grindstone, and cope with non-uniformity in electrolytic strength. Thus, the electrolytic surface can be finely adjusted, and it has excellent effects such as measurement of the dimensional / shape change amount of the grindstone and application to cleaning of the electrode surface.

以下、本発明の好適な実施例を説明する。なお、各図において共通する部分には同一の符号を付して使用する。   Hereinafter, preferred embodiments of the present invention will be described. In addition, the same code | symbol is attached | subjected and used for the common part in each figure.

図1は、参考例による電解ドレッシング用自在電極の全体斜視図である。この図では、自在電極全体を分解した状態で示しており、参考例の電解ドレッシング用自在電極10は、棒材集合電極部12と電極ホルダー14からなる。 FIG. 1 is an overall perspective view of a free electrode for electrolytic dressing according to a reference example . In this figure, the entire universal electrode is shown in a disassembled state, and the universal electrode for electrolytic dressing 10 of the reference example includes a bar aggregate electrode portion 12 and an electrode holder 14.

棒材集合電極部12は、同一断面形状を有する複数の細長い導電性棒材11からなる。導電性棒材11は、電気抵抗の小さい金属材料からなる。導電性棒材11の断面形状は、円形、矩形、その他の形状であってもよい。また、導電性棒材11の断面寸法は、細いほど好ましいが、必要とする形状に応じて任意のものを用いることができる。
棒材集合電極部12は、この導電性棒材11が互いに側面を密着して積層され、全体として所定の断面形状を形成している。この断面形状は、電解ドレッシングにおいて電極として使用する際に、これと対応する電解ドレッシング砥石の電解面の少なくとも一部を覆う大きさに設定されている。
なお、導電性棒材11の側面は、密着して積層された状態で電気抵抗が十分小さいのが好ましい。また、この例では、導電性棒材11を平板状に並べたものを4層積層しているが、積層数は任意であり、必要に応じて単層でもよい。
The bar assembly electrode portion 12 is composed of a plurality of elongated conductive bars 11 having the same cross-sectional shape. The conductive bar 11 is made of a metal material having a small electric resistance. The cross-sectional shape of the conductive bar 11 may be circular, rectangular, or other shapes. Moreover, although the cross-sectional dimension of the electroconductive rod 11 is so preferable that it is thin, arbitrary things can be used according to the required shape.
In the rod aggregate electrode portion 12, the conductive rods 11 are laminated with the side surfaces in close contact with each other to form a predetermined cross-sectional shape as a whole. The cross-sectional shape is set to a size that covers at least a part of the electrolytic surface of the electrolytic dressing grindstone corresponding to the electrode when used as an electrode in the electrolytic dressing.
In addition, it is preferable that the electrical resistance of the side surface of the conductive bar 11 is sufficiently small in a state where the side surfaces are in close contact with each other. Further, in this example, four layers of conductive rods 11 arranged in a flat plate shape are laminated, but the number of laminations is arbitrary, and a single layer may be used if necessary.

電極ホルダー14は、保持部材15と押圧装置16とからなる。
保持部材15は、この例において、コの字形の断面を有する保持ケーシング15aと保持ケーシング15aに上下端が固定される蓋部材15bとからなり、その間に棒材集合電極部12を挟持して、矩形の断面形状に保持するようになっている。
また、押圧装置16は、保持ケーシング15aと蓋部材15bの間に棒材集合電極部12と共に挟持された平板状の押板16aと蓋部材15bに取り付けられ押板16aを保持ケーシング15aに向けて押し付ける電磁チャック16bとからなる。
The electrode holder 14 includes a holding member 15 and a pressing device 16.
In this example, the holding member 15 includes a holding casing 15a having a U-shaped cross section and a lid member 15b whose upper and lower ends are fixed to the holding casing 15a. The rectangular cross-sectional shape is maintained.
Further, the pressing device 16 is attached to the flat pressing plate 16a and the lid member 15b sandwiched between the holding casing 15a and the lid member 15b together with the bar collecting electrode portion 12, and the pressing plate 16a faces the holding casing 15a. It consists of an electromagnetic chuck 16b for pressing.

この構成により、押圧装置16(押板16aと電磁チャック16b)により、保持部材15(保持ケーシング15aと蓋部材15b)に保持された棒材集合電極部12への押圧を変化させることができる。また、この押圧の変化により、各導電性棒材11間の摩擦力を大または小に切り替え、摩擦力が大のときに各棒材の長さ方向の摺動を防止し、摩擦力が小のときに各棒材の長さ方向の摺動を可能にするようになっている。
なお、電磁チャック16bとバネを併用し、電磁チャックを励磁しないときにバネで押圧して摩擦力を大にし、電磁チャックの励磁でバネを弱めて摩擦力を小に切り替えてもよく、またその逆でもよい。更に、電磁チャックに限定されず、その他の付勢手段、例えば空圧シリンダや手動の付勢装置(ボルトとナット、又はバネ)等であってもよい。
With this configuration, it is possible to change the pressure applied to the bar-collecting electrode portion 12 held by the holding member 15 (holding casing 15a and lid member 15b) by the pressing device 16 (the pressing plate 16a and the electromagnetic chuck 16b). In addition, this change in pressure switches the frictional force between the conductive bar members 11 to a large or small level, and when the frictional force is large, the sliding of each bar is prevented in the longitudinal direction. In this case, each bar can slide in the length direction.
The electromagnetic chuck 16b and a spring may be used together, and when the electromagnetic chuck is not excited, the friction force may be increased by pressing with the spring and weakened by exciting the electromagnetic chuck, and the friction force may be switched to a smaller value. The reverse is also possible. Furthermore, conductive magnetic not limited to the chuck, other biasing means may be, for example, a pneumatic cylinder or a manual biasing device (bolts and nuts, or spring) or the like.

上述した参考例の自在電極10によれば、電極ホルダー14の保持装置16により導電性棒材11間の摩擦力を小に切替え、対応する電解ドレッシング砥石の電解面に棒材集合電極部を長さ方向に押し付けるだけで、各導電性棒材11が個別に砥石の電解面にならい、電解ドレッシング砥石の電解面と同一の表面形状を有する電解ドレッシング用電極を成形することができる。 According to the universal electrode 10 of the reference example described above, the friction force between the conductive rods 11 is switched to a small value by the holding device 16 of the electrode holder 14, and the rod-collecting electrode portion is long on the electrolytic surface of the corresponding electrolytic dressing grindstone. By simply pressing in the vertical direction, each conductive bar 11 follows the electrolytic surface of the grindstone individually, and an electrode for electrolytic dressing having the same surface shape as the electrolytic surface of the electrolytic dressing grindstone can be formed.

図2は、参考例の自在電極の使用方法を示す図である。この例は、砥石2が例えば中性子レンズを加工するための特殊形状のものである場合を示している。このような特殊形状の砥石2に対して、上述した参考例の自在電極10を用い、電極ホルダー14により電性棒材間の摩擦力を小に切替え、対応する電解ドレッシング砥石2の電解面に棒材集合電極部11を長さ方向に押し付けるだけで、各導電性棒材11が個別に砥石2の電解面にならい、電解ドレッシング砥石2の電解面と同一の表面形状を有する電解ドレッシング用電極を成形することができる。 Figure 2 is a diagram illustrating how to use the self-standing electrode of Example. This example shows a case where the grindstone 2 has a special shape for processing a neutron lens, for example. Against the grindstone 2 in such a special shape, using a universal electrode 10 of the reference example described above, switches the frictional force between more conductive bars to the electrode holder 14 to the small, the electrolytic surface of the corresponding electrolytic dressing grinding wheel 2 Electrode dressing electrodes having the same surface shape as the electrolytic surface of the electrolytic dressing grindstone 2, each conductive bar 11 individually following the electrolytic surface of the grindstone 2 simply by pressing the bar aggregate electrode portion 11 in the length direction. Can be molded.

なお、この例では、特殊形状の砥石2に比べて導電性棒材11の断面寸法が大きい場合を示しており、各導電性棒材11の先端11aの形状を、後加工している。しかし、この後加工は必須ではなく、より細い導電性棒材11を用いて後加工を省略することもできる。   In addition, in this example, the case where the cross-sectional dimension of the electroconductive bar 11 is large compared with the grindstone 2 of a special shape is shown, and the shape of the front-end | tip 11a of each electroconductive bar 11 is post-processed. However, this post-processing is not essential, and the post-processing can be omitted by using a thinner conductive bar 11.

図3は、参考例の自在電極を用いた電解ドレッシング方法を示す図である。この図を用いて基本的な電解ドレッシング方法を説明する。
電解ドレッシング方法は、自在電極準備ステップ(A)、電極成形ステップ(B)及び電解ドレッシングステップ(C)とからなる。
自在電極準備ステップ(A)では、上述した電解ドレッシング用自在電極10を準備する。
電極成形ステップ(B)では、電極ホルダー14の押圧装置16により、導電性棒材間の摩擦力を小に切替え、電解ドレッシング砥石2の電解面2a(この例では外周面)に棒材集合電極部12を長さ方向に押し付けて、電解ドレッシング砥石2の電解面2aと同一の表面形状を有する電解ドレッシング用電極を成形する。
電解ドレッシングステップ(C)では、導電性棒材11間の摩擦力を大に切替え、図3に示すように、電極と砥石表面間に間隙を設け、砥石2でワーク1を研削しながら、砥石2と電極10との間に導電性液を流し、電源4を用いて砥石2と電極10との間に砥石2を正(+)に電極10を負(−)に印加して電解ドレッシングする。
FIG. 3 is a diagram showing an electrolytic dressing method using the universal electrode of the reference example . Explaining the basic electrolytic dressing methods using FIG.
The electrolytic dressing method includes a universal electrode preparation step (A), an electrode forming step (B), and an electrolytic dressing step (C).
In the universal electrode preparation step (A), the above-described electrode 10 for electrolytic dressing is prepared.
In the electrode forming step (B), the friction force between the conductive bars is switched to a small value by the pressing device 16 of the electrode holder 14, and the bar aggregate electrode is placed on the electrolytic surface 2 a (the outer peripheral surface in this example) of the electrolytic dressing grindstone 2. The electrode 12 for electrolytic dressing which has the same surface shape as the electrolytic surface 2a of the electrolytic dressing grindstone 2 is formed by pressing the portion 12 in the length direction.
In the electrolytic dressing step (C), the frictional force between the conductive rods 11 is switched to a large value, and a gap is provided between the electrode and the grindstone surface as shown in FIG. Electrolytic dressing is performed by flowing a conductive liquid between the electrode 2 and the electrode 10, and using the power source 4 to apply the grindstone 2 positive (+) and the electrode 10 negative (−) between the grindstone 2 and the electrode 10. .

上述した電解ドレッシング方法によれば、電極成形ステップ(B)において導電性棒材11間の摩擦力を小に切替え、対応する電解ドレッシング砥石2の電解面に棒材集合電極部12を長さ方向に押し付けるだけで、各導電性棒材11が個別に砥石の電解面にならい、電解ドレッシング砥石の電解面2aと同一の表面形状を有する電解ドレッシング用電極10を成形することができる。
また、次いで、電解ドレッシングステップ(C)において、導電性棒材間の摩擦力を大に切替え、電極と砥石表面間に間隙を設け、砥石2でワーク1を研削しながら、砥石2と電極10との間に導電性液を流して電解ドレッシングすることができる。
従って、砥石形状2に合わせてその外周面と同一の表面形状を有する電極10を容易に形成でき、これを用いて砥石を電解ドレッシングしながらワークを研削することができる。
According to the above-mentioned electrolytic dressing method, switches the frictional force between the conductive bars 11 in the small in the electrode forming step (B), the electrolytic surface of the corresponding electrolytic dressing grinding wheel 2 and hold the bar set electrode portion 12 By simply pressing in the vertical direction, each conductive bar 11 can individually follow the electrolytic surface of the grindstone, and the electrolytic dressing electrode 10 having the same surface shape as the electrolytic surface 2a of the electrolytic dressing grindstone can be formed.
Next, in the electrolytic dressing step (C), the frictional force between the conductive bars is switched to a large level, a gap is provided between the electrode and the grindstone surface, and the workpiece 1 is ground with the grindstone 2 while the grindstone 2 and the electrode 10. Electrolytic dressing can be performed by flowing a conductive liquid between them.
Therefore, the electrode 10 having the same surface shape as the outer peripheral surface thereof can be easily formed in accordance with the grindstone shape 2, and the workpiece can be ground while using the electrode 10 for electrolytic dressing.

また、上述した電極成形ステップ(B)と電解ドレッシングステップ(C)との間、または電解ドレッシングステップ(C)の後に、導電性棒材11間の摩擦力を小に切替え、各導電性棒材11を個別に長さ方向に摺動させて電極形状を修正する電極修正ステップ(D)を設けることにより、砥石外周面との間で電解強度に不均一が生じている場合(例えば電解領域の中心部が強く、外縁部が弱くなりやすい)、この不均一を表面の変色又は電解による消耗量から判断して、各導電性棒材の位置を調整することができる。   Further, the frictional force between the conductive bars 11 is switched to a small value between the electrode forming step (B) and the electrolytic dressing step (C) or after the electrolytic dressing step (C), and each conductive bar When the electrode strength step (D) for correcting the electrode shape by individually sliding 11 in the length direction is provided, the electrolytic strength is uneven with the outer peripheral surface of the grindstone (for example, in the electrolytic region). The position of each conductive bar can be adjusted by judging this non-uniformity from the amount of consumption due to discoloration or electrolysis of the surface).

図4は、参考例の自在電極を用いた砥石との隙間調整を示す図である。この例において、参考例の電解ドレッシング用電極10は、更に、棒材集合電極部12を構成する複数の導電性棒材11の端面に密着し、各棒材11を個別に長さ方向に摺動する複数のアクチュエータ18を備える。アクチュエータ18はこの例では圧電素子である。
複数の導電性棒材11の反電極側の端面は、この例のように同一の平面上に位置するのが好ましい。
また、複数の圧電素子18は、例えば、ピエゾ素子が微細なピッチ(例えば30μm×30μm)で二次元的に配置されたピエゾアクチュエータであるのがよい。
なお、この図において、17は、圧電素子18を導電性棒材11の反電極側端面との間に挟持する挟持部材である。この挟持部材は、上述した保持部材15に機械的に連結されており、印加する電圧変化による圧電素子18の伸縮量を直接導電性棒材11に付加するようになっている。
この構成により、導電性棒材間の摩擦力を小に切替え、複数の圧電素子に個別に電圧を印加して、遠隔操作により、各棒材を個別に長さ方向に摺動し、上述した電極修正ステップ(D)による砥石との隙間を自動調整することができる。
FIG. 4 is a diagram illustrating adjustment of the gap with the grindstone using the universal electrode of the reference example . In this example, the electrode 10 for electrolytic dressing of the reference example is further in close contact with the end surfaces of the plurality of conductive bars 11 constituting the bar aggregate electrode part 12, and each bar 11 is individually slid in the length direction. A plurality of moving actuators 18 are provided. The actuator 18 is a piezoelectric element in this example.
The end surfaces on the counter electrode side of the plurality of conductive rods 11 are preferably located on the same plane as in this example.
The plurality of piezoelectric elements 18 may be piezoelectric actuators in which piezoelectric elements are two-dimensionally arranged at a fine pitch (for example, 30 μm × 30 μm).
In this figure, reference numeral 17 denotes a clamping member that clamps the piezoelectric element 18 between the end face of the conductive bar 11 opposite to the electrode. This clamping member is mechanically connected to the holding member 15 described above, and directly adds the expansion / contraction amount of the piezoelectric element 18 due to a change in applied voltage to the conductive rod 11.
With this configuration, the frictional force between the conductive rods is switched to a small level, voltage is individually applied to the plurality of piezoelectric elements, and each rod is individually slid in the length direction by remote control. The gap with the grindstone by the electrode correction step (D) can be automatically adjusted.

図5は、参考例の自在電極を用いた砥石の寸法・形状変化量の測定を示す図である。この例において、参考例の電解ドレッシング用電極10は、更に、複数の圧電素子18と挟持部材17との間に各導電性棒材11の移動量を検出するセンサ19を備える。このセンサ19は、例えば各圧電素子18の出力から各導電性棒材11の移動量を検出する。 FIG. 5 is a diagram showing measurement of the dimensional / shape change amount of the grindstone using the universal electrode of the reference example . In this example, the electrode 10 for electrolytic dressing of the reference example further includes a sensor 19 that detects the amount of movement of each conductive bar 11 between the plurality of piezoelectric elements 18 and the sandwiching member 17. For example, the sensor 19 detects the amount of movement of each conductive bar 11 from the output of each piezoelectric element 18.

また、本発明の方法において、この図に示すように、電解ドレッシングステップ(C)の後に、導電性棒材間の摩擦力を大に保持したまま、電極成形ステップ(B)における電極位置に棒材集合電極部12を再度位置決めし、次いで、導電性棒材間の摩擦力を小に切替え、各導電性棒材11を個別に長さ方向に摺動させて砥石の電解面に各導電性棒材11を長さ方向に押し付け、その移動量から砥石の寸法・形状変化量(例えば砥石磨耗量)を測定する。
この方法により、棒材集合電極部12の表面位置は電解ドレッシングでほとんど変化しないことから、遠隔操作で、砥石の寸法・形状変化量(例えば砥石磨耗量)を測定することができる。
Moreover, in the method of the present invention, as shown in this figure, after the electrolytic dressing step (C), the rod is placed at the electrode position in the electrode forming step (B) while maintaining a large frictional force between the conductive rods. The material assembly electrode part 12 is positioned again, and then the frictional force between the conductive bar members is switched to a small one, and each conductive bar member 11 is individually slid in the length direction to be electrically conductive on the electrolytic surface of the grindstone. The bar 11 is pressed in the length direction, and the dimension / shape change amount (for example, grinding wheel wear amount) of the grindstone is measured from the moving amount.
By this method, since the surface position of the bar assembly electrode portion 12 hardly changes by electrolytic dressing, the dimensional / shape change amount (for example, grinding wheel wear amount) of the grindstone can be measured by remote control.

図6は、参考例の自在電極を用いた電極クリーニングを示す図である。この例では、電解ドレッシングステップ(C)の後に、図3とは逆に、電源4を用いて砥石2と電極10との間に砥石2を負(−)に電極10を正(+)に印加し、逆電解により電極表面をクリーニングする。
この方法により、電解ドレッシングにより導電性砥石から電解した金属イオンが電極表面にメッキのように付着するが、これを逆電解によりクリーニングすることができる。
FIG. 6 is a diagram showing electrode cleaning using the universal electrode of the reference example . In this example, after the electrolytic dressing step (C), contrary to FIG. 3, using the power source 4, the grindstone 2 is made negative (−) and the electrode 10 is made positive (+) between the grindstone 2 and the electrode 10. Apply and clean the electrode surface by reverse electrolysis.
By this method, metal ions electrolyzed from the conductive grindstone by the electrolytic dressing adhere to the electrode surface like plating, but this can be cleaned by reverse electrolysis.

さらに、本発明の方法において、砥石2と電極4との間に電解ドレッシングと逆の電圧を印加し、逆電解の時に、導電性棒材間の摩擦力を小に切替え、各棒材11を個別に摺動させて砥石面に押し付け、その移動量から砥石2と電極表面間における電解強度の分布を測定し、適切かつ均一な電解強度に間隙を設定することにより、移動量が大きい棒材が対向する砥石部分は電解が強いことを意味するため、砥石と電極の間隙は短く、その逆は広く、個々の棒状電極を摺動させた後に、砥石と電極全体との間隙をセットすることができる。 Furthermore, in the method of the present invention, a voltage opposite to that of the electrolytic dressing is applied between the grindstone 2 and the electrode 4, and the frictional force between the conductive bars is switched to a small value during the reverse electrolysis, so that each bar 11 is Bars with a large amount of movement by sliding individually and pressing against the grinding wheel surface, measuring the distribution of electrolytic strength between the grinding wheel 2 and the electrode surface from the amount of movement, and setting the gap to an appropriate and uniform electrolytic strength This means that the grindstone part facing the electrode is strong in electrolysis, so the gap between the grindstone and the electrode is short, and vice versa, after sliding each bar electrode, set the gap between the grindstone and the entire electrode. Can do.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

参考例による電解ドレッシング用自在電極の全体斜視図である。It is a whole perspective view of the universal electrode for electrolytic dressing by a reference example . 参考例の自在電極の使用方法を示す図である。It is a figure which shows the usage method of the universal electrode of a reference example . 参考例の自在電極を用いた電解ドレッシング方法を示す図である。It is a figure which shows the electrolytic dressing method using the universal electrode of a reference example . 参考例の自在電極を用いた砥石との隙間調整を示す図である。It is a figure which shows clearance gap adjustment with the grindstone using the universal electrode of a reference example . 参考例の自在電極を用いた砥石の寸法・形状変化量の測定を示す図である。It is a figure which shows the measurement of the dimension and the shape variation of a grindstone using the universal electrode of a reference example . 参考例の自在電極を用いた電極クリーニングを示す図である。It is a figure which shows the electrode cleaning using the universal electrode of a reference example . ELID研削法におけるELIDサイクルを示す説明図である。It is explanatory drawing which shows the ELID cycle in an ELID grinding method. 特許文献2の「自在総型砥石を用いた電解ドレッシング方法」の模式図である。FIG. 3 is a schematic diagram of “Electrolytic dressing method using a universal grindstone” in Patent Document 2;

符号の説明Explanation of symbols

1 ワーク、2 電解ドレッシング砥石、2a 電解面、4 電源、
10 自在電極、11 導電性棒材、12 棒材集合電極部、
14 電極ホルダー、15 保持部材、
15a 保持ケーシング、15b 蓋部材、
16 押圧装置、16a 押板、16b 電磁チャック、
17 挟持部材、18圧電素子、19 センサ
1 Workpiece, 2 Electrolytic dressing stone, 2a Electrolytic surface, 4 Power supply,
10 universal electrodes, 11 conductive rods, 12 rod assembly electrodes,
14 electrode holder, 15 holding member,
15a holding casing, 15b lid member,
16 pressing device, 16a pressing plate, 16b electromagnetic chuck,
17 clamping member, 18 piezoelectric element, 19 sensor

Claims (2)

同一断面形状を有する複数の細長い導電性棒材からなり、互いに密着して対応する電解ドレッシング砥石の電解面の少なくとも一部を覆う大きさの断面形状に積層された棒材集合電極部と、該棒材集合電極部の前記断面形状を保持し、かつ隣接する導電性棒材間の摩擦力を大または小に切替え、摩擦力が大のときに各棒材の長さ方向の摺動を防止し、摩擦力が小のときに各棒材の長さ方向の摺動を可能にする電極ホルダーと、を有する電解ドレッシング用自在電極を備え、
導電性棒材間の摩擦力を小に切替え、前記電解ドレッシング砥石の電解面に棒材集合電極部を長さ方向に押し付けて、前記電解ドレッシング砥石の電解面と同一の表面形状を有する電解ドレッシング用電極を成形する電極成形ステップと、
導電性棒材間の摩擦力を大に切替え、電極と砥石表面間に間隙を設け、前記砥石でワークを研削しながら、前記砥石と電極との間に導電性液を流して電解ドレッシングする電解ドレッシングステップとを有し、
前記電解ドレッシングステップの後に、導電性棒材間の摩擦力を大に保持したまま、前記電極成形ステップにおける電極位置に棒材集合電極部を位置決めし、
次いで、導電性棒材間の摩擦力を小に切替え、各導電性棒材を個別に長さ方向に摺動させて砥石の電解面に各導電性棒材を長さ方向に押し付け、その移動量から砥石の寸法・形状変化量を測定する、ことを特徴とする電解ドレッシング用自在電極を用いた電解ドレッシング方法。
A plurality of elongated conductive rods having the same cross-sectional shape, and a bar-collecting electrode portion stacked in a cross-sectional shape having a size covering at least a part of the electrolytic surface of the corresponding electrolytic dressing grindstone in close contact with each other; Maintains the cross-sectional shape of the bar aggregate electrode part and switches the friction force between adjacent conductive bars to large or small, preventing the sliding of each bar in the length direction when the friction force is large And an electrode holder that enables sliding in the length direction of each bar when the frictional force is small, and a free electrode for electrolytic dressing,
Electrolytic dressing having the same surface shape as the electrolytic surface of the electrolytic dressing grindstone by switching the frictional force between the conductive rods to a small level and pressing the bar aggregate electrode portion in the length direction against the electrolytic surface of the electrolytic dressing grindstone An electrode forming step for forming an electrode for use;
Electrolytic dressing is performed by switching the frictional force between the conductive bars to a large level, providing a gap between the electrode and the grindstone surface, and flowing a conductive liquid between the grindstone and the electrode while grinding the workpiece with the grindstone. It has a dressing step,
After the electrolytic dressing step, while maintaining a large frictional force between the conductive rods, positioning the rod assembly electrode portion at the electrode position in the electrode forming step,
Next, the frictional force between the conductive bars is changed to a small level, and each conductive bar is individually slid in the length direction to press each conductive bar in the length direction against the electrolytic surface of the grindstone. An electrolytic dressing method using a free electrode for electrolytic dressing, characterized in that the amount of change in the size and shape of a grindstone is measured from the amount .
同一断面形状を有する複数の細長い導電性棒材からなり、互いに密着して対応する電解ドレッシング砥石の電解面の少なくとも一部を覆う大きさの断面形状に積層された棒材集合電極部と、該棒材集合電極部の前記断面形状を保持し、かつ隣接する導電性棒材間の摩擦力を大または小に切替え、摩擦力が大のときに各棒材の長さ方向の摺動を防止し、摩擦力が小のときに各棒材の長さ方向の摺動を可能にする電極ホルダーと、を有する電解ドレッシング用自在電極を備え、
導電性棒材間の摩擦力を小に切替え、前記電解ドレッシング砥石の電解面に棒材集合電極部を長さ方向に押し付けて、前記電解ドレッシング砥石の電解面と同一の表面形状を有する電解ドレッシング用電極を成形する電極成形ステップと、
導電性棒材間の摩擦力を大に切替え、電極と砥石表面間に間隙を設け、前記砥石でワークを研削しながら、前記砥石と電極との間に導電性液を流して電解ドレッシングする電解ドレッシングステップとを有し、
前記砥石と電極との間に電解ドレッシングと逆の電圧を印加し、逆電解の時に、導電性棒材間の摩擦力を小に切替え、各棒材を個別に摺動させて砥石面に押し付け、その移動量から砥石と電極表面間における電解強度の分布を測定し、適切かつ均一な電解強度に間隙を設定する、ことを特徴とする電解ドレッシング用自在電極を用いた電解ドレッシング方法。
A plurality of elongated conductive rods having the same cross-sectional shape, and a bar-collecting electrode portion stacked in a cross-sectional shape having a size covering at least a part of the electrolytic surface of the corresponding electrolytic dressing grindstone in close contact with each other; Maintains the cross-sectional shape of the bar aggregate electrode part and switches the friction force between adjacent conductive bars to large or small, preventing the sliding of each bar in the length direction when the friction force is large And an electrode holder that enables sliding in the length direction of each bar when the frictional force is small, and a free electrode for electrolytic dressing,
Electrolytic dressing having the same surface shape as the electrolytic surface of the electrolytic dressing grindstone by switching the frictional force between the conductive rods to a small level and pressing the bar aggregate electrode portion in the length direction against the electrolytic surface of the electrolytic dressing grindstone An electrode forming step for forming an electrode for use;
Electrolytic dressing is performed by switching the frictional force between the conductive bars to a large level, providing a gap between the electrode and the grindstone surface, and flowing a conductive liquid between the grindstone and the electrode while grinding the workpiece with the grindstone. It has a dressing step,
A voltage opposite to that of the electrolytic dressing is applied between the grinding wheel and the electrode. During reverse electrolysis, the frictional force between the conductive bars is switched to a small level, and each bar is slid individually and pressed against the grinding wheel surface. An electrolytic dressing method using a free electrode for electrolytic dressing, characterized in that a distribution of electrolytic strength between a grindstone and an electrode surface is measured from the amount of movement, and a gap is set to an appropriate and uniform electrolytic strength .
JP2003322948A 2003-09-16 2003-09-16 Electrolytic dressing method using universal electrode for electrolytic dressing Expired - Lifetime JP4274461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322948A JP4274461B2 (en) 2003-09-16 2003-09-16 Electrolytic dressing method using universal electrode for electrolytic dressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322948A JP4274461B2 (en) 2003-09-16 2003-09-16 Electrolytic dressing method using universal electrode for electrolytic dressing

Publications (2)

Publication Number Publication Date
JP2005088105A JP2005088105A (en) 2005-04-07
JP4274461B2 true JP4274461B2 (en) 2009-06-10

Family

ID=34454160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322948A Expired - Lifetime JP4274461B2 (en) 2003-09-16 2003-09-16 Electrolytic dressing method using universal electrode for electrolytic dressing

Country Status (1)

Country Link
JP (1) JP4274461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551951B2 (en) * 2010-03-25 2014-07-16 富士重工業株式会社 Grinding method and grinding apparatus

Also Published As

Publication number Publication date
JP2005088105A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
Ohmori et al. Utilization of nonlinear conditions in precision grinding with ELID (electrolytic in-process dressing) for fabrication of hard material components
US5032238A (en) Method of and apparatus for electropolishing and grinding
JP4274461B2 (en) Electrolytic dressing method using universal electrode for electrolytic dressing
JPH11239969A (en) Grinding method for formed mirror surface, and device for it
JP3530562B2 (en) Lens grinding method
JP3295896B2 (en) Electrolytic dressing method using adjustable total grinding wheel
JP4737492B2 (en) Metalless bond grindstone and electrolytic dressing grinding method and apparatus using the same
JPH10175165A (en) Centerless grinding method using metal bond grinding wheel, and its device
CA2339512C (en) Removable electrode
JPH08197425A (en) Grinding method and grinding device
JP3494463B2 (en) Whetstone electrolytic dressing device
JP3250931B2 (en) Grinding method and apparatus using magnetic field
JPH10225865A (en) Grinding device using metal bond grinding wheel
JP3194624B2 (en) Grinding method and apparatus
Prabhu et al. Nano-surface generation using electrolytic in-process dressing (ELID) technique in grinding process
JP4215499B2 (en) Electrode fixing jig for internal grinding equipment
US20140158290A1 (en) Method for manufacturing multi-piece bonded graphite blanks for edm
JPH06155296A (en) Electrolytic in-process dressing grinding and device therefor
KR20010083429A (en) Lapping work device for using in-process electrolytic dressing
JP2717438B2 (en) Method and apparatus for truing and dressing conductive grindstone by electrolytic dressing grinding
JPH0957622A (en) Grinding method with in-process electrolytic dressing
JP5145857B2 (en) Wafer manufacturing method
JP2886203B2 (en) Electrolytic grinding method and apparatus
JP3048461B2 (en) Method for producing grinding wheel for electrolytic dressing containing submicron abrasive grains
KR0136062B1 (en) Electro-grinding of grindstone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4