JP4273904B2 - Method for producing polyimide precursor and polyimide resin - Google Patents

Method for producing polyimide precursor and polyimide resin Download PDF

Info

Publication number
JP4273904B2
JP4273904B2 JP2003338443A JP2003338443A JP4273904B2 JP 4273904 B2 JP4273904 B2 JP 4273904B2 JP 2003338443 A JP2003338443 A JP 2003338443A JP 2003338443 A JP2003338443 A JP 2003338443A JP 4273904 B2 JP4273904 B2 JP 4273904B2
Authority
JP
Japan
Prior art keywords
solution
hollow
polyimide precursor
reaction
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003338443A
Other languages
Japanese (ja)
Other versions
JP2005105079A (en
Inventor
俊治 久保山
潤一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003338443A priority Critical patent/JP4273904B2/en
Publication of JP2005105079A publication Critical patent/JP2005105079A/en
Application granted granted Critical
Publication of JP4273904B2 publication Critical patent/JP4273904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、ポリイミド前駆体およびポリイミド樹脂の製造方法に関するものである。   The present invention relates to a polyimide precursor and a method for producing a polyimide resin.

従来の重付加反応によるポリイミド前駆体の製造方法では、ジアミン化合物を含む溶液にテトラカルボン酸化合物の粉末をゆっくりと添加していくため、これらの原料の混合において、不均一な混合を生じてしまうことから前記2つの化合物の反応モル比がばらつくため、これにより得られる高分子の立体構造に重大な影響を及ぼす(例えば、非特許文献1を参照)。また、この反応は急激な発熱を伴う反応であるため、反応溶液中にホットスポットが生じ、均一な高分子構造体を得るのは難しく(例えば、非特許文献2を参照)、得られる樹脂の分子量分布も広いものであった。   In the conventional method for producing a polyimide precursor by polyaddition reaction, a powder of a tetracarboxylic acid compound is slowly added to a solution containing a diamine compound, resulting in uneven mixing of the raw materials. Therefore, since the reaction molar ratio of the two compounds varies, it has a significant effect on the three-dimensional structure of the resulting polymer (see, for example, Non-Patent Document 1). In addition, since this reaction is a reaction accompanied by a rapid exotherm, a hot spot is generated in the reaction solution, and it is difficult to obtain a uniform polymer structure (see, for example, Non-Patent Document 2). The molecular weight distribution was also wide.

今井淑夫,横田力男 著,「最新ポリイミド 〜基礎と応用〜」,エヌ・ティー・エス,2002年1月Imai, Ikuo, Yokota Rikio, “Latest Polyimide: Fundamentals and Applications”, NTS, January 2002 物質・プロセス委員会 マイクロリアクターワーキンググループ 著,マイクロリアクターWG調査報告書「化学合成を指向したマイクロリアクター技術に関する調査研究」,(財)化学技術戦略推進機構,2000年6月Material / Process Committee Microreactor Working Group, Microreactor WG Research Report “Research on Microreactor Technology Oriented to Chemical Synthesis”, Chemical Technology Strategy Promotion Organization, June 2000

本発明の目的は、分子量分布が狭く、均一な重合生成物を短時間に生成することができるポリイミド前駆体の製造方法およびポリイミド樹脂の製造方法を提供することである。   An object of the present invention is to provide a method for producing a polyimide precursor and a method for producing a polyimide resin, which can produce a uniform polymerization product in a short time with a narrow molecular weight distribution.

本発明は、ジアミン化合物(A)を含む第1溶液とテトラカルボン酸化合物(B)を含む第2溶液とを、それぞれ第1中空流路部と第2中空流路部より、反応領域における前記成分(A)に対する前記成分(B)の反応モル比が0.5〜2.0になるように、第1溶液と第2溶液の濃度または前記第1中空流路部と第2中空流路部とにおける第1溶液と第2溶液の線速度を調整し、第1中空流路と第2中空流路から構成され、それぞれの混合空間開放部が層状に隣接して交互に設けられ、開放面の面積102〜106μm2 である微細構造と、混合空間を有する中空混合機に導入し、第1溶液および第2溶液の線速度をそれぞれ10 -3 〜10 2 m/秒で高速均一混合することを特徴とするポリイミド前駆体の製造方法である。
本発明のポリイミド前駆体の製造方法において、前記反応領域における反応温度を、25℃±2℃に制御して行うことが好ましい。上記の製造方法により得られるポリイミド前駆体は、2.00〜3.50の分子量分布(Mw/Mn)を有するものである。
本発明のポリイミド前駆体の製造方法に用いる反応装置において、前記中空混合機は、前記微細構造を複数有するものを用いることができる。
さらに、本発明は、上記いずれかに記載のポリイミド前駆体の製造方法により得られたポリイミド前駆体を、さらに加熱して縮合反応することにより、ポリイミド樹脂を得ることを特徴とするポリイミド樹脂の製造方法である。
The present invention provides a first solution containing a diamine compound (A) and a second solution containing a tetracarboxylic acid compound (B), respectively, in the reaction region from the first hollow channel portion and the second hollow channel portion, respectively. The concentration of the first solution and the second solution or the first hollow channel portion and the second hollow channel so that the reaction molar ratio of the component (B) to the component (A) is 0.5 to 2.0. The linear velocity of the first solution and the second solution in the section is adjusted, and the first hollow channel and the second hollow channel are configured, and the respective mixing space opening portions are alternately provided adjacent to each other in layers and opened. and microstructure area of the surface is 10 2 to 10 6 [mu] m 2, was introduced into a hollow mixer having a mixing space, in the first solution and the second solution linear velocity of each 10 -3 to 10 2 m / s A method for producing a polyimide precursor characterized by high-speed uniform mixing.
In the production method of the polyimide precursor of the present invention, the reaction temperature in the reaction zone is preferably performed by controlling the 25 ℃ ± 2 ℃. The polyimide precursor obtained by the production method of the above SL are those having a molecular weight distribution 2.00~3.50 (Mw / Mn).
In the reaction apparatus used in the method for producing a polyimide precursor of the present invention, the hollow mixer may be one having a plurality of the microstructures.
Furthermore, the present invention provides a polyimide resin characterized in that a polyimide resin is obtained by further heating and condensing a polyimide precursor obtained by any of the above polyimide precursor production methods. Is the method.

本発明によれば、ポリイミドの均一な重合生成物を短時間に生成させることができ、しかも、従来法に比べて分子量分布の狭いポリイミドを得ることができる。   According to the present invention, a uniform polymerization product of polyimide can be generated in a short time, and a polyimide having a narrow molecular weight distribution as compared with the conventional method can be obtained.

本発明は、ジアミン化合物(A)を含む第1溶液とテトラカルボン酸化合物(B)を含む第2溶液とを、前記成分(A)に対する前記成分(B)の反応モル比が0.5〜2.0で反応させてポリイミド前駆体を製造するにあたり、第1中空流路部および第2中空流路部と、微細構造を有する中空混合機を有する反応装置を用い、前記第1溶液と前記第2溶液とを、それぞれ第1中空流路部と第2中空流路部より、反応領域である第1中空流路と第2中空流路から構成され、それぞれの混合空間開放部が層状に隣接して交互に設けられ、開放面の面積102〜106μm2 である微細構造と、混合空間を有する前記中空混合機に、前記反応モル比が0.5〜2.0になるように、第1溶液と第2溶液の濃度または前記第1中空流路部と第2中空流路部とにおける第1溶液と第2溶液の線速度を調整して導入し、高速均一混合することにより、反応熱による反応溶液の温度上昇を抑制することができるため、ホットスポットを生じることがなく、均一なポリイミド前駆体を短時間で生成することができるものである。 In the present invention, the first solution containing the diamine compound (A) and the second solution containing the tetracarboxylic acid compound (B) have a reaction molar ratio of the component (B) to the component (A) of 0.5 to 0.5. In producing a polyimide precursor by reacting at 2.0, the first solution and the second hollow channel part, using a reaction apparatus having a hollow mixer having a fine structure, the first solution and the The second solution is composed of a first hollow channel and a second hollow channel, which are reaction regions, from a first hollow channel and a second hollow channel, respectively, and each mixing space opening is layered. The reaction molar ratio is 0.5 to 2.0 in the hollow mixer having the mixing structure and the fine structure which is alternately provided adjacently and has an open surface area of 10 2 to 10 6 μm 2. As described above, the concentration of the first solution and the second solution or the first hollow flow path portion and the second hollow Since the linear velocity of the first solution and the second solution in the flow path section is adjusted and introduced, and high-speed uniform mixing is performed, the temperature rise of the reaction solution due to the reaction heat can be suppressed, thereby generating a hot spot. And a uniform polyimide precursor can be generated in a short time.

本発明における製造工程と製造に用いる中空混合機を有する反応装置について、図面を用いて説明する。
図1は、本発明の実施の一形態の全体構成を簡略化して示す斜視図である。
製造工程としては、第1溶液を第1供給源001から、また、第2溶液を第2供給源002から、それぞれ第1中空流路005および第2中空流路006を経由して、微細な構造を有する中空混合機003に連続的に供給し、中空混合機003の混合空間004において、第1溶液と第2溶液が混合されて、重付加反応が起こり、ポリイミド前駆体が生成する。ここで、混合空間004における混合効率を向上させるために、第1溶液と第2溶液は中空流路である微小空間007において、その構造を層状とすることが好ましい。
A reaction apparatus having a production process in the present invention and a hollow mixer used for production will be described with reference to the drawings.
FIG. 1 is a perspective view showing a simplified overall configuration of an embodiment of the present invention.
As the manufacturing process, the first solution is supplied from the first supply source 001 and the second solution is supplied from the second supply source 002 through the first hollow channel 005 and the second hollow channel 006, respectively. It supplies continuously to the hollow mixer 003 which has a structure, and a 1st solution and a 2nd solution are mixed in the mixing space 004 of the hollow mixer 003, a polyaddition reaction occurs, and a polyimide precursor produces | generates. Here, in order to improve the mixing efficiency in the mixing space 004, it is preferable that the first solution and the second solution have a layered structure in the minute space 007 that is a hollow channel.

図2は、微細構造を有する中空混合機003から構成される反応装置の例を示す断面図である。
反応装置は、第1溶液および第2溶液は、シリンジポンプやプランジャーポンプなどの供給装置で、供給源001,002より、それぞれ入口接続部材009,010から、第1中空流路および第2中空流路と混合空間が設けられた微細加工部材015に供給されるように構成されている。前記微細加工部材015は保持部材013に収納され、混合部材012と保持部材013の微細加工部材015上に取り付けられている。また、前記混合空間は第1中空流路および第2中空流路上に配置され、絞られた形状となっており、さらに出口部にスリット型の空間である出口スリット016を設けることにより、混合効率が向上させることができる。生産性を向上させるため、中空混合機003において、前記第1中空流路と第2中空流路から構成される微細構造(微細加工部材)を複数設けると好ましい。なお、反応温度を制御の方法としては、混合空間近傍に温度制御部を設けて制御する方法、中空混合機を温度制御された水浴内に浸す方法が挙げられる。
FIG. 2 is a cross-sectional view showing an example of a reaction apparatus composed of a hollow mixer 003 having a fine structure.
The reaction device is a supply device such as a syringe pump or a plunger pump, and the first solution and the second solution are supplied from the supply sources 001 and 002 from the inlet connection members 009 and 010, respectively. It is configured to be supplied to a microfabricated member 015 provided with a flow path and a mixing space. The microfabricated member 015 is housed in a holding member 013 and is mounted on the microfabricated member 015 of the mixing member 012 and the holding member 013. Further, the mixing space is disposed on the first hollow channel and the second hollow channel, has a narrowed shape, and further has an outlet slit 016 that is a slit-type space at the outlet portion, thereby mixing efficiency. Can be improved. In order to improve productivity, it is preferable to provide a plurality of microstructures (microfabricated members) composed of the first hollow channel and the second hollow channel in the hollow mixer 003. Examples of the method for controlling the reaction temperature include a method in which a temperature controller is provided in the vicinity of the mixing space and a method in which the hollow mixer is immersed in a temperature-controlled water bath.

図3は、保持部材013に装着された微細加工部材015の平面図およびその拡大図である。
微細加工部材015には、第1の供給源と第2の供給源からの供給口となる入口中空部017,018が設けられ、第1溶液と第2溶液は、各入口中空部017,018から微細な中空流路(第1中空流路、第2中空流路)019,020に導入されるようになっている。さらに、第1溶液は第1中空流路より、第2溶液は第2中空流路より、それぞれ層状に、入口中空部からの溶液の流れに対し垂直方向に導入され、反応領域となる幅方向に細長い水平断面が矩形型である混合空間を有する出口スリット部016に供給されるようになっている。
FIG. 3 is a plan view of the microfabricated member 015 attached to the holding member 013 and an enlarged view thereof.
The microfabricated member 015 is provided with inlet hollow portions 017 and 018 serving as supply ports from the first supply source and the second supply source, and the first solution and the second solution are respectively provided in the inlet hollow portions 017 and 018. Are introduced into fine hollow flow channels (first hollow flow channel, second hollow flow channel) 019, 020. Further, the first solution is introduced from the first hollow flow channel and the second solution is introduced from the second hollow flow channel in a layered manner in a direction perpendicular to the flow of the solution from the inlet hollow portion to form a reaction region. It is supplied to the outlet slit part 016 having a mixing space whose rectangular horizontal section is rectangular.

上記の第1および第2中空流路019,020は、各入口空間部017,018間にわたってジグザグ状に形成されていることが混合において好ましい。また、第1中空流路019と第2中空流路020とは、複数、例えば、10〜20の流路が、隣接して交互に設けられることが好ましい。
また、中空混合機において、微細構造は102〜106μm2混合空間開放面の面積を有するが好ましく、微細構造における第1および第2中空流路019,020の幅D1,D2は、1〜1000μmが好ましく、10〜500μmであることがより好ましく、25〜50μmであることがさらに好ましい。また、隔壁021の厚みD3は、例えば10〜30μm,例えば10μmであり、一方、深さD4は、例えば10〜500μm,例えば300μmである。
In the mixing, the first and second hollow flow channels 019, 020 are preferably formed in a zigzag shape between the inlet space portions 017, 018. Moreover, it is preferable that a plurality of, for example, 10 to 20 channels, for example, the first hollow channel 019 and the second hollow channel 020 are adjacently provided alternately.
In the hollow mixer, the fine structure preferably has an area of the open surface of the mixing space of 10 2 to 10 6 μm 2. The widths D 1 and D 2 of the first and second hollow flow channels 019 and 020 in the fine structure are: 1-1000 micrometers is preferable, it is more preferable that it is 10-500 micrometers, and it is further more preferable that it is 25-50 micrometers. Further, the thickness D3 of the partition wall 021 is, for example, 10 to 30 μm, for example, 10 μm, and the depth D4 is, for example, 10 to 500 μm, for example, 300 μm.

本発明で用いるジアミン化合物(A)としては、例えば、m−フェニレンジアミン、p−フェニレンジアミン,2,5−ジメチル−p−フェニレンジアミン,ビス(4−アミノフェニル)エーテル、1,4−シクロヘキサンジアミン、o−トルイジンジアミン,p−トルイジンジアミン、4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル等のジアミン化合物が挙げられる。これらは単独で用いてもよく、また2種類以上組み合わせて使用してもよい。   Examples of the diamine compound (A) used in the present invention include m-phenylenediamine, p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, bis (4-aminophenyl) ether, and 1,4-cyclohexanediamine. O-toluidinediamine, p-toluidinediamine, 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-dimethylbiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4, , 4'-diamino-2,2'-bis (trifluoromethyl) biphenyl and the like. These may be used alone or in combination of two or more.

本発明で用いるテトラカルボン酸化合物(B)としては、例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3’,3,4’−ビフェニルテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、シクロブタン−1,2,3,4−テトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物等のテトラカルボン酸二酸無水物が挙げられる。これらは単独で用いてもよく、また2種類以上組み合わせて使用してもよい。   Examples of the tetracarboxylic acid compound (B) used in the present invention include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4 ′. -Biphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) ) -1,1,1,3,3,3-hexafluoropropane dianhydride, tetracarboxylic dianhydride such as 1,2,4,5-cyclohexanetetracarboxylic dianhydride. These may be used alone or in combination of two or more.

本発明のポリイミド前駆体の製造方法としては、まず、ジアミン化合物(A)とテトラカルボン酸化合物(B)は、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の有機溶媒に溶解させて、第1溶液と第2溶液とを調整する。これらの溶液を、シリンジポンプ、またはプランジャーポンプで前記反応装置に送液し、微細構造を有する中空混合機に導入し、特定の温度領域で反応させることにより、ポリイミド前駆体の溶液が得られる。前記反応温度としては高分子構造をするために、20〜30℃が好ましく、23〜27℃がさらに好ましい。
ジアミン化合物(A)とテトラカルボン酸化合物(B)の濃度は、高粘度の高分子溶液を得るために、0.2〜1.0Mが好ましく、0.3〜0.7Mがさらに望ましい。前記成分(A)に対する前記成分(B)の反応モル比は、分子量を制御するために、0.5〜2.0が好ましく、0.75〜1.25がさらに好ましい。
反応領域における前記ジアミン化合物(A)に対する前記テトラカルボン酸化合物(B)の反応モル比は0.5〜2.0になるように、第1溶液と第2溶液の濃度または前記第1中空流路部と第2中空流路部とにおける第1溶液と第2溶液の線速度により調整することができる。
また、ジアミン化合物(A)とテトラカルボン酸化合物(B)の溶液の線速度は、十分な混合能力を発揮するために、10-3〜102m/秒が好ましく、10-2〜101m/秒がさらに好ましい。また、反応時間は線速度から算出すると、1〜60秒が好ましい。
As a method for producing the polyimide precursor of the present invention, first, the diamine compound (A) and the tetracarboxylic acid compound (B) are dissolved in an organic solvent such as N, N-dimethylacetamide or N-methyl-2-pyrrolidone. Then, the first solution and the second solution are prepared. These solutions are sent to the reaction apparatus with a syringe pump or a plunger pump, introduced into a hollow mixer having a fine structure, and reacted in a specific temperature range to obtain a polyimide precursor solution. . The reaction temperature is preferably 20 to 30 ° C. and more preferably 23 to 27 ° C. in order to form a polymer structure.
The concentration of the diamine compound (A) and the tetracarboxylic acid compound (B) is preferably 0.2 to 1.0M, and more preferably 0.3 to 0.7M in order to obtain a high viscosity polymer solution. The reaction molar ratio of the component (B) to the component (A) is preferably 0.5 to 2.0 and more preferably 0.75 to 1.25 in order to control the molecular weight.
The concentration of the first solution and the second solution or the first hollow flow so that the reaction molar ratio of the tetracarboxylic acid compound (B) to the diamine compound (A) in the reaction region is 0.5 to 2.0. It can adjust with the linear velocity of the 1st solution and the 2nd solution in a channel and the 2nd hollow channel part.
In addition, the linear velocity of the solution of the diamine compound (A) and the tetracarboxylic acid compound (B) is preferably 10 −3 to 10 2 m / sec in order to exhibit sufficient mixing ability, and 10 −2 to 10 1. More preferred is m / sec. The reaction time is preferably 1 to 60 seconds when calculated from the linear velocity.

本発明の製造方法によれば、2.00〜3.50の分子量分布(Mw/Mn)を有するポリイミド前駆体を得ることができる。
また、本発明の製造方法により得られたポリイミド前駆体溶液は、例えば、ガラス、繊維、金属、シリコンウエハー、セラミック基板等に塗布し,得られた塗膜を300℃、好ましくは100℃、200℃、300℃と段階的に変化させた温度で加熱することにより、環化縮合反応を生じ、ポリイミド樹脂を得ることができる。
According to the production method of the present invention, a polyimide precursor having a molecular weight distribution (Mw / Mn) of 2.00 to 3.50 can be obtained.
The polyimide precursor solution obtained by the production method of the present invention is applied to, for example, glass, fiber, metal, silicon wafer, ceramic substrate, etc., and the obtained coating film is 300 ° C., preferably 100 ° C., 200 By heating at a temperature that is changed in steps of ℃ and 300 ℃, a cyclized condensation reaction occurs and a polyimide resin can be obtained.

以下、実施例により本発明を具体的に説明するが、本発明はこれによって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by this.

実施例および比較例で作成したフィルムを用いて、特性評価のため、下記の方法により、耐熱性、およびガラス転移温度(Tg)を測定した。反応時間、ならびにゲル・パーミエイション・クロマトグラフィーを用いて算出した重量平均分子量(Mw)、および分子量分布(Mw/Mn)の結果を含めて、これらの結果は、表1にまとめて示した。
1.耐熱性
セイコーインスツルメンツ(株)製TG/DTA220を用いて、窒素ガス200mL/分フロー下、昇温速度10℃/分の条件により、200〜450℃における重量減少を測定した。
2.ガラス転移温度(Tg)
セイコーインスツルメンツ(株)製TMA/SS1200DMを用いて、昇温速度5℃/分の条件で引張モードにより測定し、変曲点の漸近線の交点よりガラス転移温度を求めた。
Using the films prepared in Examples and Comparative Examples, heat resistance and glass transition temperature (Tg) were measured by the following methods for property evaluation. These results are summarized in Table 1, including the reaction time, weight average molecular weight (Mw) calculated using gel permeation chromatography, and molecular weight distribution (Mw / Mn). .
1. Heat resistance Using a TG / DTA220 manufactured by Seiko Instruments Inc., weight loss at 200 to 450 ° C. was measured under a nitrogen gas flow of 200 mL / min and a temperature increase rate of 10 ° C./min.
2. Glass transition temperature (Tg)
Using a TMA / SS1200DM manufactured by Seiko Instruments Inc., the glass transition temperature was determined from the intersection of the asymptotic lines of the inflection point by measuring in a tensile mode at a temperature rising rate of 5 ° C./min.

(実施例1)
(1)ポリイミド前駆体の合成
ビス(4−アミノフェニル)エーテル1.6060g(8.0mmol)とピロメリット酸二無水物1.7452g(8.0mmol)をそれぞれ乾燥したN,N−ジメチルアセトアミド20mlずつに溶解した。これらの溶液をハミルトン社製ガスタイトシリンジに吸い取り、ハーバード社製PHD 2000 Programmable Syringe Pumpを使って線速度8.3×10-1m/秒で、中空混合機へ送液を行い、混合・反応を行った(線速度から算出される反応時間は1.2秒である)。得られたポリイミド前駆体の重量平均分子量(Mw)、および分子量分布(Mw/Mn)を、(株)島津製作所製ゲル・パーミエイション・クロマトグラフィー(以下GPCと略記)を用いてポリスチレン換算で求めたところ、それぞれ12,000及び3.08であった。
なお、中空混合機は、図3における微細加工部材において、第1中空流路および第2中空流路のそれぞれ15の流路が隣接して交互に配置され、第1中空流路幅D1と第2中空流路幅D2は40μmとし、混合空間の断面積は3.6×105μm2とした。ガスタイトシリンジと中空混合機とはテフゼルチューブ(内径500μmφ,外径1/16インチ)で接続した。また、中空混合機の出口にテフゼルチューブ1.0m(内径500μmφ,外径1/16インチ)を取り付けた。反応温度を一定に保つために、循環槽により温度調節した25℃の水浴中に中空混合機を浸した。また、反応温度は(株)ティアンドディ社製広範囲温度データロガーTR−81を用いて測定した。
(2)ポリイミド樹脂の製造
上記で得たポリアミド前駆体の溶液を、ガラス板上にドクターブレードを用いて塗布した。その後、オーブン中で窒素雰囲気下、100℃/1時間、200℃/1時間、300℃/1時間の順で加熱し、厚み10μmのポリイミド樹脂フィルムを得た。
(Example 1)
(1) Synthesis of polyimide precursor 20 ml of N, N-dimethylacetamide obtained by drying 1.6060 g (8.0 mmol) of bis (4-aminophenyl) ether and 1.752 g (8.0 mmol) of pyromellitic dianhydride, respectively. Each was dissolved. These solutions are sucked into a gas tight syringe manufactured by Hamilton, and fed to a hollow mixer at a linear velocity of 8.3 × 10 −1 m / sec using a Harvard PHD 2000 Programmable Syringe Pump. (The reaction time calculated from the linear velocity is 1.2 seconds). The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the obtained polyimide precursor were converted to polystyrene using gel permeation chromatography (hereinafter abbreviated as GPC) manufactured by Shimadzu Corporation. When determined, they were 12,000 and 3.08, respectively.
In the hollow mixer, in the microfabricated member in FIG. 3, the first hollow flow path and the second hollow flow path are adjacently arranged to be adjacent to each other so that the first hollow flow path width D1 and the first hollow flow path 2 The hollow channel width D2 was 40 μm, and the cross-sectional area of the mixing space was 3.6 × 10 5 μm 2 . The gas tight syringe and the hollow mixer were connected by a Tefzel tube (inner diameter 500 μmφ, outer diameter 1/16 inch). A Tefzel tube 1.0 m (inner diameter 500 μmφ, outer diameter 1/16 inch) was attached to the outlet of the hollow mixer. In order to keep the reaction temperature constant, the hollow mixer was immersed in a 25 ° C. water bath whose temperature was controlled by a circulation tank. The reaction temperature was measured using a wide range temperature data logger TR-81 manufactured by T & D Corporation.
(2) Production of polyimide resin The polyamide precursor solution obtained above was applied onto a glass plate using a doctor blade. Then, it heated in order of 100 degreeC / 1 hour, 200 degreeC / 1 hour, 300 degreeC / 1 hour in nitrogen atmosphere in oven, and obtained the 10-micrometer-thick polyimide resin film.

(実施例2)
実施例1のポリイミドの合成において、ビス(4−アミノフェニル)エーテルとピロメリット酸二無水物の量をそれぞれ1.6841g(8.4mmol)、1.7423g(8.0mmol)に変更した以外は、すべて実施例1と同様にして、ポリイミド前駆体を合成した。得られたポリイミド前駆体の重量平均分子量(Mw)、および分子量分布(Mw/Mn)を、合成例1と同様にGPCを用いて求めたところ、それぞれ8,000及び3.10であった。
上記で得たポリアミド前駆体の溶液を、以下実施例1と同様にして、ポリイミド樹脂フィルムを得た。
(Example 2)
In the synthesis of the polyimide of Example 1, except that the amounts of bis (4-aminophenyl) ether and pyromellitic dianhydride were changed to 1.6841 g (8.4 mmol) and 1.7423 g (8.0 mmol), respectively. A polyimide precursor was synthesized in the same manner as in Example 1. When the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the obtained polyimide precursor were determined using GPC in the same manner as in Synthesis Example 1, they were 8,000 and 3.10.
The polyamide precursor solution obtained above was treated in the same manner as in Example 1 to obtain a polyimide resin film.

(比較例1)
100mlのガラス製三口フラスコにビス(4−アミノフェニル)エーテル1.5108g(7.5mmol)を乾燥したN,N−ジメチルアセトアミド32mlに溶解した。その後、窒素雰囲気下、25℃でピロメリット酸二無水物1.6371g(7.5mmol)を加え、120分間攪拌を続けた。反応温度を一定に保つために、25℃の水浴中に三口フラスコを浸した。また、反応温度は(株)ティアンドディ社製広範囲温度データロガーTR―81を用いて測定した。得られたポリイミド前駆体の重量平均分子量(Mw)、および分子量分布(Mw/Mn)を、実施例1と同様にGPCを用いて求めたところ、それぞれ8,200及び3.74であった。
上記で得たポリアミド前駆体の溶液を、以下実施例1と同様にして、ポリイミド樹脂フィルムを得た。
(Comparative Example 1)
In a 100 ml glass three-necked flask, 1.5108 g (7.5 mmol) of bis (4-aminophenyl) ether was dissolved in 32 ml of dried N, N-dimethylacetamide. Thereafter, 1.6371 g (7.5 mmol) of pyromellitic dianhydride was added at 25 ° C. under a nitrogen atmosphere, and stirring was continued for 120 minutes. In order to keep the reaction temperature constant, the three-necked flask was immersed in a 25 ° C. water bath. The reaction temperature was measured using a wide range temperature data logger TR-81 manufactured by T & D Corporation. When the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the obtained polyimide precursor were calculated | required using GPC similarly to Example 1, they were 8,200 and 3.74, respectively.
The polyamide precursor solution obtained above was treated in the same manner as in Example 1 to obtain a polyimide resin film.

(比較例2)
比較例1において、ビス(4−アミノフェニル)エーテルとピロメリット酸二無水物の量をそれぞれ1.5060g(7.5mmol)、1.5584g(7.1mmol)に変更した以外は、すべて比較例1と同様にして、ポリイミド前駆体を合成した。得られたポリイミド前駆体の重量平均分子量(Mw)、および分子量分布(Mw/Mn)を、実施例1と同様にGPCを用いて求めたところ、それぞれ8,000及び3.57であった。
上記で得たポリアミド前駆体の溶液を、以下実施例1と同様にして、ポリイミド樹脂フィルムを得た。
(Comparative Example 2)
Comparative Example 1 except that the amounts of bis (4-aminophenyl) ether and pyromellitic dianhydride were changed to 1.5060 g (7.5 mmol) and 1.5584 g (7.1 mmol), respectively, in Comparative Example 1. In the same manner as in Example 1, a polyimide precursor was synthesized. When the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the obtained polyimide precursor were calculated | required using GPC similarly to Example 1, they were 8,000 and 3.57, respectively.
The polyamide precursor solution obtained above was treated in the same manner as in Example 1 to obtain a polyimide resin film.

表1にまとめた実施例および比較例の評価結果から、本発明の重付加反応方法により合成したポリイミド前駆体は、従来品と同等の樹脂特性(ガラス転移温度、耐熱性)を維持しながら、効率よく短時間に合成されることが明らかとなった。さらに、重合時の反応温度を特定の温度範囲内に精密に制御することが可能になったことから、均一なポリイミド前駆体が生成し、分子量分布がこれまでの重合法と比較して狭くなったことが分かる。   From the evaluation results of the examples and comparative examples summarized in Table 1, the polyimide precursor synthesized by the polyaddition reaction method of the present invention maintains the same resin properties (glass transition temperature, heat resistance) as conventional products, It was clarified that it was synthesized efficiently in a short time. In addition, since the reaction temperature during polymerization can be precisely controlled within a specific temperature range, a uniform polyimide precursor is generated, and the molecular weight distribution is narrower than that of conventional polymerization methods. I understand that.

本発明の製造方法により得られるポリイミドは、分子量分布が狭く均一な重合生成物であることから、このような特性が要求される感光性樹脂や高機能樹脂の用途に好適である。   Since the polyimide obtained by the production method of the present invention is a uniform polymerization product with a narrow molecular weight distribution, it is suitable for use in photosensitive resins and high-performance resins that require such characteristics.

本発明の実施の一形態の全体構成を簡略化して示す斜視図である。It is a perspective view which simplifies and shows the whole structure of one Embodiment of this invention. 微細構造を有する中空混合機003の断面図である。It is sectional drawing of the hollow mixer 003 which has a microstructure. 保持部材013に装着された微細加工部材015の平面図およびその拡大図である。It is the top view of the microfabricated member 015 with which the holding member 013 was mounted | worn, and its enlarged view.

符号の説明Explanation of symbols

001 第1供給源
002 第2供給源
003 微細加工部位を有する中空混合機
004 混合空間
005 第1中空流路
006 第2中空流路
007 微少空間
008 隔壁
009,010 入口接続部材
011 出口接続部材
012 混合部材
013 保持部材
014 取付ネジ部
015 微細加工部材
016 出口スリット部
017,018 入口中空部
019 第1中空流路
020 第2中空流路
021 隔壁
001 1st supply source 002 2nd supply source 003 Hollow mixing machine having microfabrication site 004 Mixing space 005 1st hollow flow path 006 2nd hollow flow path 007 Micro space 008 Partition wall 009,010 Inlet connection member 011 Outlet connection member 012 Mixing member 013 Holding member 014 Mounting screw part 015 Finely processed member 016 Exit slit part 017,018 Inlet hollow part 019 First hollow channel 020 Second hollow channel 021 Bulkhead

Claims (5)

ジアミン化合物(A)を含む第1溶液とテトラカルボン酸化合物(B)を含む第2溶液とを、それぞれ第1中空流路部と第2中空流路部より、反応領域における前記成分(A)に対する前記成分(B)の反応モル比が0.5〜2.0になるように、第1溶液と第2溶液の濃度または前記第1中空流路部と第2中空流路部とにおける第1溶液と第2溶液の線速度を調整し、第1中空流路と第2中空流路から構成され、それぞれの混合空間開放部が層状に隣接して交互に設けられ、開放面の面積102〜106μm2 である微細構造と、混合空間を有する中空混合機に導入し、第1溶液および第2溶液の線速度をそれぞれ10 -3 〜10 2 m/秒で高速均一混合することを特徴とするポリイミド前駆体の製造方法。 The first solution containing the diamine compound (A) and the second solution containing the tetracarboxylic acid compound (B) are respectively added to the component (A) in the reaction region from the first hollow channel portion and the second hollow channel portion. The concentration of the first solution and the second solution or the first and second hollow flow path portions in the first solution and the second hollow flow path portion so that the reaction molar ratio of the component (B) to 0.5 to 2.0 is achieved. The linear velocity of 1 solution and 2nd solution is adjusted, it is comprised from the 1st hollow flow path and the 2nd hollow flow path, and each mixing space opening part is alternately provided adjacent to the layer form, and the area of an open surface is It is introduced into a hollow mixer having a fine structure of 10 2 to 10 6 μm 2 and a mixing space , and the linear velocity of the first solution and the second solution is uniformly mixed at 10 −3 to 10 2 m / sec. The manufacturing method of the polyimide precursor characterized by the above-mentioned. 前記中空混合機は、前記微細構造を複数有するものである請求項1に記載のポリイミド前駆体の製造方法。 The method for producing a polyimide precursor according to claim 1, wherein the hollow mixer has a plurality of the fine structures. 前記反応領域における反応温度を、25℃±2℃に制御して行う請求項1又は2に記載のポリイミド前駆体の製造方法。 The method for producing a polyimide precursor according to claim 1 or 2, wherein the reaction temperature in the reaction region is controlled to 25 ° C ± 2 ° C. 前記製造方法により得られるポリイミド前駆体が、2.00〜3.50の分子量分布(Mw/Mn)を有するものである請求項1乃至のいずれかに記載のポリイミド前駆体の製造方法。 The method for producing a polyimide precursor according to any one of claims 1 to 3 , wherein the polyimide precursor obtained by the production method has a molecular weight distribution (Mw / Mn) of 2.00 to 3.50. 請求項1乃至のいずれかに記載のポリイミド前駆体の製造方法により得られたポリイミド前駆体を、さらに加熱して縮合反応することにより、ポリイミド樹脂を得ることを特徴とするポリイミド樹脂の製造方法。 The polyimide precursor obtained by the manufacturing method of the polyimide precursor in any one of Claims 1 thru | or 4 is further heated and condensation-reacted, A polyimide resin is obtained, The manufacturing method of the polyimide resin characterized by the above-mentioned .
JP2003338443A 2003-09-29 2003-09-29 Method for producing polyimide precursor and polyimide resin Expired - Fee Related JP4273904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003338443A JP4273904B2 (en) 2003-09-29 2003-09-29 Method for producing polyimide precursor and polyimide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003338443A JP4273904B2 (en) 2003-09-29 2003-09-29 Method for producing polyimide precursor and polyimide resin

Publications (2)

Publication Number Publication Date
JP2005105079A JP2005105079A (en) 2005-04-21
JP4273904B2 true JP4273904B2 (en) 2009-06-03

Family

ID=34533965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003338443A Expired - Fee Related JP4273904B2 (en) 2003-09-29 2003-09-29 Method for producing polyimide precursor and polyimide resin

Country Status (1)

Country Link
JP (1) JP4273904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022851B2 (en) 2018-07-11 2022-02-18 プラクスエア・テクノロジー・インコーポレイテッド Multifunctional fluid burner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780514B2 (en) * 2004-11-30 2011-09-28 荒川化学工業株式会社 Polymer fine particle production method and polymer fine particle production apparatus
JP2007217486A (en) * 2006-02-15 2007-08-30 Arakawa Chem Ind Co Ltd Manufacturing method of fine polymer particle and fine polymer particle
JP5672210B2 (en) * 2011-10-11 2015-02-18 荒川化学工業株式会社 Method for producing polyamic acid fine particles and method for producing polyimide fine particles
US10224258B2 (en) * 2013-03-22 2019-03-05 Applied Materials, Inc. Method of curing thermoplastics with microwave energy
CN109666142B (en) * 2017-10-17 2021-05-11 中国石油化工股份有限公司 Polyamide acid solution, preparation method and application
CN109666141B (en) * 2017-10-17 2021-11-30 中国石油化工股份有限公司 Polyamide acid stock solution and preparation method and application thereof
JP7377792B2 (en) 2018-03-01 2023-11-10 株式会社カネカ Polyamic acid production system and production method, and polyimide production system and production method
JP7249803B2 (en) * 2018-03-30 2023-03-31 株式会社カネカ Polymer production system and production method
JP7249802B2 (en) * 2018-03-30 2023-03-31 株式会社カネカ Polymer production system and production method
JP7249801B2 (en) * 2018-03-30 2023-03-31 株式会社カネカ Polyamic acid production system and production method, and polyimide production system and production method
JP7259297B2 (en) * 2018-12-04 2023-04-18 株式会社レゾナック Method for producing polyimide particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022851B2 (en) 2018-07-11 2022-02-18 プラクスエア・テクノロジー・インコーポレイテッド Multifunctional fluid burner

Also Published As

Publication number Publication date
JP2005105079A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4273904B2 (en) Method for producing polyimide precursor and polyimide resin
CN101389459B (en) Process for producing multilayered polyimide film
CN1332999C (en) Polyimide film and process for producing the same
US9808993B2 (en) Method for solid freeform fabrication
CN101107292B (en) Method for producing polyimide film
JPS59162044A (en) Thick polyimide-metal laminate of large exfoliation strength
JP2015074783A (en) Release layer, substrate structure, and method of producing flexible electronic device
KR101706299B1 (en) UV sensitive self-healing polymer nanoparticles and manufacturing method of the same and film with the same
Manning et al. Self assembly–assisted additive manufacturing: direct ink write 3D printing of epoxy–amine thermosets
KR20100017806A (en) Microfluidic self-sustaining oscillating mixers and devices and methods utilizing same
JP2017119869A (en) Composition for producing polyimide film, production method of the composition, and production method of polyimide film using the composition
JPWO2006104228A1 (en) Aromatic polyimide film and method for producing the same
JP3956940B2 (en) Method for producing polyimide benzoxazole film
TWI294431B (en) A polymer and method of manufacturing the same
US3349061A (en) Amide-ester isomers
JP2005239969A (en) Polybenzoxazole precursor and method for producing polybenzoxazole resin
TWI391223B (en) Synthetic resin film and method for producing the same
CN109563280A (en) The manufacturing method of polyimide resin film and polyimide resin film
WO2004096919A1 (en) Resin composition and adhesive film
CN109311676A (en) The manufacturing method of graphite flake machining object and graphite flake machining object
JP2005272825A (en) Method for producing polyamide precursor and polyamide resin
CN110628026A (en) Method for continuously synthesizing polyimide precursor by using microreactor
JP4661273B2 (en) End-capped polybenzoxazole precursor and method for producing end-capped polybenzoxazole resin.
CN101910250A (en) Aromatic polyimide film and method for producing the same
CN106751823B (en) A kind of heat-insulated laminated film and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees