JP4274179B2 - Flame detection method and flame detection apparatus - Google Patents

Flame detection method and flame detection apparatus Download PDF

Info

Publication number
JP4274179B2
JP4274179B2 JP2005515310A JP2005515310A JP4274179B2 JP 4274179 B2 JP4274179 B2 JP 4274179B2 JP 2005515310 A JP2005515310 A JP 2005515310A JP 2005515310 A JP2005515310 A JP 2005515310A JP 4274179 B2 JP4274179 B2 JP 4274179B2
Authority
JP
Japan
Prior art keywords
flame
wavelength
self
ratio
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005515310A
Other languages
Japanese (ja)
Other versions
JPWO2005045379A1 (en
Inventor
一夫 関
健 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Publication of JPWO2005045379A1 publication Critical patent/JPWO2005045379A1/en
Application granted granted Critical
Publication of JP4274179B2 publication Critical patent/JP4274179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/04Flame sensors sensitive to the colour of flames

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Control Of Combustion (AREA)

Description

本発明は、燃焼による火炎、特に希薄燃焼による火炎の状態を検出するに好適な火炎検知方法および火炎検知装置に関する。  The present invention relates to a flame detection method and a flame detection apparatus suitable for detecting a flame caused by combustion, particularly a flame caused by lean combustion.

高温空気燃焼のような低NOx燃焼は、燃料の予熱、予混合および不活性ガス等による希釈を行って実現することが多い。このように火炎が希釈されると、その火炎の検知が困難となる。自着火温度程度に予熱された空気中で高度に希釈した場合、一般的には燃料が燃焼しているか否かの判断は、気体中で化学反応が生じている度合いを検出して行われる。このような火炎の状態検知に、例えば燃焼炉内における燃焼火炎の発光スペクトル強度を分析し、その分析結果から燃焼状態を診断することが知られている。このようなシステムは、例えば特許出願公開番号が特開平11−325460号である日本国公開特許公報(特許文献1)に記載されている。  Low NOx combustion such as high-temperature air combustion is often realized by preheating, premixing, and dilution with an inert gas. When the flame is diluted in this way, it becomes difficult to detect the flame. When highly diluted in air preheated to about the autoignition temperature, generally, determination of whether or not the fuel is combusted is made by detecting the degree of chemical reaction in the gas. For detecting the state of the flame, for example, it is known to analyze the emission spectrum intensity of the combustion flame in the combustion furnace and diagnose the combustion state from the analysis result. Such a system is described, for example, in Japanese Patent Publication (Patent Document 1) having a patent application publication number of JP-A-11-325460.

また本発明者らは、先に検出波長領域が互いに異なる複数種類の紫外線検出器を用いて火炎中のNO,OH,CH等の各成分をそれぞれ正確に検出することを提唱した。このような検出方法は、例えば特許出願公開番号が特開2003−322562号である日本国特許出願(特許文献2)に記載されている。  The inventors previously proposed that each component such as NO, OH, CH, etc. in the flame is accurately detected using a plurality of types of ultraviolet detectors having different detection wavelength regions. Such a detection method is described in, for example, a Japanese patent application (Patent Document 2) whose patent application publication number is Japanese Patent Application Laid-Open No. 2003-322562.

しかしながら上記特許文献2に示すような紫外線検出装置においては、例えば図7(上記特許文献2の図4)に示すように火炎の自発光スペクトルを良好に検出し得るものの、例えばそのカソード(陰極)を異なる材料で製作した検出波長領域の異なる複数種類の紫外線検出器を用いることが必要であることのみならず、その構成が大掛かりとなるという問題がある。  However, in the ultraviolet detection device as shown in the above-mentioned Patent Document 2, although the self-luminous spectrum of the flame can be detected well as shown in FIG. 7 (FIG. 4 in the above-mentioned Patent Document 2), for example, its cathode (cathode) There is a problem that not only is it necessary to use a plurality of types of ultraviolet detectors with different detection wavelength regions, but also the configuration becomes large.

本発明はこのような事情を考慮してなされたもので、その目的は、紫外領域における火炎の自発光特性に着目し、簡易に火炎の状態を検知することのできる火炎検知方法を提供することにある。  The present invention has been made in view of such circumstances, and its purpose is to provide a flame detection method that can easily detect the state of a flame, focusing on the self-luminous characteristics of the flame in the ultraviolet region. It is in.

更には比較的検出波長領域の狭い紫外線検出器を有効に用いて、火炎の状態を検出することのできる火炎検知方法を提供することにある。  It is another object of the present invention to provide a flame detection method capable of detecting the state of a flame by effectively using an ultraviolet detector having a relatively narrow detection wavelength region.

また本発明の別の目的は、燃焼による火炎の状態、特に希薄燃焼による火炎の状態を検出するに好適な簡易な構成の火炎検知装置を提供することにある。  Another object of the present invention is to provide a flame detection device having a simple configuration suitable for detecting the state of a flame due to combustion, in particular, the state of a flame due to lean combustion.

上述した目的を達成するべく本発明に係る火炎検知方法は、火炎の自発光成分における、例えばOHラジカルからの紫外領域の自発光スペクトルのうち、2つのピーク強度の比と局所当量比等の燃焼特性との関連性に着目したもので、燃焼による火炎、特に希薄燃焼による火炎の自発光成分から紫外領域における同じラジカル種のピークを持つ互いに異なる波長での複数の自発光強度をそれぞれ計測し、計測されたそれぞれの波長の自発光強度の相互の比である発光強度比を求め、これらの発光強度比と火炎温度との関係、および発光強度比と希薄燃焼に用いられる混合気の空気比との関係の少なくとも一方に基づいて火炎の状態検知を行うことを特徴としている。 In order to achieve the above-described object, the flame detection method according to the present invention includes a combustion of a ratio of two peak intensities and a local equivalence ratio in a self-luminous component of a flame, for example, an ultraviolet region from an OH radical. Focusing on the relationship with the characteristics, each of the self-luminous intensity at different wavelengths with the same radical species peak in the ultraviolet region from the self-luminous component of the flame by combustion, especially the flame by lean combustion, respectively, The emission intensity ratio, which is the ratio of the measured self-emission intensity at each wavelength, is obtained, the relationship between these emission intensity ratios and the flame temperature, and the emission intensity ratio and the air ratio of the mixture used for lean combustion. It is characterized in that flame state detection is performed based on at least one of the above relationships.

好ましくは、希薄燃焼による火炎の自発光成分のうち、希薄燃焼による励起状態から基底状態への電子遷移に伴う特定ラジカル種からの自発光スペクトルを計測することにより自発光強度の計測を行うことを特徴としている。また、好ましくは電子遷移AΣ→XΠのOH帯スペクトルを計測し、特に波長260nm付近のOH(2,0)、波長280nm付近のOH(1,0)、波長287nm付近のOH(2,1)、および波長306nm付近のOH(0,0)の自発光強度比を求めて火炎の状態検知を行うことを特徴としている。また、好ましくは、波長が略310nm以下のOH帯スペクトルに着目して、火炎の状態を検知することを特徴としている。Preferably, the self-luminous intensity is measured by measuring the self-luminous spectrum from the specific radical species accompanying the electron transition from the excited state to the ground state due to the lean combustion among the self-luminous components of the flame due to the lean combustion. It is a feature. Further, preferably, an OH band spectrum of the electronic transition A 2 Σ + → X 2計 測 is measured, and in particular, OH (2, 0) near a wavelength of 260 nm, OH (1,0) near a wavelength 280 nm, OH near a wavelength 287 nm It is characterized in that a flame state detection is performed by obtaining a self-luminous intensity ratio of (2, 1) and OH (0, 0) near a wavelength of 306 nm. Preferably, the flame state is detected by paying attention to an OH band spectrum having a wavelength of about 310 nm or less.

即ち、2原子分子のポテンシャルにおいて、2原子分子の電子基底状態ν”と電子励起状態ν’は、それぞれν”=0,1,2,3,…,ν’=0,1,2,3,…と多くの振動準位をとる。そして電子励起状態ν’=0,1,2,3,…にある2原子分子が電子基底状態ν”=0,1,2,3,…に戻る際、光を放出する。上述したOH(ν’,ν”)はそのときの準位を示しており、OH帯においては(0,0)でのスペクトルが最も強い光強度を持つ。  That is, in the potential of the diatomic molecule, the electronic ground state ν ″ and the electronic excited state ν ′ of the diatomic molecule are ν ″ = 0, 1, 2, 3,..., Ν ′ = 0, 1, 2, 3 respectively. , ... and many vibration levels. When a diatomic molecule in the electronically excited state ν ′ = 0, 1, 2, 3,... Returns to the electronic ground state ν ″ = 0, 1, 2, 3,. ν ′, ν ″) indicates the level at that time, and the spectrum at (0, 0) has the strongest light intensity in the OH band.

換言すれば電子が高いエネルギ軌道から低いエネルギ軌道に移動するとき、そのエネルギの差分を光として放出する際、そのスペクトル成分がエネルギ軌道に固有な波長と光強度を有する。本発明に係る火炎検知方法は、このような火炎の自発光スペクトル中のピークをなす波長成分とその発光強度との関係に着目し、少なくとも2つのピークの発光強度比と火炎温度または空気比との関係から、特に希薄燃焼における火炎の状態を検出するものである。  In other words, when electrons move from a high energy trajectory to a low energy trajectory, when the energy difference is emitted as light, the spectral components have a wavelength and light intensity that are unique to the energy trajectory. The flame detection method according to the present invention pays attention to the relationship between the wavelength component forming a peak in the self-emission spectrum of such a flame and its emission intensity, and the emission intensity ratio of at least two peaks and the flame temperature or air ratio. From this relationship, the state of the flame in the lean combustion is detected.

また本発明に係る火炎検知装置は、燃焼による火炎の自発光成分の中から紫外領域における同じラジカル種のピークを持つ互いに異なる波長での複数の自発光強度をそれぞれ検出する紫外線検出器と、この紫外線検出器の検出信号からそれぞれの波長の自発光強度を求め、これら自発光強度の相互の比と火炎温度との関係、および該比と上記燃焼に用いられる混合気の空気比との関係の少なくとも一方に基づいて前記火炎の状態を検知する処理装置とを備えることを特徴としている。 Further, the flame detector according to the present invention includes an ultraviolet detector for detecting a plurality of self-luminous intensities at different wavelengths each having a peak of the same radical species in the ultraviolet region from a self-luminous component of a flame caused by combustion, The self-luminous intensity of each wavelength is obtained from the detection signal of the ultraviolet detector, the relationship between the ratio of these self-luminous intensities and the flame temperature, and the relationship between the ratio and the air ratio of the mixture used for the combustion. And a processing device for detecting the state of the flame based on at least one of them.

かくして本発明によれば、希薄燃焼火炎における自発光成分の、同じラジカル種の複数の自発光強度、具体的にはOHラジカルからの紫外領域における自発光スペクトルに着目しているので、例えば250〜450nmの波長域を検出する紫外線検出器、好ましくは250〜350nmの波長域を検出する紫外線検出器を用いるだけで、簡易に燃焼の火炎状態を、特に希薄燃焼の火炎を検知することができる。しかも火炎における上記波長域の自発光の強度は、一般的に燃焼炉の壁面からの放射強度よりも高いので、上述したように波長が略310nm以下のOH帯スペクトルの成分を検出することで、火炎検出時の背景となる上記燃焼炉壁面の影響を殆ど受けることなく火炎の有無、ひいては火炎の状態を確実に検出することが可能となる。  Thus, according to the present invention, the self-luminous component of the lean combustion flame is focused on a plurality of self-luminous intensities of the same radical species, specifically the self-luminous spectrum in the ultraviolet region from the OH radical. By simply using an ultraviolet detector that detects a wavelength region of 450 nm, preferably an ultraviolet detector that detects a wavelength region of 250 to 350 nm, it is possible to easily detect a combustion flame state, particularly a lean combustion flame. Moreover, since the intensity of self-luminescence in the above-mentioned wavelength region in the flame is generally higher than the radiation intensity from the wall of the combustion furnace, as described above, by detecting the component of the OH band spectrum having a wavelength of about 310 nm or less, It is possible to reliably detect the presence or absence of a flame, and thus the state of the flame, with little influence from the wall surface of the combustion furnace, which is the background when the flame is detected.

本発明の一実施形態に係る火炎検知方法に用いられる希薄燃焼装置と火炎検知装置の概略構成を示す図。The figure which shows schematic structure of the lean combustion apparatus and flame detection apparatus which are used for the flame detection method which concerns on one Embodiment of this invention. 火炎検出に用いる紫外線検出器の概略構成を示す図。The figure which shows schematic structure of the ultraviolet detector used for a flame detection. 紫外線検出器の駆動回路の構成例を示す図。The figure which shows the structural example of the drive circuit of an ultraviolet detector. 本発明に係る火炎検知装置で検知された火炎のOHラジカルの自発光スペクトルの例を示す図。The figure which shows the example of the self-emission spectrum of the OH radical of the flame detected with the flame detection apparatus which concerns on this invention. 発光強度比Rと空気比および火炎温度との関係を示す図。The figure which shows the relationship between emission intensity ratio RI , an air ratio, and flame temperature. 炉壁の放射エネルギと温度との関係を示す図。The figure which shows the relationship between the radiant energy and temperature of a furnace wall. 火炎の自発光スペクトルを示す図。The figure which shows the self-emission spectrum of a flame.

以下、図面を参照して本発明の一実施形態に係る火炎検知方法および火炎検知装置について説明する。  Hereinafter, a flame detection method and a flame detection apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明方法が実施される希薄燃焼装置と、この希薄燃焼装置に組み込んだ火炎検知装置の概略構成を簡略化して示す図で、1は燃焼炉である。この燃焼炉1は、例えばその周囲を耐熱煉瓦やセラミックファイバ等で囲い、燃焼炉内体積を2.58×10−3とし、その上部に100×100mmの排気口を設けた矩形型のもので、その燃焼室熱負荷は1.16×10kW/mに設定されている。また燃焼炉1内に設けたバーナ2は、内径40mm、高さが60mmのウォールリセス型のものからなる。このバーナ2には、その直前に設けられた混合器3にて燃料(例えばプロパンガス)と空気とが、例えば0.8〜1.4の空気比にて混合されて供給されるようになっている。混合器3には、燃料タンクFから調量器V1、圧力計P1および流量計M1を経て燃料が供給されると共に、ブロワBから調量器V2および流量計M2を経て空気が供給される。FIG. 1 is a diagram showing a simplified configuration of a lean combustion apparatus in which the method of the present invention is implemented and a flame detection apparatus incorporated in the lean combustion apparatus, and 1 is a combustion furnace. For example, the combustion furnace 1 is a rectangular type that is surrounded by heat-resistant bricks, ceramic fibers, or the like, has a combustion furnace volume of 2.58 × 10 −3 m 3, and has an exhaust port of 100 × 100 mm on the top. Therefore, the combustion chamber heat load is set to 1.16 × 10 3 kW / m 3 . The burner 2 provided in the combustion furnace 1 is a wall recess type having an inner diameter of 40 mm and a height of 60 mm. Fuel (for example, propane gas) and air are mixed and supplied to the burner 2 at an air ratio of, for example, 0.8 to 1.4 in a mixer 3 provided immediately before the burner 2. ing. Fuel is supplied to the mixer 3 from the fuel tank F through the metering device V1, the pressure gauge P1, and the flow meter M1, and air is supplied from the blower B through the metering device V2 and the flow meter M2.

一方、前記燃焼炉1の側壁面には、65mmおよび130mmの高さ位置にそれぞれ石英ガラスが嵌め込まれた炉内観測窓4a,4bが設けられている。この炉内観測窓4a,4bから視認することのできる前記燃焼炉1内の燃焼により自発光する火炎の光は、光ファイバ6を介してモノクロメータ5(分光器)に導かれる。このモノクロメータ5は、種々の波長成分をもつ入射光の中から希望の波長成分を取り出すための回折格子を備え、この回折格子と入射光とのなす角度に応じて選択された所定波長域の光成分をCCD等の受光素子により検出するように構成される。このようなモノクロメータ5により、バーナ2により希薄燃焼された燃料の火炎による自発光が受光検知され、その受光強度に相当する電圧(または電流)が変換される。このようにして検出される電気信号(紫外線強度)がA/D変換器7を介してコンピュータ(PC)8に取り込まれて後述するようにピーク波長間の発光強度比が求められ、更に火炎温度や空気比との関係が調べられて火炎の有無やその状態が検出される。  On the other hand, on the side wall surface of the combustion furnace 1, furnace observation windows 4a and 4b in which quartz glass is fitted at heights of 65 mm and 130 mm, respectively, are provided. The light of the flame that emits light by the combustion in the combustion furnace 1, which can be visually recognized from the observation windows 4 a and 4 b in the furnace, is guided to the monochromator 5 (spectrometer) through the optical fiber 6. The monochromator 5 includes a diffraction grating for extracting a desired wavelength component from incident light having various wavelength components, and has a predetermined wavelength range selected according to an angle formed by the diffraction grating and the incident light. The light component is configured to be detected by a light receiving element such as a CCD. By such a monochromator 5, light emission due to the flame of the fuel burned lean by the burner 2 is received and detected, and a voltage (or current) corresponding to the received light intensity is converted. The electric signal (ultraviolet light intensity) detected in this way is taken into the computer (PC) 8 via the A / D converter 7 and the emission intensity ratio between the peak wavelengths is obtained as will be described later. The relationship between the air ratio and the air ratio is examined, and the presence or the state of the flame is detected.

尚、ここではモノクロメータ5におけるフィルタ(回折格子)として250〜450nmの波長域を検出し得るものを用いているが、火炎状態の検知には上記OH帯スペクトルの確認が可能な250〜350nmの波長域のデータを採用している。またコンピュータ8に入力される信号には、火炎の揺らぎやモノクロメータ5の暗電流に起因する雑音が含まれることから、入力信号(モノクロメータ5の出力信号)のアンサンブル平均と移動平均とを用いることで平滑化し、これを検出信号としている。  In this case, a filter (diffraction grating) capable of detecting a wavelength range of 250 to 450 nm is used as the filter (diffraction grating) in the monochromator 5, but for detection of a flame state, the above-mentioned OH band spectrum can be confirmed. Wavelength data is used. Further, since the signal input to the computer 8 includes noise due to flame fluctuation and the dark current of the monochromator 5, the ensemble average and moving average of the input signal (monochromator 5 output signal) are used. This is used as a detection signal.

このような希薄燃焼装置を用いて、先ず燃焼炉1内を十分に加熱し、炉内温度が安定した後、空気比が0.8となるように燃料流量および空気流量を設定して、そのときの希薄燃焼火炎の自発光強度を計測した。また空気流量を一定にした状態で燃料流量を徐々に減少させ、空気比が1.4になるか、或いは吹き消え限界となるまで複数回に亘って計測を繰り返したところ、空気流量が80L/min、空気比1.35において、例えば図4に示す如き自発光スペクトルが得られた。  Using such a lean combustion apparatus, first, the inside of the combustion furnace 1 is sufficiently heated, and after the furnace temperature is stabilized, the fuel flow rate and the air flow rate are set so that the air ratio becomes 0.8. The self-luminous intensity of the lean burn flame was measured. In addition, when the fuel flow rate was gradually decreased with the air flow rate kept constant, and the measurement was repeated a plurality of times until the air ratio became 1.4 or the blow-off limit was reached, the air flow rate became 80 L / For example, a self-luminescence spectrum as shown in FIG. 4 was obtained at an air ratio of 1.35 min.

この図4に示す自発光スペクトルにおいて確認できたピークは、電子遷移AΣ→XΠにおけるOH帯スペクトルであり、特に波長260nm付近のOH(2,0)、波長280nm付近のOH(1,0)、波長287nm付近のOH(2,1)、および波長306nm付近のOH(0,0)の4ケ所であった。そこで最も強くピークの現れた波長306nm付近のOH(0,0)の発光強度を基準とし、波長260nm付近のOH(2,0)の発光強度、および波長280nm付近のOH(1,0)の発光強度との比(発光強度比)Rを求め、これらの発光強度比Rと空気比または火炎温度との関係を空気流量90L/min以下について調べたところ、図5に示す関係が得られた。図5においてR260(expr)が、波長306nm付近のOH(0,0)の発光強度と波長260nm付近のOH(2,0)の発光強度との比を示し、R280(expr)が、波長306nm付近のOH(0,0)の発光強度と波長280nm付近のOH(1,0)の発光強度との比を示す。尚、この流量においては、リセスバーナ2の内部に火炎が安定に存在していた。The peaks confirmed in the self-emission spectrum shown in FIG. 4 are OH band spectra in the electronic transition A 2 Σ + → X 2 、, and in particular, OH (2, 0) near a wavelength of 260 nm, OH (wavelength near 280 nm) 1, 0), OH (2, 1) near a wavelength of 287 nm, and OH (0, 0) near a wavelength of 306 nm. Therefore, with reference to the emission intensity of OH (0, 0) near the wavelength of 306 nm where the strongest peak appeared, the emission intensity of OH (2, 0) near the wavelength of 260 nm and OH (1,0) near the wavelength of 280 nm. When the ratio of emission intensity (emission intensity ratio) R I was obtained and the relationship between the emission intensity ratio R I and the air ratio or flame temperature was investigated for an air flow rate of 90 L / min or less, the relationship shown in FIG. 5 was obtained. It was. In FIG. 5, R260 (expr) represents the ratio of the emission intensity of OH (0, 0) near the wavelength of 306 nm to the emission intensity of OH (2, 0) near the wavelength of 260 nm, and R280 (expr) represents the wavelength of 306 nm. The ratio between the emission intensity of OH (0, 0) near and the emission intensity of OH (1,0) near 280 nm is shown. At this flow rate, the flame was stably present inside the recess burner 2.

一方、燃焼炉1の炉壁は、その材料や表面状態によって放射率が異なるが、アルミナ等の耐火煉瓦等においては略1.0と看做すことができる。また炉壁が高温になるほど、例えば図6に示すように温度の上昇に伴ってどの波長の放射エネルギもほぼ一様に上昇する。ちなみに不輝炎のエネルギは最大で10W/m程度であり、CHに対応する波長(315nm付近,390nm付近,430nm付近)では、炉壁の放射率の影響を受け易くなる。そしてその温度が1600Kを越えるとS/N比が1に近くなるので、火炎からの光(可視波長範囲)は殆ど見えなくなる。従ってCHに対応する波長から希釈火炎を検知することは困難となる。従って炉壁に依存し難い波長での火炎検出が必要となる。On the other hand, although the emissivity of the furnace wall of the combustion furnace 1 varies depending on the material and surface state, it can be regarded as approximately 1.0 in a refractory brick such as alumina. Further, as the temperature of the furnace wall becomes higher, for example, as shown in FIG. 6, the radiation energy of any wavelength increases substantially uniformly with an increase in temperature. Incidentally, the energy of the non-luminous flame is about 10 W / m 2 at the maximum, and at wavelengths corresponding to CH (near 315 nm, 390 nm, 430 nm), it is easily affected by the emissivity of the furnace wall. When the temperature exceeds 1600K, the S / N ratio becomes close to 1, so that the light from the flame (visible wavelength range) is hardly visible. Therefore, it becomes difficult to detect the diluted flame from the wavelength corresponding to CH. Therefore, it is necessary to detect a flame at a wavelength that does not easily depend on the furnace wall.

このような観点から従来より一般にも火炎検出に用いる化学発光を検出するべく、OH,CH,Cや赤外線が用いられており、炭化水素火炎の検出に最も適した化学種は、専ら、CHであると考えられている。しかしこの種の化学種の自発光波長は431.4nmと比較的長く、目視確認には適しているが、希釈された火炎の検知には不向きである。From this point of view, OH, CH, C 2 and infrared rays are used in order to detect chemiluminescence generally used for flame detection, and the most suitable chemical species for detection of hydrocarbon flame is CH. It is considered to be. However, this type of chemical species has a relatively long self-emitting wavelength of 431.4 nm, which is suitable for visual confirmation, but is not suitable for detecting a diluted flame.

この点、OHは火炎中のみならず、既燃の高温ガス中にも存在する。これ故、火炎の反応帯のでの検出には注意が必要である。しかしOHの自発光の波長306.4nmは、既燃ガス中の発光に比較して、火炎反応帯中で最も高い強度を持ち、後流の火炎帯からの発光を無視し得る程強い。尚、OHに比較してその強度が弱いが、260nmよりも短い波長においてはNOの発光を利用することも可能である。  In this respect, OH exists not only in the flame but also in the burned hot gas. Therefore, care must be taken in detecting the flame reaction zone. However, the OH self-emission wavelength of 306.4 nm has the highest intensity in the flame reaction zone compared to the emission in the burned gas, and is so strong that the emission from the downstream flame zone can be ignored. Although its intensity is weaker than that of OH, it is also possible to utilize NO emission at a wavelength shorter than 260 nm.

また前述した図6に示したように、炉壁の温度が高くなってくると、その放射エネルギはプランク(Planck)の式に従って強くなる。従ってOH分子中でのエネルギ分配が熱平衡であれば、前述した発光強度比R、例えば図6に示す波長281.1nmの強度I281と波長306.4nmの強度I306との比I281/I306は温度のみに依存し、その温度が高くなればなるほど強度比が大きくなる関係を有する。Further, as shown in FIG. 6 described above, when the temperature of the furnace wall becomes higher, the radiant energy becomes stronger according to the Planck equation. Therefore, if the energy distribution in the OH molecule is thermal equilibrium, the emission intensity ratio R I described above, for example, the ratio I 281 / intensity I 281 at the wavelength 281.1 nm and the intensity I 306 at the wavelength 306.4 nm shown in FIG. I 306 depends only on temperature, and has a relationship that the intensity ratio increases as the temperature increases.

そこで前述した図1に示す希薄燃焼装置に着目すると、その計測はOH反応帯で行われている為、OHの励起状態から失活するまでの時間が400〜800nSec程度と非常に短いとしても、その分子中の電子エネルギの分配が十分に熱平衡状態に達しているとは考え難い。  Therefore, paying attention to the above-described lean combustion apparatus shown in FIG. 1, since the measurement is performed in the OH reaction zone, even if the time from the excited state of OH to deactivation is as short as about 400 to 800 nSec, It is unlikely that the distribution of electron energy in the molecule has reached a sufficient thermal equilibrium.

そこで火炎中のAΣ→XΠ(0,0)とOH(1,0)等との発光強度比Rをとってみたところ、前述した図5に示すような結果が得られた。尚、図5中、破線で示す曲線は、プランク(Planck)の黒体の単色射出性能をE(T,λ)として、
=E(T,281nm)/E(T,306nm)
=E(T,262nm)/E(T,306nm)
をそれぞれ計算し、これを併記したものである。R260(calc)が波長260nm付近のOH(2,0)に関する発光強度比の計算値、R280(calc)が波長280nm付近のOH(1,0)に関する発光強度比の計算値をそれぞれ示す。但し、ここでは熱電対によるガス温度計測が、壁面の影響等で正しい値を得ることができなかったので、熱化学平衡計算による断熱火炎温度を用いて計算した。
So I tried taking the emission intensity ratio R I of A 2 Σ +X 2 Π in the flame and (0,0) and OH (1, 0) or the like, to obtain a result as shown in Fig. 5 described above It was. In FIG. 5, the curve indicated by a broken line is E (T, λ) where the monochrome emission performance of a Planck black body is E (T, λ).
R I = E (T, 281 nm) / E (T, 306 nm)
R I = E (T, 262 nm) / E (T, 306 nm)
Are calculated and written together. R260 (calc) represents the calculated value of the emission intensity ratio for OH (2, 0) near the wavelength of 260 nm, and R280 (calc) represents the calculated value of the emission intensity ratio for OH (1, 0) near the wavelength of 280 nm. However, since the gas temperature measurement by a thermocouple could not obtain a correct value due to the influence of the wall surface, it was calculated using the adiabatic flame temperature by thermochemical equilibrium calculation.

このようにして求められた発光強度比Rと空気比および火炎温度との関係を検討して見たところ、雑音等の影響受けているものの、上述した計算に示す熱平衡を仮定した変化に近い傾向を示すことが確認できた。特に信号が大きいR280での発光強度比は、空気比の小さな過濃条件ではその比が殆ど変わらないが、1500〜1900℃程度の高い火炎温度において自発光強度比RI280に着目した場合、その値は0.20〜0.32の範囲に有り、しかも自発光検出の背景となる炉壁の放射強度に比較して十分に強い。従って、例えば波長が略310nmよりも短い自発光に注目することで、好ましくは波長が306nmよりも短い自発光に注目することで、希釈燃焼における火炎の状態検知に十分に利用できることが明らかとなった。Thus emission intensity ratio determined by R I and air ratio and the relationship between flame temperature apparently considering, although affected by the noise or the like, close to the change assuming thermal equilibrium shown in the above calculations It was confirmed that the trend was shown. In particular, the emission intensity ratio at R 280 with a large signal is almost unchanged under the over-concentration condition with a small air ratio, but when focusing on the self-emission intensity ratio R I280 at a high flame temperature of about 1500 to 1900 ° C, The value is in the range of 0.20 to 0.32, and is sufficiently strong compared to the radiation intensity of the furnace wall, which is the background of the detection of self-luminescence. Therefore, for example, by paying attention to self-light emission with a wavelength shorter than about 310 nm, and preferably paying attention to self-light emission with a wavelength shorter than 306 nm, it becomes clear that it can be sufficiently utilized for detecting the state of a flame in diluted combustion. It was.

本発明の他の実施形態として上述した高価なモノクロメータ5に代えて、例えば特公昭44−1039号の日本国特許公報に開示されているような放電管型の紫外線検出器9を複数組み合わせて用いることもできる。この紫外線検出器9は、図2に示すように紫外線を透過するガラス管中に、網目状の陽極(アノード)9aと陰極(カソード)9bとを所定の間隔を隔てて設けると共にペニング混合ガスを封入したものである。この種の放電管型の紫外線検出器9における検出可能な波長は、主に陰極9bの材質によって決定される。すなわち、陰極9bの材質の持つ仕事関数によって規定される波長よりも短い波長の紫外線を検出する。もし検出波長帯域を限定したい場合には、検出光が所定の光学的バンドパス・フィルタを通過した後に陰極9bに当たるように構成する。またこの紫外線検出器9の駆動回路としては、例えば特公昭47−7878号の日本国特許公報に開示されるようなものが用いられる。  In place of the expensive monochromator 5 described above as another embodiment of the present invention, for example, a plurality of discharge tube type ultraviolet detectors 9 as disclosed in Japanese Patent Publication No. 44-1039 are combined. It can also be used. As shown in FIG. 2, this ultraviolet ray detector 9 is provided with a net-like anode (anode) 9a and a cathode (cathode) 9b at a predetermined interval in a glass tube that transmits ultraviolet rays, and a Penning mixed gas is supplied. Enclosed. The detectable wavelength in this type of discharge tube type ultraviolet detector 9 is mainly determined by the material of the cathode 9b. That is, ultraviolet light having a wavelength shorter than the wavelength defined by the work function of the material of the cathode 9b is detected. If it is desired to limit the detection wavelength band, the detection light is configured to impinge on the cathode 9b after passing through a predetermined optical bandpass filter. As a drive circuit for the ultraviolet detector 9, for example, the one disclosed in Japanese Patent Publication No. 47-7878 is used.

即ち、紫外線検出器9の駆動は、例えば図3に示すように構成された駆動回路を介して300V程度の交流電圧が印加されておこなわれる。すると紫外線検出器9は、或る強さ以上の特定波長の紫外線が照射されているときにだけ陽極(アノード)9aと陰極(カソード)9bとの間に放電電流を生起する。そしてこの放電電流により抵抗RLに電圧降下を生じせしめ、該抵抗RLに並列接続されたコンデンサCと協働して電圧または電流を発生する。  That is, the ultraviolet detector 9 is driven by applying an AC voltage of about 300 V through a drive circuit configured as shown in FIG. 3, for example. Then, the ultraviolet ray detector 9 generates a discharge current between the anode (anode) 9a and the cathode (cathode) 9b only when ultraviolet rays having a specific wavelength of a certain intensity or more are irradiated. This discharge current causes a voltage drop in the resistor RL, and generates a voltage or current in cooperation with the capacitor C connected in parallel to the resistor RL.

ちなみにこの種の放電管型の紫外線検出器9は、一般的には紫外線の強さに応じた電流出力を得ることができない。しかし紫外線が強いほど紫外線検出器に放電が発生する確率が大きくなことから、例えば放電時間を計時することにより、紫外線の強さに応じた相対的な出力信号を得ることが可能である。  Incidentally, this type of discharge tube type ultraviolet detector 9 generally cannot obtain a current output corresponding to the intensity of ultraviolet rays. However, the stronger the ultraviolet rays, the greater the probability that discharge will occur in the ultraviolet detector. For example, by measuring the discharge time, it is possible to obtain a relative output signal corresponding to the intensity of the ultraviolet rays.

また検出波長を可変可能な前記モノクロメータ5とは異なり上述の紫外線検出器9においては通常は特定の波長しか検出することができないが、OHラジカルからの紫外領域における自発光スペクトルと同じ検出波長を持つ紫外線検出器9を2台用いれば、モノクロメータ5よりも安価に装置を構成することができる。例えば一方の紫外線検出器9として波長306nm付近のOHラジカル発光の強さを検出するものを用い、他方の紫外線検出器9として波長280nm付近のOHラジカル発光の強さを検出するものを用いれば良い。これらの2台の紫外線検出器9からの検出結果から2つの波長の発光強度比を算出すれば、前述したように発光強度比と火炎温度または空気比との関係を求めることが可能となる。  Unlike the monochromator 5 that can change the detection wavelength, the above-described ultraviolet detector 9 can usually detect only a specific wavelength, but has the same detection wavelength as the self-emission spectrum in the ultraviolet region from the OH radical. If two ultraviolet detectors 9 are used, the apparatus can be configured at a lower cost than the monochromator 5. For example, one ultraviolet detector 9 that detects the intensity of OH radical emission near the wavelength of 306 nm may be used, and the other ultraviolet detector 9 that detects the intensity of OH radical emission near the wavelength of 280 nm may be used. . If the emission intensity ratio of the two wavelengths is calculated from the detection results from these two ultraviolet detectors 9, the relationship between the emission intensity ratio and the flame temperature or air ratio can be obtained as described above.

更に他の実施形態として、特殊な使い方ではあるが一台の紫外線検出器9の検出波長を変化させることも可能である。例えば306nmと280nmの両波長を検出可能な紫外線検出器9(例えば陰極9bの材料として銀を用いたもの)においては、高電圧を印加すると波長306nmに対する感度が高くなり、印加電圧を下げると波長306nmに対する感度が低下するという現象が生じる。この現象を利用することで、例えば計測中に印加電圧を切り替えることによって一台の紫外線検出器9を異なる二つの波長の紫外線の検出に用いることができる。  As yet another embodiment, the detection wavelength of one ultraviolet detector 9 can be changed although it is used in a special way. For example, in the ultraviolet detector 9 that can detect both wavelengths of 306 nm and 280 nm (for example, using silver as the material of the cathode 9b), the sensitivity to the wavelength of 306 nm increases when a high voltage is applied, and the wavelength decreases when the applied voltage is decreased. The phenomenon that the sensitivity with respect to 306 nm falls arises. By utilizing this phenomenon, for example, by switching the applied voltage during measurement, one ultraviolet detector 9 can be used to detect ultraviolet rays having two different wavelengths.

上述の実施形態では、狭い検出波長帯域を有する紫外線検出器9を用いて特定波長でピークを生じる単一のラジカル発光ごとにそれぞれの発光強度を検出するものであった。これに対し次に述べる他の実施形態では、比較的広い検出波長帯域を有する紫外線検出器9を用いる。200nm以下の波長を持つ紫外線は大気中で減衰してしまって検出されないことを考慮すると、例えば、炭素製陰極9bを持つ紫外線検出器9は約200〜280nmの、銅製陰極9bを持つ紫外線検出器は約200〜300nmの、銀製電極9bを持つ紫外線検出器9は約200〜380nmの波長帯域の紫外線を、それぞれ検出することができる。したがって、炭素製陰極9bを持つ紫外線検出器9は波長260nmにピークを持つラジカル発光OH(2,0)の支配的な波長帯域の紫外線を検出する(炭素製陰極9bの限界波長280nm付近では検出感度が落ちるので280nmにピークを持つラジカル発光は支配的に作用しない)。銅製陰極9bを持つ紫外線検出器9は波長280nmにピークを持つラジカル発光OH(1,0)が支配的な波長帯域の紫外線を検出する。銀製陰極9bを持つ紫外線検出器9は波長306nmにピークを持つラジカル発光OH(0,0)が支配的な波長帯域の紫外線を検出する。そこで、上述の発光強度比R260の代替値として、(炭素製陰極9bを持つ紫外線検出器9の検出値)/(銀製陰極9bを持つ紫外線検出器9の検出値)を採用し、上述の発光強度比R280の代替値として、(銅製陰極9bを持つ紫外線検出器9の検出値)/(銀製陰極9bを持つ紫外線検出器9の検出値)を採用することができる。これにより、前述の実施例同様、発光強度比と火炎温度との関係、あるいは発光強度と空気比との関係、を求めることが可能となる。なお、この実施例においては検出する波長帯域が比較的広いので複数のラジカル発光を検出するおそれがある。例えば、銅製陰極9bを持つ紫外線検出器9は波長280nmにピークを持つラジカル発光OH(1,0)と共に波長287nmにピークを持つラジカル発光OH(2,1)を検出するおそれがある。このような場合、上述のように紫外線検出器9への印加電圧を変化させ波長に対する感度を変更して測定を行い、この測定データどうしの演算によって不要なラジカル発光による検出値への影響を減じることが可能である。  In the above-described embodiment, the emission intensity is detected for each single radical emission that causes a peak at a specific wavelength using the ultraviolet detector 9 having a narrow detection wavelength band. On the other hand, in another embodiment described below, an ultraviolet detector 9 having a relatively wide detection wavelength band is used. Considering that ultraviolet rays having a wavelength of 200 nm or less are attenuated in the atmosphere and are not detected, for example, the ultraviolet detector 9 having a carbon cathode 9b is an ultraviolet detector having a copper cathode 9b of about 200 to 280 nm. The ultraviolet detector 9 having a silver electrode 9b of about 200 to 300 nm can detect ultraviolet rays in the wavelength band of about 200 to 380 nm, respectively. Therefore, the ultraviolet detector 9 having the carbon cathode 9b detects ultraviolet rays in the dominant wavelength band of the radical emission OH (2, 0) having a peak at a wavelength of 260 nm (detected in the vicinity of the limit wavelength 280 nm of the carbon cathode 9b). Since the sensitivity decreases, radical emission having a peak at 280 nm does not act dominantly). The ultraviolet detector 9 having the copper cathode 9b detects ultraviolet rays in a wavelength band in which radical emission OH (1,0) having a peak at a wavelength of 280 nm is dominant. The ultraviolet detector 9 having a silver cathode 9b detects ultraviolet rays in a wavelength band in which radical emission OH (0, 0) having a peak at a wavelength of 306 nm is dominant. Therefore, as a substitute value for the above-described emission intensity ratio R260, (detection value of the ultraviolet detector 9 having the carbon cathode 9b) / (detection value of the ultraviolet detector 9 having the silver cathode 9b) is adopted, and the above-described emission. As an alternative value of the intensity ratio R280, (detection value of the ultraviolet detector 9 having the copper cathode 9b) / (detection value of the ultraviolet detector 9 having the silver cathode 9b) can be employed. As a result, as in the previous embodiment, it is possible to obtain the relationship between the emission intensity ratio and the flame temperature, or the relationship between the emission intensity and the air ratio. In this embodiment, since the wavelength band to be detected is relatively wide, there is a risk of detecting a plurality of radical emissions. For example, the ultraviolet detector 9 having the copper cathode 9b may detect radical emission OH (2, 1) having a peak at a wavelength of 287 nm as well as radical emission OH (1, 0) having a peak at a wavelength of 280 nm. In such a case, as described above, the voltage applied to the ultraviolet detector 9 is changed to change the sensitivity to the wavelength, and the measurement is performed between the measurement data to reduce the influence on the detected value due to unnecessary radical emission. It is possible.

以上のように本発明における火炎検知方法および火炎検知装置においては、希薄燃焼による火炎の自発光成分からAΣ→XΠのOH帯スペクトルを計測し、その自発光強度比Rを判定することで、希釈燃焼における火炎温度または空気比を確実に検出し得ることが明らかとなった。この故、各種の希薄燃焼の火炎検出を燃焼炉の壁面における熱放射の影響を受けることなしに簡易に、しかも確実に行うことが可能となる等の実用上多大なる効果が奏せられる。As described above, in the flame detection method and flame detection apparatus according to the present invention, the OH band spectrum of A 2 Σ + → X 2か ら is measured from the self-luminous component of the flame caused by the lean combustion, and the self-luminous intensity ratio R I is obtained. By judging, it became clear that the flame temperature or air ratio in dilution combustion can be detected reliably. For this reason, a great number of practical effects are achieved such that various types of lean flame detection can be easily and reliably performed without being affected by thermal radiation on the wall of the combustion furnace.

Claims (5)

燃焼による火炎の自発光成分の中から紫外領域における同じラジカル種のピークを持つ互いに異なる波長での複数の自発光強度をそれぞれ計測し、
計測されたそれぞれの波長の自発光強度の相互の比である発光強度比を求め、
該発光強度比と火炎温度との関係、および該発光強度比と上記燃焼に用いられる混合気の空気比との関係の少なくとも一方に基づいて火炎の状態検知を行うことを特徴とする火炎検知方法。
Measure multiple self-luminous intensities at different wavelengths with the same radical species peak in the ultraviolet region from the self-luminous component of the flame caused by combustion,
Find the emission intensity ratio, which is the ratio of the measured self-emission intensity of each wavelength,
A flame detection method comprising detecting a flame state based on at least one of a relationship between the emission intensity ratio and a flame temperature and a relationship between the emission intensity ratio and an air ratio of an air-fuel mixture used for the combustion. .
前記自発光強度の計測は、燃焼による励起状態から基底状態への電子遷移に伴う特定ラジカル種からの自発光スペクトルを計測するものであることを特徴とする、請求項1に記載の火炎検知方法。  The flame detection method according to claim 1, wherein the self-luminous intensity is measured by measuring a self-luminous spectrum from a specific radical species accompanying an electronic transition from an excited state to a ground state by combustion. . 前記自発光強度の計測は、電子遷移AΣ→XIIのOH帯スペクトルを計測するものであって、
波長260nm付近のOH(2,0)、波長280nm付近のOH(1,0)、波長287nm付近のOH(2,1)、および波長306nm付近のOH(0,0)の自発光強度の相互の比を求めて火炎の状態検知を行うものである請求項2に記載の火炎検知方法。
The measurement of the self-luminous intensity is to measure the OH band spectrum of the electronic transition A 2 Σ + → X 2 II,
Mutual emission intensity of OH (2,0) near wavelength 260 nm, OH (1,0) near wavelength 280 nm, OH (2,1) near 287 nm, and OH (0,0) near 306 nm The flame detection method according to claim 2, wherein the flame state is detected by obtaining the ratio of the above.
波長が略310nm以下のOH帯スペクトルに着目して、火炎の状態を検知することを特徴とする請求項1に記載の火炎検知方法。  The flame detection method according to claim 1, wherein the state of the flame is detected by paying attention to an OH band spectrum having a wavelength of about 310 nm or less. 燃焼による火炎の自発光成分の中から紫外領域における同じラジカル種のピークを持つ互いに異なる波長での複数の自発光強度をそれぞれ検出する紫外線検出器と、
この紫外線検出器の検出信号からそれぞれの波長の自発光強度を求め、これら自発光強度の相互の比と火炎温度との関係、および該比と上記燃焼に用いられる混合気の空気比との関係の少なくとも一方に基づいて前記火炎の状態を検知する処理装置と
を具備したことを特徴とする火炎検知装置。
An ultraviolet detector for detecting a plurality of self-luminous intensities at different wavelengths each having a peak of the same radical species in the ultraviolet region from a self-luminous component of a flame caused by combustion;
The self-luminous intensity of each wavelength is obtained from the detection signal of the ultraviolet detector, the relation between the ratio of the self-luminous intensity and the flame temperature, and the relation between the ratio and the air ratio of the mixture used for the combustion And a processing device for detecting the state of the flame based on at least one of the above.
JP2005515310A 2003-11-05 2004-11-05 Flame detection method and flame detection apparatus Expired - Fee Related JP4274179B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003376177 2003-11-05
JP2003376177 2003-11-05
PCT/JP2004/016405 WO2005045379A1 (en) 2003-11-05 2004-11-05 Flame detection method and flame detection device

Publications (2)

Publication Number Publication Date
JPWO2005045379A1 JPWO2005045379A1 (en) 2007-11-29
JP4274179B2 true JP4274179B2 (en) 2009-06-03

Family

ID=34567104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515310A Expired - Fee Related JP4274179B2 (en) 2003-11-05 2004-11-05 Flame detection method and flame detection apparatus

Country Status (3)

Country Link
JP (1) JP4274179B2 (en)
CN (1) CN1781014B (en)
WO (1) WO2005045379A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550447B1 (en) 2013-10-29 2015-09-08 한국생산기술연구원 Air-fuel ratio control apparatus and method using photo diode sensor
WO2021085716A1 (en) * 2019-10-28 2021-05-06 서울대학교산학협력단 Apparatus and method for diagnosing combustion condition on basis of spontaneous flame emission spectroscopy

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223016B1 (en) * 2007-12-19 2018-02-07 ABB Research Ltd. Flame scanning device and method for its operation
CN101793827B (en) * 2010-01-15 2013-02-13 公安部上海消防研究所 Method for online measurement of concentration of OH free radical in flame zone of Class B fire and flame device
WO2012055753A2 (en) * 2010-10-27 2012-05-03 Siemens Aktiengesellschaft Device and method for gasifying carbon-containing fuels
CN102538957B (en) * 2010-12-20 2015-07-15 西安航天远征流体控制股份有限公司 Powder burning light intensity sensor
KR20150034035A (en) * 2013-09-25 2015-04-02 한국생산기술연구원 An air fuel ratio instrumentation system including optical sensor
CN104864411B (en) * 2015-03-17 2017-06-23 厦门奥普拓自控科技有限公司 A kind of grate firing boiler extinguishes the intelligent checking system of boundary
CN107729794A (en) * 2016-08-10 2018-02-23 富士通株式会社 Flame detecting method, flame detecting device and electronic equipment
CN106959281A (en) * 2017-04-15 2017-07-18 广东蓝新氢能源科技有限公司 A kind of free radical detection means
JP6889062B2 (en) * 2017-07-31 2021-06-18 アズビル株式会社 Manufacturing method of cathode electrode of UV sensor and UV sensor
CN108592078B (en) * 2018-06-07 2019-12-24 西安交通大学 Combustion state monitoring device and method based on spectral characteristics
JP7139203B2 (en) * 2018-09-11 2022-09-20 ローム株式会社 UV detector
EP3715717B9 (en) 2019-03-26 2021-11-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combustion method and burner for implementing the same
JP7232104B2 (en) * 2019-03-29 2023-03-02 アズビル株式会社 Flame detection system and fault diagnosis method
JP2021131249A (en) * 2020-02-18 2021-09-09 アズビル株式会社 Light detection system and discharge probability calculating method
JP6948679B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio estimation system, air ratio estimation method and program
JP6948678B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio adjustment method, air ratio adjustment system and program
JP6996724B1 (en) 2021-06-18 2022-01-17 東京瓦斯株式会社 Information provision method, information provision system and program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159515A (en) * 1984-01-27 1985-08-21 Hitachi Ltd Furnace system
CN85101184B (en) * 1985-04-01 1988-11-30 株式会社日立制作所 Combustion system
JPH0684938B2 (en) * 1985-10-18 1994-10-26 株式会社日立製作所 Combustion light air-fuel ratio sensor
JPH01244214A (en) * 1988-03-25 1989-09-28 Agency Of Ind Science & Technol Method and device for monitoring and controlling air ratio of burner in operation
JP2000111398A (en) * 1998-09-30 2000-04-18 Hamamatsu Photonics Kk Measuring apparatus for self-luminescence from flame
US6646265B2 (en) * 1999-02-08 2003-11-11 General Electric Company Optical spectrometer and method for combustion flame temperature determination
US6350988B1 (en) * 1999-02-08 2002-02-26 General Electric Company Optical spectrometer and method for combustion flame temperature determination
US6239434B1 (en) * 1999-02-08 2001-05-29 General Electric Company Solid state optical spectrometer for combustion flame temperature measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550447B1 (en) 2013-10-29 2015-09-08 한국생산기술연구원 Air-fuel ratio control apparatus and method using photo diode sensor
WO2021085716A1 (en) * 2019-10-28 2021-05-06 서울대학교산학협력단 Apparatus and method for diagnosing combustion condition on basis of spontaneous flame emission spectroscopy
KR20210050264A (en) * 2019-10-28 2021-05-07 서울대학교산학협력단 Apparatus and method for combustion diagnostics using flame emission spectroscopy
KR102289029B1 (en) 2019-10-28 2021-08-11 서울대학교산학협력단 Apparatus and method for combustion diagnostics using flame emission spectroscopy

Also Published As

Publication number Publication date
CN1781014A (en) 2006-05-31
CN1781014B (en) 2011-04-13
JPWO2005045379A1 (en) 2007-11-29
WO2005045379A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP4274179B2 (en) Flame detection method and flame detection apparatus
Smith et al. Low pressure flame determinations of rate constants for OH (A) and CH (A) chemiluminescence
KR910006273B1 (en) Furnace system
JP5336394B2 (en) Combustion gas analysis
Teichert et al. Simultaneous in situ measurement of CO, H 2 O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers
US8500442B2 (en) Combustion gas analysis
Bejarano et al. Single-coal-particle combustion in O2/N2 and O2/CO2 environments
US9651480B2 (en) Online detection method of gaseous alkali metal concentration in boiler burning flame
JP2001527632A (en) Optical flame control method and apparatus for combustion burner
Yuan et al. Characterization on hetero-homogeneous ignition of pulverized coal particle streams using CH∗ chemiluminescence and 3 color pyrometry
JP5732244B2 (en) Impurity detection in combustor systems
Meier et al. Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths
JPH0529810B2 (en)
US20200343074A1 (en) Glow plasma stabilization
Williamson et al. Comparison of existing laser-induced breakdown thermometry techniques along with a time-resolved breakdown approach
US6404342B1 (en) Flame detector using filtering of ultraviolet radiation flicker
Elias et al. Thermocouple-based thermometry for laminar sooting flames: Implementation of a fast and simple methodology
JP2007524801A (en) Excimer UV-excited fluorescence detection
JP5142986B2 (en) Excess air control for cracking furnace burners
Schorsch et al. Detection of flame radicals using light-emitting diodes
Arias et al. Photodiode-based sensor for flame sensing and combustion-process monitoring
CN117980507A (en) Metallurgical melting furnace and method for determining the amount of a foreign molecular gas
Garcés et al. Radiation sensor in a oil boiler based on flame spectral analysis
Krabicka et al. Visualisation and characterisation of flame radical emissions through intensified spectroscopic imaging
CA3230582A1 (en) Metallurgical melting furnace, and method for determining the amount of heteromolecular gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees